src/share/vm/opto/ifg.cpp

Wed, 24 Apr 2013 20:55:28 -0400

author
dlong
date
Wed, 24 Apr 2013 20:55:28 -0400
changeset 5000
a6e09d6dd8e5
parent 4867
b808febcad9a
child 4949
8373c19be854
permissions
-rw-r--r--

8003853: specify offset of IC load in java_to_interp stub
Summary: refactored code to allow platform-specific differences
Reviewed-by: dlong, twisti
Contributed-by: Goetz Lindenmaier <goetz.lindenmaier@sap.com>

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/oopMap.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/block.hpp"
stefank@2314 30 #include "opto/callnode.hpp"
stefank@2314 31 #include "opto/cfgnode.hpp"
stefank@2314 32 #include "opto/chaitin.hpp"
stefank@2314 33 #include "opto/coalesce.hpp"
stefank@2314 34 #include "opto/connode.hpp"
stefank@2314 35 #include "opto/indexSet.hpp"
stefank@2314 36 #include "opto/machnode.hpp"
stefank@2314 37 #include "opto/memnode.hpp"
stefank@2314 38 #include "opto/opcodes.hpp"
duke@435 39
duke@435 40 //=============================================================================
duke@435 41 //------------------------------IFG--------------------------------------------
duke@435 42 PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
duke@435 43 }
duke@435 44
duke@435 45 //------------------------------init-------------------------------------------
duke@435 46 void PhaseIFG::init( uint maxlrg ) {
duke@435 47 _maxlrg = maxlrg;
duke@435 48 _yanked = new (_arena) VectorSet(_arena);
duke@435 49 _is_square = false;
duke@435 50 // Make uninitialized adjacency lists
duke@435 51 _adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
duke@435 52 // Also make empty live range structures
duke@435 53 _lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
duke@435 54 memset(_lrgs,0,sizeof(LRG)*maxlrg);
duke@435 55 // Init all to empty
duke@435 56 for( uint i = 0; i < maxlrg; i++ ) {
duke@435 57 _adjs[i].initialize(maxlrg);
duke@435 58 _lrgs[i].Set_All();
duke@435 59 }
duke@435 60 }
duke@435 61
duke@435 62 //------------------------------add--------------------------------------------
duke@435 63 // Add edge between vertices a & b. These are sorted (triangular matrix),
duke@435 64 // then the smaller number is inserted in the larger numbered array.
duke@435 65 int PhaseIFG::add_edge( uint a, uint b ) {
duke@435 66 lrgs(a).invalid_degree();
duke@435 67 lrgs(b).invalid_degree();
duke@435 68 // Sort a and b, so that a is bigger
duke@435 69 assert( !_is_square, "only on triangular" );
duke@435 70 if( a < b ) { uint tmp = a; a = b; b = tmp; }
duke@435 71 return _adjs[a].insert( b );
duke@435 72 }
duke@435 73
duke@435 74 //------------------------------add_vector-------------------------------------
duke@435 75 // Add an edge between 'a' and everything in the vector.
duke@435 76 void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
duke@435 77 // IFG is triangular, so do the inserts where 'a' < 'b'.
duke@435 78 assert( !_is_square, "only on triangular" );
duke@435 79 IndexSet *adjs_a = &_adjs[a];
duke@435 80 if( !vec->count() ) return;
duke@435 81
duke@435 82 IndexSetIterator elements(vec);
duke@435 83 uint neighbor;
duke@435 84 while ((neighbor = elements.next()) != 0) {
duke@435 85 add_edge( a, neighbor );
duke@435 86 }
duke@435 87 }
duke@435 88
duke@435 89 //------------------------------test-------------------------------------------
duke@435 90 // Is there an edge between a and b?
duke@435 91 int PhaseIFG::test_edge( uint a, uint b ) const {
duke@435 92 // Sort a and b, so that a is larger
duke@435 93 assert( !_is_square, "only on triangular" );
duke@435 94 if( a < b ) { uint tmp = a; a = b; b = tmp; }
duke@435 95 return _adjs[a].member(b);
duke@435 96 }
duke@435 97
duke@435 98 //------------------------------SquareUp---------------------------------------
duke@435 99 // Convert triangular matrix to square matrix
duke@435 100 void PhaseIFG::SquareUp() {
duke@435 101 assert( !_is_square, "only on triangular" );
duke@435 102
duke@435 103 // Simple transpose
duke@435 104 for( uint i = 0; i < _maxlrg; i++ ) {
duke@435 105 IndexSetIterator elements(&_adjs[i]);
duke@435 106 uint datum;
duke@435 107 while ((datum = elements.next()) != 0) {
duke@435 108 _adjs[datum].insert( i );
duke@435 109 }
duke@435 110 }
duke@435 111 _is_square = true;
duke@435 112 }
duke@435 113
duke@435 114 //------------------------------Compute_Effective_Degree-----------------------
duke@435 115 // Compute effective degree in bulk
duke@435 116 void PhaseIFG::Compute_Effective_Degree() {
duke@435 117 assert( _is_square, "only on square" );
duke@435 118
duke@435 119 for( uint i = 0; i < _maxlrg; i++ )
duke@435 120 lrgs(i).set_degree(effective_degree(i));
duke@435 121 }
duke@435 122
duke@435 123 //------------------------------test_edge_sq-----------------------------------
duke@435 124 int PhaseIFG::test_edge_sq( uint a, uint b ) const {
duke@435 125 assert( _is_square, "only on square" );
duke@435 126 // Swap, so that 'a' has the lesser count. Then binary search is on
duke@435 127 // the smaller of a's list and b's list.
