src/share/vm/opto/ifg.cpp

Wed, 24 Apr 2013 20:55:28 -0400

author
dlong
date
Wed, 24 Apr 2013 20:55:28 -0400
changeset 5000
a6e09d6dd8e5
parent 4867
b808febcad9a
child 4949
8373c19be854
permissions
-rw-r--r--

8003853: specify offset of IC load in java_to_interp stub
Summary: refactored code to allow platform-specific differences
Reviewed-by: dlong, twisti
Contributed-by: Goetz Lindenmaier <goetz.lindenmaier@sap.com>

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/oopMap.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/block.hpp"
    30 #include "opto/callnode.hpp"
    31 #include "opto/cfgnode.hpp"
    32 #include "opto/chaitin.hpp"
    33 #include "opto/coalesce.hpp"
    34 #include "opto/connode.hpp"
    35 #include "opto/indexSet.hpp"
    36 #include "opto/machnode.hpp"
    37 #include "opto/memnode.hpp"
    38 #include "opto/opcodes.hpp"
    40 //=============================================================================
    41 //------------------------------IFG--------------------------------------------
    42 PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
    43 }
    45 //------------------------------init-------------------------------------------
    46 void PhaseIFG::init( uint maxlrg ) {
    47   _maxlrg = maxlrg;
    48   _yanked = new (_arena) VectorSet(_arena);
    49   _is_square = false;
    50   // Make uninitialized adjacency lists
    51   _adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
    52   // Also make empty live range structures
    53   _lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
    54   memset(_lrgs,0,sizeof(LRG)*maxlrg);
    55   // Init all to empty
    56   for( uint i = 0; i < maxlrg; i++ ) {
    57     _adjs[i].initialize(maxlrg);
    58     _lrgs[i].Set_All();
    59   }
    60 }
    62 //------------------------------add--------------------------------------------
    63 // Add edge between vertices a & b.  These are sorted (triangular matrix),
    64 // then the smaller number is inserted in the larger numbered array.
    65 int PhaseIFG::add_edge( uint a, uint b ) {
    66   lrgs(a).invalid_degree();
    67   lrgs(b).invalid_degree();
    68   // Sort a and b, so that a is bigger
    69   assert( !_is_square, "only on triangular" );
    70   if( a < b ) { uint tmp = a; a = b; b = tmp; }
    71   return _adjs[a].insert( b );
    72 }
    74 //------------------------------add_vector-------------------------------------
    75 // Add an edge between 'a' and everything in the vector.
    76 void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
    77   // IFG is triangular, so do the inserts where 'a' < 'b'.
    78   assert( !_is_square, "only on triangular" );
    79   IndexSet *adjs_a = &_adjs[a];
    80   if( !vec->count() ) return;
    82   IndexSetIterator elements(vec);
    83   uint neighbor;
    84   while ((neighbor = elements.next()) != 0) {
    85     add_edge( a, neighbor );
    86   }
    87 }
    89 //------------------------------test-------------------------------------------
    90 // Is there an edge between a and b?
    91 int PhaseIFG::test_edge( uint a, uint b ) const {
    92   // Sort a and b, so that a is larger
    93   assert( !_is_square, "only on triangular" );
    94   if( a < b ) { uint tmp = a; a = b; b = tmp; }
    95   return _adjs[a].member(b);
    96 }
    98 //------------------------------SquareUp---------------------------------------
    99 // Convert triangular matrix to square matrix
   100 void PhaseIFG::SquareUp() {
   101   assert( !_is_square, "only on triangular" );
   103   // Simple transpose
   104   for( uint i = 0; i < _maxlrg; i++ ) {
   105     IndexSetIterator elements(&_adjs[i]);
   106     uint datum;
   107     while ((datum = elements.next()) != 0) {
   108       _adjs[datum].insert( i );
   109     }
   110   }
   111   _is_square = true;
   112 }
   114 //------------------------------Compute_Effective_Degree-----------------------
   115 // Compute effective degree in bulk
   116 void PhaseIFG::Compute_Effective_Degree() {
   117   assert( _is_square, "only on square" );
   119   for( uint i = 0; i < _maxlrg; i++ )
   120     lrgs(i).set_degree(effective_degree(i));
   121 }
   123 //------------------------------test_edge_sq-----------------------------------
   124 int PhaseIFG::test_edge_sq( uint a, uint b ) const {
   125   assert( _is_square, "only on square" );
   126   // Swap, so that 'a' has the lesser count.  Then binary search is on
   127   // the smaller of a's list and b's list.
