src/share/vm/opto/lcm.cpp

Tue, 05 Aug 2014 15:02:10 -0700

author
kvn
date
Tue, 05 Aug 2014 15:02:10 -0700
changeset 7025
b1bc1af04c6e
parent 6518
62c54fcc0a35
child 7332
7024b693c8f9
permissions
-rw-r--r--

8052081: Optimize generated by C2 code for Intel's Atom processor
Summary: Allow to execute vectorization and crc32 optimization on Atom. Enable UseFPUForSpilling by default on x86.
Reviewed-by: roland

     1 /*
     2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/block.hpp"
    28 #include "opto/c2compiler.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/machnode.hpp"
    32 #include "opto/runtime.hpp"
    33 #ifdef TARGET_ARCH_MODEL_x86_32
    34 # include "adfiles/ad_x86_32.hpp"
    35 #endif
    36 #ifdef TARGET_ARCH_MODEL_x86_64
    37 # include "adfiles/ad_x86_64.hpp"
    38 #endif
    39 #ifdef TARGET_ARCH_MODEL_sparc
    40 # include "adfiles/ad_sparc.hpp"
    41 #endif
    42 #ifdef TARGET_ARCH_MODEL_zero
    43 # include "adfiles/ad_zero.hpp"
    44 #endif
    45 #ifdef TARGET_ARCH_MODEL_arm
    46 # include "adfiles/ad_arm.hpp"
    47 #endif
    48 #ifdef TARGET_ARCH_MODEL_ppc_32
    49 # include "adfiles/ad_ppc_32.hpp"
    50 #endif
    51 #ifdef TARGET_ARCH_MODEL_ppc_64
    52 # include "adfiles/ad_ppc_64.hpp"
    53 #endif
    55 // Optimization - Graph Style
    57 // Check whether val is not-null-decoded compressed oop,
    58 // i.e. will grab into the base of the heap if it represents NULL.
    59 static bool accesses_heap_base_zone(Node *val) {
    60   if (Universe::narrow_oop_base() > 0) { // Implies UseCompressedOops.
    61     if (val && val->is_Mach()) {
    62       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
    63         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
    64         // decode NULL to point to the heap base (Decode_NN).
    65         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
    66           return true;
    67         }
    68       }
    69       // Must recognize load operation with Decode matched in memory operand.
    70       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
    71       // returns true everywhere else. On PPC, no such memory operands
    72       // exist, therefore we did not yet implement a check for such operands.
    73       NOT_AIX(Unimplemented());
    74     }
    75   }
    76   return false;
    77 }
    79 static bool needs_explicit_null_check_for_read(Node *val) {
    80   // On some OSes (AIX) the page at address 0 is only write protected.
    81   // If so, only Store operations will trap.
    82   if (os::zero_page_read_protected()) {
    83     return false;  // Implicit null check will work.
    84   }
    85   // Also a read accessing the base of a heap-based compressed heap will trap.
    86   if (accesses_heap_base_zone(val) &&                    // Hits the base zone page.
    87       Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
    88     return false;
    89   }
    91   return true;
    92 }
    94 //------------------------------implicit_null_check----------------------------
    95 // Detect implicit-null-check opportunities.  Basically, find NULL checks
    96 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
    97 // I can generate a memory op if there is not one nearby.
    98 // The proj is the control projection for the not-null case.
    99 // The val is the pointer being checked for nullness or
   100 // decodeHeapOop_not_null node if it did not fold into address.
   101 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
   102   // Assume if null check need for 0 offset then always needed
   103   // Intel solaris doesn't support any null checks yet and no
   104   // mechanism exists (yet) to set the switches at an os_cpu level
   105   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
   107   // Make sure the ptr-is-null path appears to be uncommon!
   108   float f = block->end()->as_MachIf()->_prob;
   109   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
   110   if( f > PROB_UNLIKELY_MAG(4) ) return;
   112   uint bidx = 0;                // Capture index of value into memop
   113   bool was_store;               // Memory op is a store op
   115   // Get the successor block for if the test ptr is non-null
   116   Block* not_null_block;  // this one goes with the proj
   117   Block* null_block;
   118   if (block->get_node(block->number_of_nodes()-1) == proj) {
   119     null_block     = block->_succs[0];
   120     not_null_block = block->_succs[1];
   121   } else {
   122     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
   123     not_null_block = block->_succs[0];
   124     null_block     = block->_succs[1];
   125   }
   126   while (null_block->is_Empty() == Block::empty_with_goto) {
   127     null_block     = null_block->_succs[0];
   128   }
   130   // Search the exception block for an uncommon trap.
   131   // (See Parse::do_if and Parse::do_ifnull for the reason
   132   // we need an uncommon trap.  Briefly, we need a way to
   133   // detect failure of this optimization, as in 6366351.)
   134   {
   135     bool found_trap = false;
   136     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
   137       Node* nn = null_block->get_node(i1);
   138       if (nn->is_MachCall() &&
   139           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
   140         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
   141         if (trtype->isa_int() && trtype->is_int()->is_con()) {
   142           jint tr_con = trtype->is_int()->get_con();
   143           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
   144           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
   145           assert((int)reason < (int)BitsPerInt, "recode bit map");
   146           if (is_set_nth_bit(allowed_reasons, (int) reason)
   147               && action != Deoptimization::Action_none) {
   148             // This uncommon trap is sure to recompile, eventually.