duke@435 128 if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
duke@435 129 //return _adjs[a].unordered_member(b);
duke@435 130 return _adjs[a].member(b);
duke@435 131 }
duke@435 132
duke@435 133 //------------------------------Union------------------------------------------
duke@435 134 // Union edges of B into A
duke@435 135 void PhaseIFG::Union( uint a, uint b ) {
duke@435 136 assert( _is_square, "only on square" );
duke@435 137 IndexSet *A = &_adjs[a];
duke@435 138 IndexSetIterator b_elements(&_adjs[b]);
duke@435 139 uint datum;
duke@435 140 while ((datum = b_elements.next()) != 0) {
duke@435 141 if(A->insert(datum)) {
duke@435 142 _adjs[datum].insert(a);
duke@435 143 lrgs(a).invalid_degree();
duke@435 144 lrgs(datum).invalid_degree();
duke@435 145 }
duke@435 146 }
duke@435 147 }
duke@435 148
duke@435 149 //------------------------------remove_node------------------------------------
duke@435 150 // Yank a Node and all connected edges from the IFG. Return a
duke@435 151 // list of neighbors (edges) yanked.
duke@435 152 IndexSet *PhaseIFG::remove_node( uint a ) {
duke@435 153 assert( _is_square, "only on square" );
duke@435 154 assert( !_yanked->test(a), "" );
duke@435 155 _yanked->set(a);
duke@435 156
duke@435 157 // I remove the LRG from all neighbors.
duke@435 158 IndexSetIterator elements(&_adjs[a]);
duke@435 159 LRG &lrg_a = lrgs(a);
duke@435 160 uint datum;
duke@435 161 while ((datum = elements.next()) != 0) {
duke@435 162 _adjs[datum].remove(a);
duke@435 163 lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
duke@435 164 }
duke@435 165 return neighbors(a);
duke@435 166 }
duke@435 167
duke@435 168 //------------------------------re_insert--------------------------------------
duke@435 169 // Re-insert a yanked Node.
duke@435 170 void PhaseIFG::re_insert( uint a ) {
duke@435 171 assert( _is_square, "only on square" );
duke@435 172 assert( _yanked->test(a), "" );
duke@435 173 (*_yanked) >>= a;
duke@435 174
duke@435 175 IndexSetIterator elements(&_adjs[a]);
duke@435 176 uint datum;
duke@435 177 while ((datum = elements.next()) != 0) {
duke@435 178 _adjs[datum].insert(a);
duke@435 179 lrgs(datum).invalid_degree();
duke@435 180 }
duke@435 181 }
duke@435 182
duke@435 183 //------------------------------compute_degree---------------------------------
duke@435 184 // Compute the degree between 2 live ranges. If both live ranges are
duke@435 185 // aligned-adjacent powers-of-2 then we use the MAX size. If either is
duke@435 186 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
duke@435 187 // MULTIPLY the sizes. Inspect Brigg's thesis on register pairs to see why
duke@435 188 // this is so.
duke@435 189 int LRG::compute_degree( LRG &l ) const {
duke@435 190 int tmp;
duke@435 191 int num_regs = _num_regs;
duke@435 192 int nregs = l.num_regs();
duke@435 193 tmp = (_fat_proj || l._fat_proj) // either is a fat-proj?
duke@435 194 ? (num_regs * nregs) // then use product
duke@435 195 : MAX2(num_regs,nregs); // else use max
duke@435 196 return tmp;
duke@435 197 }
duke@435 198
duke@435 199 //------------------------------effective_degree-------------------------------
duke@435 200 // Compute effective degree for this live range. If both live ranges are
duke@435 201 // aligned-adjacent powers-of-2 then we use the MAX size. If either is
duke@435 202 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
duke@435 203 // MULTIPLY the sizes. Inspect Brigg's thesis on register pairs to see why
duke@435 204 // this is so.
