src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp

Tue, 10 Dec 2013 10:31:00 +0100

author
sjohanss
date
Tue, 10 Dec 2013 10:31:00 +0100
changeset 6169
ad72068ac41e
parent 5237
f2110083203d
child 6876
710a3c8b516e
child 6904
0982ec23da03
permissions
-rw-r--r--

8028993: Full collections with ParallelScavenge slower in JDK 8 compared to 7u40
Summary: Reducing the number of calls to follow_class_loader to speed up the marking phase. Also removed some unnecessary calls to adjust_klass.
Reviewed-by: stefank, jmasa, mgerdin

duke@435 1 /*
tamao@5161 2 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
stefank@2314 29 #include "gc_implementation/parallelScavenge/parMarkBitMap.hpp"
stefank@2314 30 #include "gc_implementation/parallelScavenge/psCompactionManager.hpp"
stefank@2314 31 #include "gc_implementation/shared/collectorCounters.hpp"
stefank@2314 32 #include "gc_implementation/shared/markSweep.hpp"
stefank@2314 33 #include "gc_implementation/shared/mutableSpace.hpp"
stefank@2314 34 #include "memory/sharedHeap.hpp"
stefank@2314 35 #include "oops/oop.hpp"
stefank@2314 36
duke@435 37 class ParallelScavengeHeap;
duke@435 38 class PSAdaptiveSizePolicy;
duke@435 39 class PSYoungGen;
duke@435 40 class PSOldGen;
duke@435 41 class ParCompactionManager;
duke@435 42 class ParallelTaskTerminator;
duke@435 43 class PSParallelCompact;
duke@435 44 class GCTaskManager;
duke@435 45 class GCTaskQueue;
duke@435 46 class PreGCValues;
duke@435 47 class MoveAndUpdateClosure;
duke@435 48 class RefProcTaskExecutor;
sla@5237 49 class ParallelOldTracer;
sla@5237 50 class STWGCTimer;
duke@435 51
jcoomes@917 52 // The SplitInfo class holds the information needed to 'split' a source region
jcoomes@917 53 // so that the live data can be copied to two destination *spaces*. Normally,
jcoomes@917 54 // all the live data in a region is copied to a single destination space (e.g.,
jcoomes@917 55 // everything live in a region in eden is copied entirely into the old gen).
jcoomes@917 56 // However, when the heap is nearly full, all the live data in eden may not fit
jcoomes@917 57 // into the old gen. Copying only some of the regions from eden to old gen
jcoomes@917 58 // requires finding a region that does not contain a partial object (i.e., no
jcoomes@917 59 // live object crosses the region boundary) somewhere near the last object that
jcoomes@917 60 // does fit into the old gen. Since it's not always possible to find such a
jcoomes@917 61 // region, splitting is necessary for predictable behavior.
jcoomes@917 62 //
jcoomes@917 63 // A region is always split at the end of the partial object. This avoids
jcoomes@917 64 // additional tests when calculating the new location of a pointer, which is a
jcoomes@917 65 // very hot code path. The partial object and everything to its left will be
jcoomes@917 66 // copied to another space (call it dest_space_1). The live data to the right
jcoomes@917 67 // of the partial object will be copied either within the space itself, or to a
jcoomes@917 68 // different destination space (distinct from dest_space_1).
jcoomes@917 69 //
jcoomes@917 70 // Split points are identified during the summary phase, when region
jcoomes@917 71 // destinations are computed: data about the split, including the
jcoomes@917 72 // partial_object_size, is recorded in a SplitInfo record and the
jcoomes@917 73 // partial_object_size field in the summary data is set to zero. The zeroing is
jcoomes@917 74 // possible (and necessary) since the partial object will move to a different
jcoomes@917 75 // destination space than anything to its right, thus the partial object should
jcoomes@917 76 // not affect the locations of any objects to its right.
jcoomes@917 77 //
jcoomes@917 78 // The recorded data is used during the compaction phase, but only rarely: when
jcoomes@917 79 // the partial object on the split region will be copied across a destination
jcoomes@917 80 // region boundary. This test is made once each time a region is filled, and is
jcoomes@917 81 // a simple address comparison, so the overhead is negligible (see
jcoomes@917 82 // PSParallelCompact::first_src_addr()).
jcoomes@917 83 //
jcoomes@917 84 // Notes:
jcoomes@917 85 //
jcoomes@917 86 // Only regions with partial objects are split; a region without a partial
jcoomes@917 87 // object does not need any extra bookkeeping.
jcoomes@917 88 //
jcoomes@917 89 // At most one region is split per space, so the amount of data required is
jcoomes@917 90 // constant.
jcoomes@917 91 //
jcoomes@917 92 // A region is split only when the destination space would overflow. Once that
jcoomes@917 93 // happens, the destination space is abandoned and no other data (even from
jcoomes@917 94 // other source spaces) is targeted to that destination space. Abandoning the
jcoomes@917 95 // destination space may leave a somewhat large unused area at the end, if a
jcoomes@917 96 // large object caused the overflow.
jcoomes@917 97 //
jcoomes@917 98 // Future work:
jcoomes@917 99 //
jcoomes@917 100 // More bookkeeping would be required to continue to use the destination space.
jcoomes@917 101 // The most general solution would allow data from regions in two different
jcoomes@917 102 // source spaces to be "joined" in a single destination region. At the very
jcoomes@917 103 // least, additional code would be required in next_src_region() to detect the
jcoomes@917 104 // join and skip to an out-of-order source region. If the join region was also
jcoomes@917 105 // the last destination region to which a split region was copied (the most
jcoomes@917 106 // likely case), then additional work would be needed to get fill_region() to
jcoomes@917 107 // stop iteration and switch to a new source region at the right point. Basic
jcoomes@917 108 // idea would be to use a fake value for the top of the source space. It is
jcoomes@917 109 // doable, if a bit tricky.
jcoomes@917 110 //
jcoomes@917 111 // A simpler (but less general) solution would fill the remainder of the
jcoomes@917 112 // destination region with a dummy object and continue filling the next
jcoomes@917 113 // destination region.
jcoomes@917 114
jcoomes@917 115 class SplitInfo
jcoomes@917 116 {
jcoomes@917 117 public:
jcoomes@917 118 // Return true if this split info is valid (i.e., if a split has been
jcoomes@917 119 // recorded). The very first region cannot have a partial object and thus is
jcoomes@917 120 // never split, so 0 is the 'invalid' value.
jcoomes@917 121 bool is_valid() const { return _src_region_idx > 0; }
jcoomes@917 122
jcoomes@917 123 // Return true if this split holds data for the specified source region.
jcoomes@917 124 inline bool is_split(size_t source_region) const;
jcoomes@917 125
jcoomes@917 126 // The index of the split region, the size of the partial object on that
jcoomes@917 127 // region and the destination of the partial object.
jcoomes@917 128 size_t src_region_idx() const { return _src_region_idx; }
jcoomes@917 129 size_t partial_obj_size() const { return _partial_obj_size; }
jcoomes@917 130 HeapWord* destination() const { return _destination; }
jcoomes@917 131
jcoomes@917 132 // The destination count of the partial object referenced by this split
jcoomes@917 133 // (either 1 or 2). This must be added to the destination count of the
jcoomes@917 134 // remainder of the source region.
jcoomes@917 135 unsigned int destination_count() const { return _destination_count; }
jcoomes@917 136
jcoomes@917 137 // If a word within the partial object will be written to the first word of a
jcoomes@917 138 // destination region, this is the address of the destination region;
jcoomes@917 139 // otherwise this is NULL.
jcoomes@917 140 HeapWord* dest_region_addr() const { return _dest_region_addr; }
jcoomes@917 141
jcoomes@917 142 // If a word within the partial object will be written to the first word of a
jcoomes@917 143 // destination region, this is the address of that word within the partial
jcoomes@917 144 // object; otherwise this is NULL.
jcoomes@917 145 HeapWord* first_src_addr() const { return _first_src_addr; }
jcoomes@917 146
jcoomes@917 147 // Record the data necessary to split the region src_region_idx.
jcoomes@917 148 void record(size_t src_region_idx, size_t partial_obj_size,
jcoomes@917 149 HeapWord* destination);
jcoomes@917 150
jcoomes@917 151 void clear();
jcoomes@917 152
jcoomes@917 153 DEBUG_ONLY(void verify_clear();)
jcoomes@917 154
jcoomes@917 155 private:
jcoomes@917 156 size_t _src_region_idx;
jcoomes@917 157 size_t _partial_obj_size;
jcoomes@917 158 HeapWord* _destination;
jcoomes@917 159 unsigned int _destination_count;
jcoomes@917 160 HeapWord* _dest_region_addr;
jcoomes@917 161 HeapWord* _first_src_addr;
jcoomes@917 162 };
jcoomes@917 163
jcoomes@917 164 inline bool SplitInfo::is_split(size_t region_idx) const
jcoomes@917 165 {
jcoomes@917 166 return _src_region_idx == region_idx && is_valid();
jcoomes@917 167 }
jcoomes@917 168
duke@435 169 class SpaceInfo
duke@435 170 {
duke@435 171 public:
duke@435 172 MutableSpace* space() const { return _space; }
duke@435 173
duke@435 174 // Where the free space will start after the collection. Valid only after the
duke@435 175 // summary phase completes.
duke@435 176 HeapWord* new_top() const { return _new_top; }
duke@435 177
duke@435 178 // Allows new_top to be set.
duke@435 179 HeapWord** new_top_addr() { return &_new_top; }
duke@435 180
duke@435 181 // Where the smallest allowable dense prefix ends (used only for perm gen).
duke@435 182 HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
duke@435 183
duke@435 184 // Where the dense prefix ends, or the compacted region begins.
duke@435 185 HeapWord* dense_prefix() const { return _dense_prefix; }
duke@435 186
duke@435 187 // The start array for the (generation containing the) space, or NULL if there
duke@435 188 // is no start array.
