src/share/vm/opto/ifg.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 1001
91263420e1c6
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

duke@435 1 /*
xdono@772 2 * Copyright 1998-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_ifg.cpp.incl"
duke@435 27
duke@435 28 #define EXACT_PRESSURE 1
duke@435 29
duke@435 30 //=============================================================================
duke@435 31 //------------------------------IFG--------------------------------------------
duke@435 32 PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
duke@435 33 }
duke@435 34
duke@435 35 //------------------------------init-------------------------------------------
duke@435 36 void PhaseIFG::init( uint maxlrg ) {
duke@435 37 _maxlrg = maxlrg;
duke@435 38 _yanked = new (_arena) VectorSet(_arena);
duke@435 39 _is_square = false;
duke@435 40 // Make uninitialized adjacency lists
duke@435 41 _adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
duke@435 42 // Also make empty live range structures
duke@435 43 _lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
duke@435 44 memset(_lrgs,0,sizeof(LRG)*maxlrg);
duke@435 45 // Init all to empty
duke@435 46 for( uint i = 0; i < maxlrg; i++ ) {
duke@435 47 _adjs[i].initialize(maxlrg);
duke@435 48 _lrgs[i].Set_All();
duke@435 49 }
duke@435 50 }
duke@435 51
duke@435 52 //------------------------------add--------------------------------------------
duke@435 53 // Add edge between vertices a & b. These are sorted (triangular matrix),
duke@435 54 // then the smaller number is inserted in the larger numbered array.
duke@435 55 int PhaseIFG::add_edge( uint a, uint b ) {
duke@435 56 lrgs(a).invalid_degree();
duke@435 57 lrgs(b).invalid_degree();
duke@435 58 // Sort a and b, so that a is bigger
duke@435 59 assert( !_is_square, "only on triangular" );
duke@435 60 if( a < b ) { uint tmp = a; a = b; b = tmp; }
duke@435 61 return _adjs[a].insert( b );
duke@435 62 }
duke@435 63
duke@435 64 //------------------------------add_vector-------------------------------------
duke@435 65 // Add an edge between 'a' and everything in the vector.
duke@435 66 void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
duke@435 67 // IFG is triangular, so do the inserts where 'a' < 'b'.
duke@435 68 assert( !_is_square, "only on triangular" );
duke@435 69 IndexSet *adjs_a = &_adjs[a];
duke@435 70 if( !vec->count() ) return;
duke@435 71
duke@435 72 IndexSetIterator elements(vec);
duke@435 73 uint neighbor;
duke@435 74 while ((neighbor = elements.next()) != 0) {
duke@435 75 add_edge( a, neighbor );
duke@435 76 }
duke@435 77 }
duke@435 78
duke@435 79 //------------------------------test-------------------------------------------
duke@435 80 // Is there an edge between a and b?
duke@435 81 int PhaseIFG::test_edge( uint a, uint b ) const {
duke@435 82 // Sort a and b, so that a is larger
duke@435 83 assert( !_is_square, "only on triangular" );
duke@435 84 if( a < b ) { uint tmp = a; a = b; b = tmp; }
duke@435 85 return _adjs[a].member(b);
duke@435 86 }
duke@435 87
duke@435 88 //------------------------------SquareUp---------------------------------------
duke@435 89 // Convert triangular matrix to square matrix
duke@435 90 void PhaseIFG::SquareUp() {
duke@435 91 assert( !_is_square, "only on triangular" );
duke@435 92
duke@435 93 // Simple transpose
duke@435 94 for( uint i = 0; i < _maxlrg; i++ ) {
duke@435 95 IndexSetIterator elements(&_adjs[i]);
duke@435 96 uint datum;
duke@435 97 while ((datum = elements.next()) != 0) {
duke@435 98 _adjs[datum].insert( i );
duke@435 99 }
duke@435 100 }
duke@435 101 _is_square = true;
duke@435 102 }
duke@435 103
duke@435 104 //------------------------------Compute_Effective_Degree-----------------------
duke@435 105 // Compute effective degree in bulk
duke@435 106 void PhaseIFG::Compute_Effective_Degree() {
duke@435 107 assert( _is_square, "only on square" );
duke@435 108
duke@435 109 for( uint i = 0; i < _maxlrg; i++ )
duke@435 110 lrgs(i).set_degree(effective_degree(i));
duke@435 111 }
duke@435 112
duke@435 113 //------------------------------test_edge_sq-----------------------------------
duke@435 114 int PhaseIFG::test_edge_sq( uint a, uint b ) const {
duke@435 115 assert( _is_square, "only on square" );
duke@435 116 // Swap, so that 'a' has the lesser count. Then binary search is on
duke@435 117 // the smaller of a's list and b's list.