duke@435 205 int PhaseIFG::effective_degree( uint lidx ) const {
duke@435 206 int eff = 0;
duke@435 207 int num_regs = lrgs(lidx).num_regs();
duke@435 208 int fat_proj = lrgs(lidx)._fat_proj;
duke@435 209 IndexSet *s = neighbors(lidx);
duke@435 210 IndexSetIterator elements(s);
duke@435 211 uint nidx;
duke@435 212 while((nidx = elements.next()) != 0) {
duke@435 213 LRG &lrgn = lrgs(nidx);
duke@435 214 int nregs = lrgn.num_regs();
duke@435 215 eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
duke@435 216 ? (num_regs * nregs) // then use product
duke@435 217 : MAX2(num_regs,nregs); // else use max
duke@435 218 }
duke@435 219 return eff;
duke@435 220 }
duke@435 221
duke@435 222
duke@435 223 #ifndef PRODUCT
duke@435 224 //------------------------------dump-------------------------------------------
duke@435 225 void PhaseIFG::dump() const {
duke@435 226 tty->print_cr("-- Interference Graph --%s--",
duke@435 227 _is_square ? "square" : "triangular" );
duke@435 228 if( _is_square ) {
duke@435 229 for( uint i = 0; i < _maxlrg; i++ ) {
duke@435 230 tty->print( (*_yanked)[i] ? "XX " : " ");
duke@435 231 tty->print("L%d: { ",i);
duke@435 232 IndexSetIterator elements(&_adjs[i]);
duke@435 233 uint datum;
duke@435 234 while ((datum = elements.next()) != 0) {
duke@435 235 tty->print("L%d ", datum);
duke@435 236 }
duke@435 237 tty->print_cr("}");
duke@435 238
duke@435 239 }
duke@435 240 return;
duke@435 241 }
duke@435 242
duke@435 243 // Triangular
duke@435 244 for( uint i = 0; i < _maxlrg; i++ ) {
duke@435 245 uint j;
duke@435 246 tty->print( (*_yanked)[i] ? "XX " : " ");
duke@435 247 tty->print("L%d: { ",i);
duke@435 248 for( j = _maxlrg; j > i; j-- )
duke@435 249 if( test_edge(j - 1,i) ) {
duke@435 250 tty->print("L%d ",j - 1);
duke@435 251 }
duke@435 252 tty->print("| ");
duke@435 253 IndexSetIterator elements(&_adjs[i]);
duke@435 254 uint datum;
duke@435 255 while ((datum = elements.next()) != 0) {
duke@435 256 tty->print("L%d ", datum);
duke@435 257 }
duke@435 258 tty->print("}\n");
duke@435 259 }
duke@435 260 tty->print("\n");
duke@435 261 }
duke@435 262
duke@435 263 //------------------------------stats------------------------------------------
duke@435 264 void PhaseIFG::stats() const {
duke@435 265 ResourceMark rm;
duke@435 266 int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
duke@435 267 memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
duke@435 268 uint i;
duke@435 269 for( i = 0; i < _maxlrg; i++ ) {
duke@435 270 h_cnt[neighbor_cnt(i)]++;
duke@435 271 }
duke@435 272 tty->print_cr("--Histogram of counts--");
duke@435 273 for( i = 0; i < _maxlrg*2; i++ )
duke@435 274 if( h_cnt[i] )
duke@435 275 tty->print("%d/%d ",i,h_cnt[i]);
duke@435 276 tty->print_cr("");
duke@435 277 }
duke@435 278
duke@435 279 //------------------------------verify-----------------------------------------
duke@435 280 void PhaseIFG::verify( const PhaseChaitin *pc ) const {
duke@435 281 // IFG is square, sorted and no need for Find
duke@435 282 for( uint i = 0; i < _maxlrg; i++ ) {
duke@435 283 assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
duke@435 284 IndexSet *set = &_adjs[i];
duke@435 285 IndexSetIterator elements(set);
duke@435 286 uint idx;
duke@435 287 uint last = 0;
duke@435 288 while ((idx = elements.next()) != 0) {
duke@435 289 assert( idx != i, "Must have empty diagonal");
duke@435 290 assert( pc->Find_const(idx) == idx, "Must not need Find" );
duke@435 291 assert( _adjs[idx].member(i), "IFG not square" );
duke@435 292 assert( !(*_yanked)[idx], "No yanked neighbors" );
duke@435 293 assert( last < idx, "not sorted increasing");
duke@435 294 last = idx;
duke@435 295 }
duke@435 296 assert( !lrgs(i)._degree_valid ||
duke@435 297 effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong" );
duke@435 298 }
duke@435 299 }
duke@435 300 #endif
duke@435 301
duke@435 302 //------------------------------interfere_with_live----------------------------
duke@435 303 // Interfere this register with everything currently live. Use the RegMasks
duke@435 304 // to trim the set of possible interferences. Return a count of register-only
twisti@1040 305 // interferences as an estimate of register pressure.
duke@435 306 void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
duke@435 307 uint retval = 0;
duke@435 308 // Interfere with everything live.
duke@435 309 const RegMask &rm = lrgs(r).mask();
duke@435 310 // Check for interference by checking overlap of regmasks.
duke@435 311 // Only interfere if acceptable register masks overlap.
duke@435 312 IndexSetIterator elements(liveout);
duke@435 313 uint l;
duke@435 314 while( (l = elements.next()) != 0 )
duke@435 315 if( rm.overlap( lrgs(l).mask() ) )
duke@435 316 _ifg->add_edge( r, l );
duke@435 317 }
duke@435 318
duke@435 319 //------------------------------build_ifg_virtual------------------------------
duke@435 320 // Actually build the interference graph. Uses virtual registers only, no
duke@435 321 // physical register masks. This allows me to be very aggressive when
duke@435 322 // coalescing copies. Some of this aggressiveness will have to be undone
duke@435 323 // later, but I'd rather get all the copies I can now (since unremoved copies
duke@435 324 // at this point can end up in bad places). Copies I re-insert later I have
duke@435 325 // more opportunity to insert them in low-frequency locations.