duke@435 189 ObjectStartArray* start_array() const { return _start_array; }
duke@435 190
jcoomes@917 191 SplitInfo& split_info() { return _split_info; }
jcoomes@917 192
duke@435 193 void set_space(MutableSpace* s) { _space = s; }
duke@435 194 void set_new_top(HeapWord* addr) { _new_top = addr; }
duke@435 195 void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
duke@435 196 void set_dense_prefix(HeapWord* addr) { _dense_prefix = addr; }
duke@435 197 void set_start_array(ObjectStartArray* s) { _start_array = s; }
duke@435 198
jcoomes@917 199 void publish_new_top() const { _space->set_top(_new_top); }
jcoomes@917 200
duke@435 201 private:
duke@435 202 MutableSpace* _space;
duke@435 203 HeapWord* _new_top;
duke@435 204 HeapWord* _min_dense_prefix;
duke@435 205 HeapWord* _dense_prefix;
duke@435 206 ObjectStartArray* _start_array;
jcoomes@917 207 SplitInfo _split_info;
duke@435 208 };
duke@435 209
duke@435 210 class ParallelCompactData
duke@435 211 {
duke@435 212 public:
duke@435 213 // Sizes are in HeapWords, unless indicated otherwise.
jcoomes@810 214 static const size_t Log2RegionSize;
jcoomes@810 215 static const size_t RegionSize;
jcoomes@810 216 static const size_t RegionSizeBytes;
duke@435 217
jcoomes@810 218 // Mask for the bits in a size_t to get an offset within a region.
jcoomes@810 219 static const size_t RegionSizeOffsetMask;
jcoomes@810 220 // Mask for the bits in a pointer to get an offset within a region.
jcoomes@810 221 static const size_t RegionAddrOffsetMask;
jcoomes@810 222 // Mask for the bits in a pointer to get the address of the start of a region.
jcoomes@810 223 static const size_t RegionAddrMask;
duke@435 224
jcoomes@5201 225 static const size_t Log2BlockSize;
jcoomes@5201 226 static const size_t BlockSize;
jcoomes@5201 227 static const size_t BlockSizeBytes;
jcoomes@5201 228
jcoomes@5201 229 static const size_t BlockSizeOffsetMask;
jcoomes@5201 230 static const size_t BlockAddrOffsetMask;
jcoomes@5201 231 static const size_t BlockAddrMask;
jcoomes@5201 232
jcoomes@5201 233 static const size_t BlocksPerRegion;
jcoomes@5201 234 static const size_t Log2BlocksPerRegion;
jcoomes@5201 235
jcoomes@810 236 class RegionData
duke@435 237 {
duke@435 238 public:
jcoomes@810 239 // Destination address of the region.
duke@435 240 HeapWord* destination() const { return _destination; }
duke@435 241
jcoomes@810 242 // The first region containing data destined for this region.
jcoomes@810 243 size_t source_region() const { return _source_region; }
duke@435 244
jcoomes@810 245 // The object (if any) starting in this region and ending in a different
jcoomes@810 246 // region that could not be updated during the main (parallel) compaction
duke@435 247 // phase. This is different from _partial_obj_addr, which is an object that
jcoomes@810 248 // extends onto a source region. However, the two uses do not overlap in
duke@435 249 // time, so the same field is used to save space.
duke@435 250 HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
duke@435 251
jcoomes@810 252 // The starting address of the partial object extending onto the region.
duke@435 253 HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
duke@435 254
jcoomes@810 255 // Size of the partial object extending onto the region (words).
duke@435 256 size_t partial_obj_size() const { return _partial_obj_size; }
duke@435 257
jcoomes@810 258 // Size of live data that lies within this region due to objects that start
jcoomes@810 259 // in this region (words). This does not include the partial object
jcoomes@810 260 // extending onto the region (if any), or the part of an object that extends
jcoomes@810 261 // onto the next region (if any).
duke@435 262 size_t live_obj_size() const { return _dc_and_los & los_mask; }
duke@435 263
jcoomes@810 264 // Total live data that lies within the region (words).
duke@435 265 size_t data_size() const { return partial_obj_size() + live_obj_size(); }
duke@435 266
jcoomes@810 267 // The destination_count is the number of other regions to which data from
jcoomes@810 268 // this region will be copied. At the end of the summary phase, the valid
duke@435 269 // values of destination_count are
duke@435 270 //
jcoomes@810 271 // 0 - data from the region will be compacted completely into itself, or the
jcoomes@810 272 // region is empty. The region can be claimed and then filled.
jcoomes@810 273 // 1 - data from the region will be compacted into 1 other region; some
jcoomes@810 274 // data from the region may also be compacted into the region itself.
jcoomes@810 275 // 2 - data from the region will be copied to 2 other regions.
duke@435 276 //
jcoomes@810 277 // During compaction as regions are emptied, the destination_count is
duke@435 278 // decremented (atomically) and when it reaches 0, it can be claimed and
duke@435 279 // then filled.
duke@435 280 //
jcoomes@810 281 // A region is claimed for processing by atomically changing the
jcoomes@810 282 // destination_count to the claimed value (dc_claimed). After a region has
duke@435 283 // been filled, the destination_count should be set to the completed value
duke@435 284 // (dc_completed).
duke@435 285 inline uint destination_count() const;
duke@435 286 inline uint destination_count_raw() const;
duke@435 287
jcoomes@5201 288 // Whether the block table for this region has been filled.
jcoomes@5201 289 inline bool blocks_filled() const;
jcoomes@5201 290
jcoomes@5201 291 // Number of times the block table was filled.
jcoomes@5201 292 DEBUG_ONLY(inline size_t blocks_filled_count() const;)
jcoomes@5201 293
jcoomes@810 294 // The location of the java heap data that corresponds to this region.
duke@435 295 inline HeapWord* data_location() const;
duke@435 296
jcoomes@810 297 // The highest address referenced by objects in this region.
duke@435 298 inline HeapWord* highest_ref() const;
duke@435 299
jcoomes@810 300 // Whether this region is available to be claimed, has been claimed, or has
duke@435 301 // been completed.
duke@435 302 //
jcoomes@810 303 // Minor subtlety: claimed() returns true if the region is marked
jcoomes@810 304 // completed(), which is desirable since a region must be claimed before it
duke@435 305 // can be completed.
duke@435 306 bool available() const { return _dc_and_los < dc_one; }
duke@435 307 bool claimed() const { return _dc_and_los >= dc_claimed; }
duke@435 308 bool completed() const { return _dc_and_los >= dc_completed; }
duke@435 309
duke@435 310 // These are not atomic.
duke@435 311 void set_destination(HeapWord* addr) { _destination = addr; }
jcoomes@810 312 void set_source_region(size_t region) { _source_region = region; }
duke@435 313 void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
duke@435 314 void set_partial_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
duke@435 315 void set_partial_obj_size(size_t words) {
jcoomes@810 316 _partial_obj_size = (region_sz_t) words;
duke@435 317 }
jcoomes@5201 318 inline void set_blocks_filled();
duke@435 319
duke@435 320 inline void set_destination_count(uint count);
duke@435 321 inline void set_live_obj_size(size_t words);
duke@435 322 inline void set_data_location(HeapWord* addr);
duke@435 323 inline void set_completed();
duke@435 324 inline bool claim_unsafe();
duke@435 325
duke@435 326 // These are atomic.
duke@435 327 inline void add_live_obj(size_t words);
duke@435 328 inline void set_highest_ref(HeapWord* addr);
duke@435 329 inline void decrement_destination_count();
duke@435 330 inline bool claim();
duke@435 331
duke@435 332 private:
jcoomes@810 333 // The type used to represent object sizes within a region.
jcoomes@810 334 typedef uint region_sz_t;
duke@435 335
duke@435 336 // Constants for manipulating the _dc_and_los field, which holds both the
duke@435 337 // destination count and live obj size. The live obj size lives at the
duke@435 338 // least significant end so no masking is necessary when adding.
jcoomes@810 339 static const region_sz_t dc_shift; // Shift amount.
jcoomes@810 340 static const region_sz_t dc_mask; // Mask for destination count.
jcoomes@810 341 static const region_sz_t dc_one; // 1, shifted appropriately.
jcoomes@810 342 static const region_sz_t dc_claimed; // Region has been claimed.
jcoomes@810 343 static const region_sz_t dc_completed; // Region has been completed.
jcoomes@810 344 static const region_sz_t los_mask; // Mask for live obj size.
duke@435 345
jcoomes@810 346 HeapWord* _destination;
jcoomes@810 347 size_t _source_region;
jcoomes@810 348 HeapWord* _partial_obj_addr;
jcoomes@810 349 region_sz_t _partial_obj_size;
jcoomes@810 350 region_sz_t volatile _dc_and_los;
jcoomes@5201 351 bool _blocks_filled;
jcoomes@5201 352
duke@435 353 #ifdef ASSERT
jcoomes@5201 354 size_t _blocks_filled_count; // Number of block table fills.
jcoomes@5201 355
duke@435 356 // These enable optimizations that are only partially implemented. Use
duke@435 357 // debug builds to prevent the code fragments from breaking.
jcoomes@810 358 HeapWord* _data_location;
jcoomes@810 359 HeapWord* _highest_ref;
duke@435 360 #endif // #ifdef ASSERT
duke@435 361
duke@435 362 #ifdef ASSERT
duke@435 363 public:
jcoomes@5201 364 uint _pushed; // 0 until region is pushed onto a stack
duke@435 365 private:
duke@435 366 #endif
duke@435 367 };
duke@435 368
jcoomes@5201 369 // "Blocks" allow shorter sections of the bitmap to be searched. Each Block
jcoomes@5201 370 // holds an offset, which is the amount of live data in the Region to the left
jcoomes@5201 371 // of the first live object that starts in the Block.
