src/share/vm/opto/lcm.cpp

Tue, 05 Aug 2014 15:02:10 -0700

author
kvn
date
Tue, 05 Aug 2014 15:02:10 -0700
changeset 7025
b1bc1af04c6e
parent 6518
62c54fcc0a35
child 7332
7024b693c8f9
permissions
-rw-r--r--

8052081: Optimize generated by C2 code for Intel's Atom processor
Summary: Allow to execute vectorization and crc32 optimization on Atom. Enable UseFPUForSpilling by default on x86.
Reviewed-by: roland

duke@435 1 /*
mikael@6198 2 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "opto/block.hpp"
stefank@2314 28 #include "opto/c2compiler.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/cfgnode.hpp"
stefank@2314 31 #include "opto/machnode.hpp"
stefank@2314 32 #include "opto/runtime.hpp"
stefank@2314 33 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 34 # include "adfiles/ad_x86_32.hpp"
stefank@2314 35 #endif
stefank@2314 36 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 37 # include "adfiles/ad_x86_64.hpp"
stefank@2314 38 #endif
stefank@2314 39 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 40 # include "adfiles/ad_sparc.hpp"
stefank@2314 41 #endif
stefank@2314 42 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 43 # include "adfiles/ad_zero.hpp"
stefank@2314 44 #endif
roland@2683 45 #ifdef TARGET_ARCH_MODEL_arm
roland@2683 46 # include "adfiles/ad_arm.hpp"
roland@2683 47 #endif
goetz@6441 48 #ifdef TARGET_ARCH_MODEL_ppc_32
goetz@6441 49 # include "adfiles/ad_ppc_32.hpp"
goetz@6441 50 #endif
goetz@6441 51 #ifdef TARGET_ARCH_MODEL_ppc_64
goetz@6441 52 # include "adfiles/ad_ppc_64.hpp"
jcoomes@2993 53 #endif
stefank@2314 54
duke@435 55 // Optimization - Graph Style
duke@435 56
goetz@6486 57 // Check whether val is not-null-decoded compressed oop,
goetz@6486 58 // i.e. will grab into the base of the heap if it represents NULL.
goetz@6486 59 static bool accesses_heap_base_zone(Node *val) {
goetz@6486 60 if (Universe::narrow_oop_base() > 0) { // Implies UseCompressedOops.
goetz@6486 61 if (val && val->is_Mach()) {
goetz@6486 62 if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
goetz@6486 63 // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
goetz@6486 64 // decode NULL to point to the heap base (Decode_NN).
goetz@6486 65 if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
goetz@6486 66 return true;
goetz@6486 67 }
goetz@6486 68 }
goetz@6486 69 // Must recognize load operation with Decode matched in memory operand.
goetz@6486 70 // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
goetz@6486 71 // returns true everywhere else. On PPC, no such memory operands
goetz@6486 72 // exist, therefore we did not yet implement a check for such operands.
goetz@6486 73 NOT_AIX(Unimplemented());
goetz@6486 74 }
goetz@6486 75 }
goetz@6486 76 return false;
goetz@6486 77 }
goetz@6486 78
goetz@6486 79 static bool needs_explicit_null_check_for_read(Node *val) {
goetz@6486 80 // On some OSes (AIX) the page at address 0 is only write protected.
goetz@6486 81 // If so, only Store operations will trap.
goetz@6486 82 if (os::zero_page_read_protected()) {
goetz@6486 83 return false; // Implicit null check will work.
goetz@6486 84 }
goetz@6486 85 // Also a read accessing the base of a heap-based compressed heap will trap.
goetz@6486 86 if (accesses_heap_base_zone(val) && // Hits the base zone page.
goetz@6486 87 Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
goetz@6486 88 return false;
goetz@6486 89 }
goetz@6486 90
goetz@6486 91 return true;
goetz@6486 92 }
goetz@6486 93
duke@435 94 //------------------------------implicit_null_check----------------------------
duke@435 95 // Detect implicit-null-check opportunities. Basically, find NULL checks
duke@435 96 // with suitable memory ops nearby. Use the memory op to do the NULL check.
duke@435 97 // I can generate a memory op if there is not one nearby.
duke@435 98 // The proj is the control projection for the not-null case.
kvn@1930 99 // The val is the pointer being checked for nullness or
kvn@1930 100 // decodeHeapOop_not_null node if it did not fold into address.
adlertz@5639 101 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
duke@435 102 // Assume if null check need for 0 offset then always needed
duke@435 103 // Intel solaris doesn't support any null checks yet and no
duke@435 104 // mechanism exists (yet) to set the switches at an os_cpu level
duke@435 105 if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
duke@435 106
duke@435 107 // Make sure the ptr-is-null path appears to be uncommon!
adlertz@5639 108 float f = block->end()->as_MachIf()->_prob;
duke@435 109 if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
duke@435 110 if( f > PROB_UNLIKELY_MAG(4) ) return;
duke@435 111
duke@435 112 uint bidx = 0; // Capture index of value into memop
duke@435 113 bool was_store; // Memory op is a store op
duke@435 114
duke@435 115 // Get the successor block for if the test ptr is non-null
duke@435 116 Block* not_null_block; // this one goes with the proj
duke@435 117 Block* null_block;
adlertz@5639 118 if (block->get_node(block->number_of_nodes()-1) == proj) {
adlertz@5639 119 null_block = block->_succs[0];
adlertz@5639 120 not_null_block = block->_succs[1];
duke@435 121 } else {
adlertz@5639 122 assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
adlertz@5639 123 not_null_block = block->_succs[0];
adlertz@5639 124 null_block = block->_succs[1];
duke@435 125 }
kvn@767 126 while (null_block->is_Empty() == Block::empty_with_goto) {
kvn@767 127 null_block = null_block->_succs[0];
kvn@767 128 }
duke@435 129
duke@435 130 // Search the exception block for an uncommon trap.
duke@435 131 // (See Parse::do_if and Parse::do_ifnull for the reason
duke@435 132 // we need an uncommon trap. Briefly, we need a way to
duke@435 133 // detect failure of this optimization, as in 6366351.)
duke@435 134 {
duke@435 135 bool found_trap = false;
adlertz@5639 136 for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
adlertz@5635 137 Node* nn = null_block->get_node(i1);
duke@435 138 if (nn->is_MachCall() &&
twisti@2103 139 nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
duke@435 140 const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
duke@435 141 if (trtype->isa_int() && trtype->is_int()->is_con()) {
duke@435 142 jint tr_con = trtype->is_int()->get_con();
duke@435 143 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
duke@435 144 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
duke@435 145 assert((int)reason < (int)BitsPerInt, "recode bit map");
duke@435 146 if (is_set_nth_bit(allowed_reasons, (int) reason)
duke@435 147 && action != Deoptimization::Action_none) {
duke@435 148 // This uncommon trap is sure to recompile, eventually.
duke@435 149 // When that happens, C->too_many_traps will prevent
duke@435 150 // this transformation from happening again.
duke@435 151 found_trap = true;
duke@435 152 }
duke@435 153 }
duke@435 154 break;
duke@435 155 }
duke@435 156 }
duke@435 157 if (!found_trap) {
duke@435 158 // We did not find an uncommon trap.