   149             // When that happens, C->too_many_traps will prevent
   150             // this transformation from happening again.
   151             found_trap = true;
   152           }
   153         }
   154         break;
   155       }
   156     }
   157     if (!found_trap) {
   158       // We did not find an uncommon trap.
   159       return;
   160     }
   161   }
   163   // Check for decodeHeapOop_not_null node which did not fold into address
   164   bool is_decoden = ((intptr_t)val) & 1;
   165   val = (Node*)(((intptr_t)val) & ~1);
   167   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
   168          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
   170   // Search the successor block for a load or store who's base value is also
   171   // the tested value.  There may be several.
   172   Node_List *out = new Node_List(Thread::current()->resource_area());
   173   MachNode *best = NULL;        // Best found so far
   174   for (DUIterator i = val->outs(); val->has_out(i); i++) {
   175     Node *m = val->out(i);
   176     if( !m->is_Mach() ) continue;
   177     MachNode *mach = m->as_Mach();
   178     was_store = false;
   179     int iop = mach->ideal_Opcode();
   180     switch( iop ) {
   181     case Op_LoadB:
   182     case Op_LoadUB:
   183     case Op_LoadUS:
   184     case Op_LoadD:
   185     case Op_LoadF:
   186     case Op_LoadI:
   187     case Op_LoadL:
   188     case Op_LoadP:
   189     case Op_LoadN:
   190     case Op_LoadS:
   191     case Op_LoadKlass:
   192     case Op_LoadNKlass:
   193     case Op_LoadRange:
   194     case Op_LoadD_unaligned:
   195     case Op_LoadL_unaligned:
   196       assert(mach->in(2) == val, "should be address");
   197       break;
   198     case Op_StoreB:
   199     case Op_StoreC:
   200     case Op_StoreCM:
   201     case Op_StoreD:
   202     case Op_StoreF:
   203     case Op_StoreI:
   204     case Op_StoreL:
   205     case Op_StoreP:
   206     case Op_StoreN:
   207     case Op_StoreNKlass:
   208       was_store = true;         // Memory op is a store op
   209       // Stores will have their address in slot 2 (memory in slot 1).
   210       // If the value being nul-checked is in another slot, it means we
   211       // are storing the checked value, which does NOT check the value!
   212       if( mach->in(2) != val ) continue;
   213       break;                    // Found a memory op?
   214     case Op_StrComp:
   215     case Op_StrEquals:
   216     case Op_StrIndexOf:
   217     case Op_AryEq:
   218     case Op_EncodeISOArray:
   219       // Not a legit memory op for implicit null check regardless of
   220       // embedded loads
   221       continue;
   222     default:                    // Also check for embedded loads
   223       if( !mach->needs_anti_dependence_check() )
   224         continue;               // Not an memory op; skip it
   225       if( must_clone[iop] ) {
   226         // Do not move nodes which produce flags because
   227         // RA will try to clone it to place near branch and
   228         // it will cause recompilation, see clone_node().
   229         continue;
   230       }
   231       {
   232         // Check that value is used in memory address in
   233         // instructions with embedded load (CmpP val1,(val2+off)).
   234         Node* base;
   235         Node* index;
   236         const MachOper* oper = mach->memory_inputs(base, index);
   237         if (oper == NULL || oper == (MachOper*)-1) {
   238           continue;             // Not an memory op; skip it
   239         }
   240         if (val == base ||
   241             val == index && val->bottom_type()->isa_narrowoop()) {
   242           break;                // Found it
   243         } else {
   244           continue;             // Skip it
   245         }
   246       }
   247       break;
   248     }
   250     // On some OSes (AIX) the page at address 0 is only write protected.
   251     // If so, only Store operations will trap.
   252     // But a read accessing the base of a heap-based compressed heap will trap.
   253     if (!was_store && needs_explicit_null_check_for_read(val)) {
   254       continue;
   255     }
   257     // check if the offset is not too high for implicit exception
   258     {
   259       intptr_t offset = 0;
   260       const TypePtr *adr_type = NULL;  // Do not need this return value here
   261       const Node* base = mach->get_base_and_disp(offset, adr_type);
   262       if (base == NULL || base == NodeSentinel) {
   263         // Narrow oop address doesn't have base, only index
   264         if( val->bottom_type()->isa_narrowoop() &&
   265             MacroAssembler::needs_explicit_null_check(offset) )
   266           continue;             // Give up if offset is beyond page size
   267         // cannot reason about it; is probably not implicit null exception
   268       } else {
   269         const TypePtr* tptr;
   270         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
   271                                   Universe::narrow_klass_shift() == 0)) {
   272           // 32-bits narrow oop can be the base of address expressions
   273           tptr = base->get_ptr_type();
   274         } else {
   275           // only regular oops are expected here
   276           tptr = base->bottom_type()->is_ptr();
   277         }
   278         // Give up if offset is not a compile-time constant
   279         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
   280           continue;
   281         offset += tptr->_offset; // correct if base is offseted
   282         if( MacroAssembler::needs_explicit_null_check(offset) )
   283           continue;             // Give up is reference is beyond 4K page size
   284       }
   285     }
   287     // Check ctrl input to see if the null-check dominates the memory op
   288     Block *cb = get_block_for_node(mach);
   289     cb = cb->_idom;             // Always hoist at least 1 block
   290     if( !was_store ) {          // Stores can be hoisted only one block
   291       while( cb->_dom_depth > (block->_dom_depth + 1))
   292         cb = cb->_idom;         // Hoist loads as far as we want
   293       // The non-null-block should dominate the memory op, too. Live
   294       // range spilling will insert a spill in the non-null-block if it is
   295       // needs to spill the memory op for an implicit null check.