duke@435 326 void PhaseChaitin::build_ifg_virtual( ) {
duke@435 327
duke@435 328 // For all blocks (in any order) do...
duke@435 329 for( uint i=0; i<_cfg._num_blocks; i++ ) {
duke@435 330 Block *b = _cfg._blocks[i];
duke@435 331 IndexSet *liveout = _live->live(b);
duke@435 332
duke@435 333 // The IFG is built by a single reverse pass over each basic block.
duke@435 334 // Starting with the known live-out set, we remove things that get
duke@435 335 // defined and add things that become live (essentially executing one
duke@435 336 // pass of a standard LIVE analysis). Just before a Node defines a value
duke@435 337 // (and removes it from the live-ness set) that value is certainly live.
duke@435 338 // The defined value interferes with everything currently live. The
duke@435 339 // value is then removed from the live-ness set and it's inputs are
duke@435 340 // added to the live-ness set.
duke@435 341 for( uint j = b->end_idx() + 1; j > 1; j-- ) {
duke@435 342 Node *n = b->_nodes[j-1];
duke@435 343
duke@435 344 // Get value being defined
duke@435 345 uint r = n2lidx(n);
duke@435 346
duke@435 347 // Some special values do not allocate
duke@435 348 if( r ) {
duke@435 349
duke@435 350 // Remove from live-out set
duke@435 351 liveout->remove(r);
duke@435 352
duke@435 353 // Copies do not define a new value and so do not interfere.
duke@435 354 // Remove the copies source from the liveout set before interfering.
duke@435 355 uint idx = n->is_Copy();
duke@435 356 if( idx ) liveout->remove( n2lidx(n->in(idx)) );
duke@435 357
duke@435 358 // Interfere with everything live
duke@435 359 interfere_with_live( r, liveout );
duke@435 360 }
duke@435 361
duke@435 362 // Make all inputs live
duke@435 363 if( !n->is_Phi() ) { // Phi function uses come from prior block
duke@435 364 for( uint k = 1; k < n->req(); k++ )
duke@435 365 liveout->insert( n2lidx(n->in(k)) );
duke@435 366 }
duke@435 367
duke@435 368 // 2-address instructions always have the defined value live
duke@435 369 // on entry to the instruction, even though it is being defined
duke@435 370 // by the instruction. We pretend a virtual copy sits just prior
duke@435 371 // to the instruction and kills the src-def'd register.
duke@435 372 // In other words, for 2-address instructions the defined value
duke@435 373 // interferes with all inputs.
duke@435 374 uint idx;
duke@435 375 if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
duke@435 376 const MachNode *mach = n->as_Mach();
duke@435 377 // Sometimes my 2-address ADDs are commuted in a bad way.
duke@435 378 // We generally want the USE-DEF register to refer to the
duke@435 379 // loop-varying quantity, to avoid a copy.
duke@435 380 uint op = mach->ideal_Opcode();
duke@435 381 // Check that mach->num_opnds() == 3 to ensure instruction is
duke@435 382 // not subsuming constants, effectively excludes addI_cin_imm
duke@435 383 // Can NOT swap for instructions like addI_cin_imm since it
duke@435 384 // is adding zero to yhi + carry and the second ideal-input
duke@435 385 // points to the result of adding low-halves.
duke@435 386 // Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
duke@435 387 if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
duke@435 388 n->in(1)->bottom_type()->base() == Type::Int &&
duke@435 389 // See if the ADD is involved in a tight data loop the wrong way
duke@435 390 n->in(2)->is_Phi() &&
duke@435 391 n->in(2)->in(2) == n ) {
duke@435 392 Node *tmp = n->in(1);
duke@435 393 n->set_req( 1, n->in(2) );
duke@435 394 n->set_req( 2, tmp );
duke@435 395 }
duke@435 396 // Defined value interferes with all inputs
duke@435 397 uint lidx = n2lidx(n->in(idx));
duke@435 398 for( uint k = 1; k < n->req(); k++ ) {
duke@435 399 uint kidx = n2lidx(n->in(k));
duke@435 400 if( kidx != lidx )
duke@435 401 _ifg->add_edge( r, kidx );
duke@435 402 }
duke@435 403 }
duke@435 404 } // End of forall instructions in block
duke@435 405 } // End of forall blocks
duke@435 406 }
duke@435 407
duke@435 408 //------------------------------count_int_pressure-----------------------------
duke@435 409 uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
duke@435 410 IndexSetIterator elements(liveout);
duke@435 411 uint lidx;
duke@435 412 uint cnt = 0;
duke@435 413 while ((lidx = elements.next()) != 0) {
duke@435 414 if( lrgs(lidx).mask().is_UP() &&
duke@435 415 lrgs(lidx).mask_size() &&
duke@435 416 !lrgs(lidx)._is_float &&
kvn@3882 417 !lrgs(lidx)._is_vector &&
duke@435 418 lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) )
duke@435 419 cnt += lrgs(lidx).reg_pressure();
duke@435 420 }
duke@435 421 return cnt;
duke@435 422 }
duke@435 423
duke@435 424 //------------------------------count_float_pressure---------------------------
duke@435 425 uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
duke@435 426 IndexSetIterator elements(liveout);
duke@435 427 uint lidx;
duke@435 428 uint cnt = 0;
duke@435 429 while ((lidx = elements.next()) != 0) {
duke@435 430 if( lrgs(lidx).mask().is_UP() &&