duke@435 159 return;
duke@435 160 }
duke@435 161 }
duke@435 162
kvn@1930 163 // Check for decodeHeapOop_not_null node which did not fold into address
kvn@1930 164 bool is_decoden = ((intptr_t)val) & 1;
kvn@1930 165 val = (Node*)(((intptr_t)val) & ~1);
kvn@1930 166
kvn@1930 167 assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
kvn@1930 168 (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
kvn@1930 169
duke@435 170 // Search the successor block for a load or store who's base value is also
duke@435 171 // the tested value. There may be several.
duke@435 172 Node_List *out = new Node_List(Thread::current()->resource_area());
duke@435 173 MachNode *best = NULL; // Best found so far
duke@435 174 for (DUIterator i = val->outs(); val->has_out(i); i++) {
duke@435 175 Node *m = val->out(i);
duke@435 176 if( !m->is_Mach() ) continue;
duke@435 177 MachNode *mach = m->as_Mach();
duke@435 178 was_store = false;
kvn@2048 179 int iop = mach->ideal_Opcode();
kvn@2048 180 switch( iop ) {
duke@435 181 case Op_LoadB:
kvn@3882 182 case Op_LoadUB:
twisti@993 183 case Op_LoadUS:
duke@435 184 case Op_LoadD:
duke@435 185 case Op_LoadF:
duke@435 186 case Op_LoadI:
duke@435 187 case Op_LoadL:
duke@435 188 case Op_LoadP:
coleenp@548 189 case Op_LoadN:
duke@435 190 case Op_LoadS:
duke@435 191 case Op_LoadKlass:
kvn@599 192 case Op_LoadNKlass:
duke@435 193 case Op_LoadRange:
duke@435 194 case Op_LoadD_unaligned:
duke@435 195 case Op_LoadL_unaligned:
kvn@1586 196 assert(mach->in(2) == val, "should be address");
duke@435 197 break;
duke@435 198 case Op_StoreB:
duke@435 199 case Op_StoreC:
duke@435 200 case Op_StoreCM:
duke@435 201 case Op_StoreD:
duke@435 202 case Op_StoreF:
duke@435 203 case Op_StoreI:
duke@435 204 case Op_StoreL:
duke@435 205 case Op_StoreP:
coleenp@548 206 case Op_StoreN:
roland@4159 207 case Op_StoreNKlass:
duke@435 208 was_store = true; // Memory op is a store op
duke@435 209 // Stores will have their address in slot 2 (memory in slot 1).
duke@435 210 // If the value being nul-checked is in another slot, it means we
duke@435 211 // are storing the checked value, which does NOT check the value!
duke@435 212 if( mach->in(2) != val ) continue;
duke@435 213 break; // Found a memory op?
duke@435 214 case Op_StrComp:
cfang@1116 215 case Op_StrEquals:
cfang@1116 216 case Op_StrIndexOf:
rasbold@604 217 case Op_AryEq:
kvn@4479 218 case Op_EncodeISOArray:
duke@435 219 // Not a legit memory op for implicit null check regardless of
duke@435 220 // embedded loads
duke@435 221 continue;
duke@435 222 default: // Also check for embedded loads
duke@435 223 if( !mach->needs_anti_dependence_check() )
duke@435 224 continue; // Not an memory op; skip it
kvn@2048 225 if( must_clone[iop] ) {
kvn@2048 226 // Do not move nodes which produce flags because
kvn@2048 227 // RA will try to clone it to place near branch and
kvn@2048 228 // it will cause recompilation, see clone_node().
kvn@2048 229 continue;
kvn@2048 230 }
kvn@1586 231 {
kvn@1930 232 // Check that value is used in memory address in
kvn@1930 233 // instructions with embedded load (CmpP val1,(val2+off)).
kvn@1586 234 Node* base;
kvn@1586 235 Node* index;
kvn@1586 236 const MachOper* oper = mach->memory_inputs(base, index);
kvn@1586 237 if (oper == NULL || oper == (MachOper*)-1) {
kvn@1586 238 continue; // Not an memory op; skip it
kvn@1586 239 }
kvn@1586 240 if (val == base ||
kvn@1586 241 val == index && val->bottom_type()->isa_narrowoop()) {
kvn@1586 242 break; // Found it
kvn@1586 243 } else {
kvn@1586 244 continue; // Skip it
kvn@1586 245 }
kvn@1586 246 }
duke@435 247 break;
duke@435 248 }
goetz@6486 249
goetz@6486 250 // On some OSes (AIX) the page at address 0 is only write protected.
goetz@6486 251 // If so, only Store operations will trap.
goetz@6486 252 // But a read accessing the base of a heap-based compressed heap will trap.
goetz@6486 253 if (!was_store && needs_explicit_null_check_for_read(val)) {
goetz@6486 254 continue;
goetz@6486 255 }
goetz@6486 256
duke@435 257 // check if the offset is not too high for implicit exception
duke@435 258 {
duke@435 259 intptr_t offset = 0;
duke@435 260 const TypePtr *adr_type = NULL; // Do not need this return value here
duke@435 261 const Node* base = mach->get_base_and_disp(offset, adr_type);
duke@435 262 if (base == NULL || base == NodeSentinel) {
kvn@767 263 // Narrow oop address doesn't have base, only index
kvn@767 264 if( val->bottom_type()->isa_narrowoop() &&
kvn@767 265 MacroAssembler::needs_explicit_null_check(offset) )
kvn@767 266 continue; // Give up if offset is beyond page size
duke@435 267 // cannot reason about it; is probably not implicit null exception
duke@435 268 } else {
kvn@1077 269 const TypePtr* tptr;
kvn@5111 270 if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
kvn@5111 271 Universe::narrow_klass_shift() == 0)) {
kvn@1077 272 // 32-bits narrow oop can be the base of address expressions
kvn@5111 273 tptr = base->get_ptr_type();
kvn@1077 274 } else {
kvn@1077 275 // only regular oops are expected here
kvn@1077 276 tptr = base->bottom_type()->is_ptr();
kvn@1077 277 }
duke@435 278 // Give up if offset is not a compile-time constant
duke@435 279 if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
duke@435 280 continue;
duke@435 281 offset += tptr->_offset; // correct if base is offseted
duke@435 282 if( MacroAssembler::needs_explicit_null_check(offset) )
duke@435 283 continue; // Give up is reference is beyond 4K page size
duke@435 284 }
duke@435 285 }
duke@435 286
duke@435 287 // Check ctrl input to see if the null-check dominates the memory op
adlertz@5639 288 Block *cb = get_block_for_node(mach);
duke@435 289 cb = cb->_idom; // Always hoist at least 1 block
duke@435 290 if( !was_store ) { // Stores can be hoisted only one block
adlertz@5639 291 while( cb->_dom_depth > (block->_dom_depth + 1))
duke@435 292 cb = cb->_idom; // Hoist loads as far as we want
duke@435 293 // The non-null-block should dominate the memory op, too. Live
duke@435 294 // range spilling will insert a spill in the non-null-block if it is
duke@435 295 // needs to spill the memory op for an implicit null check.