duke@435 118 if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
duke@435 119 //return _adjs[a].unordered_member(b);
duke@435 120 return _adjs[a].member(b);
duke@435 121 }
duke@435 122
duke@435 123 //------------------------------Union------------------------------------------
duke@435 124 // Union edges of B into A
duke@435 125 void PhaseIFG::Union( uint a, uint b ) {
duke@435 126 assert( _is_square, "only on square" );
duke@435 127 IndexSet *A = &_adjs[a];
duke@435 128 IndexSetIterator b_elements(&_adjs[b]);
duke@435 129 uint datum;
duke@435 130 while ((datum = b_elements.next()) != 0) {
duke@435 131 if(A->insert(datum)) {
duke@435 132 _adjs[datum].insert(a);
duke@435 133 lrgs(a).invalid_degree();
duke@435 134 lrgs(datum).invalid_degree();
duke@435 135 }
duke@435 136 }
duke@435 137 }
duke@435 138
duke@435 139 //------------------------------remove_node------------------------------------
duke@435 140 // Yank a Node and all connected edges from the IFG. Return a
duke@435 141 // list of neighbors (edges) yanked.
duke@435 142 IndexSet *PhaseIFG::remove_node( uint a ) {
duke@435 143 assert( _is_square, "only on square" );
duke@435 144 assert( !_yanked->test(a), "" );
duke@435 145 _yanked->set(a);
duke@435 146
duke@435 147 // I remove the LRG from all neighbors.
duke@435 148 IndexSetIterator elements(&_adjs[a]);
duke@435 149 LRG &lrg_a = lrgs(a);
duke@435 150 uint datum;
duke@435 151 while ((datum = elements.next()) != 0) {
duke@435 152 _adjs[datum].remove(a);
duke@435 153 lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
duke@435 154 }
duke@435 155 return neighbors(a);
duke@435 156 }
duke@435 157
duke@435 158 //------------------------------re_insert--------------------------------------
duke@435 159 // Re-insert a yanked Node.
duke@435 160 void PhaseIFG::re_insert( uint a ) {
duke@435 161 assert( _is_square, "only on square" );
duke@435 162 assert( _yanked->test(a), "" );
duke@435 163 (*_yanked) >>= a;
duke@435 164
duke@435 165 IndexSetIterator elements(&_adjs[a]);
duke@435 166 uint datum;
duke@435 167 while ((datum = elements.next()) != 0) {
duke@435 168 _adjs[datum].insert(a);
duke@435 169 lrgs(datum).invalid_degree();
duke@435 170 }
duke@435 171 }
duke@435 172
duke@435 173 //------------------------------compute_degree---------------------------------
duke@435 174 // Compute the degree between 2 live ranges. If both live ranges are
duke@435 175 // aligned-adjacent powers-of-2 then we use the MAX size. If either is
duke@435 176 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
duke@435 177 // MULTIPLY the sizes. Inspect Brigg's thesis on register pairs to see why
duke@435 178 // this is so.
duke@435 179 int LRG::compute_degree( LRG &l ) const {
duke@435 180 int tmp;
duke@435 181 int num_regs = _num_regs;
duke@435 182 int nregs = l.num_regs();
duke@435 183 tmp = (_fat_proj || l._fat_proj) // either is a fat-proj?
duke@435 184 ? (num_regs * nregs) // then use product
duke@435 185 : MAX2(num_regs,nregs); // else use max
duke@435 186 return tmp;
duke@435 187 }
duke@435 188
duke@435 189 //------------------------------effective_degree-------------------------------
duke@435 190 // Compute effective degree for this live range. If both live ranges are
duke@435 191 // aligned-adjacent powers-of-2 then we use the MAX size. If either is
duke@435 192 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
duke@435 193 // MULTIPLY the sizes. Inspect Brigg's thesis on register pairs to see why
duke@435 194 // this is so.
duke@435 195 int PhaseIFG::effective_degree( uint lidx ) const {
duke@435 196 int eff = 0;
duke@435 197 int num_regs = lrgs(lidx).num_regs();
duke@435 198 int fat_proj = lrgs(lidx)._fat_proj;
duke@435 199 IndexSet *s = neighbors(lidx);
duke@435 200 IndexSetIterator elements(s);
duke@435 201 uint nidx;
duke@435 202 while((nidx = elements.next()) != 0) {
duke@435 203 LRG &lrgn = lrgs(nidx);
duke@435 204 int nregs = lrgn.num_regs();
duke@435 205 eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
duke@435 206 ? (num_regs * nregs) // then use product
duke@435 207 : MAX2(num_regs,nregs); // else use max
duke@435 208 }
duke@435 209 return eff;
duke@435 210 }
duke@435 211
duke@435 212
duke@435 213 #ifndef PRODUCT
duke@435 214 //------------------------------dump-------------------------------------------
duke@435 215 void PhaseIFG::dump() const {
duke@435 216 tty->print_cr("-- Interference Graph --%s--",
duke@435 217 _is_square ? "square" : "triangular" );
duke@435 218 if( _is_square ) {
duke@435 219 for( uint i = 0; i < _maxlrg; i++ ) {
duke@435 220 tty->print( (*_yanked)[i] ? "XX " : " ");
duke@435 221 tty->print("L%d: { ",i);
duke@435 222 IndexSetIterator elements(&_adjs[i]);
duke@435 223 uint datum;
duke@435 224 while ((datum = elements.next()) != 0) {
duke@435 225 tty->print("L%d ", datum);
duke@435 226 }
duke@435 227 tty->print_cr("}");
duke@435 228
duke@435 229 }