duke@435 431 lrgs(lidx).mask_size() &&
kvn@3882 432 (lrgs(lidx)._is_float || lrgs(lidx)._is_vector))
duke@435 433 cnt += lrgs(lidx).reg_pressure();
duke@435 434 }
duke@435 435 return cnt;
duke@435 436 }
duke@435 437
duke@435 438 //------------------------------lower_pressure---------------------------------
duke@435 439 // Adjust register pressure down by 1. Capture last hi-to-low transition,
duke@435 440 static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
kvn@3882 441 if (lrg->mask().is_UP() && lrg->mask_size()) {
kvn@3882 442 if (lrg->_is_float || lrg->_is_vector) {
duke@435 443 pressure[1] -= lrg->reg_pressure();
duke@435 444 if( pressure[1] == (uint)FLOATPRESSURE ) {
duke@435 445 hrp_index[1] = where;
neliasso@4867 446 if( pressure[1] > b->_freg_pressure )
neliasso@4867 447 b->_freg_pressure = pressure[1]+1;
duke@435 448 }
duke@435 449 } else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
duke@435 450 pressure[0] -= lrg->reg_pressure();
duke@435 451 if( pressure[0] == (uint)INTPRESSURE ) {
duke@435 452 hrp_index[0] = where;
neliasso@4867 453 if( pressure[0] > b->_reg_pressure )
neliasso@4867 454 b->_reg_pressure = pressure[0]+1;
duke@435 455 }
duke@435 456 }
duke@435 457 }
duke@435 458 }
duke@435 459
duke@435 460 //------------------------------build_ifg_physical-----------------------------
duke@435 461 // Build the interference graph using physical registers when available.
duke@435 462 // That is, if 2 live ranges are simultaneously alive but in their acceptable
duke@435 463 // register sets do not overlap, then they do not interfere.
duke@435 464 uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
duke@435 465 NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
duke@435 466
duke@435 467 uint spill_reg = LRG::SPILL_REG;
duke@435 468 uint must_spill = 0;
duke@435 469
duke@435 470 // For all blocks (in any order) do...
duke@435 471 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 472 Block *b = _cfg._blocks[i];
duke@435 473 // Clone (rather than smash in place) the liveout info, so it is alive
duke@435 474 // for the "collect_gc_info" phase later.
duke@435 475 IndexSet liveout(_live->live(b));
duke@435 476 uint last_inst = b->end_idx();
kvn@1001 477 // Compute first nonphi node index
kvn@1001 478 uint first_inst;
kvn@1001 479 for( first_inst = 1; first_inst < last_inst; first_inst++ )
kvn@1001 480 if( !b->_nodes[first_inst]->is_Phi() )
duke@435 481 break;
duke@435 482
kvn@1001 483 // Spills could be inserted before CreateEx node which should be
kvn@1001 484 // first instruction in block after Phis. Move CreateEx up.
kvn@1001 485 for( uint insidx = first_inst; insidx < last_inst; insidx++ ) {
kvn@1001 486 Node *ex = b->_nodes[insidx];
kvn@1001 487 if( ex->is_SpillCopy() ) continue;
kvn@1001 488 if( insidx > first_inst && ex->is_Mach() &&
kvn@1001 489 ex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
kvn@1001 490 // If the CreateEx isn't above all the MachSpillCopies
kvn@1001 491 // then move it to the top.
kvn@1001 492 b->_nodes.remove(insidx);
kvn@1001 493 b->_nodes.insert(first_inst, ex);
kvn@1001 494 }
kvn@1001 495 // Stop once a CreateEx or any other node is found
kvn@1001 496 break;
kvn@1001 497 }
kvn@1001 498
duke@435 499 // Reset block's register pressure values for each ifg construction
duke@435 500 uint pressure[2], hrp_index[2];
duke@435 501 pressure[0] = pressure[1] = 0;
duke@435 502 hrp_index[0] = hrp_index[1] = last_inst+1;
duke@435 503 b->_reg_pressure = b->_freg_pressure = 0;
duke@435 504 // Liveout things are presumed live for the whole block. We accumulate
duke@435 505 // 'area' accordingly. If they get killed in the block, we'll subtract
duke@435 506 // the unused part of the block from the area.
kvn@1001 507 int inst_count = last_inst - first_inst;
rasbold@804 508 double cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
rasbold@804 509 assert(!(cost < 0.0), "negative spill cost" );
duke@435 510 IndexSetIterator elements(&liveout);
duke@435 511 uint lidx;
duke@435 512 while ((lidx = elements.next()) != 0) {
duke@435 513 LRG &lrg = lrgs(lidx);
duke@435 514 lrg._area += cost;
duke@435 515 // Compute initial register pressure
kvn@3882 516 if (lrg.mask().is_UP() && lrg.mask_size()) {
kvn@3882 517 if (lrg._is_float || lrg._is_vector) { // Count float pressure
duke@435 518 pressure[1] += lrg.reg_pressure();
duke@435 519 if( pressure[1] > b->_freg_pressure )
duke@435 520 b->_freg_pressure = pressure[1];
duke@435 521 // Count int pressure, but do not count the SP, flags
duke@435 522 } else if( lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
duke@435 523 pressure[0] += lrg.reg_pressure();
duke@435 524 if( pressure[0] > b->_reg_pressure )
duke@435 525 b->_reg_pressure = pressure[0];
duke@435 526 }
duke@435 527 }
duke@435 528 }
duke@435 529 assert( pressure[0] == count_int_pressure (&liveout), "" );
duke@435 530 assert( pressure[1] == count_float_pressure(&liveout), "" );
duke@435 531
duke@435 532 // The IFG is built by a single reverse pass over each basic block.