adlertz@5639 296 if (cb->_dom_depth == (block->_dom_depth + 1)) {
duke@435 297 if (cb != not_null_block) continue;
duke@435 298 cb = cb->_idom;
duke@435 299 }
duke@435 300 }
adlertz@5639 301 if( cb != block ) continue;
duke@435 302
duke@435 303 // Found a memory user; see if it can be hoisted to check-block
duke@435 304 uint vidx = 0; // Capture index of value into memop
duke@435 305 uint j;
duke@435 306 for( j = mach->req()-1; j > 0; j-- ) {
kvn@1930 307 if( mach->in(j) == val ) {
kvn@1930 308 vidx = j;
kvn@1930 309 // Ignore DecodeN val which could be hoisted to where needed.
kvn@1930 310 if( is_decoden ) continue;
kvn@1930 311 }
duke@435 312 // Block of memory-op input
adlertz@5639 313 Block *inb = get_block_for_node(mach->in(j));
adlertz@5639 314 Block *b = block; // Start from nul check
duke@435 315 while( b != inb && b->_dom_depth > inb->_dom_depth )
duke@435 316 b = b->_idom; // search upwards for input
duke@435 317 // See if input dominates null check
duke@435 318 if( b != inb )
duke@435 319 break;
duke@435 320 }
duke@435 321 if( j > 0 )
duke@435 322 continue;
adlertz@5639 323 Block *mb = get_block_for_node(mach);
duke@435 324 // Hoisting stores requires more checks for the anti-dependence case.
duke@435 325 // Give up hoisting if we have to move the store past any load.
duke@435 326 if( was_store ) {
duke@435 327 Block *b = mb; // Start searching here for a local load
duke@435 328 // mach use (faulting) trying to hoist
duke@435 329 // n might be blocker to hoisting
adlertz@5639 330 while( b != block ) {
duke@435 331 uint k;
adlertz@5639 332 for( k = 1; k < b->number_of_nodes(); k++ ) {
adlertz@5635 333 Node *n = b->get_node(k);
duke@435 334 if( n->needs_anti_dependence_check() &&
duke@435 335 n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
duke@435 336 break; // Found anti-dependent load
duke@435 337 }
adlertz@5639 338 if( k < b->number_of_nodes() )
duke@435 339 break; // Found anti-dependent load
duke@435 340 // Make sure control does not do a merge (would have to check allpaths)
duke@435 341 if( b->num_preds() != 2 ) break;
adlertz@5639 342 b = get_block_for_node(b->pred(1)); // Move up to predecessor block
duke@435 343 }
adlertz@5639 344 if( b != block ) continue;
duke@435 345 }
duke@435 346
duke@435 347 // Make sure this memory op is not already being used for a NullCheck
duke@435 348 Node *e = mb->end();
duke@435 349 if( e->is_MachNullCheck() && e->in(1) == mach )
duke@435 350 continue; // Already being used as a NULL check
duke@435 351
duke@435 352 // Found a candidate! Pick one with least dom depth - the highest
duke@435 353 // in the dom tree should be closest to the null check.
adlertz@5639 354 if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
duke@435 355 best = mach;
duke@435 356 bidx = vidx;
duke@435 357 }
duke@435 358 }
duke@435 359 // No candidate!
adlertz@5509 360 if (best == NULL) {
adlertz@5509 361 return;
adlertz@5509 362 }
duke@435 363
duke@435 364 // ---- Found an implicit null check
duke@435 365 extern int implicit_null_checks;
duke@435 366 implicit_null_checks++;
duke@435 367
kvn@1930 368 if( is_decoden ) {
kvn@1930 369 // Check if we need to hoist decodeHeapOop_not_null first.
adlertz@5639 370 Block *valb = get_block_for_node(val);
adlertz@5639 371 if( block != valb && block->_dom_depth < valb->_dom_depth ) {
kvn@1930 372 // Hoist it up to the end of the test block.
kvn@1930 373 valb->find_remove(val);
adlertz@5639 374 block->add_inst(val);
adlertz@5639 375 map_node_to_block(val, block);
kvn@1930 376 // DecodeN on x86 may kill flags. Check for flag-killing projections
kvn@1930 377 // that also need to be hoisted.
kvn@1930 378 for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
kvn@1930 379 Node* n = val->fast_out(j);
kvn@3040 380 if( n->is_MachProj() ) {
adlertz@5639 381 get_block_for_node(n)->find_remove(n);
adlertz@5639 382 block->add_inst(n);
adlertz@5639 383 map_node_to_block(n, block);
kvn@1930 384 }
kvn@1930 385 }
kvn@1930 386 }
kvn@1930 387 }
duke@435 388 // Hoist the memory candidate up to the end of the test block.
adlertz@5639 389 Block *old_block = get_block_for_node(best);
duke@435 390 old_block->find_remove(best);
adlertz@5639 391 block->add_inst(best);
adlertz@5639 392 map_node_to_block(best, block);
duke@435 393
duke@435 394 // Move the control dependence
adlertz@5635 395 if (best->in(0) && best->in(0) == old_block->head())
adlertz@5639 396 best->set_req(0, block->head());
duke@435 397
duke@435 398 // Check for flag-killing projections that also need to be hoisted
duke@435 399 // Should be DU safe because no edge updates.
duke@435 400 for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
duke@435 401 Node* n = best->fast_out(j);
kvn@3040 402 if( n->is_MachProj() ) {
adlertz@5639 403 get_block_for_node(n)->find_remove(n);
adlertz@5639 404 block->add_inst(n);
adlertz@5639 405 map_node_to_block(n, block);
duke@435 406 }
duke@435 407 }
duke@435 408
duke@435 409 // proj==Op_True --> ne test; proj==Op_False --> eq test.
duke@435 410 // One of two graph shapes got matched:
duke@435 411 // (IfTrue (If (Bool NE (CmpP ptr NULL))))
duke@435 412 // (IfFalse (If (Bool EQ (CmpP ptr NULL))))
duke@435 413 // NULL checks are always branch-if-eq. If we see a IfTrue projection
duke@435 414 // then we are replacing a 'ne' test with a 'eq' NULL check test.
duke@435 415 // We need to flip the projections to keep the same semantics.
duke@435 416 if( proj->Opcode() == Op_IfTrue ) {
duke@435 417 // Swap order of projections in basic block to swap branch targets
adlertz@5639 418 Node *tmp1 = block->get_node(block->end_idx()+1);
adlertz@5639 419 Node *tmp2 = block->get_node(block->end_idx()+2);
adlertz@5639 420 block->map_node(tmp2, block->end_idx()+1);
adlertz@5639 421 block->map_node(tmp1, block->end_idx()+2);
kvn@4115 422 Node *tmp = new (C) Node(C->top()); // Use not NULL input
duke@435 423 tmp1->replace_by(tmp);
duke@435 424 tmp2->replace_by(tmp1);
duke@435 425 tmp->replace_by(tmp2);
duke@435 426 tmp->destruct();
duke@435 427 }
duke@435 428
duke@435 429 // Remove the existing null check; use a new implicit null check instead.