duke@435 230 return;
duke@435 231 }
duke@435 232
duke@435 233 // Triangular
duke@435 234 for( uint i = 0; i < _maxlrg; i++ ) {
duke@435 235 uint j;
duke@435 236 tty->print( (*_yanked)[i] ? "XX " : " ");
duke@435 237 tty->print("L%d: { ",i);
duke@435 238 for( j = _maxlrg; j > i; j-- )
duke@435 239 if( test_edge(j - 1,i) ) {
duke@435 240 tty->print("L%d ",j - 1);
duke@435 241 }
duke@435 242 tty->print("| ");
duke@435 243 IndexSetIterator elements(&_adjs[i]);
duke@435 244 uint datum;
duke@435 245 while ((datum = elements.next()) != 0) {
duke@435 246 tty->print("L%d ", datum);
duke@435 247 }
duke@435 248 tty->print("}\n");
duke@435 249 }
duke@435 250 tty->print("\n");
duke@435 251 }
duke@435 252
duke@435 253 //------------------------------stats------------------------------------------
duke@435 254 void PhaseIFG::stats() const {
duke@435 255 ResourceMark rm;
duke@435 256 int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
duke@435 257 memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
duke@435 258 uint i;
duke@435 259 for( i = 0; i < _maxlrg; i++ ) {
duke@435 260 h_cnt[neighbor_cnt(i)]++;
duke@435 261 }
duke@435 262 tty->print_cr("--Histogram of counts--");
duke@435 263 for( i = 0; i < _maxlrg*2; i++ )
duke@435 264 if( h_cnt[i] )
duke@435 265 tty->print("%d/%d ",i,h_cnt[i]);
duke@435 266 tty->print_cr("");
duke@435 267 }
duke@435 268
duke@435 269 //------------------------------verify-----------------------------------------
duke@435 270 void PhaseIFG::verify( const PhaseChaitin *pc ) const {
duke@435 271 // IFG is square, sorted and no need for Find
duke@435 272 for( uint i = 0; i < _maxlrg; i++ ) {
duke@435 273 assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
duke@435 274 IndexSet *set = &_adjs[i];
duke@435 275 IndexSetIterator elements(set);
duke@435 276 uint idx;
duke@435 277 uint last = 0;
duke@435 278 while ((idx = elements.next()) != 0) {
duke@435 279 assert( idx != i, "Must have empty diagonal");
duke@435 280 assert( pc->Find_const(idx) == idx, "Must not need Find" );
duke@435 281 assert( _adjs[idx].member(i), "IFG not square" );
duke@435 282 assert( !(*_yanked)[idx], "No yanked neighbors" );
duke@435 283 assert( last < idx, "not sorted increasing");
duke@435 284 last = idx;
duke@435 285 }
duke@435 286 assert( !lrgs(i)._degree_valid ||
duke@435 287 effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong" );
duke@435 288 }
duke@435 289 }
duke@435 290 #endif
duke@435 291
duke@435 292 //------------------------------interfere_with_live----------------------------
duke@435 293 // Interfere this register with everything currently live. Use the RegMasks
duke@435 294 // to trim the set of possible interferences. Return a count of register-only
twisti@1040 295 // interferences as an estimate of register pressure.
duke@435 296 void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
duke@435 297 uint retval = 0;
duke@435 298 // Interfere with everything live.
duke@435 299 const RegMask &rm = lrgs(r).mask();
duke@435 300 // Check for interference by checking overlap of regmasks.
duke@435 301 // Only interfere if acceptable register masks overlap.
duke@435 302 IndexSetIterator elements(liveout);
duke@435 303 uint l;
duke@435 304 while( (l = elements.next()) != 0 )
duke@435 305 if( rm.overlap( lrgs(l).mask() ) )
duke@435 306 _ifg->add_edge( r, l );
duke@435 307 }
duke@435 308
duke@435 309 //------------------------------build_ifg_virtual------------------------------
duke@435 310 // Actually build the interference graph. Uses virtual registers only, no
duke@435 311 // physical register masks. This allows me to be very aggressive when
duke@435 312 // coalescing copies. Some of this aggressiveness will have to be undone
duke@435 313 // later, but I'd rather get all the copies I can now (since unremoved copies
duke@435 314 // at this point can end up in bad places). Copies I re-insert later I have
duke@435 315 // more opportunity to insert them in low-frequency locations.
duke@435 316 void PhaseChaitin::build_ifg_virtual( ) {
duke@435 317
duke@435 318 // For all blocks (in any order) do...
duke@435 319 for( uint i=0; i<_cfg._num_blocks; i++ ) {
duke@435 320 Block *b = _cfg._blocks[i];
duke@435 321 IndexSet *liveout = _live->live(b);
duke@435 322
duke@435 323 // The IFG is built by a single reverse pass over each basic block.
duke@435 324 // Starting with the known live-out set, we remove things that get
duke@435 325 // defined and add things that become live (essentially executing one
duke@435 326 // pass of a standard LIVE analysis). Just before a Node defines a value
duke@435 327 // (and removes it from the live-ness set) that value is certainly live.
duke@435 328 // The defined value interferes with everything currently live. The
duke@435 329 // value is then removed from the live-ness set and it's inputs are
duke@435 330 // added to the live-ness set.