duke@435 533 // Starting with the known live-out set, we remove things that get
duke@435 534 // defined and add things that become live (essentially executing one
duke@435 535 // pass of a standard LIVE analysis). Just before a Node defines a value
duke@435 536 // (and removes it from the live-ness set) that value is certainly live.
duke@435 537 // The defined value interferes with everything currently live. The
duke@435 538 // value is then removed from the live-ness set and it's inputs are added
duke@435 539 // to the live-ness set.
duke@435 540 uint j;
duke@435 541 for( j = last_inst + 1; j > 1; j-- ) {
duke@435 542 Node *n = b->_nodes[j - 1];
duke@435 543
duke@435 544 // Get value being defined
duke@435 545 uint r = n2lidx(n);
duke@435 546
duke@435 547 // Some special values do not allocate
duke@435 548 if( r ) {
duke@435 549 // A DEF normally costs block frequency; rematerialized values are
duke@435 550 // removed from the DEF sight, so LOWER costs here.
duke@435 551 lrgs(r)._cost += n->rematerialize() ? 0 : b->_freq;
duke@435 552
duke@435 553 // If it is not live, then this instruction is dead. Probably caused
duke@435 554 // by spilling and rematerialization. Who cares why, yank this baby.
duke@435 555 if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) {
duke@435 556 Node *def = n->in(0);
duke@435 557 if( !n->is_Proj() ||
duke@435 558 // Could also be a flags-projection of a dead ADD or such.
duke@435 559 (n2lidx(def) && !liveout.member(n2lidx(def)) ) ) {
duke@435 560 b->_nodes.remove(j - 1);
duke@435 561 if( lrgs(r)._def == n ) lrgs(r)._def = 0;
bharadwaj@4315 562 n->disconnect_inputs(NULL, C);
duke@435 563 _cfg._bbs.map(n->_idx,NULL);
duke@435 564 n->replace_by(C->top());
duke@435 565 // Since yanking a Node from block, high pressure moves up one
duke@435 566 hrp_index[0]--;
duke@435 567 hrp_index[1]--;
duke@435 568 continue;
duke@435 569 }
duke@435 570
duke@435 571 // Fat-projections kill many registers which cannot be used to
duke@435 572 // hold live ranges.
duke@435 573 if( lrgs(r)._fat_proj ) {
duke@435 574 // Count the int-only registers
duke@435 575 RegMask itmp = lrgs(r).mask();
duke@435 576 itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
duke@435 577 int iregs = itmp.Size();
duke@435 578 if( pressure[0]+iregs > b->_reg_pressure )
duke@435 579 b->_reg_pressure = pressure[0]+iregs;
duke@435 580 if( pressure[0] <= (uint)INTPRESSURE &&
duke@435 581 pressure[0]+iregs > (uint)INTPRESSURE ) {
duke@435 582 hrp_index[0] = j-1;
duke@435 583 }
duke@435 584 // Count the float-only registers
duke@435 585 RegMask ftmp = lrgs(r).mask();
duke@435 586 ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
duke@435 587 int fregs = ftmp.Size();
duke@435 588 if( pressure[1]+fregs > b->_freg_pressure )
duke@435 589 b->_freg_pressure = pressure[1]+fregs;
duke@435 590 if( pressure[1] <= (uint)FLOATPRESSURE &&
duke@435 591 pressure[1]+fregs > (uint)FLOATPRESSURE ) {
duke@435 592 hrp_index[1] = j-1;
duke@435 593 }
duke@435 594 }
duke@435 595
duke@435 596 } else { // Else it is live
duke@435 597 // A DEF also ends 'area' partway through the block.
duke@435 598 lrgs(r)._area -= cost;
rasbold@804 599 assert(!(lrgs(r)._area < 0.0), "negative spill area" );
duke@435 600
duke@435 601 // Insure high score for immediate-use spill copies so they get a color
duke@435 602 if( n->is_SpillCopy()
never@730 603 && lrgs(r).is_singledef() // MultiDef live range can still split
duke@435 604 && n->outcnt() == 1 // and use must be in this block
duke@435 605 && _cfg._bbs[n->unique_out()->_idx] == b ) {
duke@435 606 // All single-use MachSpillCopy(s) that immediately precede their
duke@435 607 // use must color early. If a longer live range steals their
duke@435 608 // color, the spill copy will split and may push another spill copy
duke@435 609 // further away resulting in an infinite spill-split-retry cycle.
duke@435 610 // Assigning a zero area results in a high score() and a good
duke@435 611 // location in the simplify list.
