src/cpu/sparc/vm/sharedRuntime_sparc.cpp

Wed, 24 Apr 2013 20:55:28 -0400

author
dlong
date
Wed, 24 Apr 2013 20:55:28 -0400
changeset 5000
a6e09d6dd8e5
parent 4323
f0c2369fda5a
child 5283
46c544b8fbfc
permissions
-rw-r--r--

8003853: specify offset of IC load in java_to_interp stub
Summary: refactored code to allow platform-specific differences
Reviewed-by: dlong, twisti
Contributed-by: Goetz Lindenmaier <goetz.lindenmaier@sap.com>

duke@435 1 /*
never@3500 2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4323 26 #include "asm/macroAssembler.inline.hpp"
stefank@2314 27 #include "code/debugInfoRec.hpp"
stefank@2314 28 #include "code/icBuffer.hpp"
stefank@2314 29 #include "code/vtableStubs.hpp"
stefank@2314 30 #include "interpreter/interpreter.hpp"
coleenp@4037 31 #include "oops/compiledICHolder.hpp"
stefank@2314 32 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 33 #include "runtime/sharedRuntime.hpp"
stefank@2314 34 #include "runtime/vframeArray.hpp"
stefank@2314 35 #include "vmreg_sparc.inline.hpp"
stefank@2314 36 #ifdef COMPILER1
stefank@2314 37 #include "c1/c1_Runtime1.hpp"
stefank@2314 38 #endif
stefank@2314 39 #ifdef COMPILER2
stefank@2314 40 #include "opto/runtime.hpp"
stefank@2314 41 #endif
stefank@2314 42 #ifdef SHARK
stefank@2314 43 #include "compiler/compileBroker.hpp"
stefank@2314 44 #include "shark/sharkCompiler.hpp"
stefank@2314 45 #endif
duke@435 46
duke@435 47 #define __ masm->
duke@435 48
duke@435 49
duke@435 50 class RegisterSaver {
duke@435 51
duke@435 52 // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
duke@435 53 // The Oregs are problematic. In the 32bit build the compiler can
duke@435 54 // have O registers live with 64 bit quantities. A window save will
duke@435 55 // cut the heads off of the registers. We have to do a very extensive
duke@435 56 // stack dance to save and restore these properly.
duke@435 57
duke@435 58 // Note that the Oregs problem only exists if we block at either a polling
duke@435 59 // page exception a compiled code safepoint that was not originally a call
duke@435 60 // or deoptimize following one of these kinds of safepoints.
duke@435 61
duke@435 62 // Lots of registers to save. For all builds, a window save will preserve
duke@435 63 // the %i and %l registers. For the 32-bit longs-in-two entries and 64-bit
duke@435 64 // builds a window-save will preserve the %o registers. In the LION build
duke@435 65 // we need to save the 64-bit %o registers which requires we save them
duke@435 66 // before the window-save (as then they become %i registers and get their
duke@435 67 // heads chopped off on interrupt). We have to save some %g registers here
duke@435 68 // as well.
duke@435 69 enum {
duke@435 70 // This frame's save area. Includes extra space for the native call:
duke@435 71 // vararg's layout space and the like. Briefly holds the caller's
duke@435 72 // register save area.
duke@435 73 call_args_area = frame::register_save_words_sp_offset +
duke@435 74 frame::memory_parameter_word_sp_offset*wordSize,
duke@435 75 // Make sure save locations are always 8 byte aligned.
duke@435 76 // can't use round_to because it doesn't produce compile time constant
duke@435 77 start_of_extra_save_area = ((call_args_area + 7) & ~7),
duke@435 78 g1_offset = start_of_extra_save_area, // g-regs needing saving
duke@435 79 g3_offset = g1_offset+8,
duke@435 80 g4_offset = g3_offset+8,
duke@435 81 g5_offset = g4_offset+8,
duke@435 82 o0_offset = g5_offset+8,
duke@435 83 o1_offset = o0_offset+8,
duke@435 84 o2_offset = o1_offset+8,
duke@435 85 o3_offset = o2_offset+8,
duke@435 86 o4_offset = o3_offset+8,
duke@435 87 o5_offset = o4_offset+8,
duke@435 88 start_of_flags_save_area = o5_offset+8,
duke@435 89 ccr_offset = start_of_flags_save_area,
duke@435 90 fsr_offset = ccr_offset + 8,
duke@435 91 d00_offset = fsr_offset+8, // Start of float save area
duke@435 92 register_save_size = d00_offset+8*32
duke@435 93 };
duke@435 94
duke@435 95
duke@435 96 public:
duke@435 97
duke@435 98 static int Oexception_offset() { return o0_offset; };
duke@435 99 static int G3_offset() { return g3_offset; };
duke@435 100 static int G5_offset() { return g5_offset; };
duke@435 101 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
duke@435 102 static void restore_live_registers(MacroAssembler* masm);
duke@435 103
duke@435 104 // During deoptimization only the result register need to be restored
duke@435 105 // all the other values have already been extracted.