duke@435 331 for( uint j = b->end_idx() + 1; j > 1; j-- ) {
duke@435 332 Node *n = b->_nodes[j-1];
duke@435 333
duke@435 334 // Get value being defined
duke@435 335 uint r = n2lidx(n);
duke@435 336
duke@435 337 // Some special values do not allocate
duke@435 338 if( r ) {
duke@435 339
duke@435 340 // Remove from live-out set
duke@435 341 liveout->remove(r);
duke@435 342
duke@435 343 // Copies do not define a new value and so do not interfere.
duke@435 344 // Remove the copies source from the liveout set before interfering.
duke@435 345 uint idx = n->is_Copy();
duke@435 346 if( idx ) liveout->remove( n2lidx(n->in(idx)) );
duke@435 347
duke@435 348 // Interfere with everything live
duke@435 349 interfere_with_live( r, liveout );
duke@435 350 }
duke@435 351
duke@435 352 // Make all inputs live
duke@435 353 if( !n->is_Phi() ) { // Phi function uses come from prior block
duke@435 354 for( uint k = 1; k < n->req(); k++ )
duke@435 355 liveout->insert( n2lidx(n->in(k)) );
duke@435 356 }
duke@435 357
duke@435 358 // 2-address instructions always have the defined value live
duke@435 359 // on entry to the instruction, even though it is being defined
duke@435 360 // by the instruction. We pretend a virtual copy sits just prior
duke@435 361 // to the instruction and kills the src-def'd register.
duke@435 362 // In other words, for 2-address instructions the defined value
duke@435 363 // interferes with all inputs.
duke@435 364 uint idx;
duke@435 365 if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
duke@435 366 const MachNode *mach = n->as_Mach();
duke@435 367 // Sometimes my 2-address ADDs are commuted in a bad way.
duke@435 368 // We generally want the USE-DEF register to refer to the
duke@435 369 // loop-varying quantity, to avoid a copy.
duke@435 370 uint op = mach->ideal_Opcode();
duke@435 371 // Check that mach->num_opnds() == 3 to ensure instruction is
duke@435 372 // not subsuming constants, effectively excludes addI_cin_imm
duke@435 373 // Can NOT swap for instructions like addI_cin_imm since it
duke@435 374 // is adding zero to yhi + carry and the second ideal-input
duke@435 375 // points to the result of adding low-halves.
duke@435 376 // Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
duke@435 377 if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
duke@435 378 n->in(1)->bottom_type()->base() == Type::Int &&
duke@435 379 // See if the ADD is involved in a tight data loop the wrong way
duke@435 380 n->in(2)->is_Phi() &&
duke@435 381 n->in(2)->in(2) == n ) {
duke@435 382 Node *tmp = n->in(1);
duke@435 383 n->set_req( 1, n->in(2) );
duke@435 384 n->set_req( 2, tmp );
duke@435 385 }
duke@435 386 // Defined value interferes with all inputs
duke@435 387 uint lidx = n2lidx(n->in(idx));
duke@435 388 for( uint k = 1; k < n->req(); k++ ) {
duke@435 389 uint kidx = n2lidx(n->in(k));
duke@435 390 if( kidx != lidx )
duke@435 391 _ifg->add_edge( r, kidx );
duke@435 392 }
duke@435 393 }
duke@435 394 } // End of forall instructions in block
duke@435 395 } // End of forall blocks
duke@435 396 }
duke@435 397
duke@435 398 //------------------------------count_int_pressure-----------------------------
duke@435 399 uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
duke@435 400 IndexSetIterator elements(liveout);
duke@435 401 uint lidx;
duke@435 402 uint cnt = 0;
duke@435 403 while ((lidx = elements.next()) != 0) {
duke@435 404 if( lrgs(lidx).mask().is_UP() &&
duke@435 405 lrgs(lidx).mask_size() &&
duke@435 406 !lrgs(lidx)._is_float &&
duke@435 407 lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) )
duke@435 408 cnt += lrgs(lidx).reg_pressure();
duke@435 409 }
duke@435 410 return cnt;
duke@435 411 }
duke@435 412
duke@435 413 //------------------------------count_float_pressure---------------------------
duke@435 414 uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
duke@435 415 IndexSetIterator elements(liveout);
duke@435 416 uint lidx;
duke@435 417 uint cnt = 0;
duke@435 418 while ((lidx = elements.next()) != 0) {
duke@435 419 if( lrgs(lidx).mask().is_UP() &&
duke@435 420 lrgs(lidx).mask_size() &&
duke@435 421 lrgs(lidx)._is_float )
duke@435 422 cnt += lrgs(lidx).reg_pressure();
duke@435 423 }
duke@435 424 return cnt;
duke@435 425 }
duke@435 426
duke@435 427 //------------------------------lower_pressure---------------------------------
duke@435 428 // Adjust register pressure down by 1. Capture last hi-to-low transition,
duke@435 429 static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
duke@435 430 if( lrg->mask().is_UP() && lrg->mask_size() ) {
duke@435 431 if( lrg->_is_float ) {
duke@435 432 pressure[1] -= lrg->reg_pressure();
duke@435 433 if( pressure[1] == (uint)FLOATPRESSURE ) {
duke@435 434 hrp_index[1] = where;
duke@435 435 #ifdef EXACT_PRESSURE
duke@435 436 if( pressure[1] > b->_freg_pressure )
duke@435 437 b->_freg_pressure = pressure[1]+1;
duke@435 438 #else
duke@435 439 b->_freg_pressure = (uint)FLOATPRESSURE+1;
duke@435 440 #endif
duke@435 441 }
duke@435 442 } else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
duke@435 443 pressure[0] -= lrg->reg_pressure();
duke@435 444 if( pressure[0] == (uint)INTPRESSURE ) {
duke@435 445 hrp_index[0] = where;
duke@435 446 #ifdef EXACT_PRESSURE
duke@435 447 if( pressure[0] > b->_reg_pressure )
duke@435 448 b->_reg_pressure = pressure[0]+1;
duke@435 449 #else
duke@435 450 b->_reg_pressure = (uint)INTPRESSURE+1;
duke@435 451 #endif
duke@435 452 }
duke@435 453 }
duke@435 454 }
duke@435 455 }
duke@435 456
duke@435 457 //------------------------------build_ifg_physical-----------------------------
duke@435 458 // Build the interference graph using physical registers when available.