duke@435 612 //
duke@435 613
duke@435 614 Node *single_use = n->unique_out();
duke@435 615 assert( b->find_node(single_use) >= j, "Use must be later in block");
duke@435 616 // Use can be earlier in block if it is a Phi, but then I should be a MultiDef
duke@435 617
duke@435 618 // Find first non SpillCopy 'm' that follows the current instruction
duke@435 619 // (j - 1) is index for current instruction 'n'
duke@435 620 Node *m = n;
duke@435 621 for( uint i = j; i <= last_inst && m->is_SpillCopy(); ++i ) { m = b->_nodes[i]; }
duke@435 622 if( m == single_use ) {
duke@435 623 lrgs(r)._area = 0.0;
duke@435 624 }
duke@435 625 }
duke@435 626
duke@435 627 // Remove from live-out set
duke@435 628 if( liveout.remove(r) ) {
duke@435 629 // Adjust register pressure.
duke@435 630 // Capture last hi-to-lo pressure transition
duke@435 631 lower_pressure( &lrgs(r), j-1, b, pressure, hrp_index );
duke@435 632 assert( pressure[0] == count_int_pressure (&liveout), "" );
duke@435 633 assert( pressure[1] == count_float_pressure(&liveout), "" );
duke@435 634 }
duke@435 635
duke@435 636 // Copies do not define a new value and so do not interfere.
duke@435 637 // Remove the copies source from the liveout set before interfering.
duke@435 638 uint idx = n->is_Copy();
duke@435 639 if( idx ) {
duke@435 640 uint x = n2lidx(n->in(idx));
duke@435 641 if( liveout.remove( x ) ) {
duke@435 642 lrgs(x)._area -= cost;
duke@435 643 // Adjust register pressure.
duke@435 644 lower_pressure( &lrgs(x), j-1, b, pressure, hrp_index );
duke@435 645 assert( pressure[0] == count_int_pressure (&liveout), "" );
duke@435 646 assert( pressure[1] == count_float_pressure(&liveout), "" );
duke@435 647 }
duke@435 648 }
duke@435 649 } // End of if live or not
duke@435 650
duke@435 651 // Interfere with everything live. If the defined value must
duke@435 652 // go in a particular register, just remove that register from
duke@435 653 // all conflicting parties and avoid the interference.
duke@435 654
duke@435 655 // Make exclusions for rematerializable defs. Since rematerializable
duke@435 656 // DEFs are not bound but the live range is, some uses must be bound.
duke@435 657 // If we spill live range 'r', it can rematerialize at each use site
duke@435 658 // according to its bindings.
duke@435 659 const RegMask &rmask = lrgs(r).mask();
duke@435 660 if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) {
duke@435 661 // Check for common case
duke@435 662 int r_size = lrgs(r).num_regs();
duke@435 663 OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical;
kvn@3882 664 // Smear odd bits
duke@435 665 IndexSetIterator elements(&liveout);
duke@435 666 uint l;
duke@435 667 while ((l = elements.next()) != 0) {
duke@435 668 LRG &lrg = lrgs(l);
duke@435 669 // If 'l' must spill already, do not further hack his bits.
duke@435 670 // He'll get some interferences and be forced to spill later.
duke@435 671 if( lrg._must_spill ) continue;
duke@435 672 // Remove bound register(s) from 'l's choices
duke@435 673 RegMask old = lrg.mask();
duke@435 674 uint old_size = lrg.mask_size();
duke@435 675 // Remove the bits from LRG 'r' from LRG 'l' so 'l' no
duke@435 676 // longer interferes with 'r'. If 'l' requires aligned
duke@435 677 // adjacent pairs, subtract out bit pairs.
kvn@3882 678 assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
kvn@3882 679 if (lrg.num_regs() > 1 && !lrg._fat_proj) {
kvn@3882 680 RegMask r2mask = rmask;
kvn@3882 681 // Leave only aligned set of bits.
kvn@3882 682 r2mask.smear_to_sets(lrg.num_regs());
kvn@3882 683 // It includes vector case.
duke@435 684 lrg.SUBTRACT( r2mask );
duke@435 685 lrg.compute_set_mask_size();
kvn@3882 686 } else if( r_size != 1 ) { // fat proj
duke@435 687 lrg.SUBTRACT( rmask );
duke@435 688 lrg.compute_set_mask_size();
duke@435 689 } else { // Common case: size 1 bound removal
duke@435 690 if( lrg.mask().Member(r_reg) ) {
duke@435 691 lrg.Remove(r_reg);
duke@435 692 lrg.set_mask_size(lrg.mask().is_AllStack() ? 65535:old_size-1);
duke@435 693 }
duke@435 694 }
duke@435 695 // If 'l' goes completely dry, it must spill.
duke@435 696 if( lrg.not_free() ) {
duke@435 697 // Give 'l' some kind of reasonable mask, so he picks up
duke@435 698 // interferences (and will spill later).
duke@435 699 lrg.set_mask( old );
duke@435 700 lrg.set_mask_size(old_size);
duke@435 701 must_spill++;
duke@435 702 lrg._must_spill = 1;
duke@435 703 lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
duke@435 704 }
duke@435 705 }
duke@435 706 } // End of if bound
duke@435 707
duke@435 708 // Now interference with everything that is live and has
duke@435 709 // compatible register sets.