   296       if (cb->_dom_depth == (block->_dom_depth + 1)) {
   297         if (cb != not_null_block) continue;
   298         cb = cb->_idom;
   299       }
   300     }
   301     if( cb != block ) continue;
   303     // Found a memory user; see if it can be hoisted to check-block
   304     uint vidx = 0;              // Capture index of value into memop
   305     uint j;
   306     for( j = mach->req()-1; j > 0; j-- ) {
   307       if( mach->in(j) == val ) {
   308         vidx = j;
   309         // Ignore DecodeN val which could be hoisted to where needed.
   310         if( is_decoden ) continue;
   311       }
   312       // Block of memory-op input
   313       Block *inb = get_block_for_node(mach->in(j));
   314       Block *b = block;          // Start from nul check
   315       while( b != inb && b->_dom_depth > inb->_dom_depth )
   316         b = b->_idom;           // search upwards for input
   317       // See if input dominates null check
   318       if( b != inb )
   319         break;
   320     }
   321     if( j > 0 )
   322       continue;
   323     Block *mb = get_block_for_node(mach);
   324     // Hoisting stores requires more checks for the anti-dependence case.
   325     // Give up hoisting if we have to move the store past any load.
   326     if( was_store ) {
   327       Block *b = mb;            // Start searching here for a local load
   328       // mach use (faulting) trying to hoist
   329       // n might be blocker to hoisting
   330       while( b != block ) {
   331         uint k;
   332         for( k = 1; k < b->number_of_nodes(); k++ ) {
   333           Node *n = b->get_node(k);
   334           if( n->needs_anti_dependence_check() &&
   335               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
   336             break;              // Found anti-dependent load
   337         }
   338         if( k < b->number_of_nodes() )
   339           break;                // Found anti-dependent load
   340         // Make sure control does not do a merge (would have to check allpaths)
   341         if( b->num_preds() != 2 ) break;
   342         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
   343       }
   344       if( b != block ) continue;
   345     }
   347     // Make sure this memory op is not already being used for a NullCheck
   348     Node *e = mb->end();
   349     if( e->is_MachNullCheck() && e->in(1) == mach )
   350       continue;                 // Already being used as a NULL check
   352     // Found a candidate!  Pick one with least dom depth - the highest
   353     // in the dom tree should be closest to the null check.
   354     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
   355       best = mach;
   356       bidx = vidx;
   357     }
   358   }
   359   // No candidate!
   360   if (best == NULL) {
   361     return;
   362   }
   364   // ---- Found an implicit null check
   365   extern int implicit_null_checks;
   366   implicit_null_checks++;
   368   if( is_decoden ) {
   369     // Check if we need to hoist decodeHeapOop_not_null first.
   370     Block *valb = get_block_for_node(val);
   371     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
   372       // Hoist it up to the end of the test block.
   373       valb->find_remove(val);
   374       block->add_inst(val);
   375       map_node_to_block(val, block);
   376       // DecodeN on x86 may kill flags. Check for flag-killing projections
   377       // that also need to be hoisted.
   378       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
   379         Node* n = val->fast_out(j);
   380         if( n->is_MachProj() ) {
   381           get_block_for_node(n)->find_remove(n);
   382           block->add_inst(n);
   383           map_node_to_block(n, block);
   384         }
   385       }
   386     }
   387   }
   388   // Hoist the memory candidate up to the end of the test block.
   389   Block *old_block = get_block_for_node(best);
   390   old_block->find_remove(best);
   391   block->add_inst(best);
   392   map_node_to_block(best, block);
   394   // Move the control dependence
   395   if (best->in(0) && best->in(0) == old_block->head())
   396     best->set_req(0, block->head());
   398   // Check for flag-killing projections that also need to be hoisted
   399   // Should be DU safe because no edge updates.
   400   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
   401     Node* n = best->fast_out(j);
   402     if( n->is_MachProj() ) {
   403       get_block_for_node(n)->find_remove(n);
   404       block->add_inst(n);
   405       map_node_to_block(n, block);
   406     }
   407   }
   409   // proj==Op_True --> ne test; proj==Op_False --> eq test.
   410   // One of two graph shapes got matched:
   411   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
   412   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
   413   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
   414   // then we are replacing a 'ne' test with a 'eq' NULL check test.
   415   // We need to flip the projections to keep the same semantics.