   128   if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
   129   //return _adjs[a].unordered_member(b);
   130   return _adjs[a].member(b);
   131 }
   133 //------------------------------Union------------------------------------------
   134 // Union edges of B into A
   135 void PhaseIFG::Union( uint a, uint b ) {
   136   assert( _is_square, "only on square" );
   137   IndexSet *A = &_adjs[a];
   138   IndexSetIterator b_elements(&_adjs[b]);
   139   uint datum;
   140   while ((datum = b_elements.next()) != 0) {
   141     if(A->insert(datum)) {
   142       _adjs[datum].insert(a);
   143       lrgs(a).invalid_degree();
   144       lrgs(datum).invalid_degree();
   145     }
   146   }
   147 }
   149 //------------------------------remove_node------------------------------------
   150 // Yank a Node and all connected edges from the IFG.  Return a
   151 // list of neighbors (edges) yanked.
   152 IndexSet *PhaseIFG::remove_node( uint a ) {
   153   assert( _is_square, "only on square" );
   154   assert( !_yanked->test(a), "" );
   155   _yanked->set(a);
   157   // I remove the LRG from all neighbors.
   158   IndexSetIterator elements(&_adjs[a]);
   159   LRG &lrg_a = lrgs(a);
   160   uint datum;
   161   while ((datum = elements.next()) != 0) {
   162     _adjs[datum].remove(a);
   163     lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
   164   }
   165   return neighbors(a);
   166 }
   168 //------------------------------re_insert--------------------------------------
   169 // Re-insert a yanked Node.
   170 void PhaseIFG::re_insert( uint a ) {
   171   assert( _is_square, "only on square" );
   172   assert( _yanked->test(a), "" );
   173   (*_yanked) >>= a;
   175   IndexSetIterator elements(&_adjs[a]);
   176   uint datum;
   177   while ((datum = elements.next()) != 0) {
   178     _adjs[datum].insert(a);
   179     lrgs(datum).invalid_degree();
   180   }
   181 }
   183 //------------------------------compute_degree---------------------------------
   184 // Compute the degree between 2 live ranges.  If both live ranges are
   185 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
   186 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
   187 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
   188 // this is so.
   189 int LRG::compute_degree( LRG &l ) const {
   190   int tmp;
   191   int num_regs = _num_regs;
   192   int nregs = l.num_regs();
   193   tmp =  (_fat_proj || l._fat_proj)     // either is a fat-proj?
   194     ? (num_regs * nregs)                // then use product
   195     : MAX2(num_regs,nregs);             // else use max
   196   return tmp;
   197 }
   199 //------------------------------effective_degree-------------------------------
   200 // Compute effective degree for this live range.  If both live ranges are
   201 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
   202 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
   203 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
   204 // this is so.