duke@435 430 // Since schedule-local needs precise def-use info, we need to correct
duke@435 431 // it as well.
duke@435 432 Node *old_tst = proj->in(0);
duke@435 433 MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
adlertz@5639 434 block->map_node(nul_chk, block->end_idx());
adlertz@5639 435 map_node_to_block(nul_chk, block);
duke@435 436 // Redirect users of old_test to nul_chk
duke@435 437 for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
duke@435 438 old_tst->last_out(i2)->set_req(0, nul_chk);
duke@435 439 // Clean-up any dead code
duke@435 440 for (uint i3 = 0; i3 < old_tst->req(); i3++)
duke@435 441 old_tst->set_req(i3, NULL);
duke@435 442
adlertz@5639 443 latency_from_uses(nul_chk);
adlertz@5639 444 latency_from_uses(best);
duke@435 445 }
duke@435 446
duke@435 447
duke@435 448 //------------------------------select-----------------------------------------
duke@435 449 // Select a nice fellow from the worklist to schedule next. If there is only
duke@435 450 // one choice, then use it. Projections take top priority for correctness
duke@435 451 // reasons - if I see a projection, then it is next. There are a number of
duke@435 452 // other special cases, for instructions that consume condition codes, et al.
duke@435 453 // These are chosen immediately. Some instructions are required to immediately
duke@435 454 // precede the last instruction in the block, and these are taken last. Of the
duke@435 455 // remaining cases (most), choose the instruction with the greatest latency
duke@435 456 // (that is, the most number of pseudo-cycles required to the end of the
duke@435 457 // routine). If there is a tie, choose the instruction with the most inputs.
adlertz@5639 458 Node* PhaseCFG::select(Block* block, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
duke@435 459
duke@435 460 // If only a single entry on the stack, use it
duke@435 461 uint cnt = worklist.size();
duke@435 462 if (cnt == 1) {
duke@435 463 Node *n = worklist[0];
duke@435 464 worklist.map(0,worklist.pop());
duke@435 465 return n;
duke@435 466 }
duke@435 467
duke@435 468 uint choice = 0; // Bigger is most important
duke@435 469 uint latency = 0; // Bigger is scheduled first
duke@435 470 uint score = 0; // Bigger is better
kvn@688 471 int idx = -1; // Index in worklist
shade@4691 472 int cand_cnt = 0; // Candidate count
duke@435 473
duke@435 474 for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
duke@435 475 // Order in worklist is used to break ties.
duke@435 476 // See caller for how this is used to delay scheduling
duke@435 477 // of induction variable increments to after the other
duke@435 478 // uses of the phi are scheduled.
duke@435 479 Node *n = worklist[i]; // Get Node on worklist
duke@435 480
duke@435 481 int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
duke@435 482 if( n->is_Proj() || // Projections always win
duke@435 483 n->Opcode()== Op_Con || // So does constant 'Top'
duke@435 484 iop == Op_CreateEx || // Create-exception must start block
duke@435 485 iop == Op_CheckCastPP
duke@435 486 ) {
kvn@7025 487 // select the node n
kvn@7025 488 // remove n from worklist and retain the order of remaining nodes
kvn@7025 489 worklist.remove((uint)i);
duke@435 490 return n;
duke@435 491 }
duke@435 492
duke@435 493 // Final call in a block must be adjacent to 'catch'
adlertz@5639 494 Node *e = block->end();
duke@435 495 if( e->is_Catch() && e->in(0)->in(0) == n )
duke@435 496 continue;
duke@435 497
duke@435 498 // Memory op for an implicit null check has to be at the end of the block
duke@435 499 if( e->is_MachNullCheck() && e->in(1) == n )
duke@435 500 continue;
duke@435 501
kvn@3882 502 // Schedule IV increment last.
kvn@3882 503 if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
kvn@3882 504 e->in(1)->in(1) == n && n->is_iteratively_computed())
kvn@3882 505 continue;
kvn@3882 506
duke@435 507 uint n_choice = 2;
duke@435 508
duke@435 509 // See if this instruction is consumed by a branch. If so, then (as the
duke@435 510 // branch is the last instruction in the basic block) force it to the
duke@435 511 // end of the basic block
duke@435 512 if ( must_clone[iop] ) {
duke@435 513 // See if any use is a branch
duke@435 514 bool found_machif = false;
duke@435 515
duke@435 516 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 517 Node* use = n->fast_out(j);
duke@435 518
duke@435 519 // The use is a conditional branch, make them adjacent
adlertz@5639 520 if (use->is_MachIf() && get_block_for_node(use) == block) {
duke@435 521 found_machif = true;
duke@435 522 break;
duke@435 523 }
duke@435 524
duke@435 525 // More than this instruction pending for successor to be ready,
duke@435 526 // don't choose this if other opportunities are ready
roland@3447 527 if (ready_cnt.at(use->_idx) > 1)
duke@435 528 n_choice = 1;
duke@435 529 }
duke@435 530
duke@435 531 // loop terminated, prefer not to use this instruction
duke@435 532 if (found_machif)
duke@435 533 continue;
duke@435 534 }
duke@435 535
duke@435 536 // See if this has a predecessor that is "must_clone", i.e. sets the
duke@435 537 // condition code. If so, choose this first
duke@435 538 for (uint j = 0; j < n->req() ; j++) {
duke@435 539 Node *inn = n->in(j);
duke@435 540 if (inn) {
duke@435 541 if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
duke@435 542 n_choice = 3;
duke@435 543 break;
duke@435 544 }
duke@435 545 }
duke@435 546 }
duke@435 547
duke@435 548 // MachTemps should be scheduled last so they are near their uses
duke@435 549 if (n->is_MachTemp()) {
duke@435 550 n_choice = 1;
duke@435 551 }
duke@435 552
adlertz@5639 553 uint n_latency = get_latency_for_node(n);
duke@435 554 uint n_score = n->req(); // Many inputs get high score to break ties
duke@435 555
duke@435 556 // Keep best latency found
shade@4691 557 cand_cnt++;
shade@4691 558 if (choice < n_choice ||
shade@4691 559 (choice == n_choice &&
shade@4691 560 ((StressLCM && Compile::randomized_select(cand_cnt)) ||
shade@4691 561 (!StressLCM &&
shade@4691 562 (latency < n_latency ||
shade@4691 563 (latency == n_latency &&
shade@4691 564 (score < n_score))))))) {
duke@435 565 choice = n_choice;
duke@435 566 latency = n_latency;
duke@435 567 score = n_score;
duke@435 568 idx = i; // Also keep index in worklist
duke@435 569 }
duke@435 570 } // End of for all ready nodes in worklist
duke@435 571
kvn@688 572 assert(idx >= 0, "index should be set");
kvn@688 573 Node *n = worklist[(uint)idx]; // Get the winner
duke@435 574
kvn@7025 575 // select the node n
kvn@7025 576 // remove n from worklist and retain the order of remaining nodes
kvn@7025 577 worklist.remove((uint)idx);
duke@435 578 return n;
duke@435 579 }
duke@435 580
duke@435 581
duke@435 582 //------------------------------set_next_call----------------------------------
adlertz@5639 583 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
duke@435 584 if( next_call.test_set(n->_idx) ) return;
duke@435 585 for( uint i=0; i<n->len(); i++ ) {
duke@435 586 Node *m = n->in(i);
duke@435 587 if( !m ) continue; // must see all nodes in block that precede call
adlertz@5639 588 if (get_block_for_node(m) == block) {
adlertz@5639 589 set_next_call(block, m, next_call);
adlertz@5509 590 }
duke@435 591 }
duke@435 592 }
duke@435 593
duke@435 594 //------------------------------needed_for_next_call---------------------------
duke@435 595 // Set the flag 'next_call' for each Node that is needed for the next call to
duke@435 596 // be scheduled. This flag lets me bias scheduling so Nodes needed for the
duke@435 597 // next subroutine call get priority - basically it moves things NOT needed
duke@435 598 // for the next call till after the call. This prevents me from trying to
duke@435 599 // carry lots of stuff live across a call.