duke@435 106
duke@435 107 static void restore_result_registers(MacroAssembler* masm);
duke@435 108 };
duke@435 109
duke@435 110 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
duke@435 111 // Record volatile registers as callee-save values in an OopMap so their save locations will be
duke@435 112 // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
duke@435 113 // deoptimization; see compiledVFrame::create_stack_value). The caller's I, L and O registers
duke@435 114 // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
duke@435 115 // (as the stub's I's) when the runtime routine called by the stub creates its frame.
duke@435 116 int i;
kvn@1442 117 // Always make the frame size 16 byte aligned.
duke@435 118 int frame_size = round_to(additional_frame_words + register_save_size, 16);
duke@435 119 // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
duke@435 120 int frame_size_in_slots = frame_size / sizeof(jint);
duke@435 121 // CodeBlob frame size is in words.
duke@435 122 *total_frame_words = frame_size / wordSize;
duke@435 123 // OopMap* map = new OopMap(*total_frame_words, 0);
duke@435 124 OopMap* map = new OopMap(frame_size_in_slots, 0);
duke@435 125
duke@435 126 #if !defined(_LP64)
duke@435 127
duke@435 128 // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
duke@435 129 __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
duke@435 130 __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
duke@435 131 __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
duke@435 132 __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
duke@435 133 __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
duke@435 134 __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
duke@435 135 #endif /* _LP64 */
duke@435 136
duke@435 137 __ save(SP, -frame_size, SP);
duke@435 138
duke@435 139 #ifndef _LP64
duke@435 140 // Reload the 64 bit Oregs. Although they are now Iregs we load them
duke@435 141 // to Oregs here to avoid interrupts cutting off their heads
duke@435 142
duke@435 143 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
duke@435 144 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
duke@435 145 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
duke@435 146 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
duke@435 147 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
duke@435 148 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
duke@435 149
duke@435 150 __ stx(O0, SP, o0_offset+STACK_BIAS);
duke@435 151 map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
duke@435 152
duke@435 153 __ stx(O1, SP, o1_offset+STACK_BIAS);
duke@435 154
duke@435 155 map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
duke@435 156
duke@435 157 __ stx(O2, SP, o2_offset+STACK_BIAS);
duke@435 158 map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
duke@435 159
duke@435 160 __ stx(O3, SP, o3_offset+STACK_BIAS);
duke@435 161 map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
duke@435 162
duke@435 163 __ stx(O4, SP, o4_offset+STACK_BIAS);
duke@435 164 map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
duke@435 165
duke@435 166 __ stx(O5, SP, o5_offset+STACK_BIAS);
duke@435 167 map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
duke@435 168 #endif /* _LP64 */
duke@435 169
coleenp@548 170
coleenp@548 171 #ifdef _LP64
coleenp@548 172 int debug_offset = 0;
coleenp@548 173 #else
coleenp@548 174 int debug_offset = 4;
coleenp@548 175 #endif
duke@435 176 // Save the G's
duke@435 177 __ stx(G1, SP, g1_offset+STACK_BIAS);
coleenp@548 178 map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
duke@435 179
duke@435 180 __ stx(G3, SP, g3_offset+STACK_BIAS);
coleenp@548 181 map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
duke@435 182
duke@435 183 __ stx(G4, SP, g4_offset+STACK_BIAS);
coleenp@548 184 map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
duke@435 185
duke@435 186 __ stx(G5, SP, g5_offset+STACK_BIAS);
coleenp@548 187 map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
duke@435 188
duke@435 189 // This is really a waste but we'll keep things as they were for now
duke@435 190 if (true) {
duke@435 191 #ifndef _LP64
duke@435 192 map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
duke@435 193 map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
duke@435 194 map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
duke@435 195 map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
duke@435 196 map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
duke@435 197 map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
duke@435 198 map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
duke@435 199 map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
duke@435 200 map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
duke@435 201 map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
coleenp@548 202 #endif /* _LP64 */
duke@435 203 }
duke@435 204
duke@435 205
duke@435 206 // Save the flags
duke@435 207 __ rdccr( G5 );
duke@435 208 __ stx(G5, SP, ccr_offset+STACK_BIAS);
duke@435 209 __ stxfsr(SP, fsr_offset+STACK_BIAS);
duke@435 210
kvn@1442 211 // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
duke@435 212 int offset = d00_offset;
kvn@1442 213 for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
duke@435 214 FloatRegister f = as_FloatRegister(i);
duke@435 215 __ stf(FloatRegisterImpl::D, f, SP, offset+STACK_BIAS);
kvn@1442 216 // Record as callee saved both halves of double registers (2 float registers).