   205 int PhaseIFG::effective_degree( uint lidx ) const {
   206   int eff = 0;
   207   int num_regs = lrgs(lidx).num_regs();
   208   int fat_proj = lrgs(lidx)._fat_proj;
   209   IndexSet *s = neighbors(lidx);
   210   IndexSetIterator elements(s);
   211   uint nidx;
   212   while((nidx = elements.next()) != 0) {
   213     LRG &lrgn = lrgs(nidx);
   214     int nregs = lrgn.num_regs();
   215     eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
   216       ? (num_regs * nregs)              // then use product
   217       : MAX2(num_regs,nregs);           // else use max
   218   }
   219   return eff;
   220 }
   223 #ifndef PRODUCT
   224 //------------------------------dump-------------------------------------------
   225 void PhaseIFG::dump() const {
   226   tty->print_cr("-- Interference Graph --%s--",
   227                 _is_square ? "square" : "triangular" );
   228   if( _is_square ) {
   229     for( uint i = 0; i < _maxlrg; i++ ) {
   230       tty->print( (*_yanked)[i] ? "XX " : "  ");
   231       tty->print("L%d: { ",i);
   232       IndexSetIterator elements(&_adjs[i]);
   233       uint datum;
   234       while ((datum = elements.next()) != 0) {
   235         tty->print("L%d ", datum);
   236       }
   237       tty->print_cr("}");
   239     }
   240     return;
   241   }
   243   // Triangular
   244   for( uint i = 0; i < _maxlrg; i++ ) {
   245     uint j;
   246     tty->print( (*_yanked)[i] ? "XX " : "  ");
   247     tty->print("L%d: { ",i);
   248     for( j = _maxlrg; j > i; j-- )
   249       if( test_edge(j - 1,i) ) {
   250         tty->print("L%d ",j - 1);
   251       }
   252     tty->print("| ");
   253     IndexSetIterator elements(&_adjs[i]);
   254     uint datum;
   255     while ((datum = elements.next()) != 0) {
   256       tty->print("L%d ", datum);
   257     }
   258     tty->print("}\n");
   259   }
   260   tty->print("\n");
   261 }
   263 //------------------------------stats------------------------------------------
   264 void PhaseIFG::stats() const {
   265   ResourceMark rm;
   266   int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
   267   memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
   268   uint i;
   269   for( i = 0; i < _maxlrg; i++ ) {
   270     h_cnt[neighbor_cnt(i)]++;
   271   }
   272   tty->print_cr("--Histogram of counts--");
   273   for( i = 0; i < _maxlrg*2; i++ )
   274     if( h_cnt[i] )
   275       tty->print("%d/%d ",i,h_cnt[i]);
   276   tty->print_cr("");
   277 }
   279 //------------------------------verify-----------------------------------------
   280 void PhaseIFG::verify( const PhaseChaitin *pc ) const {
   281   // IFG is square, sorted and no need for Find
   282   for( uint i = 0; i < _maxlrg; i++ ) {
   283     assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
   284     IndexSet *set = &_adjs[i];
   285     IndexSetIterator elements(set);
   286     uint idx;
   287     uint last = 0;
   288     while ((idx = elements.next()) != 0) {
   289       assert( idx != i, "Must have empty diagonal");
   290       assert( pc->Find_const(idx) == idx, "Must not need Find" );
   291       assert( _adjs[idx].member(i), "IFG not square" );
   292       assert( !(*_yanked)[idx], "No yanked neighbors" );
   293       assert( last < idx, "not sorted increasing");
   294       last = idx;
   295     }
   296     assert( !lrgs(i)._degree_valid ||
   297             effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong" );
   298   }
   299 }
   300 #endif
   302 //------------------------------interfere_with_live----------------------------
   303 // Interfere this register with everything currently live.  Use the RegMasks
   304 // to trim the set of possible interferences. Return a count of register-only
   305 // interferences as an estimate of register pressure.
   306 void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
   307   uint retval = 0;
   308   // Interfere with everything live.
   309   const RegMask &rm = lrgs(r).mask();
   310   // Check for interference by checking overlap of regmasks.
   311   // Only interfere if acceptable register masks overlap.
   312   IndexSetIterator elements(liveout);
   313   uint l;
   314   while( (l = elements.next()) != 0 )
   315     if( rm.overlap( lrgs(l).mask() ) )
   316       _ifg->add_edge( r, l );
   317 }
   319 //------------------------------build_ifg_virtual------------------------------
   320 // Actually build the interference graph.  Uses virtual registers only, no
   321 // physical register masks.  This allows me to be very aggressive when
   322 // coalescing copies.  Some of this aggressiveness will have to be undone
   323 // later, but I'd rather get all the copies I can now (since unremoved copies
   324 // at this point can end up in bad places).  Copies I re-insert later I have
   325 // more opportunity to insert them in low-frequency locations.
   326 void PhaseChaitin::build_ifg_virtual( ) {
   328   // For all blocks (in any order) do...