adlertz@5639 600 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
duke@435 601 // Find the next control-defining Node in this block
duke@435 602 Node* call = NULL;
duke@435 603 for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
duke@435 604 Node* m = this_call->fast_out(i);
adlertz@5642 605 if (get_block_for_node(m) == block && // Local-block user
duke@435 606 m != this_call && // Not self-start node
adlertz@5642 607 m->is_MachCall()) {
duke@435 608 call = m;
duke@435 609 break;
adlertz@5642 610 }
duke@435 611 }
duke@435 612 if (call == NULL) return; // No next call (e.g., block end is near)
duke@435 613 // Set next-call for all inputs to this call
adlertz@5639 614 set_next_call(block, call, next_call);
duke@435 615 }
duke@435 616
roland@3316 617 //------------------------------add_call_kills-------------------------------------
adlertz@5639 618 // helper function that adds caller save registers to MachProjNode
adlertz@5639 619 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
roland@3316 620 // Fill in the kill mask for the call
roland@3316 621 for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
roland@3316 622 if( !regs.Member(r) ) { // Not already defined by the call
roland@3316 623 // Save-on-call register?
roland@3316 624 if ((save_policy[r] == 'C') ||
roland@3316 625 (save_policy[r] == 'A') ||
roland@3316 626 ((save_policy[r] == 'E') && exclude_soe)) {
roland@3316 627 proj->_rout.Insert(r);
roland@3316 628 }
roland@3316 629 }
roland@3316 630 }
roland@3316 631 }
roland@3316 632
roland@3316 633
duke@435 634 //------------------------------sched_call-------------------------------------
adlertz@5639 635 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
duke@435 636 RegMask regs;
duke@435 637
duke@435 638 // Schedule all the users of the call right now. All the users are
duke@435 639 // projection Nodes, so they must be scheduled next to the call.
duke@435 640 // Collect all the defined registers.
duke@435 641 for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
duke@435 642 Node* n = mcall->fast_out(i);
kvn@3040 643 assert( n->is_MachProj(), "" );
roland@3447 644 int n_cnt = ready_cnt.at(n->_idx)-1;
roland@3447 645 ready_cnt.at_put(n->_idx, n_cnt);
roland@3447 646 assert( n_cnt == 0, "" );
duke@435 647 // Schedule next to call
adlertz@5639 648 block->map_node(n, node_cnt++);
duke@435 649 // Collect defined registers
duke@435 650 regs.OR(n->out_RegMask());
duke@435 651 // Check for scheduling the next control-definer
duke@435 652 if( n->bottom_type() == Type::CONTROL )
duke@435 653 // Warm up next pile of heuristic bits
adlertz@5639 654 needed_for_next_call(block, n, next_call);
duke@435 655
duke@435 656 // Children of projections are now all ready
duke@435 657 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 658 Node* m = n->fast_out(j); // Get user
adlertz@5639 659 if(get_block_for_node(m) != block) {
adlertz@5509 660 continue;
adlertz@5509 661 }
duke@435 662 if( m->is_Phi() ) continue;
roland@3447 663 int m_cnt = ready_cnt.at(m->_idx)-1;
roland@3447 664 ready_cnt.at_put(m->_idx, m_cnt);
roland@3447 665 if( m_cnt == 0 )
duke@435 666 worklist.push(m);
duke@435 667 }
duke@435 668
duke@435 669 }
duke@435 670
duke@435 671 // Act as if the call defines the Frame Pointer.
duke@435 672 // Certainly the FP is alive and well after the call.
adlertz@5639 673 regs.Insert(_matcher.c_frame_pointer());
duke@435 674
duke@435 675 // Set all registers killed and not already defined by the call.
duke@435 676 uint r_cnt = mcall->tf()->range()->cnt();
duke@435 677 int op = mcall->ideal_Opcode();
adlertz@5639 678 MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
adlertz@5639 679 map_node_to_block(proj, block);
adlertz@5639 680 block->insert_node(proj, node_cnt++);
duke@435 681
duke@435 682 // Select the right register save policy.
duke@435 683 const char * save_policy;
duke@435 684 switch (op) {
duke@435 685 case Op_CallRuntime:
duke@435 686 case Op_CallLeaf:
duke@435 687 case Op_CallLeafNoFP:
duke@435 688 // Calling C code so use C calling convention
adlertz@5639 689 save_policy = _matcher._c_reg_save_policy;
duke@435 690 break;
duke@435 691
duke@435 692 case Op_CallStaticJava:
duke@435 693 case Op_CallDynamicJava:
duke@435 694 // Calling Java code so use Java calling convention
adlertz@5639 695 save_policy = _matcher._register_save_policy;
duke@435 696 break;
duke@435 697
duke@435 698 default:
duke@435 699 ShouldNotReachHere();
duke@435 700 }
duke@435 701
duke@435 702 // When using CallRuntime mark SOE registers as killed by the call
duke@435 703 // so values that could show up in the RegisterMap aren't live in a
duke@435 704 // callee saved register since the register wouldn't know where to
duke@435 705 // find them. CallLeaf and CallLeafNoFP are ok because they can't
duke@435 706 // have debug info on them. Strictly speaking this only needs to be
duke@435 707 // done for oops since idealreg2debugmask takes care of debug info
duke@435 708 // references but there no way to handle oops differently than other
duke@435 709 // pointers as far as the kill mask goes.
duke@435 710 bool exclude_soe = op == Op_CallRuntime;
duke@435 711
twisti@1572 712 // If the call is a MethodHandle invoke, we need to exclude the
twisti@1572 713 // register which is used to save the SP value over MH invokes from
twisti@1572 714 // the mask. Otherwise this register could be used for
twisti@1572 715 // deoptimization information.
twisti@1572 716 if (op == Op_CallStaticJava) {
twisti@1572 717 MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
twisti@1572 718 if (mcallstaticjava->_method_handle_invoke)
twisti@1572 719 proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
twisti@1572 720 }
twisti@1572 721
roland@3316 722 add_call_kills(proj, regs, save_policy, exclude_soe);
duke@435 723
duke@435 724 return node_cnt;
duke@435 725 }
duke@435 726
duke@435 727
duke@435 728 //------------------------------schedule_local---------------------------------
duke@435 729 // Topological sort within a block. Someday become a real scheduler.