jcoomes@5201 372 class BlockData
jcoomes@5201 373 {
jcoomes@5201 374 public:
jcoomes@5201 375 typedef unsigned short int blk_ofs_t;
jcoomes@5201 376
jcoomes@5201 377 blk_ofs_t offset() const { return _offset; }
jcoomes@5201 378 void set_offset(size_t val) { _offset = (blk_ofs_t)val; }
jcoomes@5201 379
jcoomes@5201 380 private:
jcoomes@5201 381 blk_ofs_t _offset;
jcoomes@5201 382 };
jcoomes@5201 383
duke@435 384 public:
duke@435 385 ParallelCompactData();
duke@435 386 bool initialize(MemRegion covered_region);
duke@435 387
jcoomes@810 388 size_t region_count() const { return _region_count; }
tamao@5161 389 size_t reserved_byte_size() const { return _reserved_byte_size; }
duke@435 390
jcoomes@810 391 // Convert region indices to/from RegionData pointers.
jcoomes@810 392 inline RegionData* region(size_t region_idx) const;
jcoomes@810 393 inline size_t region(const RegionData* const region_ptr) const;
duke@435 394
jcoomes@5201 395 size_t block_count() const { return _block_count; }
jcoomes@5201 396 inline BlockData* block(size_t block_idx) const;
jcoomes@5201 397 inline size_t block(const BlockData* block_ptr) const;
duke@435 398
duke@435 399 void add_obj(HeapWord* addr, size_t len);
duke@435 400 void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
duke@435 401
jcoomes@810 402 // Fill in the regions covering [beg, end) so that no data moves; i.e., the
jcoomes@810 403 // destination of region n is simply the start of region n. The argument beg
jcoomes@810 404 // must be region-aligned; end need not be.
duke@435 405 void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
duke@435 406
jcoomes@917 407 HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
jcoomes@917 408 HeapWord* destination, HeapWord* target_end,
jcoomes@917 409 HeapWord** target_next);
jcoomes@917 410 bool summarize(SplitInfo& split_info,
duke@435 411 HeapWord* source_beg, HeapWord* source_end,
jcoomes@917 412 HeapWord** source_next,
jcoomes@917 413 HeapWord* target_beg, HeapWord* target_end,
jcoomes@917 414 HeapWord** target_next);
duke@435 415
duke@435 416 void clear();
jcoomes@810 417 void clear_range(size_t beg_region, size_t end_region);
duke@435 418 void clear_range(HeapWord* beg, HeapWord* end) {
jcoomes@810 419 clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
duke@435 420 }
duke@435 421
jcoomes@810 422 // Return the number of words between addr and the start of the region
duke@435 423 // containing addr.
jcoomes@810 424 inline size_t region_offset(const HeapWord* addr) const;
duke@435 425
jcoomes@810 426 // Convert addresses to/from a region index or region pointer.
jcoomes@810 427 inline size_t addr_to_region_idx(const HeapWord* addr) const;
jcoomes@810 428 inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
jcoomes@810 429 inline HeapWord* region_to_addr(size_t region) const;
jcoomes@810 430 inline HeapWord* region_to_addr(size_t region, size_t offset) const;
jcoomes@810 431 inline HeapWord* region_to_addr(const RegionData* region) const;
duke@435 432
jcoomes@810 433 inline HeapWord* region_align_down(HeapWord* addr) const;
jcoomes@810 434 inline HeapWord* region_align_up(HeapWord* addr) const;
jcoomes@810 435 inline bool is_region_aligned(HeapWord* addr) const;
duke@435 436
jcoomes@5201 437 // Analogous to region_offset() for blocks.
jcoomes@5201 438 size_t block_offset(const HeapWord* addr) const;
jcoomes@5201 439 size_t addr_to_block_idx(const HeapWord* addr) const;
jcoomes@5201 440 size_t addr_to_block_idx(const oop obj) const {
jcoomes@5201 441 return addr_to_block_idx((HeapWord*) obj);
jcoomes@5201 442 }
jcoomes@5201 443 inline BlockData* addr_to_block_ptr(const HeapWord* addr) const;
jcoomes@5201 444 inline HeapWord* block_to_addr(size_t block) const;
jcoomes@5201 445 inline size_t region_to_block_idx(size_t region) const;
jcoomes@5201 446
jcoomes@5201 447 inline HeapWord* block_align_down(HeapWord* addr) const;
jcoomes@5201 448 inline HeapWord* block_align_up(HeapWord* addr) const;
jcoomes@5201 449 inline bool is_block_aligned(HeapWord* addr) const;
jcoomes@5201 450
duke@435 451 // Return the address one past the end of the partial object.
jcoomes@810 452 HeapWord* partial_obj_end(size_t region_idx) const;
duke@435 453
jcoomes@5201 454 // Return the location of the object after compaction.
duke@435 455 HeapWord* calc_new_pointer(HeapWord* addr);
duke@435 456
duke@435 457 HeapWord* calc_new_pointer(oop p) {
duke@435 458 return calc_new_pointer((HeapWord*) p);
duke@435 459 }
duke@435 460
duke@435 461 #ifdef ASSERT
duke@435 462 void verify_clear(const PSVirtualSpace* vspace);
duke@435 463 void verify_clear();
duke@435 464 #endif // #ifdef ASSERT
duke@435 465
duke@435 466 private:
jcoomes@5201 467 bool initialize_block_data();
jcoomes@810 468 bool initialize_region_data(size_t region_size);
duke@435 469 PSVirtualSpace* create_vspace(size_t count, size_t element_size);
duke@435 470
duke@435 471 private:
duke@435 472 HeapWord* _region_start;
duke@435 473 #ifdef ASSERT
duke@435 474 HeapWord* _region_end;
duke@435 475 #endif // #ifdef ASSERT
duke@435 476
jcoomes@810 477 PSVirtualSpace* _region_vspace;
tamao@5161 478 size_t _reserved_byte_size;
jcoomes@810 479 RegionData* _region_data;
jcoomes@810 480 size_t _region_count;
jcoomes@5201 481
jcoomes@5201 482 PSVirtualSpace* _block_vspace;
jcoomes@5201 483 BlockData* _block_data;
jcoomes@5201 484 size_t _block_count;
duke@435 485 };
duke@435 486
duke@435 487 inline uint
jcoomes@810 488 ParallelCompactData::RegionData::destination_count_raw() const
duke@435 489 {
duke@435 490 return _dc_and_los & dc_mask;
duke@435 491 }
duke@435 492
duke@435 493 inline uint
jcoomes@810 494 ParallelCompactData::RegionData::destination_count() const
duke@435 495 {
duke@435 496 return destination_count_raw() >> dc_shift;
duke@435 497 }
duke@435 498
jcoomes@5201 499 inline bool
jcoomes@5201 500 ParallelCompactData::RegionData::blocks_filled() const
jcoomes@5201 501 {
jcoomes@5201 502 return _blocks_filled;
jcoomes@5201 503 }
jcoomes@5201 504
jcoomes@5201 505 #ifdef ASSERT
jcoomes@5201 506 inline size_t
jcoomes@5201 507 ParallelCompactData::RegionData::blocks_filled_count() const
jcoomes@5201 508 {
jcoomes@5201 509 return _blocks_filled_count;
jcoomes@5201 510 }
jcoomes@5201 511 #endif // #ifdef ASSERT
jcoomes@5201 512
jcoomes@5201 513 inline void
jcoomes@5201 514 ParallelCompactData::RegionData::set_blocks_filled()
jcoomes@5201 515 {
jcoomes@5201 516 _blocks_filled = true;
jcoomes@5201 517 // Debug builds count the number of times the table was filled.
jcoomes@5201 518 DEBUG_ONLY(Atomic::inc_ptr(&_blocks_filled_count));
jcoomes@5201 519 }
jcoomes@5201 520
duke@435 521 inline void
jcoomes@810 522 ParallelCompactData::RegionData::set_destination_count(uint count)
duke@435 523 {
duke@435 524 assert(count <= (dc_completed >> dc_shift), "count too large");
jcoomes@810 525 const region_sz_t live_sz = (region_sz_t) live_obj_size();
duke@435 526 _dc_and_los = (count << dc_shift) | live_sz;
duke@435 527 }
duke@435 528
jcoomes@810 529 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
duke@435 530 {
duke@435 531 assert(words <= los_mask, "would overflow");
jcoomes@810 532 _dc_and_los = destination_count_raw() | (region_sz_t)words;
duke@435 533 }
duke@435 534
jcoomes@810 535 inline void ParallelCompactData::RegionData::decrement_destination_count()
duke@435 536 {
duke@435 537 assert(_dc_and_los < dc_claimed, "already claimed");
duke@435 538 assert(_dc_and_los >= dc_one, "count would go negative");
duke@435 539 Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
duke@435 540 }
duke@435 541
jcoomes@810 542 inline HeapWord* ParallelCompactData::RegionData::data_location() const
duke@435 543 {
duke@435 544 DEBUG_ONLY(return _data_location;)
duke@435 545 NOT_DEBUG(return NULL;)
duke@435 546 }
duke@435 547
jcoomes@810 548 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
duke@435 549 {
duke@435 550 DEBUG_ONLY(return _highest_ref;)
duke@435 551 NOT_DEBUG(return NULL;)
duke@435 552 }
duke@435 553
jcoomes@810 554 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
duke@435 555 {
duke@435 556 DEBUG_ONLY(_data_location = addr;)
duke@435 557 }
duke@435 558
jcoomes@810 559 inline void ParallelCompactData::RegionData::set_completed()
duke@435 560 {
duke@435 561 assert(claimed(), "must be claimed first");
jcoomes@810 562 _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
duke@435 563 }
duke@435 564
jcoomes@810 565 // MT-unsafe claiming of a region. Should only be used during single threaded
duke@435 566 // execution.