duke@435 459 // That is, if 2 live ranges are simultaneously alive but in their acceptable
duke@435 460 // register sets do not overlap, then they do not interfere.
duke@435 461 uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
duke@435 462 NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
duke@435 463
duke@435 464 uint spill_reg = LRG::SPILL_REG;
duke@435 465 uint must_spill = 0;
duke@435 466
duke@435 467 // For all blocks (in any order) do...
duke@435 468 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 469 Block *b = _cfg._blocks[i];
duke@435 470 // Clone (rather than smash in place) the liveout info, so it is alive
duke@435 471 // for the "collect_gc_info" phase later.
duke@435 472 IndexSet liveout(_live->live(b));
duke@435 473 uint last_inst = b->end_idx();
kvn@1001 474 // Compute first nonphi node index
kvn@1001 475 uint first_inst;
kvn@1001 476 for( first_inst = 1; first_inst < last_inst; first_inst++ )
kvn@1001 477 if( !b->_nodes[first_inst]->is_Phi() )
duke@435 478 break;
duke@435 479
kvn@1001 480 // Spills could be inserted before CreateEx node which should be
kvn@1001 481 // first instruction in block after Phis. Move CreateEx up.
kvn@1001 482 for( uint insidx = first_inst; insidx < last_inst; insidx++ ) {
kvn@1001 483 Node *ex = b->_nodes[insidx];
kvn@1001 484 if( ex->is_SpillCopy() ) continue;
kvn@1001 485 if( insidx > first_inst && ex->is_Mach() &&
kvn@1001 486 ex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
kvn@1001 487 // If the CreateEx isn't above all the MachSpillCopies
kvn@1001 488 // then move it to the top.
kvn@1001 489 b->_nodes.remove(insidx);
kvn@1001 490 b->_nodes.insert(first_inst, ex);
kvn@1001 491 }
kvn@1001 492 // Stop once a CreateEx or any other node is found
kvn@1001 493 break;
kvn@1001 494 }
kvn@1001 495
duke@435 496 // Reset block's register pressure values for each ifg construction
duke@435 497 uint pressure[2], hrp_index[2];
duke@435 498 pressure[0] = pressure[1] = 0;
duke@435 499 hrp_index[0] = hrp_index[1] = last_inst+1;
duke@435 500 b->_reg_pressure = b->_freg_pressure = 0;
duke@435 501 // Liveout things are presumed live for the whole block. We accumulate
duke@435 502 // 'area' accordingly. If they get killed in the block, we'll subtract
duke@435 503 // the unused part of the block from the area.
kvn@1001 504 int inst_count = last_inst - first_inst;
rasbold@804 505 double cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
rasbold@804 506 assert(!(cost < 0.0), "negative spill cost" );
duke@435 507 IndexSetIterator elements(&liveout);
duke@435 508 uint lidx;
duke@435 509 while ((lidx = elements.next()) != 0) {
duke@435 510 LRG &lrg = lrgs(lidx);
duke@435 511 lrg._area += cost;
duke@435 512 // Compute initial register pressure
duke@435 513 if( lrg.mask().is_UP() && lrg.mask_size() ) {
duke@435 514 if( lrg._is_float ) { // Count float pressure
duke@435 515 pressure[1] += lrg.reg_pressure();
duke@435 516 #ifdef EXACT_PRESSURE
duke@435 517 if( pressure[1] > b->_freg_pressure )
duke@435 518 b->_freg_pressure = pressure[1];
duke@435 519 #endif
duke@435 520 // Count int pressure, but do not count the SP, flags
duke@435 521 } else if( lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
duke@435 522 pressure[0] += lrg.reg_pressure();
duke@435 523 #ifdef EXACT_PRESSURE
duke@435 524 if( pressure[0] > b->_reg_pressure )
duke@435 525 b->_reg_pressure = pressure[0];
duke@435 526 #endif
duke@435 527 }
duke@435 528 }
duke@435 529 }
duke@435 530 assert( pressure[0] == count_int_pressure (&liveout), "" );
duke@435 531 assert( pressure[1] == count_float_pressure(&liveout), "" );
duke@435 532
duke@435 533 // The IFG is built by a single reverse pass over each basic block.