adlertz@5639 730 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call) {
duke@435 731 // Already "sorted" are the block start Node (as the first entry), and
duke@435 732 // the block-ending Node and any trailing control projections. We leave
duke@435 733 // these alone. PhiNodes and ParmNodes are made to follow the block start
duke@435 734 // Node. Everything else gets topo-sorted.
duke@435 735
duke@435 736 #ifndef PRODUCT
adlertz@5639 737 if (trace_opto_pipelining()) {
adlertz@5639 738 tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
adlertz@5639 739 for (uint i = 0;i < block->number_of_nodes(); i++) {
duke@435 740 tty->print("# ");
adlertz@5639 741 block->get_node(i)->fast_dump();
duke@435 742 }
duke@435 743 tty->print_cr("#");
duke@435 744 }
duke@435 745 #endif
duke@435 746
duke@435 747 // RootNode is already sorted
adlertz@5639 748 if (block->number_of_nodes() == 1) {
adlertz@5639 749 return true;
adlertz@5639 750 }
duke@435 751
duke@435 752 // Move PhiNodes and ParmNodes from 1 to cnt up to the start
adlertz@5639 753 uint node_cnt = block->end_idx();
duke@435 754 uint phi_cnt = 1;
duke@435 755 uint i;
duke@435 756 for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
adlertz@5639 757 Node *n = block->get_node(i);
duke@435 758 if( n->is_Phi() || // Found a PhiNode or ParmNode
adlertz@5639 759 (n->is_Proj() && n->in(0) == block->head()) ) {
duke@435 760 // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
adlertz@5639 761 block->map_node(block->get_node(phi_cnt), i);
adlertz@5639 762 block->map_node(n, phi_cnt++); // swap Phi/Parm up front
duke@435 763 } else { // All others
duke@435 764 // Count block-local inputs to 'n'
duke@435 765 uint cnt = n->len(); // Input count
duke@435 766 uint local = 0;
duke@435 767 for( uint j=0; j<cnt; j++ ) {
duke@435 768 Node *m = n->in(j);
adlertz@5639 769 if( m && get_block_for_node(m) == block && !m->is_top() )
duke@435 770 local++; // One more block-local input
duke@435 771 }
roland@3447 772 ready_cnt.at_put(n->_idx, local); // Count em up
duke@435 773
never@2780 774 #ifdef ASSERT
never@2780 775 if( UseConcMarkSweepGC || UseG1GC ) {
never@2780 776 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
never@2780 777 // Check the precedence edges
never@2780 778 for (uint prec = n->req(); prec < n->len(); prec++) {
never@2780 779 Node* oop_store = n->in(prec);
never@2780 780 if (oop_store != NULL) {
adlertz@5639 781 assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
never@2780 782 }
never@2780 783 }
never@2780 784 }
never@2780 785 }
never@2780 786 #endif
never@2780 787
duke@435 788 // A few node types require changing a required edge to a precedence edge
duke@435 789 // before allocation.
kvn@1535 790 if( n->is_Mach() && n->req() > TypeFunc::Parms &&
kvn@1535 791 (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
kvn@1535 792 n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
kvn@688 793 // MemBarAcquire could be created without Precedent edge.
kvn@688 794 // del_req() replaces the specified edge with the last input edge
kvn@688 795 // and then removes the last edge. If the specified edge > number of
kvn@688 796 // edges the last edge will be moved outside of the input edges array
kvn@688 797 // and the edge will be lost. This is why this code should be
kvn@688 798 // executed only when Precedent (== TypeFunc::Parms) edge is present.
duke@435 799 Node *x = n->in(TypeFunc::Parms);
duke@435 800 n->del_req(TypeFunc::Parms);
duke@435 801 n->add_prec(x);
duke@435 802 }
duke@435 803 }
duke@435 804 }
adlertz@5639 805 for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
adlertz@5639 806 ready_cnt.at_put(block->get_node(i2)->_idx, 0);
duke@435 807
duke@435 808 // All the prescheduled guys do not hold back internal nodes
duke@435 809 uint i3;
duke@435 810 for(i3 = 0; i3<phi_cnt; i3++ ) { // For all pre-scheduled
adlertz@5639 811 Node *n = block->get_node(i3); // Get pre-scheduled
duke@435 812 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 813 Node* m = n->fast_out(j);
adlertz@5639 814 if (get_block_for_node(m) == block) { // Local-block user
roland@3447 815 int m_cnt = ready_cnt.at(m->_idx)-1;
roland@3447 816 ready_cnt.at_put(m->_idx, m_cnt); // Fix ready count
roland@3447 817 }
duke@435 818 }
duke@435 819 }
duke@435 820
duke@435 821 Node_List delay;
duke@435 822 // Make a worklist
duke@435 823 Node_List worklist;
duke@435 824 for(uint i4=i3; i4<node_cnt; i4++ ) { // Put ready guys on worklist
adlertz@5639 825 Node *m = block->get_node(i4);
roland@3447 826 if( !ready_cnt.at(m->_idx) ) { // Zero ready count?
duke@435 827 if (m->is_iteratively_computed()) {
duke@435 828 // Push induction variable increments last to allow other uses
duke@435 829 // of the phi to be scheduled first. The select() method breaks
duke@435 830 // ties in scheduling by worklist order.
duke@435 831 delay.push(m);
never@560 832 } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
never@560 833 // Force the CreateEx to the top of the list so it's processed
never@560 834 // first and ends up at the start of the block.
never@560 835 worklist.insert(0, m);
duke@435 836 } else {
duke@435 837 worklist.push(m); // Then on to worklist!