jcoomes@810 567 inline bool ParallelCompactData::RegionData::claim_unsafe()
duke@435 568 {
duke@435 569 if (available()) {
duke@435 570 _dc_and_los |= dc_claimed;
duke@435 571 return true;
duke@435 572 }
duke@435 573 return false;
duke@435 574 }
duke@435 575
jcoomes@810 576 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
duke@435 577 {
duke@435 578 assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
duke@435 579 Atomic::add((int) words, (volatile int*) &_dc_and_los);
duke@435 580 }
duke@435 581
jcoomes@810 582 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
duke@435 583 {
duke@435 584 #ifdef ASSERT
duke@435 585 HeapWord* tmp = _highest_ref;
duke@435 586 while (addr > tmp) {
duke@435 587 tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
duke@435 588 }
duke@435 589 #endif // #ifdef ASSERT
duke@435 590 }
duke@435 591
jcoomes@810 592 inline bool ParallelCompactData::RegionData::claim()
duke@435 593 {
duke@435 594 const int los = (int) live_obj_size();
duke@435 595 const int old = Atomic::cmpxchg(dc_claimed | los,
duke@435 596 (volatile int*) &_dc_and_los, los);
duke@435 597 return old == los;
duke@435 598 }
duke@435 599
jcoomes@810 600 inline ParallelCompactData::RegionData*
jcoomes@810 601 ParallelCompactData::region(size_t region_idx) const
duke@435 602 {
jcoomes@810 603 assert(region_idx <= region_count(), "bad arg");
jcoomes@810 604 return _region_data + region_idx;
duke@435 605 }
duke@435 606
duke@435 607 inline size_t
jcoomes@810 608 ParallelCompactData::region(const RegionData* const region_ptr) const
duke@435 609 {
jcoomes@810 610 assert(region_ptr >= _region_data, "bad arg");
jcoomes@810 611 assert(region_ptr <= _region_data + region_count(), "bad arg");
jcoomes@810 612 return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
duke@435 613 }
duke@435 614
jcoomes@5201 615 inline ParallelCompactData::BlockData*
jcoomes@5201 616 ParallelCompactData::block(size_t n) const {
jcoomes@5201 617 assert(n < block_count(), "bad arg");
jcoomes@5201 618 return _block_data + n;
jcoomes@5201 619 }
jcoomes@5201 620
duke@435 621 inline size_t
jcoomes@810 622 ParallelCompactData::region_offset(const HeapWord* addr) const
duke@435 623 {
duke@435 624 assert(addr >= _region_start, "bad addr");
duke@435 625 assert(addr <= _region_end, "bad addr");
jcoomes@810 626 return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
duke@435 627 }
duke@435 628
duke@435 629 inline size_t
jcoomes@810 630 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
duke@435 631 {
duke@435 632 assert(addr >= _region_start, "bad addr");
duke@435 633 assert(addr <= _region_end, "bad addr");
jcoomes@810 634 return pointer_delta(addr, _region_start) >> Log2RegionSize;
duke@435 635 }
duke@435 636
jcoomes@810 637 inline ParallelCompactData::RegionData*
jcoomes@810 638 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
duke@435 639 {
jcoomes@810 640 return region(addr_to_region_idx(addr));
duke@435 641 }
duke@435 642
duke@435 643 inline HeapWord*
jcoomes@810 644 ParallelCompactData::region_to_addr(size_t region) const
duke@435 645 {
jcoomes@810 646 assert(region <= _region_count, "region out of range");
jcoomes@810 647 return _region_start + (region << Log2RegionSize);
duke@435 648 }
duke@435 649
duke@435 650 inline HeapWord*
jcoomes@810 651 ParallelCompactData::region_to_addr(const RegionData* region) const
duke@435 652 {
jcoomes@810 653 return region_to_addr(pointer_delta(region, _region_data,
jcoomes@810 654 sizeof(RegionData)));
duke@435 655 }
duke@435 656
duke@435 657 inline HeapWord*
jcoomes@810 658 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
duke@435 659 {
jcoomes@810 660 assert(region <= _region_count, "region out of range");
jcoomes@810 661 assert(offset < RegionSize, "offset too big"); // This may be too strict.
jcoomes@810 662 return region_to_addr(region) + offset;
duke@435 663 }
duke@435 664
duke@435 665 inline HeapWord*
jcoomes@810 666 ParallelCompactData::region_align_down(HeapWord* addr) const
duke@435 667 {
duke@435 668 assert(addr >= _region_start, "bad addr");
jcoomes@810 669 assert(addr < _region_end + RegionSize, "bad addr");
jcoomes@810 670 return (HeapWord*)(size_t(addr) & RegionAddrMask);
duke@435 671 }
duke@435 672
duke@435 673 inline HeapWord*
jcoomes@810 674 ParallelCompactData::region_align_up(HeapWord* addr) const
duke@435 675 {
duke@435 676 assert(addr >= _region_start, "bad addr");
duke@435 677 assert(addr <= _region_end, "bad addr");
jcoomes@810 678 return region_align_down(addr + RegionSizeOffsetMask);
duke@435 679 }
duke@435 680
duke@435 681 inline bool
jcoomes@810 682 ParallelCompactData::is_region_aligned(HeapWord* addr) const
duke@435 683 {
jcoomes@810 684 return region_offset(addr) == 0;
duke@435 685 }
duke@435 686
jcoomes@5201 687 inline size_t
jcoomes@5201 688 ParallelCompactData::block_offset(const HeapWord* addr) const
jcoomes@5201 689 {
jcoomes@5201 690 assert(addr >= _region_start, "bad addr");
jcoomes@5201 691 assert(addr <= _region_end, "bad addr");
jcoomes@5201 692 return (size_t(addr) & BlockAddrOffsetMask) >> LogHeapWordSize;
jcoomes@5201 693 }
jcoomes@5201 694
jcoomes@5201 695 inline size_t
jcoomes@5201 696 ParallelCompactData::addr_to_block_idx(const HeapWord* addr) const
jcoomes@5201 697 {
jcoomes@5201 698 assert(addr >= _region_start, "bad addr");
jcoomes@5201 699 assert(addr <= _region_end, "bad addr");
jcoomes@5201 700 return pointer_delta(addr, _region_start) >> Log2BlockSize;
jcoomes@5201 701 }
jcoomes@5201 702
jcoomes@5201 703 inline ParallelCompactData::BlockData*
jcoomes@5201 704 ParallelCompactData::addr_to_block_ptr(const HeapWord* addr) const
jcoomes@5201 705 {
jcoomes@5201 706 return block(addr_to_block_idx(addr));
jcoomes@5201 707 }
jcoomes@5201 708
jcoomes@5201 709 inline HeapWord*
jcoomes@5201 710 ParallelCompactData::block_to_addr(size_t block) const
jcoomes@5201 711 {
jcoomes@5201 712 assert(block < _block_count, "block out of range");
jcoomes@5201 713 return _region_start + (block << Log2BlockSize);
jcoomes@5201 714 }
jcoomes@5201 715
jcoomes@5201 716 inline size_t
jcoomes@5201 717 ParallelCompactData::region_to_block_idx(size_t region) const
jcoomes@5201 718 {
jcoomes@5201 719 return region << Log2BlocksPerRegion;
jcoomes@5201 720 }
jcoomes@5201 721
jcoomes@5201 722 inline HeapWord*
jcoomes@5201 723 ParallelCompactData::block_align_down(HeapWord* addr) const
jcoomes@5201 724 {
jcoomes@5201 725 assert(addr >= _region_start, "bad addr");
jcoomes@5201 726 assert(addr < _region_end + RegionSize, "bad addr");
jcoomes@5201 727 return (HeapWord*)(size_t(addr) & BlockAddrMask);
jcoomes@5201 728 }
jcoomes@5201 729
jcoomes@5201 730 inline HeapWord*
jcoomes@5201 731 ParallelCompactData::block_align_up(HeapWord* addr) const
jcoomes@5201 732 {
jcoomes@5201 733 assert(addr >= _region_start, "bad addr");
jcoomes@5201 734 assert(addr <= _region_end, "bad addr");
jcoomes@5201 735 return block_align_down(addr + BlockSizeOffsetMask);
jcoomes@5201 736 }
jcoomes@5201 737
jcoomes@5201 738 inline bool
jcoomes@5201 739 ParallelCompactData::is_block_aligned(HeapWord* addr) const
jcoomes@5201 740 {
jcoomes@5201 741 return block_offset(addr) == 0;
jcoomes@5201 742 }
jcoomes@5201 743
duke@435 744 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
duke@435 745 // do_addr() method.
duke@435 746 //
duke@435 747 // The closure is initialized with the number of heap words to process
duke@435 748 // (words_remaining()), and becomes 'full' when it reaches 0. The do_addr()
duke@435 749 // methods in subclasses should update the total as words are processed. Since
duke@435 750 // only one subclass actually uses this mechanism to terminate iteration, the
duke@435 751 // default initial value is > 0. The implementation is here and not in the
duke@435 752 // single subclass that uses it to avoid making is_full() virtual, and thus
duke@435 753 // adding a virtual call per live object.
duke@435 754
duke@435 755 class ParMarkBitMapClosure: public StackObj {
duke@435 756 public:
duke@435 757 typedef ParMarkBitMap::idx_t idx_t;
duke@435 758 typedef ParMarkBitMap::IterationStatus IterationStatus;
duke@435 759
duke@435 760 public:
duke@435 761 inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
duke@435 762 size_t words = max_uintx);
duke@435 763
duke@435 764 inline ParCompactionManager* compaction_manager() const;
duke@435 765 inline ParMarkBitMap* bitmap() const;
duke@435 766 inline size_t words_remaining() const;
duke@435 767 inline bool is_full() const;
duke@435 768 inline HeapWord* source() const;
duke@435 769
duke@435 770 inline void set_source(HeapWord* addr);
duke@435 771
duke@435 772 virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
duke@435 773
duke@435 774 protected:
duke@435 775 inline void decrement_words_remaining(size_t words);
duke@435 776
duke@435 777 private:
duke@435 778 ParMarkBitMap* const _bitmap;
duke@435 779 ParCompactionManager* const _compaction_manager;
duke@435 780 DEBUG_ONLY(const size_t _initial_words_remaining;) // Useful in debugger.