   329   for( uint i=0; i<_cfg._num_blocks; i++ ) {
   330     Block *b = _cfg._blocks[i];
   331     IndexSet *liveout = _live->live(b);
   333     // The IFG is built by a single reverse pass over each basic block.
   334     // Starting with the known live-out set, we remove things that get
   335     // defined and add things that become live (essentially executing one
   336     // pass of a standard LIVE analysis). Just before a Node defines a value
   337     // (and removes it from the live-ness set) that value is certainly live.
   338     // The defined value interferes with everything currently live.  The
   339     // value is then removed from the live-ness set and it's inputs are
   340     // added to the live-ness set.
   341     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
   342       Node *n = b->_nodes[j-1];
   344       // Get value being defined
   345       uint r = n2lidx(n);
   347       // Some special values do not allocate
   348       if( r ) {
   350         // Remove from live-out set
   351         liveout->remove(r);
   353         // Copies do not define a new value and so do not interfere.
   354         // Remove the copies source from the liveout set before interfering.
   355         uint idx = n->is_Copy();
   356         if( idx ) liveout->remove( n2lidx(n->in(idx)) );
   358         // Interfere with everything live
   359         interfere_with_live( r, liveout );
   360       }
   362       // Make all inputs live
   363       if( !n->is_Phi() ) {      // Phi function uses come from prior block
   364         for( uint k = 1; k < n->req(); k++ )
   365           liveout->insert( n2lidx(n->in(k)) );
   366       }
   368       // 2-address instructions always have the defined value live
   369       // on entry to the instruction, even though it is being defined
   370       // by the instruction.  We pretend a virtual copy sits just prior
   371       // to the instruction and kills the src-def'd register.
   372       // In other words, for 2-address instructions the defined value
   373       // interferes with all inputs.
   374       uint idx;
   375       if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
   376         const MachNode *mach = n->as_Mach();
   377         // Sometimes my 2-address ADDs are commuted in a bad way.
   378         // We generally want the USE-DEF register to refer to the
   379         // loop-varying quantity, to avoid a copy.
   380         uint op = mach->ideal_Opcode();
   381         // Check that mach->num_opnds() == 3 to ensure instruction is
   382         // not subsuming constants, effectively excludes addI_cin_imm
   383         // Can NOT swap for instructions like addI_cin_imm since it
   384         // is adding zero to yhi + carry and the second ideal-input
   385         // points to the result of adding low-halves.
   386         // Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
   387         if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
   388             n->in(1)->bottom_type()->base() == Type::Int &&
   389             // See if the ADD is involved in a tight data loop the wrong way
   390             n->in(2)->is_Phi() &&
   391             n->in(2)->in(2) == n ) {
   392           Node *tmp = n->in(1);
   393           n->set_req( 1, n->in(2) );
   394           n->set_req( 2, tmp );
   395         }
   396         // Defined value interferes with all inputs
   397         uint lidx = n2lidx(n->in(idx));
   398         for( uint k = 1; k < n->req(); k++ ) {
   399           uint kidx = n2lidx(n->in(k));
   400           if( kidx != lidx )
   401             _ifg->add_edge( r, kidx );
   402         }
   403       }
   404     } // End of forall instructions in block
   405   } // End of forall blocks
   406 }
   408 //------------------------------count_int_pressure-----------------------------
   409 uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
   410   IndexSetIterator elements(liveout);
   411   uint lidx;
   412   uint cnt = 0;
   413   while ((lidx = elements.next()) != 0) {
   414     if( lrgs(lidx).mask().is_UP() &&
   415         lrgs(lidx).mask_size() &&
   416         !lrgs(lidx)._is_float &&
   417         !lrgs(lidx)._is_vector &&
   418         lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) )
   419       cnt += lrgs(lidx).reg_pressure();
   420   }
   421   return cnt;
   422 }
   424 //------------------------------count_float_pressure---------------------------
   425 uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
   426   IndexSetIterator elements(liveout);
   427   uint lidx;
   428   uint cnt = 0;
   429   while ((lidx = elements.next()) != 0) {
   430     if( lrgs(lidx).mask().is_UP() &&
   431         lrgs(lidx).mask_size() &&