duke@435 534 // Starting with the known live-out set, we remove things that get
duke@435 535 // defined and add things that become live (essentially executing one
duke@435 536 // pass of a standard LIVE analysis). Just before a Node defines a value
duke@435 537 // (and removes it from the live-ness set) that value is certainly live.
duke@435 538 // The defined value interferes with everything currently live. The
duke@435 539 // value is then removed from the live-ness set and it's inputs are added
duke@435 540 // to the live-ness set.
duke@435 541 uint j;
duke@435 542 for( j = last_inst + 1; j > 1; j-- ) {
duke@435 543 Node *n = b->_nodes[j - 1];
duke@435 544
duke@435 545 // Get value being defined
duke@435 546 uint r = n2lidx(n);
duke@435 547
duke@435 548 // Some special values do not allocate
duke@435 549 if( r ) {
duke@435 550 // A DEF normally costs block frequency; rematerialized values are
duke@435 551 // removed from the DEF sight, so LOWER costs here.
duke@435 552 lrgs(r)._cost += n->rematerialize() ? 0 : b->_freq;
duke@435 553
duke@435 554 // If it is not live, then this instruction is dead. Probably caused
duke@435 555 // by spilling and rematerialization. Who cares why, yank this baby.
duke@435 556 if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) {
duke@435 557 Node *def = n->in(0);
duke@435 558 if( !n->is_Proj() ||
duke@435 559 // Could also be a flags-projection of a dead ADD or such.
duke@435 560 (n2lidx(def) && !liveout.member(n2lidx(def)) ) ) {
duke@435 561 b->_nodes.remove(j - 1);
duke@435 562 if( lrgs(r)._def == n ) lrgs(r)._def = 0;
duke@435 563 n->disconnect_inputs(NULL);
duke@435 564 _cfg._bbs.map(n->_idx,NULL);
duke@435 565 n->replace_by(C->top());
duke@435 566 // Since yanking a Node from block, high pressure moves up one
duke@435 567 hrp_index[0]--;
duke@435 568 hrp_index[1]--;
duke@435 569 continue;
duke@435 570 }
duke@435 571
duke@435 572 // Fat-projections kill many registers which cannot be used to
duke@435 573 // hold live ranges.
duke@435 574 if( lrgs(r)._fat_proj ) {
duke@435 575 // Count the int-only registers
duke@435 576 RegMask itmp = lrgs(r).mask();
duke@435 577 itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
duke@435 578 int iregs = itmp.Size();
duke@435 579 #ifdef EXACT_PRESSURE
duke@435 580 if( pressure[0]+iregs > b->_reg_pressure )
duke@435 581 b->_reg_pressure = pressure[0]+iregs;
duke@435 582 #endif
duke@435 583 if( pressure[0] <= (uint)INTPRESSURE &&
duke@435 584 pressure[0]+iregs > (uint)INTPRESSURE ) {
duke@435 585 #ifndef EXACT_PRESSURE
duke@435 586 b->_reg_pressure = (uint)INTPRESSURE+1;
duke@435 587 #endif
duke@435 588 hrp_index[0] = j-1;
duke@435 589 }
duke@435 590 // Count the float-only registers
duke@435 591 RegMask ftmp = lrgs(r).mask();
duke@435 592 ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
duke@435 593 int fregs = ftmp.Size();
duke@435 594 #ifdef EXACT_PRESSURE
duke@435 595 if( pressure[1]+fregs > b->_freg_pressure )
duke@435 596 b->_freg_pressure = pressure[1]+fregs;
duke@435 597 #endif
duke@435 598 if( pressure[1] <= (uint)FLOATPRESSURE &&
duke@435 599 pressure[1]+fregs > (uint)FLOATPRESSURE ) {
duke@435 600 #ifndef EXACT_PRESSURE
duke@435 601 b->_freg_pressure = (uint)FLOATPRESSURE+1;
duke@435 602 #endif
duke@435 603 hrp_index[1] = j-1;
duke@435 604 }
duke@435 605 }
duke@435 606
duke@435 607 } else { // Else it is live
duke@435 608 // A DEF also ends 'area' partway through the block.
duke@435 609 lrgs(r)._area -= cost;
rasbold@804 610 assert(!(lrgs(r)._area < 0.0), "negative spill area" );
duke@435 611
duke@435 612 // Insure high score for immediate-use spill copies so they get a color
duke@435 613 if( n->is_SpillCopy()
never@730 614 && lrgs(r).is_singledef() // MultiDef live range can still split
duke@435 615 && n->outcnt() == 1 // and use must be in this block
duke@435 616 && _cfg._bbs[n->unique_out()->_idx] == b ) {
duke@435 617 // All single-use MachSpillCopy(s) that immediately precede their
duke@435 618 // use must color early. If a longer live range steals their
duke@435 619 // color, the spill copy will split and may push another spill copy
duke@435 620 // further away resulting in an infinite spill-split-retry cycle.
duke@435 621 // Assigning a zero area results in a high score() and a good
duke@435 622 // location in the simplify list.