duke@435 710 interfere_with_live(r,&liveout);
duke@435 711
duke@435 712 } // End of if normal register-allocated value
duke@435 713
rasbold@804 714 // Area remaining in the block
rasbold@804 715 inst_count--;
rasbold@804 716 cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
duke@435 717
duke@435 718 // Make all inputs live
duke@435 719 if( !n->is_Phi() ) { // Phi function uses come from prior block
duke@435 720 JVMState* jvms = n->jvms();
duke@435 721 uint debug_start = jvms ? jvms->debug_start() : 999999;
duke@435 722 // Start loop at 1 (skip control edge) for most Nodes.
duke@435 723 // SCMemProj's might be the sole use of a StoreLConditional.
duke@435 724 // While StoreLConditionals set memory (the SCMemProj use)
duke@435 725 // they also def flags; if that flag def is unused the
duke@435 726 // allocator sees a flag-setting instruction with no use of
duke@435 727 // the flags and assumes it's dead. This keeps the (useless)
duke@435 728 // flag-setting behavior alive while also keeping the (useful)
duke@435 729 // memory update effect.
never@1647 730 for( uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++ ) {
duke@435 731 Node *def = n->in(k);
duke@435 732 uint x = n2lidx(def);
duke@435 733 if( !x ) continue;
duke@435 734 LRG &lrg = lrgs(x);
duke@435 735 // No use-side cost for spilling debug info
duke@435 736 if( k < debug_start )
duke@435 737 // A USE costs twice block frequency (once for the Load, once
duke@435 738 // for a Load-delay). Rematerialized uses only cost once.
duke@435 739 lrg._cost += (def->rematerialize() ? b->_freq : (b->_freq + b->_freq));
duke@435 740 // It is live now
duke@435 741 if( liveout.insert( x ) ) {
duke@435 742 // Newly live things assumed live from here to top of block
duke@435 743 lrg._area += cost;
duke@435 744 // Adjust register pressure
kvn@3882 745 if (lrg.mask().is_UP() && lrg.mask_size()) {
kvn@3882 746 if (lrg._is_float || lrg._is_vector) {
duke@435 747 pressure[1] += lrg.reg_pressure();
duke@435 748 if( pressure[1] > b->_freg_pressure )
duke@435 749 b->_freg_pressure = pressure[1];
duke@435 750 } else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
duke@435 751 pressure[0] += lrg.reg_pressure();
duke@435 752 if( pressure[0] > b->_reg_pressure )
duke@435 753 b->_reg_pressure = pressure[0];
duke@435 754 }
duke@435 755 }
duke@435 756 assert( pressure[0] == count_int_pressure (&liveout), "" );
duke@435 757 assert( pressure[1] == count_float_pressure(&liveout), "" );
duke@435 758 }
rasbold@804 759 assert(!(lrg._area < 0.0), "negative spill area" );
duke@435 760 }
duke@435 761 }
duke@435 762 } // End of reverse pass over all instructions in block
duke@435 763
duke@435 764 // If we run off the top of the block with high pressure and
duke@435 765 // never see a hi-to-low pressure transition, just record that
duke@435 766 // the whole block is high pressure.
duke@435 767 if( pressure[0] > (uint)INTPRESSURE ) {
duke@435 768 hrp_index[0] = 0;
duke@435 769 if( pressure[0] > b->_reg_pressure )
duke@435 770 b->_reg_pressure = pressure[0];
duke@435 771 }
duke@435 772 if( pressure[1] > (uint)FLOATPRESSURE ) {
duke@435 773 hrp_index[1] = 0;
duke@435 774 if( pressure[1] > b->_freg_pressure )
duke@435 775 b->_freg_pressure = pressure[1];
duke@435 776 }
duke@435 777
duke@435 778 // Compute high pressure indice; avoid landing in the middle of projnodes
duke@435 779 j = hrp_index[0];
duke@435 780 if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
duke@435 781 Node *cur = b->_nodes[j];
duke@435 782 while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
duke@435 783 j--;
duke@435 784 cur = b->_nodes[j];
duke@435 785 }
duke@435 786 }
duke@435 787 b->_ihrp_index = j;
duke@435 788 j = hrp_index[1];
duke@435 789 if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
duke@435 790 Node *cur = b->_nodes[j];
duke@435 791 while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
duke@435 792 j--;
duke@435 793 cur = b->_nodes[j];
duke@435 794 }
duke@435 795 }
duke@435 796 b->_fhrp_index = j;
duke@435 797
duke@435 798 #ifndef PRODUCT
duke@435 799 // Gather Register Pressure Statistics
duke@435 800 if( PrintOptoStatistics ) {
duke@435 801 if( b->_reg_pressure > (uint)INTPRESSURE || b->_freg_pressure > (uint)FLOATPRESSURE )
duke@435 802 _high_pressure++;
duke@435 803 else
duke@435 804 _low_pressure++;
duke@435 805 }
duke@435 806 #endif
duke@435 807 } // End of for all blocks
duke@435 808
duke@435 809 return must_spill;
duke@435 810 }

mercurial