duke@435 781 size_t _words_remaining; // Words left to copy.
duke@435 782
duke@435 783 protected:
duke@435 784 HeapWord* _source; // Next addr that would be read.
duke@435 785 };
duke@435 786
duke@435 787 inline
duke@435 788 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
duke@435 789 ParCompactionManager* cm,
duke@435 790 size_t words):
duke@435 791 _bitmap(bitmap), _compaction_manager(cm)
duke@435 792 #ifdef ASSERT
duke@435 793 , _initial_words_remaining(words)
duke@435 794 #endif
duke@435 795 {
duke@435 796 _words_remaining = words;
duke@435 797 _source = NULL;
duke@435 798 }
duke@435 799
duke@435 800 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
duke@435 801 return _compaction_manager;
duke@435 802 }
duke@435 803
duke@435 804 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
duke@435 805 return _bitmap;
duke@435 806 }
duke@435 807
duke@435 808 inline size_t ParMarkBitMapClosure::words_remaining() const {
duke@435 809 return _words_remaining;
duke@435 810 }
duke@435 811
duke@435 812 inline bool ParMarkBitMapClosure::is_full() const {
duke@435 813 return words_remaining() == 0;
duke@435 814 }
duke@435 815
duke@435 816 inline HeapWord* ParMarkBitMapClosure::source() const {
duke@435 817 return _source;
duke@435 818 }
duke@435 819
duke@435 820 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
duke@435 821 _source = addr;
duke@435 822 }
duke@435 823
duke@435 824 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
duke@435 825 assert(_words_remaining >= words, "processed too many words");
duke@435 826 _words_remaining -= words;
duke@435 827 }
duke@435 828
jcoomes@810 829 // The UseParallelOldGC collector is a stop-the-world garbage collector that
jcoomes@810 830 // does parts of the collection using parallel threads. The collection includes
jcoomes@810 831 // the tenured generation and the young generation. The permanent generation is
jcoomes@810 832 // collected at the same time as the other two generations but the permanent
jcoomes@810 833 // generation is collect by a single GC thread. The permanent generation is
jcoomes@810 834 // collected serially because of the requirement that during the processing of a
jcoomes@810 835 // klass AAA, any objects reference by AAA must already have been processed.
jcoomes@810 836 // This requirement is enforced by a left (lower address) to right (higher
jcoomes@810 837 // address) sliding compaction.
jmasa@698 838 //
jmasa@698 839 // There are four phases of the collection.
jmasa@698 840 //
jmasa@698 841 // - marking phase
jmasa@698 842 // - summary phase
jmasa@698 843 // - compacting phase
jmasa@698 844 // - clean up phase
jmasa@698 845 //
jmasa@698 846 // Roughly speaking these phases correspond, respectively, to
jmasa@698 847 // - mark all the live objects
jmasa@698 848 // - calculate the destination of each object at the end of the collection
jmasa@698 849 // - move the objects to their destination
jmasa@698 850 // - update some references and reinitialize some variables
jmasa@698 851 //
jcoomes@810 852 // These three phases are invoked in PSParallelCompact::invoke_no_policy(). The
jcoomes@810 853 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
jcoomes@810 854 // complete marking of the heap. The summary phase is implemented in
jcoomes@810 855 // PSParallelCompact::summary_phase(). The move and update phase is implemented
jcoomes@810 856 // in PSParallelCompact::compact().
jmasa@698 857 //
jcoomes@810 858 // A space that is being collected is divided into regions and with each region
jcoomes@810 859 // is associated an object of type ParallelCompactData. Each region is of a
jcoomes@810 860 // fixed size and typically will contain more than 1 object and may have parts
jcoomes@810 861 // of objects at the front and back of the region.
jmasa@698 862 //
jcoomes@810 863 // region -----+---------------------+----------
jmasa@698 864 // objects covered [ AAA )[ BBB )[ CCC )[ DDD )
jmasa@698 865 //
jcoomes@810 866 // The marking phase does a complete marking of all live objects in the heap.
jcoomes@810 867 // The marking also compiles the size of the data for all live objects covered
jcoomes@810 868 // by the region. This size includes the part of any live object spanning onto
jcoomes@810 869 // the region (part of AAA if it is live) from the front, all live objects
jcoomes@810 870 // contained in the region (BBB and/or CCC if they are live), and the part of
jcoomes@810 871 // any live objects covered by the region that extends off the region (part of
jcoomes@810 872 // DDD if it is live). The marking phase uses multiple GC threads and marking
jcoomes@810 873 // is done in a bit array of type ParMarkBitMap. The marking of the bit map is
jcoomes@810 874 // done atomically as is the accumulation of the size of the live objects
jcoomes@810 875 // covered by a region.
jmasa@698 876 //
jcoomes@810 877 // The summary phase calculates the total live data to the left of each region
jcoomes@810 878 // XXX. Based on that total and the bottom of the space, it can calculate the
jcoomes@810 879 // starting location of the live data in XXX. The summary phase calculates for
jcoomes@810 880 // each region XXX quantites such as
jmasa@698 881 //
jcoomes@810 882 // - the amount of live data at the beginning of a region from an object
jcoomes@810 883 // entering the region.
jcoomes@810 884 // - the location of the first live data on the region
jcoomes@810 885 // - a count of the number of regions receiving live data from XXX.
jmasa@698 886 //
jmasa@698 887 // See ParallelCompactData for precise details. The summary phase also
jcoomes@810 888 // calculates the dense prefix for the compaction. The dense prefix is a
jcoomes@810 889 // portion at the beginning of the space that is not moved. The objects in the
jcoomes@810 890 // dense prefix do need to have their object references updated. See method
jcoomes@810 891 // summarize_dense_prefix().
jmasa@698 892 //
jmasa@698 893 // The summary phase is done using 1 GC thread.
jmasa@698 894 //
jcoomes@810 895 // The compaction phase moves objects to their new location and updates all
jcoomes@810 896 // references in the object.
jmasa@698 897 //
jcoomes@810 898 // A current exception is that objects that cross a region boundary are moved
jcoomes@810 899 // but do not have their references updated. References are not updated because
jcoomes@810 900 // it cannot easily be determined if the klass pointer KKK for the object AAA
jcoomes@810 901 // has been updated. KKK likely resides in a region to the left of the region
jcoomes@810 902 // containing AAA. These AAA's have there references updated at the end in a
jcoomes@810 903 // clean up phase. See the method PSParallelCompact::update_deferred_objects().
jcoomes@810 904 // An alternate strategy is being investigated for this deferral of updating.
jmasa@698 905 //
jcoomes@810 906 // Compaction is done on a region basis. A region that is ready to be filled is
jcoomes@810 907 // put on a ready list and GC threads take region off the list and fill them. A
jcoomes@810 908 // region is ready to be filled if it empty of live objects. Such a region may
jcoomes@810 909 // have been initially empty (only contained dead objects) or may have had all
jcoomes@810 910 // its live objects copied out already. A region that compacts into itself is
jcoomes@810 911 // also ready for filling. The ready list is initially filled with empty
jcoomes@810 912 // regions and regions compacting into themselves. There is always at least 1
jcoomes@810 913 // region that can be put on the ready list. The regions are atomically added
jcoomes@810 914 // and removed from the ready list.
jcoomes@810 915
duke@435 916 class PSParallelCompact : AllStatic {
duke@435 917 public:
duke@435 918 // Convenient access to type names.
duke@435 919 typedef ParMarkBitMap::idx_t idx_t;
jcoomes@810 920 typedef ParallelCompactData::RegionData RegionData;
jcoomes@5201 921 typedef ParallelCompactData::BlockData BlockData;
duke@435 922
duke@435 923 typedef enum {
coleenp@4037 924 old_space_id, eden_space_id,
duke@435 925 from_space_id, to_space_id, last_space_id
duke@435 926 } SpaceId;
duke@435 927
duke@435 928 public:
coleenp@548 929 // Inline closure decls
duke@435 930 //
duke@435 931 class IsAliveClosure: public BoolObjectClosure {
duke@435 932 public:
coleenp@548 933 virtual bool do_object_b(oop p);
duke@435 934 };
duke@435 935
duke@435 936 class KeepAliveClosure: public OopClosure {
coleenp@548 937 private:
coleenp@548 938 ParCompactionManager* _compaction_manager;
coleenp@548 939 protected:
coleenp@548 940 template <class T> inline void do_oop_work(T* p);
coleenp@548 941 public:
coleenp@548 942 KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 943 virtual void do_oop(oop* p);
coleenp@548 944 virtual void do_oop(narrowOop* p);
coleenp@548 945 };
coleenp@548 946
duke@435 947 class FollowStackClosure: public VoidClosure {
coleenp@548 948 private:
duke@435 949 ParCompactionManager* _compaction_manager;
duke@435 950 public:
coleenp@548 951 FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 952 virtual void do_void();
duke@435 953 };
duke@435 954
coleenp@4037 955 class AdjustPointerClosure: public OopClosure {
duke@435 956 public:
coleenp@548 957 virtual void do_oop(oop* p);
coleenp@548 958 virtual void do_oop(narrowOop* p);
jrose@1424 959 // do not walk from thread stacks to the code cache on this phase
jrose@1424 960 virtual void do_code_blob(CodeBlob* cb) const { }
duke@435 961 };
duke@435 962
coleenp@4037 963 class AdjustKlassClosure : public KlassClosure {
coleenp@4037 964 public:
coleenp@4037 965 void do_klass(Klass* klass);
coleenp@4037 966 };
coleenp@4037 967
duke@435 968 friend class KeepAliveClosure;
duke@435 969 friend class FollowStackClosure;
duke@435 970 friend class AdjustPointerClosure;
coleenp@4037 971 friend class AdjustKlassClosure;
coleenp@4037 972 friend class FollowKlassClosure;
coleenp@4047 973 friend class InstanceClassLoaderKlass;
duke@435 974 friend class RefProcTaskProxy;
duke@435 975
duke@435 976 private:
sla@5237 977 static STWGCTimer _gc_timer;
sla@5237 978 static ParallelOldTracer _gc_tracer;
duke@435 979 static elapsedTimer _accumulated_time;
duke@435 980 static unsigned int _total_invocations;
duke@435 981 static unsigned int _maximum_compaction_gc_num;
duke@435 982 static jlong _time_of_last_gc; // ms
duke@435 983 static CollectorCounters* _counters;
duke@435 984 static ParMarkBitMap _mark_bitmap;
duke@435 985 static ParallelCompactData _summary_data;
duke@435 986 static IsAliveClosure _is_alive_closure;
duke@435 987 static SpaceInfo _space_info[last_space_id];
duke@435 988 static bool _print_phases;
duke@435 989 static AdjustPointerClosure _adjust_pointer_closure;
coleenp@4037 990 static AdjustKlassClosure _adjust_klass_closure;
duke@435 991
duke@435 992 // Reference processing (used in ...follow_contents)
duke@435 993 static ReferenceProcessor* _ref_processor;
duke@435 994
duke@435 995 // Updated location of intArrayKlassObj.