   432         (lrgs(lidx)._is_float || lrgs(lidx)._is_vector))
   433       cnt += lrgs(lidx).reg_pressure();
   434   }
   435   return cnt;
   436 }
   438 //------------------------------lower_pressure---------------------------------
   439 // Adjust register pressure down by 1.  Capture last hi-to-low transition,
   440 static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
   441   if (lrg->mask().is_UP() && lrg->mask_size()) {
   442     if (lrg->_is_float || lrg->_is_vector) {
   443       pressure[1] -= lrg->reg_pressure();
   444       if( pressure[1] == (uint)FLOATPRESSURE ) {
   445         hrp_index[1] = where;
   446         if( pressure[1] > b->_freg_pressure )
   447           b->_freg_pressure = pressure[1]+1;
   448       }
   449     } else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
   450       pressure[0] -= lrg->reg_pressure();
   451       if( pressure[0] == (uint)INTPRESSURE   ) {
   452         hrp_index[0] = where;
   453         if( pressure[0] > b->_reg_pressure )
   454           b->_reg_pressure = pressure[0]+1;
   455       }
   456     }
   457   }
   458 }
   460 //------------------------------build_ifg_physical-----------------------------
   461 // Build the interference graph using physical registers when available.
   462 // That is, if 2 live ranges are simultaneously alive but in their acceptable
   463 // register sets do not overlap, then they do not interfere.
   464 uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
   465   NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
   467   uint spill_reg = LRG::SPILL_REG;
   468   uint must_spill = 0;
   470   // For all blocks (in any order) do...
   471   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   472     Block *b = _cfg._blocks[i];
   473     // Clone (rather than smash in place) the liveout info, so it is alive
   474     // for the "collect_gc_info" phase later.
   475     IndexSet liveout(_live->live(b));
   476     uint last_inst = b->end_idx();
   477     // Compute first nonphi node index
   478     uint first_inst;
   479     for( first_inst = 1; first_inst < last_inst; first_inst++ )
   480       if( !b->_nodes[first_inst]->is_Phi() )
   481         break;
   483     // Spills could be inserted before CreateEx node which should be
   484     // first instruction in block after Phis. Move CreateEx up.
   485     for( uint insidx = first_inst; insidx < last_inst; insidx++ ) {
   486       Node *ex = b->_nodes[insidx];
   487       if( ex->is_SpillCopy() ) continue;
   488       if( insidx > first_inst && ex->is_Mach() &&
   489           ex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
   490         // If the CreateEx isn't above all the MachSpillCopies
   491         // then move it to the top.
   492         b->_nodes.remove(insidx);
   493         b->_nodes.insert(first_inst, ex);
   494       }
   495       // Stop once a CreateEx or any other node is found
   496       break;
   497     }
   499     // Reset block's register pressure values for each ifg construction
   500     uint pressure[2], hrp_index[2];
   501     pressure[0] = pressure[1] = 0;
   502     hrp_index[0] = hrp_index[1] = last_inst+1;
   503     b->_reg_pressure = b->_freg_pressure = 0;
   504     // Liveout things are presumed live for the whole block.  We accumulate
   505     // 'area' accordingly.  If they get killed in the block, we'll subtract
   506     // the unused part of the block from the area.
   507     int inst_count = last_inst - first_inst;
   508     double cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
   509     assert(!(cost < 0.0), "negative spill cost" );
   510     IndexSetIterator elements(&liveout);
   511     uint lidx;
   512     while ((lidx = elements.next()) != 0) {
   513       LRG &lrg = lrgs(lidx);
   514       lrg._area += cost;
   515       // Compute initial register pressure
   516       if (lrg.mask().is_UP() && lrg.mask_size()) {
   517         if (lrg._is_float || lrg._is_vector) {   // Count float pressure
   518           pressure[1] += lrg.reg_pressure();
   519           if( pressure[1] > b->_freg_pressure )
   520             b->_freg_pressure = pressure[1];
   521           // Count int pressure, but do not count the SP, flags
   522         } else if( lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
   523           pressure[0] += lrg.reg_pressure();
   524           if( pressure[0] > b->_reg_pressure )
   525             b->_reg_pressure = pressure[0];
   526         }
   527       }
   528     }
   529     assert( pressure[0] == count_int_pressure  (&liveout), "" );
   530     assert( pressure[1] == count_float_pressure(&liveout), "" );
   532     // The IFG is built by a single reverse pass over each basic block.