   416   if( proj->Opcode() == Op_IfTrue ) {
   417     // Swap order of projections in basic block to swap branch targets
   418     Node *tmp1 = block->get_node(block->end_idx()+1);
   419     Node *tmp2 = block->get_node(block->end_idx()+2);
   420     block->map_node(tmp2, block->end_idx()+1);
   421     block->map_node(tmp1, block->end_idx()+2);
   422     Node *tmp = new (C) Node(C->top()); // Use not NULL input
   423     tmp1->replace_by(tmp);
   424     tmp2->replace_by(tmp1);
   425     tmp->replace_by(tmp2);
   426     tmp->destruct();
   427   }
   429   // Remove the existing null check; use a new implicit null check instead.
   430   // Since schedule-local needs precise def-use info, we need to correct
   431   // it as well.
   432   Node *old_tst = proj->in(0);
   433   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
   434   block->map_node(nul_chk, block->end_idx());
   435   map_node_to_block(nul_chk, block);
   436   // Redirect users of old_test to nul_chk
   437   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
   438     old_tst->last_out(i2)->set_req(0, nul_chk);
   439   // Clean-up any dead code
   440   for (uint i3 = 0; i3 < old_tst->req(); i3++)
   441     old_tst->set_req(i3, NULL);
   443   latency_from_uses(nul_chk);
   444   latency_from_uses(best);
   445 }
   448 //------------------------------select-----------------------------------------
   449 // Select a nice fellow from the worklist to schedule next. If there is only
   450 // one choice, then use it. Projections take top priority for correctness
   451 // reasons - if I see a projection, then it is next.  There are a number of
   452 // other special cases, for instructions that consume condition codes, et al.
   453 // These are chosen immediately. Some instructions are required to immediately
   454 // precede the last instruction in the block, and these are taken last. Of the
   455 // remaining cases (most), choose the instruction with the greatest latency
   456 // (that is, the most number of pseudo-cycles required to the end of the
   457 // routine). If there is a tie, choose the instruction with the most inputs.
   458 Node* PhaseCFG::select(Block* block, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
   460   // If only a single entry on the stack, use it
   461   uint cnt = worklist.size();
   462   if (cnt == 1) {
   463     Node *n = worklist[0];
   464     worklist.map(0,worklist.pop());
   465     return n;
   466   }
   468   uint choice  = 0; // Bigger is most important
   469   uint latency = 0; // Bigger is scheduled first
   470   uint score   = 0; // Bigger is better
   471   int idx = -1;     // Index in worklist
   472   int cand_cnt = 0; // Candidate count
   474   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
   475     // Order in worklist is used to break ties.
   476     // See caller for how this is used to delay scheduling
   477     // of induction variable increments to after the other
   478     // uses of the phi are scheduled.
   479     Node *n = worklist[i];      // Get Node on worklist
   481     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
   482     if( n->is_Proj() ||         // Projections always win
   483         n->Opcode()== Op_Con || // So does constant 'Top'
   484         iop == Op_CreateEx ||   // Create-exception must start block
   485         iop == Op_CheckCastPP
   486         ) {
   487       // select the node n
   488       // remove n from worklist and retain the order of remaining nodes
   489       worklist.remove((uint)i);
   490       return n;
   491     }
   493     // Final call in a block must be adjacent to 'catch'
   494     Node *e = block->end();
   495     if( e->is_Catch() && e->in(0)->in(0) == n )
   496       continue;
   498     // Memory op for an implicit null check has to be at the end of the block
   499     if( e->is_MachNullCheck() && e->in(1) == n )
   500       continue;
   502     // Schedule IV increment last.
   503     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
   504         e->in(1)->in(1) == n && n->is_iteratively_computed())
   505       continue;
   507     uint n_choice  = 2;
   509     // See if this instruction is consumed by a branch. If so, then (as the
   510     // branch is the last instruction in the basic block) force it to the
   511     // end of the basic block
   512     if ( must_clone[iop] ) {
   513       // See if any use is a branch
   514       bool found_machif = false;
   516       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   517         Node* use = n->fast_out(j);
   519         // The use is a conditional branch, make them adjacent
   520         if (use->is_MachIf() && get_block_for_node(use) == block) {
   521           found_machif = true;
   522           break;
   523         }
   525         // More than this instruction pending for successor to be ready,
   526         // don't choose this if other opportunities are ready
   527         if (ready_cnt.at(use->_idx) > 1)
   528           n_choice = 1;
   529       }
   531       // loop terminated, prefer not to use this instruction
   532       if (found_machif)
   533         continue;
   534     }
   536     // See if this has a predecessor that is "must_clone", i.e. sets the
   537     // condition code. If so, choose this first
   538     for (uint j = 0; j < n->req() ; j++) {
   539       Node *inn = n->in(j);
   540       if (inn) {
   541         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
   542           n_choice = 3;
   543           break;
   544         }
   545       }
   546     }
   548     // MachTemps should be scheduled last so they are near their uses
   549     if (n->is_MachTemp()) {
   550       n_choice = 1;
   551     }
   553     uint n_latency = get_latency_for_node(n);
   554     uint n_score   = n->req();   // Many inputs get high score to break ties
   556     // Keep best latency found
   557     cand_cnt++;
   558     if (choice < n_choice ||
   559         (choice == n_choice &&
   560          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
   561           (!StressLCM &&
   562            (latency < n_latency ||
   563             (latency == n_latency &&
   564              (score < n_score))))))) {
   565       choice  = n_choice;
   566       latency = n_latency;
   567       score   = n_score;
   568       idx     = i;               // Also keep index in worklist
   569     }
   570   } // End of for all ready nodes in worklist
   572   assert(idx >= 0, "index should be set");
   573   Node *n = worklist[(uint)idx];      // Get the winner
   575   // select the node n
   576   // remove n from worklist and retain the order of remaining nodes
   577   worklist.remove((uint)idx);
   578   return n;
   579 }
   582 //------------------------------set_next_call----------------------------------
   583 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
   584   if( next_call.test_set(n->_idx) ) return;
   585   for( uint i=0; i<n->len(); i++ ) {
   586     Node *m = n->in(i);
   587     if( !m ) continue;  // must see all nodes in block that precede call
   588     if (get_block_for_node(m) == block) {
   589       set_next_call(block, m, next_call);
   590     }
   591   }
   592 }
   594 //------------------------------needed_for_next_call---------------------------
   595 // Set the flag 'next_call' for each Node that is needed for the next call to
   596 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
   597 // next subroutine call get priority - basically it moves things NOT needed
   598 // for the next call till after the call.  This prevents me from trying to
   599 // carry lots of stuff live across a call.