duke@435 217 map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
kvn@1442 218 map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
duke@435 219 offset += sizeof(double);
duke@435 220 }
duke@435 221
duke@435 222 // And we're done.
duke@435 223
duke@435 224 return map;
duke@435 225 }
duke@435 226
duke@435 227
duke@435 228 // Pop the current frame and restore all the registers that we
duke@435 229 // saved.
duke@435 230 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
duke@435 231
duke@435 232 // Restore all the FP registers
kvn@1442 233 for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
duke@435 234 __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
duke@435 235 }
duke@435 236
duke@435 237 __ ldx(SP, ccr_offset+STACK_BIAS, G1);
duke@435 238 __ wrccr (G1) ;
duke@435 239
duke@435 240 // Restore the G's
duke@435 241 // Note that G2 (AKA GThread) must be saved and restored separately.
duke@435 242 // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
duke@435 243
duke@435 244 __ ldx(SP, g1_offset+STACK_BIAS, G1);
duke@435 245 __ ldx(SP, g3_offset+STACK_BIAS, G3);
duke@435 246 __ ldx(SP, g4_offset+STACK_BIAS, G4);
duke@435 247 __ ldx(SP, g5_offset+STACK_BIAS, G5);
duke@435 248
duke@435 249
duke@435 250 #if !defined(_LP64)
duke@435 251 // Restore the 64-bit O's.
duke@435 252 __ ldx(SP, o0_offset+STACK_BIAS, O0);
duke@435 253 __ ldx(SP, o1_offset+STACK_BIAS, O1);
duke@435 254 __ ldx(SP, o2_offset+STACK_BIAS, O2);
duke@435 255 __ ldx(SP, o3_offset+STACK_BIAS, O3);
duke@435 256 __ ldx(SP, o4_offset+STACK_BIAS, O4);
duke@435 257 __ ldx(SP, o5_offset+STACK_BIAS, O5);
duke@435 258
duke@435 259 // And temporarily place them in TLS
duke@435 260
duke@435 261 __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
duke@435 262 __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
duke@435 263 __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
duke@435 264 __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
duke@435 265 __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
duke@435 266 __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
duke@435 267 #endif /* _LP64 */
duke@435 268
duke@435 269 // Restore flags
duke@435 270
duke@435 271 __ ldxfsr(SP, fsr_offset+STACK_BIAS);
duke@435 272
duke@435 273 __ restore();
duke@435 274
duke@435 275 #if !defined(_LP64)
duke@435 276 // Now reload the 64bit Oregs after we've restore the window.
duke@435 277 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
duke@435 278 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
duke@435 279 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
duke@435 280 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
duke@435 281 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
duke@435 282 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
duke@435 283 #endif /* _LP64 */
duke@435 284
duke@435 285 }
duke@435 286
duke@435 287 // Pop the current frame and restore the registers that might be holding
duke@435 288 // a result.
duke@435 289 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
duke@435 290
duke@435 291 #if !defined(_LP64)
duke@435 292 // 32bit build returns longs in G1
duke@435 293 __ ldx(SP, g1_offset+STACK_BIAS, G1);
duke@435 294
duke@435 295 // Retrieve the 64-bit O's.
duke@435 296 __ ldx(SP, o0_offset+STACK_BIAS, O0);
duke@435 297 __ ldx(SP, o1_offset+STACK_BIAS, O1);
duke@435 298 // and save to TLS
duke@435 299 __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
duke@435 300 __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
duke@435 301 #endif /* _LP64 */
duke@435 302
duke@435 303 __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
duke@435 304
duke@435 305 __ restore();
duke@435 306
duke@435 307 #if !defined(_LP64)
duke@435 308 // Now reload the 64bit Oregs after we've restore the window.
duke@435 309 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
duke@435 310 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
duke@435 311 #endif /* _LP64 */
duke@435 312
duke@435 313 }
duke@435 314
kvn@4103 315 // Is vector's size (in bytes) bigger than a size saved by default?