duke@435 623 //
duke@435 624
duke@435 625 Node *single_use = n->unique_out();
duke@435 626 assert( b->find_node(single_use) >= j, "Use must be later in block");
duke@435 627 // Use can be earlier in block if it is a Phi, but then I should be a MultiDef
duke@435 628
duke@435 629 // Find first non SpillCopy 'm' that follows the current instruction
duke@435 630 // (j - 1) is index for current instruction 'n'
duke@435 631 Node *m = n;
duke@435 632 for( uint i = j; i <= last_inst && m->is_SpillCopy(); ++i ) { m = b->_nodes[i]; }
duke@435 633 if( m == single_use ) {
duke@435 634 lrgs(r)._area = 0.0;
duke@435 635 }
duke@435 636 }
duke@435 637
duke@435 638 // Remove from live-out set
duke@435 639 if( liveout.remove(r) ) {
duke@435 640 // Adjust register pressure.
duke@435 641 // Capture last hi-to-lo pressure transition
duke@435 642 lower_pressure( &lrgs(r), j-1, b, pressure, hrp_index );
duke@435 643 assert( pressure[0] == count_int_pressure (&liveout), "" );
duke@435 644 assert( pressure[1] == count_float_pressure(&liveout), "" );
duke@435 645 }
duke@435 646
duke@435 647 // Copies do not define a new value and so do not interfere.
duke@435 648 // Remove the copies source from the liveout set before interfering.
duke@435 649 uint idx = n->is_Copy();
duke@435 650 if( idx ) {
duke@435 651 uint x = n2lidx(n->in(idx));
duke@435 652 if( liveout.remove( x ) ) {
duke@435 653 lrgs(x)._area -= cost;
duke@435 654 // Adjust register pressure.
duke@435 655 lower_pressure( &lrgs(x), j-1, b, pressure, hrp_index );
duke@435 656 assert( pressure[0] == count_int_pressure (&liveout), "" );
duke@435 657 assert( pressure[1] == count_float_pressure(&liveout), "" );
duke@435 658 }
duke@435 659 }
duke@435 660 } // End of if live or not
duke@435 661
duke@435 662 // Interfere with everything live. If the defined value must
duke@435 663 // go in a particular register, just remove that register from
duke@435 664 // all conflicting parties and avoid the interference.
duke@435 665
duke@435 666 // Make exclusions for rematerializable defs. Since rematerializable
duke@435 667 // DEFs are not bound but the live range is, some uses must be bound.
duke@435 668 // If we spill live range 'r', it can rematerialize at each use site
duke@435 669 // according to its bindings.
duke@435 670 const RegMask &rmask = lrgs(r).mask();
duke@435 671 if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) {
duke@435 672 // Smear odd bits; leave only aligned pairs of bits.
duke@435 673 RegMask r2mask = rmask;
duke@435 674 r2mask.SmearToPairs();
duke@435 675 // Check for common case
duke@435 676 int r_size = lrgs(r).num_regs();
duke@435 677 OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical;
duke@435 678
duke@435 679 IndexSetIterator elements(&liveout);
duke@435 680 uint l;
duke@435 681 while ((l = elements.next()) != 0) {
duke@435 682 LRG &lrg = lrgs(l);
duke@435 683 // If 'l' must spill already, do not further hack his bits.
duke@435 684 // He'll get some interferences and be forced to spill later.
duke@435 685 if( lrg._must_spill ) continue;
duke@435 686 // Remove bound register(s) from 'l's choices
duke@435 687 RegMask old = lrg.mask();
duke@435 688 uint old_size = lrg.mask_size();
duke@435 689 // Remove the bits from LRG 'r' from LRG 'l' so 'l' no
duke@435 690 // longer interferes with 'r'. If 'l' requires aligned
duke@435 691 // adjacent pairs, subtract out bit pairs.
duke@435 692 if( lrg.num_regs() == 2 && !lrg._fat_proj ) {
duke@435 693 lrg.SUBTRACT( r2mask );
duke@435 694 lrg.compute_set_mask_size();
duke@435 695 } else if( r_size != 1 ) {
duke@435 696 lrg.SUBTRACT( rmask );
duke@435 697 lrg.compute_set_mask_size();
duke@435 698 } else { // Common case: size 1 bound removal
duke@435 699 if( lrg.mask().Member(r_reg) ) {
duke@435 700 lrg.Remove(r_reg);
duke@435 701 lrg.set_mask_size(lrg.mask().is_AllStack() ? 65535:old_size-1);
duke@435 702 }
duke@435 703 }
duke@435 704 // If 'l' goes completely dry, it must spill.
duke@435 705 if( lrg.not_free() ) {
duke@435 706 // Give 'l' some kind of reasonable mask, so he picks up
duke@435 707 // interferences (and will spill later).
duke@435 708 lrg.set_mask( old );
duke@435 709 lrg.set_mask_size(old_size);
duke@435 710 must_spill++;
duke@435 711 lrg._must_spill = 1;
duke@435 712 lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
duke@435 713 }
duke@435 714 }
duke@435 715 } // End of if bound
duke@435 716
duke@435 717 // Now interference with everything that is live and has
duke@435 718 // compatible register sets.
duke@435 719 interfere_with_live(r,&liveout);
duke@435 720
duke@435 721 } // End of if normal register-allocated value
duke@435 722
rasbold@804 723 // Area remaining in the block
rasbold@804 724 inst_count--;
rasbold@804 725 cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
duke@435 726
duke@435 727 // Make all inputs live
duke@435 728 if( !n->is_Phi() ) { // Phi function uses come from prior block
duke@435 729 JVMState* jvms = n->jvms();
duke@435 730 uint debug_start = jvms ? jvms->debug_start() : 999999;
duke@435 731 // Start loop at 1 (skip control edge) for most Nodes.