   533     // Starting with the known live-out set, we remove things that get
   534     // defined and add things that become live (essentially executing one
   535     // pass of a standard LIVE analysis).  Just before a Node defines a value
   536     // (and removes it from the live-ness set) that value is certainly live.
   537     // The defined value interferes with everything currently live.  The
   538     // value is then removed from the live-ness set and it's inputs are added
   539     // to the live-ness set.
   540     uint j;
   541     for( j = last_inst + 1; j > 1; j-- ) {
   542       Node *n = b->_nodes[j - 1];
   544       // Get value being defined
   545       uint r = n2lidx(n);
   547       // Some special values do not allocate
   548       if( r ) {
   549         // A DEF normally costs block frequency; rematerialized values are
   550         // removed from the DEF sight, so LOWER costs here.
   551         lrgs(r)._cost += n->rematerialize() ? 0 : b->_freq;
   553         // If it is not live, then this instruction is dead.  Probably caused
   554         // by spilling and rematerialization.  Who cares why, yank this baby.
   555         if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) {
   556           Node *def = n->in(0);
   557           if( !n->is_Proj() ||
   558               // Could also be a flags-projection of a dead ADD or such.
   559               (n2lidx(def) && !liveout.member(n2lidx(def)) ) ) {
   560             b->_nodes.remove(j - 1);
   561             if( lrgs(r)._def == n ) lrgs(r)._def = 0;
   562             n->disconnect_inputs(NULL, C);
   563             _cfg._bbs.map(n->_idx,NULL);
   564             n->replace_by(C->top());
   565             // Since yanking a Node from block, high pressure moves up one
   566             hrp_index[0]--;
   567             hrp_index[1]--;
   568             continue;
   569           }
   571           // Fat-projections kill many registers which cannot be used to
   572           // hold live ranges.
   573           if( lrgs(r)._fat_proj ) {
   574             // Count the int-only registers
   575             RegMask itmp = lrgs(r).mask();
   576             itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
   577             int iregs = itmp.Size();
   578             if( pressure[0]+iregs > b->_reg_pressure )
   579               b->_reg_pressure = pressure[0]+iregs;
   580             if( pressure[0]       <= (uint)INTPRESSURE &&
   581                 pressure[0]+iregs >  (uint)INTPRESSURE ) {
   582               hrp_index[0] = j-1;
   583             }
   584             // Count the float-only registers
   585             RegMask ftmp = lrgs(r).mask();
   586             ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
   587             int fregs = ftmp.Size();
   588             if( pressure[1]+fregs > b->_freg_pressure )
   589               b->_freg_pressure = pressure[1]+fregs;
   590             if( pressure[1]       <= (uint)FLOATPRESSURE &&
   591                 pressure[1]+fregs >  (uint)FLOATPRESSURE ) {
   592               hrp_index[1] = j-1;
   593             }
   594           }
   596         } else {                // Else it is live
   597           // A DEF also ends 'area' partway through the block.
   598           lrgs(r)._area -= cost;
   599           assert(!(lrgs(r)._area < 0.0), "negative spill area" );
   601           // Insure high score for immediate-use spill copies so they get a color
   602           if( n->is_SpillCopy()
   603               && lrgs(r).is_singledef()        // MultiDef live range can still split
   604               && n->outcnt() == 1              // and use must be in this block
   605               && _cfg._bbs[n->unique_out()->_idx] == b ) {
   606             // All single-use MachSpillCopy(s) that immediately precede their
   607             // use must color early.  If a longer live range steals their
   608             // color, the spill copy will split and may push another spill copy
   609             // further away resulting in an infinite spill-split-retry cycle.
   610             // Assigning a zero area results in a high score() and a good
   611             // location in the simplify list.