duke@435 838 }
duke@435 839 }
duke@435 840 }
duke@435 841 while (delay.size()) {
duke@435 842 Node* d = delay.pop();
duke@435 843 worklist.push(d);
duke@435 844 }
duke@435 845
duke@435 846 // Warm up the 'next_call' heuristic bits
adlertz@5639 847 needed_for_next_call(block, block->head(), next_call);
duke@435 848
duke@435 849 #ifndef PRODUCT
adlertz@5639 850 if (trace_opto_pipelining()) {
adlertz@5639 851 for (uint j=0; j< block->number_of_nodes(); j++) {
adlertz@5639 852 Node *n = block->get_node(j);
duke@435 853 int idx = n->_idx;
roland@3447 854 tty->print("# ready cnt:%3d ", ready_cnt.at(idx));
adlertz@5639 855 tty->print("latency:%3d ", get_latency_for_node(n));
duke@435 856 tty->print("%4d: %s\n", idx, n->Name());
duke@435 857 }
duke@435 858 }
duke@435 859 #endif
duke@435 860
roland@3447 861 uint max_idx = (uint)ready_cnt.length();
duke@435 862 // Pull from worklist and schedule
duke@435 863 while( worklist.size() ) { // Worklist is not ready
duke@435 864
duke@435 865 #ifndef PRODUCT
adlertz@5639 866 if (trace_opto_pipelining()) {
duke@435 867 tty->print("# ready list:");
duke@435 868 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
duke@435 869 Node *n = worklist[i]; // Get Node on worklist
duke@435 870 tty->print(" %d", n->_idx);
duke@435 871 }
duke@435 872 tty->cr();
duke@435 873 }
duke@435 874 #endif
duke@435 875
duke@435 876 // Select and pop a ready guy from worklist
adlertz@5639 877 Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt);
adlertz@5639 878 block->map_node(n, phi_cnt++); // Schedule him next
duke@435 879
duke@435 880 #ifndef PRODUCT
adlertz@5639 881 if (trace_opto_pipelining()) {
duke@435 882 tty->print("# select %d: %s", n->_idx, n->Name());
adlertz@5639 883 tty->print(", latency:%d", get_latency_for_node(n));
duke@435 884 n->dump();
duke@435 885 if (Verbose) {
duke@435 886 tty->print("# ready list:");
duke@435 887 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
duke@435 888 Node *n = worklist[i]; // Get Node on worklist
duke@435 889 tty->print(" %d", n->_idx);
duke@435 890 }
duke@435 891 tty->cr();
duke@435 892 }
duke@435 893 }
duke@435 894
duke@435 895 #endif
duke@435 896 if( n->is_MachCall() ) {
duke@435 897 MachCallNode *mcall = n->as_MachCall();
adlertz@5639 898 phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
duke@435 899 continue;
duke@435 900 }
roland@3316 901
roland@3316 902 if (n->is_Mach() && n->as_Mach()->has_call()) {
roland@3316 903 RegMask regs;
adlertz@5639 904 regs.Insert(_matcher.c_frame_pointer());
roland@3316 905 regs.OR(n->out_RegMask());
roland@3316 906
adlertz@5639 907 MachProjNode *proj = new (C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
adlertz@5639 908 map_node_to_block(proj, block);
adlertz@5639 909 block->insert_node(proj, phi_cnt++);
roland@3316 910
adlertz@5639 911 add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
roland@3316 912 }
roland@3316 913
duke@435 914 // Children are now all ready
duke@435 915 for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
duke@435 916 Node* m = n->fast_out(i5); // Get user
adlertz@5639 917 if (get_block_for_node(m) != block) {
adlertz@5509 918 continue;
adlertz@5509 919 }
duke@435 920 if( m->is_Phi() ) continue;
roland@3447 921 if (m->_idx >= max_idx) { // new node, skip it
roland@3316 922 assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
roland@3316 923 continue;
roland@3316 924 }
roland@3447 925 int m_cnt = ready_cnt.at(m->_idx)-1;
roland@3447 926 ready_cnt.at_put(m->_idx, m_cnt);
roland@3447 927 if( m_cnt == 0 )
duke@435 928 worklist.push(m);
duke@435 929 }
duke@435 930 }
duke@435 931
adlertz@5639 932 if( phi_cnt != block->end_idx() ) {
duke@435 933 // did not schedule all. Retry, Bailout, or Die
duke@435 934 if (C->subsume_loads() == true && !C->failing()) {
duke@435 935 // Retry with subsume_loads == false
duke@435 936 // If this is the first failure, the sentinel string will "stick"
duke@435 937 // to the Compile object, and the C2Compiler will see it and retry.
duke@435 938 C->record_failure(C2Compiler::retry_no_subsuming_loads());
duke@435 939 }
duke@435 940 // assert( phi_cnt == end_idx(), "did not schedule all" );
duke@435 941 return false;
duke@435 942 }
duke@435 943
duke@435 944 #ifndef PRODUCT
adlertz@5639 945 if (trace_opto_pipelining()) {
duke@435 946 tty->print_cr("#");
duke@435 947 tty->print_cr("# after schedule_local");
adlertz@5639 948 for (uint i = 0;i < block->number_of_nodes();i++) {
duke@435 949 tty->print("# ");
adlertz@5639 950 block->get_node(i)->fast_dump();
duke@435 951 }
duke@435 952 tty->cr();
duke@435 953 }
duke@435 954 #endif
duke@435 955
duke@435 956
duke@435 957 return true;
duke@435 958 }
duke@435 959
duke@435 960 //--------------------------catch_cleanup_fix_all_inputs-----------------------
duke@435 961 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
duke@435 962 for (uint l = 0; l < use->len(); l++) {
duke@435 963 if (use->in(l) == old_def) {
duke@435 964 if (l < use->req()) {
duke@435 965 use->set_req(l, new_def);
duke@435 966 } else {
duke@435 967 use->rm_prec(l);
duke@435 968 use->add_prec(new_def);
duke@435 969 l--;
duke@435 970 }
duke@435 971 }
duke@435 972 }
duke@435 973 }
duke@435 974
duke@435 975 //------------------------------catch_cleanup_find_cloned_def------------------
adlertz@5639 976 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
duke@435 977 assert( use_blk != def_blk, "Inter-block cleanup only");
duke@435 978
duke@435 979 // The use is some block below the Catch. Find and return the clone of the def
duke@435 980 // that dominates the use. If there is no clone in a dominating block, then
duke@435 981 // create a phi for the def in a dominating block.
duke@435 982
duke@435 983 // Find which successor block dominates this use. The successor
duke@435 984 // blocks must all be single-entry (from the Catch only; I will have
duke@435 985 // split blocks to make this so), hence they all dominate.
duke@435 986 while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
duke@435 987 use_blk = use_blk->_idom;
duke@435 988
duke@435 989 // Find the successor
duke@435 990 Node *fixup = NULL;
duke@435 991
duke@435 992 uint j;
duke@435 993 for( j = 0; j < def_blk->_num_succs; j++ )
duke@435 994 if( use_blk == def_blk->_succs[j] )
duke@435 995 break;
duke@435 996
duke@435 997 if( j == def_blk->_num_succs ) {
duke@435 998 // Block at same level in dom-tree is not a successor. It needs a
duke@435 999 // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
duke@435 1000 Node_Array inputs = new Node_List(Thread::current()->resource_area());
duke@435 1001 for(uint k = 1; k < use_blk->num_preds(); k++) {
adlertz@5639 1002 Block* block = get_block_for_node(use_blk->pred(k));
adlertz@5639 1003 inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
duke@435 1004 }
duke@435 1005
duke@435 1006 // Check to see if the use_blk already has an identical phi inserted.
duke@435 1007 // If it exists, it will be at the first position since all uses of a
duke@435 1008 // def are processed together.
adlertz@5635 1009 Node *phi = use_blk->get_node(1);
duke@435 1010 if( phi->is_Phi() ) {
duke@435 1011 fixup = phi;
duke@435 1012 for (uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 1013 if (phi->in(k) != inputs[k]) {
duke@435 1014 // Not a match
duke@435 1015 fixup = NULL;
duke@435 1016 break;
duke@435 1017 }
duke@435 1018 }
duke@435 1019 }
duke@435 1020
duke@435 1021 // If an existing PhiNode was not found, make a new one.