kvn@4103 316 // 8 bytes FP registers are saved by default on SPARC.
kvn@4103 317 bool SharedRuntime::is_wide_vector(int size) {
kvn@4103 318 // Note, MaxVectorSize == 8 on SPARC.
kvn@4103 319 assert(size <= 8, err_msg_res("%d bytes vectors are not supported", size));
kvn@4103 320 return size > 8;
kvn@4103 321 }
kvn@4103 322
duke@435 323 // The java_calling_convention describes stack locations as ideal slots on
duke@435 324 // a frame with no abi restrictions. Since we must observe abi restrictions
duke@435 325 // (like the placement of the register window) the slots must be biased by
duke@435 326 // the following value.
duke@435 327 static int reg2offset(VMReg r) {
duke@435 328 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
duke@435 329 }
duke@435 330
never@3500 331 static VMRegPair reg64_to_VMRegPair(Register r) {
never@3500 332 VMRegPair ret;
never@3500 333 if (wordSize == 8) {
never@3500 334 ret.set2(r->as_VMReg());
never@3500 335 } else {
never@3500 336 ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
never@3500 337 }
never@3500 338 return ret;
never@3500 339 }
never@3500 340
duke@435 341 // ---------------------------------------------------------------------------
duke@435 342 // Read the array of BasicTypes from a signature, and compute where the
duke@435 343 // arguments should go. Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
duke@435 344 // quantities. Values less than VMRegImpl::stack0 are registers, those above
duke@435 345 // refer to 4-byte stack slots. All stack slots are based off of the window
duke@435 346 // top. VMRegImpl::stack0 refers to the first slot past the 16-word window,
duke@435 347 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
duke@435 348 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
duke@435 349 // integer registers. Values 64-95 are the (32-bit only) float registers.
duke@435 350 // Each 32-bit quantity is given its own number, so the integer registers
duke@435 351 // (in either 32- or 64-bit builds) use 2 numbers. For example, there is
duke@435 352 // an O0-low and an O0-high. Essentially, all int register numbers are doubled.
duke@435 353
duke@435 354 // Register results are passed in O0-O5, for outgoing call arguments. To
duke@435 355 // convert to incoming arguments, convert all O's to I's. The regs array
duke@435 356 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
duke@435 357 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
duke@435 358 // 32-bit value was passed). If both are VMRegImpl::Bad(), it means no value was
duke@435 359 // passed (used as a placeholder for the other half of longs and doubles in
duke@435 360 // the 64-bit build). regs[].second() is either VMRegImpl::Bad() or regs[].second() is
duke@435 361 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
duke@435 362 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
duke@435 363 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
duke@435 364 // same VMRegPair.
duke@435 365
duke@435 366 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
duke@435 367 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
duke@435 368 // units regardless of build.
duke@435 369
duke@435 370
duke@435 371 // ---------------------------------------------------------------------------
duke@435 372 // The compiled Java calling convention. The Java convention always passes
duke@435 373 // 64-bit values in adjacent aligned locations (either registers or stack),
twisti@4101 374 // floats in float registers and doubles in aligned float pairs. There is
twisti@4101 375 // no backing varargs store for values in registers.
twisti@4101 376 // In the 32-bit build, longs are passed on the stack (cannot be
duke@435 377 // passed in I's, because longs in I's get their heads chopped off at
duke@435 378 // interrupt).