   612             //
   614             Node *single_use = n->unique_out();
   615             assert( b->find_node(single_use) >= j, "Use must be later in block");
   616             // Use can be earlier in block if it is a Phi, but then I should be a MultiDef
   618             // Find first non SpillCopy 'm' that follows the current instruction
   619             // (j - 1) is index for current instruction 'n'
   620             Node *m = n;
   621             for( uint i = j; i <= last_inst && m->is_SpillCopy(); ++i ) { m = b->_nodes[i]; }
   622             if( m == single_use ) {
   623               lrgs(r)._area = 0.0;
   624             }
   625           }
   627           // Remove from live-out set
   628           if( liveout.remove(r) ) {
   629             // Adjust register pressure.
   630             // Capture last hi-to-lo pressure transition
   631             lower_pressure( &lrgs(r), j-1, b, pressure, hrp_index );
   632             assert( pressure[0] == count_int_pressure  (&liveout), "" );
   633             assert( pressure[1] == count_float_pressure(&liveout), "" );
   634           }
   636           // Copies do not define a new value and so do not interfere.
   637           // Remove the copies source from the liveout set before interfering.
   638           uint idx = n->is_Copy();
   639           if( idx ) {
   640             uint x = n2lidx(n->in(idx));
   641             if( liveout.remove( x ) ) {
   642               lrgs(x)._area -= cost;
   643               // Adjust register pressure.
   644               lower_pressure( &lrgs(x), j-1, b, pressure, hrp_index );
   645               assert( pressure[0] == count_int_pressure  (&liveout), "" );
   646               assert( pressure[1] == count_float_pressure(&liveout), "" );
   647             }
   648           }
   649         } // End of if live or not
   651         // Interfere with everything live.  If the defined value must
   652         // go in a particular register, just remove that register from
   653         // all conflicting parties and avoid the interference.
   655         // Make exclusions for rematerializable defs.  Since rematerializable
   656         // DEFs are not bound but the live range is, some uses must be bound.
   657         // If we spill live range 'r', it can rematerialize at each use site
   658         // according to its bindings.
   659         const RegMask &rmask = lrgs(r).mask();
   660         if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) {
   661           // Check for common case
   662           int r_size = lrgs(r).num_regs();
   663           OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical;
   664           // Smear odd bits
   665           IndexSetIterator elements(&liveout);
   666           uint l;
   667           while ((l = elements.next()) != 0) {
   668             LRG &lrg = lrgs(l);
   669             // If 'l' must spill already, do not further hack his bits.
   670             // He'll get some interferences and be forced to spill later.
   671             if( lrg._must_spill ) continue;
   672             // Remove bound register(s) from 'l's choices
   673             RegMask old = lrg.mask();
   674             uint old_size = lrg.mask_size();
   675             // Remove the bits from LRG 'r' from LRG 'l' so 'l' no
   676             // longer interferes with 'r'.  If 'l' requires aligned
   677             // adjacent pairs, subtract out bit pairs.
   678             assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
   679             if (lrg.num_regs() > 1 && !lrg._fat_proj) {
   680               RegMask r2mask = rmask;
   681               // Leave only aligned set of bits.
   682               r2mask.smear_to_sets(lrg.num_regs());
   683               // It includes vector case.
   684               lrg.SUBTRACT( r2mask );
   685               lrg.compute_set_mask_size();
   686             } else if( r_size != 1 ) { // fat proj
   687               lrg.SUBTRACT( rmask );
   688               lrg.compute_set_mask_size();
   689             } else {            // Common case: size 1 bound removal
   690               if( lrg.mask().Member(r_reg) ) {
   691                 lrg.Remove(r_reg);
   692                 lrg.set_mask_size(lrg.mask().is_AllStack() ? 65535:old_size-1);
   693               }
   694             }
   695             // If 'l' goes completely dry, it must spill.
   696             if( lrg.not_free() ) {
   697               // Give 'l' some kind of reasonable mask, so he picks up
   698               // interferences (and will spill later).
   699               lrg.set_mask( old );
   700               lrg.set_mask_size(old_size);
   701               must_spill++;
   702               lrg._must_spill = 1;
   703               lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
   704             }
   705           }
   706         } // End of if bound
   708         // Now interference with everything that is live and has
   709         // compatible register sets.