duke@435 1022 if (fixup == NULL) {
duke@435 1023 Node *new_phi = PhiNode::make(use_blk->head(), def);
adlertz@5635 1024 use_blk->insert_node(new_phi, 1);
adlertz@5639 1025 map_node_to_block(new_phi, use_blk);
duke@435 1026 for (uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 1027 new_phi->set_req(k, inputs[k]);
duke@435 1028 }
duke@435 1029 fixup = new_phi;
duke@435 1030 }
duke@435 1031
duke@435 1032 } else {
duke@435 1033 // Found the use just below the Catch. Make it use the clone.
adlertz@5635 1034 fixup = use_blk->get_node(n_clone_idx);
duke@435 1035 }
duke@435 1036
duke@435 1037 return fixup;
duke@435 1038 }
duke@435 1039
duke@435 1040 //--------------------------catch_cleanup_intra_block--------------------------
duke@435 1041 // Fix all input edges in use that reference "def". The use is in the same
duke@435 1042 // block as the def and both have been cloned in each successor block.
duke@435 1043 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
duke@435 1044
duke@435 1045 // Both the use and def have been cloned. For each successor block,
duke@435 1046 // get the clone of the use, and make its input the clone of the def
duke@435 1047 // found in that block.
duke@435 1048
duke@435 1049 uint use_idx = blk->find_node(use);
duke@435 1050 uint offset_idx = use_idx - beg;
duke@435 1051 for( uint k = 0; k < blk->_num_succs; k++ ) {
duke@435 1052 // Get clone in each successor block
duke@435 1053 Block *sb = blk->_succs[k];
adlertz@5635 1054 Node *clone = sb->get_node(offset_idx+1);
duke@435 1055 assert( clone->Opcode() == use->Opcode(), "" );
duke@435 1056
duke@435 1057 // Make use-clone reference the def-clone
adlertz@5635 1058 catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
duke@435 1059 }
duke@435 1060 }
duke@435 1061
duke@435 1062 //------------------------------catch_cleanup_inter_block---------------------
duke@435 1063 // Fix all input edges in use that reference "def". The use is in a different
duke@435 1064 // block than the def.
adlertz@5639 1065 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
duke@435 1066 if( !use_blk ) return; // Can happen if the use is a precedence edge
duke@435 1067
adlertz@5639 1068 Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
duke@435 1069 catch_cleanup_fix_all_inputs(use, def, new_def);
duke@435 1070 }
duke@435 1071
duke@435 1072 //------------------------------call_catch_cleanup-----------------------------
duke@435 1073 // If we inserted any instructions between a Call and his CatchNode,
duke@435 1074 // clone the instructions on all paths below the Catch.
adlertz@5639 1075 void PhaseCFG::call_catch_cleanup(Block* block) {
duke@435 1076
duke@435 1077 // End of region to clone
adlertz@5639 1078 uint end = block->end_idx();
adlertz@5639 1079 if( !block->get_node(end)->is_Catch() ) return;
duke@435 1080 // Start of region to clone
duke@435 1081 uint beg = end;
adlertz@5639 1082 while(!block->get_node(beg-1)->is_MachProj() ||
adlertz@5639 1083 !block->get_node(beg-1)->in(0)->is_MachCall() ) {
duke@435 1084 beg--;
duke@435 1085 assert(beg > 0,"Catch cleanup walking beyond block boundary");
duke@435 1086 }
duke@435 1087 // Range of inserted instructions is [beg, end)
duke@435 1088 if( beg == end ) return;
duke@435 1089
duke@435 1090 // Clone along all Catch output paths. Clone area between the 'beg' and
duke@435 1091 // 'end' indices.
adlertz@5639 1092 for( uint i = 0; i < block->_num_succs; i++ ) {
adlertz@5639 1093 Block *sb = block->_succs[i];
duke@435 1094 // Clone the entire area; ignoring the edge fixup for now.
duke@435 1095 for( uint j = end; j > beg; j-- ) {
kvn@2048 1096 // It is safe here to clone a node with anti_dependence
kvn@2048 1097 // since clones dominate on each path.
adlertz@5639 1098 Node *clone = block->get_node(j-1)->clone();
adlertz@5635 1099 sb->insert_node(clone, 1);
adlertz@5639 1100 map_node_to_block(clone, sb);
duke@435 1101 }
duke@435 1102 }
duke@435 1103
duke@435 1104
duke@435 1105 // Fixup edges. Check the def-use info per cloned Node
duke@435 1106 for(uint i2 = beg; i2 < end; i2++ ) {
duke@435 1107 uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
adlertz@5639 1108 Node *n = block->get_node(i2); // Node that got cloned
duke@435 1109 // Need DU safe iterator because of edge manipulation in calls.
duke@435 1110 Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
duke@435 1111 for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
duke@435 1112 out->push(n->fast_out(j1));
duke@435 1113 }
duke@435 1114 uint max = out->size();
duke@435 1115 for (uint j = 0; j < max; j++) {// For all users
duke@435 1116 Node *use = out->pop();
adlertz@5639 1117 Block *buse = get_block_for_node(use);
duke@435 1118 if( use->is_Phi() ) {
duke@435 1119 for( uint k = 1; k < use->req(); k++ )
duke@435 1120 if( use->in(k) == n ) {
adlertz@5639 1121 Block* b = get_block_for_node(buse->pred(k));
adlertz@5639 1122 Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
duke@435 1123 use->set_req(k, fixup);
duke@435 1124 }
duke@435 1125 } else {
adlertz@5639 1126 if (block == buse) {
adlertz@5639 1127 catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
duke@435 1128 } else {
adlertz@5639 1129 catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
duke@435 1130 }
duke@435 1131 }
duke@435 1132 } // End for all users
duke@435 1133
duke@435 1134 } // End of for all Nodes in cloned area
duke@435 1135
duke@435 1136 // Remove the now-dead cloned ops
duke@435 1137 for(uint i3 = beg; i3 < end; i3++ ) {
adlertz@5639 1138 block->get_node(beg)->disconnect_inputs(NULL, C);
adlertz@5639 1139 block->remove_node(beg);
duke@435 1140 }
duke@435 1141
duke@435 1142 // If the successor blocks have a CreateEx node, move it back to the top
adlertz@5639 1143 for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
adlertz@5639 1144 Block *sb = block->_succs[i4];
duke@435 1145 uint new_cnt = end - beg;
duke@435 1146 // Remove any newly created, but dead, nodes.
duke@435 1147 for( uint j = new_cnt; j > 0; j-- ) {
adlertz@5635 1148 Node *n = sb->get_node(j);
duke@435 1149 if (n->outcnt() == 0 &&
duke@435 1150 (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
bharadwaj@4315 1151 n->disconnect_inputs(NULL, C);
adlertz@5635 1152 sb->remove_node(j);
duke@435 1153 new_cnt--;
duke@435 1154 }
duke@435 1155 }
duke@435 1156 // If any newly created nodes remain, move the CreateEx node to the top
duke@435 1157 if (new_cnt > 0) {
adlertz@5635 1158 Node *cex = sb->get_node(1+new_cnt);
duke@435 1159 if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
adlertz@5635 1160 sb->remove_node(1+new_cnt);
adlertz@5635 1161 sb->insert_node(cex, 1);
duke@435 1162 }
duke@435 1163 }
duke@435 1164 }
duke@435 1165 }

mercurial