   600 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
   601   // Find the next control-defining Node in this block
   602   Node* call = NULL;
   603   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
   604     Node* m = this_call->fast_out(i);
   605     if (get_block_for_node(m) == block && // Local-block user
   606         m != this_call &&       // Not self-start node
   607         m->is_MachCall()) {
   608       call = m;
   609       break;
   610     }
   611   }
   612   if (call == NULL)  return;    // No next call (e.g., block end is near)
   613   // Set next-call for all inputs to this call
   614   set_next_call(block, call, next_call);
   615 }
   617 //------------------------------add_call_kills-------------------------------------
   618 // helper function that adds caller save registers to MachProjNode
   619 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
   620   // Fill in the kill mask for the call
   621   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
   622     if( !regs.Member(r) ) {     // Not already defined by the call
   623       // Save-on-call register?
   624       if ((save_policy[r] == 'C') ||
   625           (save_policy[r] == 'A') ||
   626           ((save_policy[r] == 'E') && exclude_soe)) {
   627         proj->_rout.Insert(r);
   628       }
   629     }
   630   }
   631 }
   634 //------------------------------sched_call-------------------------------------
   635 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
   636   RegMask regs;
   638   // Schedule all the users of the call right now.  All the users are
   639   // projection Nodes, so they must be scheduled next to the call.
   640   // Collect all the defined registers.
   641   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
   642     Node* n = mcall->fast_out(i);
   643     assert( n->is_MachProj(), "" );
   644     int n_cnt = ready_cnt.at(n->_idx)-1;
   645     ready_cnt.at_put(n->_idx, n_cnt);
   646     assert( n_cnt == 0, "" );
   647     // Schedule next to call
   648     block->map_node(n, node_cnt++);
   649     // Collect defined registers
   650     regs.OR(n->out_RegMask());
   651     // Check for scheduling the next control-definer
   652     if( n->bottom_type() == Type::CONTROL )
   653       // Warm up next pile of heuristic bits
   654       needed_for_next_call(block, n, next_call);
   656     // Children of projections are now all ready
   657     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   658       Node* m = n->fast_out(j); // Get user
   659       if(get_block_for_node(m) != block) {
   660         continue;
   661       }
   662       if( m->is_Phi() ) continue;
   663       int m_cnt = ready_cnt.at(m->_idx)-1;
   664       ready_cnt.at_put(m->_idx, m_cnt);
   665       if( m_cnt == 0 )
   666         worklist.push(m);
   667     }
   669   }
   671   // Act as if the call defines the Frame Pointer.
   672   // Certainly the FP is alive and well after the call.
   673   regs.Insert(_matcher.c_frame_pointer());
   675   // Set all registers killed and not already defined by the call.
   676   uint r_cnt = mcall->tf()->range()->cnt();
   677   int op = mcall->ideal_Opcode();
   678   MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
   679   map_node_to_block(proj, block);
   680   block->insert_node(proj, node_cnt++);
   682   // Select the right register save policy.
   683   const char * save_policy;
   684   switch (op) {
   685     case Op_CallRuntime:
   686     case Op_CallLeaf:
   687     case Op_CallLeafNoFP:
   688       // Calling C code so use C calling convention
   689       save_policy = _matcher._c_reg_save_policy;
   690       break;
   692     case Op_CallStaticJava:
   693     case Op_CallDynamicJava:
   694       // Calling Java code so use Java calling convention
   695       save_policy = _matcher._register_save_policy;
   696       break;
   698     default:
   699       ShouldNotReachHere();
   700   }
   702   // When using CallRuntime mark SOE registers as killed by the call
   703   // so values that could show up in the RegisterMap aren't live in a
   704   // callee saved register since the register wouldn't know where to
   705   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
   706   // have debug info on them.  Strictly speaking this only needs to be
   707   // done for oops since idealreg2debugmask takes care of debug info
   708   // references but there no way to handle oops differently than other
   709   // pointers as far as the kill mask goes.