   710         interfere_with_live(r,&liveout);
   712       } // End of if normal register-allocated value
   714       // Area remaining in the block
   715       inst_count--;
   716       cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
   718       // Make all inputs live
   719       if( !n->is_Phi() ) {      // Phi function uses come from prior block
   720         JVMState* jvms = n->jvms();
   721         uint debug_start = jvms ? jvms->debug_start() : 999999;
   722         // Start loop at 1 (skip control edge) for most Nodes.
   723         // SCMemProj's might be the sole use of a StoreLConditional.
   724         // While StoreLConditionals set memory (the SCMemProj use)
   725         // they also def flags; if that flag def is unused the
   726         // allocator sees a flag-setting instruction with no use of
   727         // the flags and assumes it's dead.  This keeps the (useless)
   728         // flag-setting behavior alive while also keeping the (useful)
   729         // memory update effect.
   730         for( uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++ ) {
   731           Node *def = n->in(k);
   732           uint x = n2lidx(def);
   733           if( !x ) continue;
   734           LRG &lrg = lrgs(x);
   735           // No use-side cost for spilling debug info
   736           if( k < debug_start )
   737             // A USE costs twice block frequency (once for the Load, once
   738             // for a Load-delay).  Rematerialized uses only cost once.
   739             lrg._cost += (def->rematerialize() ? b->_freq : (b->_freq + b->_freq));
   740           // It is live now
   741           if( liveout.insert( x ) ) {
   742             // Newly live things assumed live from here to top of block
   743             lrg._area += cost;
   744             // Adjust register pressure
   745             if (lrg.mask().is_UP() && lrg.mask_size()) {
   746               if (lrg._is_float || lrg._is_vector) {
   747                 pressure[1] += lrg.reg_pressure();
   748                 if( pressure[1] > b->_freg_pressure )
   749                   b->_freg_pressure = pressure[1];
   750               } else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
   751                 pressure[0] += lrg.reg_pressure();
   752                 if( pressure[0] > b->_reg_pressure )
   753                   b->_reg_pressure = pressure[0];
   754               }
   755             }
   756             assert( pressure[0] == count_int_pressure  (&liveout), "" );
   757             assert( pressure[1] == count_float_pressure(&liveout), "" );
   758           }
   759           assert(!(lrg._area < 0.0), "negative spill area" );
   760         }
   761       }
   762     } // End of reverse pass over all instructions in block
   764     // If we run off the top of the block with high pressure and
   765     // never see a hi-to-low pressure transition, just record that
   766     // the whole block is high pressure.
   767     if( pressure[0] > (uint)INTPRESSURE   ) {
   768       hrp_index[0] = 0;
   769       if( pressure[0] > b->_reg_pressure )
   770         b->_reg_pressure = pressure[0];
   771     }
   772     if( pressure[1] > (uint)FLOATPRESSURE ) {
   773       hrp_index[1] = 0;
   774       if( pressure[1] > b->_freg_pressure )
   775         b->_freg_pressure = pressure[1];
   776     }
   778     // Compute high pressure indice; avoid landing in the middle of projnodes
   779     j = hrp_index[0];
   780     if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
   781       Node *cur = b->_nodes[j];
   782       while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
   783         j--;
   784         cur = b->_nodes[j];
   785       }
   786     }
   787     b->_ihrp_index = j;
   788     j = hrp_index[1];
   789     if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
   790       Node *cur = b->_nodes[j];
   791       while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
   792         j--;
   793         cur = b->_nodes[j];
   794       }
   795     }
   796     b->_fhrp_index = j;
   798 #ifndef PRODUCT
   799     // Gather Register Pressure Statistics
   800     if( PrintOptoStatistics ) {
   801       if( b->_reg_pressure > (uint)INTPRESSURE || b->_freg_pressure > (uint)FLOATPRESSURE )
   802         _high_pressure++;
   803       else
   804         _low_pressure++;
   805     }
   806 #endif
   807   } // End of for all blocks
   809   return must_spill;
   810 }

mercurial