duke@435 379 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
duke@435 380 VMRegPair *regs,
duke@435 381 int total_args_passed,
duke@435 382 int is_outgoing) {
duke@435 383 assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
duke@435 384
duke@435 385 const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
duke@435 386 const int flt_reg_max = 8;
twisti@4101 387
duke@435 388 int int_reg = 0;
duke@435 389 int flt_reg = 0;
twisti@4101 390 int slot = 0;
twisti@4101 391
duke@435 392 for (int i = 0; i < total_args_passed; i++) {
duke@435 393 switch (sig_bt[i]) {
duke@435 394 case T_INT:
duke@435 395 case T_SHORT:
duke@435 396 case T_CHAR:
duke@435 397 case T_BYTE:
duke@435 398 case T_BOOLEAN:
duke@435 399 #ifndef _LP64
duke@435 400 case T_OBJECT:
duke@435 401 case T_ARRAY:
duke@435 402 case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
duke@435 403 #endif // _LP64
duke@435 404 if (int_reg < int_reg_max) {
duke@435 405 Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
duke@435 406 regs[i].set1(r->as_VMReg());
duke@435 407 } else {
twisti@4101 408 regs[i].set1(VMRegImpl::stack2reg(slot++));
duke@435 409 }
duke@435 410 break;
duke@435 411
duke@435 412 #ifdef _LP64
twisti@4101 413 case T_LONG:
twisti@4101 414 assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
twisti@4101 415 // fall-through
duke@435 416 case T_OBJECT:
duke@435 417 case T_ARRAY:
duke@435 418 case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
duke@435 419 if (int_reg < int_reg_max) {
duke@435 420 Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
duke@435 421 regs[i].set2(r->as_VMReg());
duke@435 422 } else {
twisti@4101 423 slot = round_to(slot, 2); // align
twisti@4101 424 regs[i].set2(VMRegImpl::stack2reg(slot));
twisti@4101 425 slot += 2;
duke@435 426 }
duke@435 427 break;
twisti@4101 428 #else
duke@435 429 case T_LONG:
duke@435 430 assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
twisti@4101 431 // On 32-bit SPARC put longs always on the stack to keep the pressure off
twisti@4101 432 // integer argument registers. They should be used for oops.
twisti@4101 433 slot = round_to(slot, 2); // align
twisti@4101 434 regs[i].set2(VMRegImpl::stack2reg(slot));
twisti@4101 435 slot += 2;
twisti@4101 436 #endif
duke@435 437 break;
duke@435 438
duke@435 439 case T_FLOAT:
twisti@4101 440 if (flt_reg < flt_reg_max) {
twisti@4101 441 FloatRegister r = as_FloatRegister(flt_reg++);
twisti@4101 442 regs[i].set1(r->as_VMReg());
twisti@4101 443 } else {
twisti@4101 444 regs[i].set1(VMRegImpl::stack2reg(slot++));
twisti@4101 445 }
duke@435 446 break;
twisti@4101 447
duke@435 448 case T_DOUBLE:
duke@435 449 assert(sig_bt[i+1] == T_VOID, "expecting half");
twisti@4101 450 if (round_to(flt_reg, 2) + 1 < flt_reg_max) {
twisti@4101 451 flt_reg = round_to(flt_reg, 2); // align
twisti@4101 452 FloatRegister r = as_FloatRegister(flt_reg);
twisti@4101 453 regs[i].set2(r->as_VMReg());
twisti@4101 454 flt_reg += 2;
duke@435 455 } else {
twisti@4101 456 slot = round_to(slot, 2); // align
twisti@4101 457 regs[i].set2(VMRegImpl::stack2reg(slot));
twisti@4101 458 slot += 2;
duke@435 459 }
duke@435 460 break;
twisti@4101 461
twisti@4101 462 case T_VOID:
twisti@4101 463 regs[i].set_bad(); // Halves of longs & doubles
twisti@4101 464 break;
twisti@4101 465
duke@435 466 default:
twisti@4101 467 fatal(err_msg_res("unknown basic type %d", sig_bt[i]));
twisti@4101 468 break;
duke@435 469 }
duke@435 470 }
duke@435 471
duke@435 472 // retun the amount of stack space these arguments will need.
twisti@4101 473 return slot;
duke@435 474 }
duke@435 475
twisti@1441 476 // Helper class mostly to avoid passing masm everywhere, and handle
twisti@1441 477 // store displacement overflow logic.
duke@435 478 class AdapterGenerator {
duke@435 479 MacroAssembler *masm;
duke@435 480 Register Rdisp;
duke@435 481 void set_Rdisp(Register r) { Rdisp = r; }
duke@435 482
duke@435 483 void patch_callers_callsite();
duke@435 484
duke@435 485 // base+st_off points to top of argument
twisti@1861 486 int arg_offset(const int st_off) { return st_off; }
duke@435 487 int next_arg_offset(const int st_off) {
twisti@1861 488 return st_off - Interpreter::stackElementSize;
twisti@1441 489 }
twisti@1441 490
twisti@1441 491 // Argument slot values may be loaded first into a register because
twisti@1441 492 // they might not fit into displacement.