   710   bool exclude_soe = op == Op_CallRuntime;
   712   // If the call is a MethodHandle invoke, we need to exclude the
   713   // register which is used to save the SP value over MH invokes from
   714   // the mask.  Otherwise this register could be used for
   715   // deoptimization information.
   716   if (op == Op_CallStaticJava) {
   717     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
   718     if (mcallstaticjava->_method_handle_invoke)
   719       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
   720   }
   722   add_call_kills(proj, regs, save_policy, exclude_soe);
   724   return node_cnt;
   725 }
   728 //------------------------------schedule_local---------------------------------
   729 // Topological sort within a block.  Someday become a real scheduler.
   730 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call) {
   731   // Already "sorted" are the block start Node (as the first entry), and
   732   // the block-ending Node and any trailing control projections.  We leave
   733   // these alone.  PhiNodes and ParmNodes are made to follow the block start
   734   // Node.  Everything else gets topo-sorted.
   736 #ifndef PRODUCT
   737     if (trace_opto_pipelining()) {
   738       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
   739       for (uint i = 0;i < block->number_of_nodes(); i++) {
   740         tty->print("# ");
   741         block->get_node(i)->fast_dump();
   742       }
   743       tty->print_cr("#");
   744     }
   745 #endif
   747   // RootNode is already sorted
   748   if (block->number_of_nodes() == 1) {
   749     return true;
   750   }
   752   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
   753   uint node_cnt = block->end_idx();
   754   uint phi_cnt = 1;
   755   uint i;
   756   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
   757     Node *n = block->get_node(i);
   758     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
   759         (n->is_Proj()  && n->in(0) == block->head()) ) {
   760       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
   761       block->map_node(block->get_node(phi_cnt), i);
   762       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
   763     } else {                    // All others
   764       // Count block-local inputs to 'n'
   765       uint cnt = n->len();      // Input count
   766       uint local = 0;
   767       for( uint j=0; j<cnt; j++ ) {
   768         Node *m = n->in(j);
   769         if( m && get_block_for_node(m) == block && !m->is_top() )
   770           local++;              // One more block-local input
   771       }
   772       ready_cnt.at_put(n->_idx, local); // Count em up
   774 #ifdef ASSERT
   775       if( UseConcMarkSweepGC || UseG1GC ) {
   776         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
   777           // Check the precedence edges
   778           for (uint prec = n->req(); prec < n->len(); prec++) {
   779             Node* oop_store = n->in(prec);
   780             if (oop_store != NULL) {
   781               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
   782             }
   783           }
   784         }
   785       }
   786 #endif
   788       // A few node types require changing a required edge to a precedence edge
   789       // before allocation.
   790       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
   791           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
   792            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
   793         // MemBarAcquire could be created without Precedent edge.
   794         // del_req() replaces the specified edge with the last input edge
   795         // and then removes the last edge. If the specified edge > number of
   796         // edges the last edge will be moved outside of the input edges array
   797         // and the edge will be lost. This is why this code should be
   798         // executed only when Precedent (== TypeFunc::Parms) edge is present.
   799         Node *x = n->in(TypeFunc::Parms);
   800         n->del_req(TypeFunc::Parms);
   801         n->add_prec(x);
   802       }
   803     }
   804   }
   805   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
   806     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
   808   // All the prescheduled guys do not hold back internal nodes
   809   uint i3;
   810   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
   811     Node *n = block->get_node(i3);       // Get pre-scheduled
   812     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   813       Node* m = n->fast_out(j);
   814       if (get_block_for_node(m) == block) { // Local-block user
   815         int m_cnt = ready_cnt.at(m->_idx)-1;
   816         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
   817       }
   818     }
   819   }
   821   Node_List delay;
   822   // Make a worklist
   823   Node_List worklist;
   824   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
   825     Node *m = block->get_node(i4);
   826     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
   827       if (m->is_iteratively_computed()) {
   828         // Push induction variable increments last to allow other uses
   829         // of the phi to be scheduled first. The select() method breaks
   830         // ties in scheduling by worklist order.
   831         delay.push(m);
   832       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
   833         // Force the CreateEx to the top of the list so it's processed
   834         // first and ends up at the start of the block.
   835         worklist.insert(0, m);
   836       } else {
   837         worklist.push(m);         // Then on to worklist!