coleenp@4037 996 static Klass* _updated_int_array_klass_obj;
duke@435 997
duke@435 998 // Values computed at initialization and used by dead_wood_limiter().
duke@435 999 static double _dwl_mean;
duke@435 1000 static double _dwl_std_dev;
duke@435 1001 static double _dwl_first_term;
duke@435 1002 static double _dwl_adjustment;
duke@435 1003 #ifdef ASSERT
duke@435 1004 static bool _dwl_initialized;
duke@435 1005 #endif // #ifdef ASSERT
duke@435 1006
duke@435 1007 private:
duke@435 1008
duke@435 1009 static void initialize_space_info();
duke@435 1010
duke@435 1011 // Return true if details about individual phases should be printed.
duke@435 1012 static inline bool print_phases();
duke@435 1013
duke@435 1014 // Clear the marking bitmap and summary data that cover the specified space.
duke@435 1015 static void clear_data_covering_space(SpaceId id);
duke@435 1016
duke@435 1017 static void pre_compact(PreGCValues* pre_gc_values);
duke@435 1018 static void post_compact();
duke@435 1019
duke@435 1020 // Mark live objects
duke@435 1021 static void marking_phase(ParCompactionManager* cm,
sla@5237 1022 bool maximum_heap_compaction,
sla@5237 1023 ParallelOldTracer *gc_tracer);
duke@435 1024
coleenp@548 1025 template <class T>
coleenp@548 1026 static inline void follow_root(ParCompactionManager* cm, T* p);
duke@435 1027
duke@435 1028 // Compute the dense prefix for the designated space. This is an experimental
duke@435 1029 // implementation currently not used in production.
duke@435 1030 static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
duke@435 1031 bool maximum_compaction);
duke@435 1032
duke@435 1033 // Methods used to compute the dense prefix.
duke@435 1034
duke@435 1035 // Compute the value of the normal distribution at x = density. The mean and
duke@435 1036 // standard deviation are values saved by initialize_dead_wood_limiter().
duke@435 1037 static inline double normal_distribution(double density);
duke@435 1038
duke@435 1039 // Initialize the static vars used by dead_wood_limiter().
duke@435 1040 static void initialize_dead_wood_limiter();
duke@435 1041
duke@435 1042 // Return the percentage of space that can be treated as "dead wood" (i.e.,
duke@435 1043 // not reclaimed).
duke@435 1044 static double dead_wood_limiter(double density, size_t min_percent);
duke@435 1045
jcoomes@810 1046 // Find the first (left-most) region in the range [beg, end) that has at least
duke@435 1047 // dead_words of dead space to the left. The argument beg must be the first
jcoomes@810 1048 // region in the space that is not completely live.
jcoomes@810 1049 static RegionData* dead_wood_limit_region(const RegionData* beg,
jcoomes@810 1050 const RegionData* end,
jcoomes@810 1051 size_t dead_words);
duke@435 1052
jcoomes@810 1053 // Return a pointer to the first region in the range [beg, end) that is not
duke@435 1054 // completely full.
jcoomes@810 1055 static RegionData* first_dead_space_region(const RegionData* beg,
jcoomes@810 1056 const RegionData* end);
duke@435 1057
duke@435 1058 // Return a value indicating the benefit or 'yield' if the compacted region
duke@435 1059 // were to start (or equivalently if the dense prefix were to end) at the
jcoomes@810 1060 // candidate region. Higher values are better.
duke@435 1061 //
duke@435 1062 // The value is based on the amount of space reclaimed vs. the costs of (a)
duke@435 1063 // updating references in the dense prefix plus (b) copying objects and
duke@435 1064 // updating references in the compacted region.
jcoomes@810 1065 static inline double reclaimed_ratio(const RegionData* const candidate,
duke@435 1066 HeapWord* const bottom,
duke@435 1067 HeapWord* const top,
duke@435 1068 HeapWord* const new_top);
duke@435 1069
duke@435 1070 // Compute the dense prefix for the designated space.
duke@435 1071 static HeapWord* compute_dense_prefix(const SpaceId id,
duke@435 1072 bool maximum_compaction);
duke@435 1073
jcoomes@810 1074 // Return true if dead space crosses onto the specified Region; bit must be
jcoomes@810 1075 // the bit index corresponding to the first word of the Region.
jcoomes@810 1076 static inline bool dead_space_crosses_boundary(const RegionData* region,
duke@435 1077 idx_t bit);
duke@435 1078
duke@435 1079 // Summary phase utility routine to fill dead space (if any) at the dense
duke@435 1080 // prefix boundary. Should only be called if the the dense prefix is
duke@435 1081 // non-empty.
duke@435 1082 static void fill_dense_prefix_end(SpaceId id);
duke@435 1083
jcoomes@917 1084 // Clear the summary data source_region field for the specified addresses.
jcoomes@917 1085 static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);
jcoomes@917 1086
jcoomes@918 1087 #ifndef PRODUCT
jcoomes@918 1088 // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).
jcoomes@918 1089
jcoomes@918 1090 // Fill the region [start, start + words) with live object(s). Only usable
jcoomes@918 1091 // for the old and permanent generations.
jcoomes@918 1092 static void fill_with_live_objects(SpaceId id, HeapWord* const start,
jcoomes@918 1093 size_t words);
jcoomes@918 1094 // Include the new objects in the summary data.
jcoomes@918 1095 static void summarize_new_objects(SpaceId id, HeapWord* start);
jcoomes@918 1096
jcoomes@931 1097 // Add live objects to a survivor space since it's rare that both survivors
jcoomes@931 1098 // are non-empty.
jcoomes@931 1099 static void provoke_split_fill_survivor(SpaceId id);
jcoomes@931 1100
jcoomes@918 1101 // Add live objects and/or choose the dense prefix to provoke splitting.
jcoomes@918 1102 static void provoke_split(bool & maximum_compaction);
jcoomes@918 1103 #endif
jcoomes@918 1104
duke@435 1105 static void summarize_spaces_quick();
duke@435 1106 static void summarize_space(SpaceId id, bool maximum_compaction);
duke@435 1107 static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
duke@435 1108
duke@435 1109 // Adjust addresses in roots. Does not adjust addresses in heap.
duke@435 1110 static void adjust_roots();
duke@435 1111
jcoomes@5201 1112 DEBUG_ONLY(static void write_block_fill_histogram(outputStream* const out);)
jcoomes@5201 1113
duke@435 1114 // Move objects to new locations.
duke@435 1115 static void compact_perm(ParCompactionManager* cm);
duke@435 1116 static void compact();
duke@435 1117
jcoomes@810 1118 // Add available regions to the stack and draining tasks to the task queue.
jcoomes@810 1119 static void enqueue_region_draining_tasks(GCTaskQueue* q,
jcoomes@810 1120 uint parallel_gc_threads);
duke@435 1121
duke@435 1122 // Add dense prefix update tasks to the task queue.
duke@435 1123 static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
duke@435 1124 uint parallel_gc_threads);
duke@435 1125
jcoomes@810 1126 // Add region stealing tasks to the task queue.
jcoomes@810 1127 static void enqueue_region_stealing_tasks(
duke@435 1128 GCTaskQueue* q,
duke@435 1129 ParallelTaskTerminator* terminator_ptr,
duke@435 1130 uint parallel_gc_threads);
duke@435 1131
duke@435 1132 // If objects are left in eden after a collection, try to move the boundary
duke@435 1133 // and absorb them into the old gen. Returns true if eden was emptied.
duke@435 1134 static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
duke@435 1135 PSYoungGen* young_gen,
duke@435 1136 PSOldGen* old_gen);
duke@435 1137
duke@435 1138 // Reset time since last full gc
duke@435 1139 static void reset_millis_since_last_gc();
duke@435 1140
duke@435 1141 public:
duke@435 1142 class MarkAndPushClosure: public OopClosure {
coleenp@548 1143 private:
duke@435 1144 ParCompactionManager* _compaction_manager;
duke@435 1145 public:
coleenp@548 1146 MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 1147 virtual void do_oop(oop* p);
coleenp@548 1148 virtual void do_oop(narrowOop* p);
duke@435 1149 };
duke@435 1150
coleenp@4037 1151 // The one and only place to start following the classes.
coleenp@4037 1152 // Should only be applied to the ClassLoaderData klasses list.