duke@435 732 // SCMemProj's might be the sole use of a StoreLConditional.
duke@435 733 // While StoreLConditionals set memory (the SCMemProj use)
duke@435 734 // they also def flags; if that flag def is unused the
duke@435 735 // allocator sees a flag-setting instruction with no use of
duke@435 736 // the flags and assumes it's dead. This keeps the (useless)
duke@435 737 // flag-setting behavior alive while also keeping the (useful)
duke@435 738 // memory update effect.
duke@435 739 for( uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++ ) {
duke@435 740 Node *def = n->in(k);
duke@435 741 uint x = n2lidx(def);
duke@435 742 if( !x ) continue;
duke@435 743 LRG &lrg = lrgs(x);
duke@435 744 // No use-side cost for spilling debug info
duke@435 745 if( k < debug_start )
duke@435 746 // A USE costs twice block frequency (once for the Load, once
duke@435 747 // for a Load-delay). Rematerialized uses only cost once.
duke@435 748 lrg._cost += (def->rematerialize() ? b->_freq : (b->_freq + b->_freq));
duke@435 749 // It is live now
duke@435 750 if( liveout.insert( x ) ) {
duke@435 751 // Newly live things assumed live from here to top of block
duke@435 752 lrg._area += cost;
duke@435 753 // Adjust register pressure
duke@435 754 if( lrg.mask().is_UP() && lrg.mask_size() ) {
duke@435 755 if( lrg._is_float ) {
duke@435 756 pressure[1] += lrg.reg_pressure();
duke@435 757 #ifdef EXACT_PRESSURE
duke@435 758 if( pressure[1] > b->_freg_pressure )
duke@435 759 b->_freg_pressure = pressure[1];
duke@435 760 #endif
duke@435 761 } else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
duke@435 762 pressure[0] += lrg.reg_pressure();
duke@435 763 #ifdef EXACT_PRESSURE
duke@435 764 if( pressure[0] > b->_reg_pressure )
duke@435 765 b->_reg_pressure = pressure[0];
duke@435 766 #endif
duke@435 767 }
duke@435 768 }
duke@435 769 assert( pressure[0] == count_int_pressure (&liveout), "" );
duke@435 770 assert( pressure[1] == count_float_pressure(&liveout), "" );
duke@435 771 }
rasbold@804 772 assert(!(lrg._area < 0.0), "negative spill area" );
duke@435 773 }
duke@435 774 }
duke@435 775 } // End of reverse pass over all instructions in block
duke@435 776
duke@435 777 // If we run off the top of the block with high pressure and
duke@435 778 // never see a hi-to-low pressure transition, just record that
duke@435 779 // the whole block is high pressure.
duke@435 780 if( pressure[0] > (uint)INTPRESSURE ) {
duke@435 781 hrp_index[0] = 0;
duke@435 782 #ifdef EXACT_PRESSURE
duke@435 783 if( pressure[0] > b->_reg_pressure )
duke@435 784 b->_reg_pressure = pressure[0];
duke@435 785 #else
duke@435 786 b->_reg_pressure = (uint)INTPRESSURE+1;
duke@435 787 #endif
duke@435 788 }
duke@435 789 if( pressure[1] > (uint)FLOATPRESSURE ) {
duke@435 790 hrp_index[1] = 0;
duke@435 791 #ifdef EXACT_PRESSURE
duke@435 792 if( pressure[1] > b->_freg_pressure )
duke@435 793 b->_freg_pressure = pressure[1];
duke@435 794 #else
duke@435 795 b->_freg_pressure = (uint)FLOATPRESSURE+1;
duke@435 796 #endif
duke@435 797 }
duke@435 798
duke@435 799 // Compute high pressure indice; avoid landing in the middle of projnodes
duke@435 800 j = hrp_index[0];
duke@435 801 if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
duke@435 802 Node *cur = b->_nodes[j];
duke@435 803 while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
duke@435 804 j--;
duke@435 805 cur = b->_nodes[j];
duke@435 806 }
duke@435 807 }
duke@435 808 b->_ihrp_index = j;
duke@435 809 j = hrp_index[1];
duke@435 810 if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
duke@435 811 Node *cur = b->_nodes[j];
duke@435 812 while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
duke@435 813 j--;
duke@435 814 cur = b->_nodes[j];
duke@435 815 }
duke@435 816 }
duke@435 817 b->_fhrp_index = j;
duke@435 818
duke@435 819 #ifndef PRODUCT
duke@435 820 // Gather Register Pressure Statistics
duke@435 821 if( PrintOptoStatistics ) {
duke@435 822 if( b->_reg_pressure > (uint)INTPRESSURE || b->_freg_pressure > (uint)FLOATPRESSURE )
duke@435 823 _high_pressure++;
duke@435 824 else
duke@435 825 _low_pressure++;
duke@435 826 }
duke@435 827 #endif
duke@435 828 } // End of for all blocks
duke@435 829
duke@435 830 return must_spill;
duke@435 831 }

mercurial