   838       }
   839     }
   840   }
   841   while (delay.size()) {
   842     Node* d = delay.pop();
   843     worklist.push(d);
   844   }
   846   // Warm up the 'next_call' heuristic bits
   847   needed_for_next_call(block, block->head(), next_call);
   849 #ifndef PRODUCT
   850     if (trace_opto_pipelining()) {
   851       for (uint j=0; j< block->number_of_nodes(); j++) {
   852         Node     *n = block->get_node(j);
   853         int     idx = n->_idx;
   854         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
   855         tty->print("latency:%3d  ", get_latency_for_node(n));
   856         tty->print("%4d: %s\n", idx, n->Name());
   857       }
   858     }
   859 #endif
   861   uint max_idx = (uint)ready_cnt.length();
   862   // Pull from worklist and schedule
   863   while( worklist.size() ) {    // Worklist is not ready
   865 #ifndef PRODUCT
   866     if (trace_opto_pipelining()) {
   867       tty->print("#   ready list:");
   868       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   869         Node *n = worklist[i];      // Get Node on worklist
   870         tty->print(" %d", n->_idx);
   871       }
   872       tty->cr();
   873     }
   874 #endif
   876     // Select and pop a ready guy from worklist
   877     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt);
   878     block->map_node(n, phi_cnt++);    // Schedule him next
   880 #ifndef PRODUCT
   881     if (trace_opto_pipelining()) {
   882       tty->print("#    select %d: %s", n->_idx, n->Name());
   883       tty->print(", latency:%d", get_latency_for_node(n));
   884       n->dump();
   885       if (Verbose) {
   886         tty->print("#   ready list:");
   887         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   888           Node *n = worklist[i];      // Get Node on worklist
   889           tty->print(" %d", n->_idx);
   890         }
   891         tty->cr();
   892       }
   893     }
   895 #endif
   896     if( n->is_MachCall() ) {
   897       MachCallNode *mcall = n->as_MachCall();
   898       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
   899       continue;
   900     }
   902     if (n->is_Mach() && n->as_Mach()->has_call()) {
   903       RegMask regs;
   904       regs.Insert(_matcher.c_frame_pointer());
   905       regs.OR(n->out_RegMask());
   907       MachProjNode *proj = new (C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
   908       map_node_to_block(proj, block);
   909       block->insert_node(proj, phi_cnt++);
   911       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
   912     }
   914     // Children are now all ready
   915     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
   916       Node* m = n->fast_out(i5); // Get user
   917       if (get_block_for_node(m) != block) {
   918         continue;
   919       }
   920       if( m->is_Phi() ) continue;
   921       if (m->_idx >= max_idx) { // new node, skip it
   922         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
   923         continue;
   924       }
   925       int m_cnt = ready_cnt.at(m->_idx)-1;
   926       ready_cnt.at_put(m->_idx, m_cnt);
   927       if( m_cnt == 0 )
   928         worklist.push(m);
   929     }
   930   }
   932   if( phi_cnt != block->end_idx() ) {
   933     // did not schedule all.  Retry, Bailout, or Die
   934     if (C->subsume_loads() == true && !C->failing()) {
   935       // Retry with subsume_loads == false
   936       // If this is the first failure, the sentinel string will "stick"
   937       // to the Compile object, and the C2Compiler will see it and retry.
   938       C->record_failure(C2Compiler::retry_no_subsuming_loads());
   939     }
   940     // assert( phi_cnt == end_idx(), "did not schedule all" );
   941     return false;
   942   }
   944 #ifndef PRODUCT
   945   if (trace_opto_pipelining()) {
   946     tty->print_cr("#");
   947     tty->print_cr("# after schedule_local");
   948     for (uint i = 0;i < block->number_of_nodes();i++) {
   949       tty->print("# ");
   950       block->get_node(i)->fast_dump();
   951     }
   952     tty->cr();
   953   }
   954 #endif
   957   return true;
   958 }
   960 //--------------------------catch_cleanup_fix_all_inputs-----------------------
   961 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
   962   for (uint l = 0; l < use->len(); l++) {
   963     if (use->in(l) == old_def) {
   964       if (l < use->req()) {
   965         use->set_req(l, new_def);
   966       } else {
   967         use->rm_prec(l);
   968         use->add_prec(new_def);
   969         l--;
   970       }
   971     }
   972   }
   973 }
   975 //------------------------------catch_cleanup_find_cloned_def------------------
   976 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
   977   assert( use_blk != def_blk, "Inter-block cleanup only");
   979   // The use is some block below the Catch.  Find and return the clone of the def
   980   // that dominates the use. If there is no clone in a dominating block, then
   981   // create a phi for the def in a dominating block.
   983   // Find which successor block dominates this use.  The successor
   984   // blocks must all be single-entry (from the Catch only; I will have
   985   // split blocks to make this so), hence they all dominate.
   986   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
   987     use_blk = use_blk->_idom;
   989   // Find the successor
   990   Node *fixup = NULL;
   992   uint j;
   993   for( j = 0; j < def_blk->_num_succs; j++ )
   994     if( use_blk == def_blk->_succs[j] )
   995       break;
   997   if( j == def_blk->_num_succs ) {
   998     // Block at same level in dom-tree is not a successor.  It needs a
   999     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
  1000     Node_Array inputs = new Node_List(Thread::current()->resource_area());
  1001     for(uint k = 1; k < use_blk->num_preds(); k++) {
  1002       Block* block = get_block_for_node(use_blk->pred(k));
  1003       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
  1006     // Check to see if the use_blk already has an identical phi inserted.
  1007     // If it exists, it will be at the first position since all uses of a
  1008     // def are processed together.
  1009     Node *phi = use_blk->get_node(1);
  1010     if( phi->is_Phi() ) {
  1011       fixup = phi;
  1012       for (uint k = 1; k < use_blk->num_preds(); k++) {
  1013         if (phi->in(k) != inputs[k]) {
  1014           // Not a match
  1015           fixup = NULL;
  1016           break;
  1021     // If an existing PhiNode was not found, make a new one.