coleenp@4037 1153 class FollowKlassClosure : public KlassClosure {
coleenp@4037 1154 private:
coleenp@4037 1155 MarkAndPushClosure* _mark_and_push_closure;
coleenp@4037 1156 public:
coleenp@4037 1157 FollowKlassClosure(MarkAndPushClosure* mark_and_push_closure) :
coleenp@4037 1158 _mark_and_push_closure(mark_and_push_closure) { }
coleenp@4037 1159 void do_klass(Klass* klass);
coleenp@4037 1160 };
coleenp@4037 1161
duke@435 1162 PSParallelCompact();
duke@435 1163
duke@435 1164 // Convenient accessor for Universe::heap().
duke@435 1165 static ParallelScavengeHeap* gc_heap() {
duke@435 1166 return (ParallelScavengeHeap*)Universe::heap();
duke@435 1167 }
duke@435 1168
duke@435 1169 static void invoke(bool maximum_heap_compaction);
jcoomes@3540 1170 static bool invoke_no_policy(bool maximum_heap_compaction);
duke@435 1171
duke@435 1172 static void post_initialize();
duke@435 1173 // Perform initialization for PSParallelCompact that requires
duke@435 1174 // allocations. This should be called during the VM initialization
duke@435 1175 // at a pointer where it would be appropriate to return a JNI_ENOMEM
duke@435 1176 // in the event of a failure.
duke@435 1177 static bool initialize();
duke@435 1178
coleenp@4037 1179 // Closure accessors
coleenp@4037 1180 static OopClosure* adjust_pointer_closure() { return (OopClosure*)&_adjust_pointer_closure; }
coleenp@4037 1181 static KlassClosure* adjust_klass_closure() { return (KlassClosure*)&_adjust_klass_closure; }
coleenp@4037 1182 static BoolObjectClosure* is_alive_closure() { return (BoolObjectClosure*)&_is_alive_closure; }
coleenp@4037 1183
duke@435 1184 // Public accessors
duke@435 1185 static elapsedTimer* accumulated_time() { return &_accumulated_time; }
duke@435 1186 static unsigned int total_invocations() { return _total_invocations; }
duke@435 1187 static CollectorCounters* counters() { return _counters; }
duke@435 1188
duke@435 1189 // Used to add tasks
duke@435 1190 static GCTaskManager* const gc_task_manager();
coleenp@4037 1191 static Klass* updated_int_array_klass_obj() {
duke@435 1192 return _updated_int_array_klass_obj;
duke@435 1193 }
duke@435 1194
duke@435 1195 // Marking support
duke@435 1196 static inline bool mark_obj(oop obj);
coleenp@4037 1197 static inline bool is_marked(oop obj);
coleenp@548 1198 // Check mark and maybe push on marking stack
coleenp@548 1199 template <class T> static inline void mark_and_push(ParCompactionManager* cm,
coleenp@548 1200 T* p);
stefank@5011 1201 template <class T> static inline void adjust_pointer(T* p);
duke@435 1202
sjohanss@6169 1203 static inline void follow_klass(ParCompactionManager* cm, Klass* klass);
coleenp@4037 1204
coleenp@4037 1205 static void follow_class_loader(ParCompactionManager* cm,
coleenp@4037 1206 ClassLoaderData* klass);
coleenp@4037 1207
duke@435 1208 // Compaction support.
duke@435 1209 // Return true if p is in the range [beg_addr, end_addr).
duke@435 1210 static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
duke@435 1211 static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
duke@435 1212
duke@435 1213 // Convenience wrappers for per-space data kept in _space_info.
duke@435 1214 static inline MutableSpace* space(SpaceId space_id);
duke@435 1215 static inline HeapWord* new_top(SpaceId space_id);
duke@435 1216 static inline HeapWord* dense_prefix(SpaceId space_id);
duke@435 1217 static inline ObjectStartArray* start_array(SpaceId space_id);
duke@435 1218
duke@435 1219 // Move and update the live objects in the specified space.
duke@435 1220 static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
duke@435 1221
jcoomes@810 1222 // Process the end of the given region range in the dense prefix.
duke@435 1223 // This includes saving any object not updated.
jcoomes@810 1224 static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
jcoomes@810 1225 size_t region_start_index,
jcoomes@810 1226 size_t region_end_index,
jcoomes@810 1227 idx_t exiting_object_offset,
jcoomes@810 1228 idx_t region_offset_start,
jcoomes@810 1229 idx_t region_offset_end);
duke@435 1230
jcoomes@810 1231 // Update a region in the dense prefix. For each live object
jcoomes@810 1232 // in the region, update it's interior references. For each
duke@435 1233 // dead object, fill it with deadwood. Dead space at the end
jcoomes@810 1234 // of a region range will be filled to the start of the next
jcoomes@810 1235 // live object regardless of the region_index_end. None of the
duke@435 1236 // objects in the dense prefix move and dead space is dead
duke@435 1237 // (holds only dead objects that don't need any processing), so
duke@435 1238 // dead space can be filled in any order.
duke@435 1239 static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
duke@435 1240 SpaceId space_id,
jcoomes@810 1241 size_t region_index_start,
jcoomes@810 1242 size_t region_index_end);
duke@435 1243
duke@435 1244 // Return the address of the count + 1st live word in the range [beg, end).
duke@435 1245 static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
duke@435 1246
duke@435 1247 // Return the address of the word to be copied to dest_addr, which must be
jcoomes@810 1248 // aligned to a region boundary.
duke@435 1249 static HeapWord* first_src_addr(HeapWord* const dest_addr,
jcoomes@917 1250 SpaceId src_space_id,
jcoomes@810 1251 size_t src_region_idx);
duke@435 1252
jcoomes@810 1253 // Determine the next source region, set closure.source() to the start of the
jcoomes@810 1254 // new region return the region index. Parameter end_addr is the address one
duke@435 1255 // beyond the end of source range just processed. If necessary, switch to a
duke@435 1256 // new source space and set src_space_id (in-out parameter) and src_space_top
duke@435 1257 // (out parameter) accordingly.
jcoomes@810 1258 static size_t next_src_region(MoveAndUpdateClosure& closure,
jcoomes@810 1259 SpaceId& src_space_id,
jcoomes@810 1260 HeapWord*& src_space_top,
jcoomes@810 1261 HeapWord* end_addr);
duke@435 1262
jcoomes@810 1263 // Decrement the destination count for each non-empty source region in the
jcoomes@930 1264 // range [beg_region, region(region_align_up(end_addr))). If the destination
jcoomes@930 1265 // count for a region goes to 0 and it needs to be filled, enqueue it.
duke@435 1266 static void decrement_destination_counts(ParCompactionManager* cm,
jcoomes@930 1267 SpaceId src_space_id,
jcoomes@810 1268 size_t beg_region,
duke@435 1269 HeapWord* end_addr);
duke@435 1270
jcoomes@810 1271 // Fill a region, copying objects from one or more source regions.
jcoomes@810 1272 static void fill_region(ParCompactionManager* cm, size_t region_idx);
jcoomes@810 1273 static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
jcoomes@810 1274 fill_region(cm, region);
duke@435 1275 }
duke@435 1276
jcoomes@5201 1277 // Fill in the block table for the specified region.
jcoomes@5201 1278 static void fill_blocks(size_t region_idx);
jcoomes@5201 1279
duke@435 1280 // Update the deferred objects in the space.
duke@435 1281 static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
duke@435 1282
duke@435 1283 static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
duke@435 1284 static ParallelCompactData& summary_data() { return _summary_data; }
duke@435 1285
duke@435 1286 // Reference Processing
duke@435 1287 static ReferenceProcessor* const ref_processor() { return _ref_processor; }
duke@435 1288
sla@5237 1289 static STWGCTimer* gc_timer() { return &_gc_timer; }
sla@5237 1290
duke@435 1291 // Return the SpaceId for the given address.
duke@435 1292 static SpaceId space_id(HeapWord* addr);
duke@435 1293
duke@435 1294 // Time since last full gc (in milliseconds).
duke@435 1295 static jlong millis_since_last_gc();
duke@435 1296
stefank@4904 1297 static void print_on_error(outputStream* st);
stefank@4904 1298
duke@435 1299 #ifndef PRODUCT
duke@435 1300 // Debugging support.
duke@435 1301 static const char* space_names[last_space_id];
jcoomes@810 1302 static void print_region_ranges();
duke@435 1303 static void print_dense_prefix_stats(const char* const algorithm,
duke@435 1304 const SpaceId id,
duke@435 1305 const bool maximum_compaction,
duke@435 1306 HeapWord* const addr);
jcoomes@917 1307 static void summary_phase_msg(SpaceId dst_space_id,
jcoomes@917 1308 HeapWord* dst_beg, HeapWord* dst_end,
jcoomes@917 1309 SpaceId src_space_id,
jcoomes@917 1310 HeapWord* src_beg, HeapWord* src_end);
duke@435 1311 #endif // #ifndef PRODUCT
duke@435 1312
duke@435 1313 #ifdef ASSERT
jcoomes@930 1314 // Sanity check the new location of a word in the heap.
jcoomes@930 1315 static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
jcoomes@810 1316 // Verify that all the regions have been emptied.