  1022     if (fixup == NULL) {
  1023       Node *new_phi = PhiNode::make(use_blk->head(), def);
  1024       use_blk->insert_node(new_phi, 1);
  1025       map_node_to_block(new_phi, use_blk);
  1026       for (uint k = 1; k < use_blk->num_preds(); k++) {
  1027         new_phi->set_req(k, inputs[k]);
  1029       fixup = new_phi;
  1032   } else {
  1033     // Found the use just below the Catch.  Make it use the clone.
  1034     fixup = use_blk->get_node(n_clone_idx);
  1037   return fixup;
  1040 //--------------------------catch_cleanup_intra_block--------------------------
  1041 // Fix all input edges in use that reference "def".  The use is in the same
  1042 // block as the def and both have been cloned in each successor block.
  1043 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
  1045   // Both the use and def have been cloned. For each successor block,
  1046   // get the clone of the use, and make its input the clone of the def
  1047   // found in that block.
  1049   uint use_idx = blk->find_node(use);
  1050   uint offset_idx = use_idx - beg;
  1051   for( uint k = 0; k < blk->_num_succs; k++ ) {
  1052     // Get clone in each successor block
  1053     Block *sb = blk->_succs[k];
  1054     Node *clone = sb->get_node(offset_idx+1);
  1055     assert( clone->Opcode() == use->Opcode(), "" );
  1057     // Make use-clone reference the def-clone
  1058     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
  1062 //------------------------------catch_cleanup_inter_block---------------------
  1063 // Fix all input edges in use that reference "def".  The use is in a different
  1064 // block than the def.
  1065 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
  1066   if( !use_blk ) return;        // Can happen if the use is a precedence edge
  1068   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
  1069   catch_cleanup_fix_all_inputs(use, def, new_def);
  1072 //------------------------------call_catch_cleanup-----------------------------
  1073 // If we inserted any instructions between a Call and his CatchNode,
  1074 // clone the instructions on all paths below the Catch.
  1075 void PhaseCFG::call_catch_cleanup(Block* block) {
  1077   // End of region to clone
  1078   uint end = block->end_idx();
  1079   if( !block->get_node(end)->is_Catch() ) return;
  1080   // Start of region to clone
  1081   uint beg = end;
  1082   while(!block->get_node(beg-1)->is_MachProj() ||
  1083         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
  1084     beg--;
  1085     assert(beg > 0,"Catch cleanup walking beyond block boundary");
  1087   // Range of inserted instructions is [beg, end)
  1088   if( beg == end ) return;
  1090   // Clone along all Catch output paths.  Clone area between the 'beg' and
  1091   // 'end' indices.
  1092   for( uint i = 0; i < block->_num_succs; i++ ) {
  1093     Block *sb = block->_succs[i];
  1094     // Clone the entire area; ignoring the edge fixup for now.
  1095     for( uint j = end; j > beg; j-- ) {
  1096       // It is safe here to clone a node with anti_dependence
  1097       // since clones dominate on each path.
  1098       Node *clone = block->get_node(j-1)->clone();
  1099       sb->insert_node(clone, 1);
  1100       map_node_to_block(clone, sb);
  1105   // Fixup edges.  Check the def-use info per cloned Node
  1106   for(uint i2 = beg; i2 < end; i2++ ) {
  1107     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
  1108     Node *n = block->get_node(i2);        // Node that got cloned
  1109     // Need DU safe iterator because of edge manipulation in calls.
  1110     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
  1111     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
  1112       out->push(n->fast_out(j1));
  1114     uint max = out->size();
  1115     for (uint j = 0; j < max; j++) {// For all users
  1116       Node *use = out->pop();
  1117       Block *buse = get_block_for_node(use);
  1118       if( use->is_Phi() ) {
  1119         for( uint k = 1; k < use->req(); k++ )
  1120           if( use->in(k) == n ) {
  1121             Block* b = get_block_for_node(buse->pred(k));
  1122             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
  1123             use->set_req(k, fixup);
  1125       } else {
  1126         if (block == buse) {
  1127           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
  1128         } else {
  1129           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
  1132     } // End for all users
  1134   } // End of for all Nodes in cloned area
  1136   // Remove the now-dead cloned ops
  1137   for(uint i3 = beg; i3 < end; i3++ ) {
  1138     block->get_node(beg)->disconnect_inputs(NULL, C);
  1139     block->remove_node(beg);
  1142   // If the successor blocks have a CreateEx node, move it back to the top
  1143   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
  1144     Block *sb = block->_succs[i4];
  1145     uint new_cnt = end - beg;
  1146     // Remove any newly created, but dead, nodes.
  1147     for( uint j = new_cnt; j > 0; j-- ) {
  1148       Node *n = sb->get_node(j);
  1149       if (n->outcnt() == 0 &&
  1150           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
  1151         n->disconnect_inputs(NULL, C);
  1152         sb->remove_node(j);
  1153         new_cnt--;
  1156     // If any newly created nodes remain, move the CreateEx node to the top
  1157     if (new_cnt > 0) {
  1158       Node *cex = sb->get_node(1+new_cnt);
  1159       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
  1160         sb->remove_node(1+new_cnt);
  1161         sb->insert_node(cex, 1);

mercurial