duke@435 1317 static void verify_complete(SpaceId space_id);
duke@435 1318 #endif // #ifdef ASSERT
duke@435 1319 };
duke@435 1320
coleenp@548 1321 inline bool PSParallelCompact::mark_obj(oop obj) {
duke@435 1322 const int obj_size = obj->size();
duke@435 1323 if (mark_bitmap()->mark_obj(obj, obj_size)) {
duke@435 1324 _summary_data.add_obj(obj, obj_size);
duke@435 1325 return true;
duke@435 1326 } else {
duke@435 1327 return false;
duke@435 1328 }
duke@435 1329 }
duke@435 1330
coleenp@4037 1331 inline bool PSParallelCompact::is_marked(oop obj) {
coleenp@4037 1332 return mark_bitmap()->is_marked(obj);
coleenp@4037 1333 }
coleenp@4037 1334
coleenp@548 1335 template <class T>
coleenp@548 1336 inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
coleenp@548 1337 assert(!Universe::heap()->is_in_reserved(p),
coleenp@548 1338 "roots shouldn't be things within the heap");
johnc@4384 1339
coleenp@548 1340 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1341 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1342 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 1343 if (mark_bitmap()->is_unmarked(obj)) {
coleenp@548 1344 if (mark_obj(obj)) {
coleenp@548 1345 obj->follow_contents(cm);
coleenp@548 1346 }
coleenp@548 1347 }
coleenp@548 1348 }
jcoomes@1746 1349 cm->follow_marking_stacks();
coleenp@548 1350 }
coleenp@548 1351
coleenp@548 1352 template <class T>
coleenp@548 1353 inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
coleenp@548 1354 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1355 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1356 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
jcoomes@1993 1357 if (mark_bitmap()->is_unmarked(obj) && mark_obj(obj)) {
jcoomes@1993 1358 cm->push(obj);
coleenp@548 1359 }
coleenp@548 1360 }
coleenp@548 1361 }
coleenp@548 1362
coleenp@548 1363 template <class T>
stefank@5011 1364 inline void PSParallelCompact::adjust_pointer(T* p) {
coleenp@548 1365 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1366 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1367 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 1368 oop new_obj = (oop)summary_data().calc_new_pointer(obj);
coleenp@4037 1369 assert(new_obj != NULL, // is forwarding ptr?
coleenp@548 1370 "should be forwarded");
coleenp@548 1371 // Just always do the update unconditionally?
coleenp@548 1372 if (new_obj != NULL) {
coleenp@548 1373 assert(Universe::heap()->is_in_reserved(new_obj),
coleenp@548 1374 "should be in object space");
coleenp@548 1375 oopDesc::encode_store_heap_oop_not_null(p, new_obj);
coleenp@548 1376 }
coleenp@548 1377 }
coleenp@548 1378 }
coleenp@548 1379
sjohanss@6169 1380 inline void PSParallelCompact::follow_klass(ParCompactionManager* cm, Klass* klass) {
sjohanss@6169 1381 oop holder = klass->klass_holder();
sjohanss@6169 1382 PSParallelCompact::mark_and_push(cm, &holder);
sjohanss@6169 1383 }
sjohanss@6169 1384
coleenp@548 1385 template <class T>
coleenp@548 1386 inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
coleenp@548 1387 mark_and_push(_compaction_manager, p);
coleenp@548 1388 }
coleenp@548 1389
coleenp@548 1390 inline bool PSParallelCompact::print_phases() {
duke@435 1391 return _print_phases;
duke@435 1392 }
duke@435 1393
coleenp@548 1394 inline double PSParallelCompact::normal_distribution(double density) {
duke@435 1395 assert(_dwl_initialized, "uninitialized");
duke@435 1396 const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
duke@435 1397 return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
duke@435 1398 }
duke@435 1399
duke@435 1400 inline bool
jcoomes@810 1401 PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
duke@435 1402 idx_t bit)
duke@435 1403 {
jcoomes@810 1404 assert(bit > 0, "cannot call this for the first bit/region");
jcoomes@810 1405 assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
duke@435 1406 "sanity check");
duke@435 1407
duke@435 1408 // Dead space crosses the boundary if (1) a partial object does not extend
jcoomes@810 1409 // onto the region, (2) an object does not start at the beginning of the
jcoomes@810 1410 // region, and (3) an object does not end at the end of the prior region.
jcoomes@810 1411 return region->partial_obj_size() == 0 &&
duke@435 1412 !_mark_bitmap.is_obj_beg(bit) &&
duke@435 1413 !_mark_bitmap.is_obj_end(bit - 1);
duke@435 1414 }
duke@435 1415
duke@435 1416 inline bool
duke@435 1417 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
duke@435 1418 return p >= beg_addr && p < end_addr;
duke@435 1419 }
duke@435 1420
duke@435 1421 inline bool
duke@435 1422 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
duke@435 1423 return is_in((HeapWord*)p, beg_addr, end_addr);
duke@435 1424 }
duke@435 1425
duke@435 1426 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
duke@435 1427 assert(id < last_space_id, "id out of range");
duke@435 1428 return _space_info[id].space();
duke@435 1429 }
duke@435 1430
duke@435 1431 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
duke@435 1432 assert(id < last_space_id, "id out of range");
duke@435 1433 return _space_info[id].new_top();
duke@435 1434 }
duke@435 1435
duke@435 1436 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
duke@435 1437 assert(id < last_space_id, "id out of range");
duke@435 1438 return _space_info[id].dense_prefix();
duke@435 1439 }
duke@435 1440
duke@435 1441 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
duke@435 1442 assert(id < last_space_id, "id out of range");
duke@435 1443 return _space_info[id].start_array();
duke@435 1444 }
duke@435 1445
jcoomes@930 1446 #ifdef ASSERT
jcoomes@930 1447 inline void
jcoomes@930 1448 PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
jcoomes@930 1449 {
jcoomes@930 1450 assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
jcoomes@930 1451 "must move left or to a different space");
kvn@1926 1452 assert(is_object_aligned((intptr_t)old_addr) && is_object_aligned((intptr_t)new_addr),
kvn@1926 1453 "checking alignment");
jcoomes@930 1454 }
jcoomes@930 1455 #endif // ASSERT
jcoomes@930 1456
duke@435 1457 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
duke@435 1458 public:
duke@435 1459 inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
duke@435 1460 ObjectStartArray* start_array,
duke@435 1461 HeapWord* destination, size_t words);
duke@435 1462
duke@435 1463 // Accessors.
duke@435 1464 HeapWord* destination() const { return _destination; }
duke@435 1465
duke@435 1466 // If the object will fit (size <= words_remaining()), copy it to the current
duke@435 1467 // destination, update the interior oops and the start array and return either
duke@435 1468 // full (if the closure is full) or incomplete. If the object will not fit,
duke@435 1469 // return would_overflow.
duke@435 1470 virtual IterationStatus do_addr(HeapWord* addr, size_t size);
duke@435 1471
duke@435 1472 // Copy enough words to fill this closure, starting at source(). Interior
duke@435 1473 // oops and the start array are not updated. Return full.
duke@435 1474 IterationStatus copy_until_full();
duke@435 1475
duke@435 1476 // Copy enough words to fill this closure or to the end of an object,
duke@435 1477 // whichever is smaller, starting at source(). Interior oops and the start
duke@435 1478 // array are not updated.
duke@435 1479 void copy_partial_obj();
duke@435 1480
duke@435 1481 protected:
duke@435 1482 // Update variables to indicate that word_count words were processed.
duke@435 1483 inline void update_state(size_t word_count);
duke@435 1484
duke@435 1485 protected:
duke@435 1486 ObjectStartArray* const _start_array;
duke@435 1487 HeapWord* _destination; // Next addr to be written.
duke@435 1488 };
duke@435 1489
duke@435 1490 inline
duke@435 1491 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
duke@435 1492 ParCompactionManager* cm,
duke@435 1493 ObjectStartArray* start_array,
duke@435 1494 HeapWord* destination,
duke@435 1495 size_t words) :
duke@435 1496 ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
duke@435 1497 {
duke@435 1498 _destination = destination;
duke@435 1499 }
duke@435 1500
duke@435 1501 inline void MoveAndUpdateClosure::update_state(size_t words)
duke@435 1502 {
duke@435 1503 decrement_words_remaining(words);
duke@435 1504 _source += words;
duke@435 1505 _destination += words;
duke@435 1506 }
duke@435 1507
duke@435 1508 class UpdateOnlyClosure: public ParMarkBitMapClosure {
duke@435 1509 private:
duke@435 1510 const PSParallelCompact::SpaceId _space_id;
duke@435 1511 ObjectStartArray* const _start_array;
duke@435 1512
duke@435 1513 public:
duke@435 1514 UpdateOnlyClosure(ParMarkBitMap* mbm,
duke@435 1515 ParCompactionManager* cm,
duke@435 1516 PSParallelCompact::SpaceId space_id);
duke@435 1517
duke@435 1518 // Update the object.
duke@435 1519 virtual IterationStatus do_addr(HeapWord* addr, size_t words);
duke@435 1520
duke@435 1521 inline void do_addr(HeapWord* addr);
duke@435 1522 };
duke@435 1523
coleenp@548 1524 inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
coleenp@548 1525 {
duke@435 1526 _start_array->allocate_block(addr);
duke@435 1527 oop(addr)->update_contents(compaction_manager());
duke@435 1528 }
duke@435 1529
jcoomes@916 1530 class FillClosure: public ParMarkBitMapClosure
jcoomes@916 1531 {
jcoomes@916 1532 public:
coleenp@548 1533 FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
duke@435 1534 ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
jcoomes@916 1535 _start_array(PSParallelCompact::start_array(space_id))
jcoomes@916 1536 {
coleenp@4037 1537 assert(space_id == PSParallelCompact::old_space_id,
duke@435 1538 "cannot use FillClosure in the young gen");
duke@435 1539 }
duke@435 1540
duke@435 1541 virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
jcoomes@916 1542 CollectedHeap::fill_with_objects(addr, size);
jcoomes@916 1543 HeapWord* const end = addr + size;
jcoomes@916 1544 do {
jcoomes@916 1545 _start_array->allocate_block(addr);
jcoomes@916 1546 addr += oop(addr)->size();
jcoomes@916 1547 } while (addr < end);
duke@435 1548 return ParMarkBitMap::incomplete;
duke@435 1549 }
duke@435 1550
duke@435 1551 private:
jcoomes@916 1552 ObjectStartArray* const _start_array;
duke@435 1553 };
stefank@2314 1554
stefank@2314 1555 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP

mercurial