twisti@1441 493 RegisterOrConstant arg_slot(const int st_off);
twisti@1441 494 RegisterOrConstant next_arg_slot(const int st_off);
twisti@1441 495
duke@435 496 // Stores long into offset pointed to by base
duke@435 497 void store_c2i_long(Register r, Register base,
duke@435 498 const int st_off, bool is_stack);
duke@435 499 void store_c2i_object(Register r, Register base,
duke@435 500 const int st_off);
duke@435 501 void store_c2i_int(Register r, Register base,
duke@435 502 const int st_off);
duke@435 503 void store_c2i_double(VMReg r_2,
duke@435 504 VMReg r_1, Register base, const int st_off);
duke@435 505 void store_c2i_float(FloatRegister f, Register base,
duke@435 506 const int st_off);
duke@435 507
duke@435 508 public:
duke@435 509 void gen_c2i_adapter(int total_args_passed,
duke@435 510 // VMReg max_arg,
duke@435 511 int comp_args_on_stack, // VMRegStackSlots
duke@435 512 const BasicType *sig_bt,
duke@435 513 const VMRegPair *regs,
duke@435 514 Label& skip_fixup);
duke@435 515 void gen_i2c_adapter(int total_args_passed,
duke@435 516 // VMReg max_arg,
duke@435 517 int comp_args_on_stack, // VMRegStackSlots
duke@435 518 const BasicType *sig_bt,
duke@435 519 const VMRegPair *regs);
duke@435 520
duke@435 521 AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
duke@435 522 };
duke@435 523
duke@435 524
duke@435 525 // Patch the callers callsite with entry to compiled code if it exists.
duke@435 526 void AdapterGenerator::patch_callers_callsite() {
duke@435 527 Label L;
coleenp@4037 528 __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
kvn@3037 529 __ br_null(G3_scratch, false, Assembler::pt, L);
twisti@4101 530 __ delayed()->nop();
duke@435 531 // Call into the VM to patch the caller, then jump to compiled callee
duke@435 532 __ save_frame(4); // Args in compiled layout; do not blow them
duke@435 533
duke@435 534 // Must save all the live Gregs the list is:
duke@435 535 // G1: 1st Long arg (32bit build)
duke@435 536 // G2: global allocated to TLS
duke@435 537 // G3: used in inline cache check (scratch)
duke@435 538 // G4: 2nd Long arg (32bit build);
coleenp@4037 539 // G5: used in inline cache check (Method*)
duke@435 540
duke@435 541 // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
duke@435 542
duke@435 543 #ifdef _LP64
duke@435 544 // mov(s,d)
duke@435 545 __ mov(G1, L1);
duke@435 546 __ mov(G4, L4);
duke@435 547 __ mov(G5_method, L5);
duke@435 548 __ mov(G5_method, O0); // VM needs target method
duke@435 549 __ mov(I7, O1); // VM needs caller's callsite
duke@435 550 // Must be a leaf call...
duke@435 551 // can be very far once the blob has been relocated
twisti@1162 552 AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
duke@435 553 __ relocate(relocInfo::runtime_call_type);
twisti@1162 554 __ jumpl_to(dest, O7, O7);
duke@435 555 __ delayed()->mov(G2_thread, L7_thread_cache);
duke@435 556 __ mov(L7_thread_cache, G2_thread);
duke@435 557 __ mov(L1, G1);
duke@435 558 __ mov(L4, G4);
duke@435 559 __ mov(L5, G5_method);
duke@435 560 #else
duke@435 561 __ stx(G1, FP, -8 + STACK_BIAS);
duke@435 562 __ stx(G4, FP, -16 + STACK_BIAS);
duke@435 563 __ mov(G5_method, L5);
duke@435 564 __ mov(G5_method, O0); // VM needs target method
duke@435 565 __ mov(I7, O1); // VM needs caller's callsite
duke@435 566 // Must be a leaf call...
duke@435 567 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
duke@435 568 __ delayed()->mov(G2_thread, L7_thread_cache);
duke@435 569 __ mov(L7_thread_cache, G2_thread);
duke@435 570 __ ldx(FP, -8 + STACK_BIAS, G1);
duke@435 571 __ ldx(FP, -16 + STACK_BIAS, G4);
duke@435 572 __ mov(L5, G5_method);
duke@435 573 #endif /* _LP64 */
duke@435 574
duke@435 575 __ restore(); // Restore args
duke@435 576 __ bind(L);
duke@435 577 }
duke@435 578
twisti@1441 579
twisti@1441 580 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
twisti@1441 581 RegisterOrConstant roc(arg_offset(st_off));
twisti@1441 582 return __ ensure_simm13_or_reg(roc, Rdisp);
duke@435 583 }
duke@435 584
twisti@1441 585 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
twisti@1441 586 RegisterOrConstant roc(next_arg_offset(st_off));
twisti@1441 587 return __ ensure_simm13_or_reg(roc, Rdisp);
duke@435 588 }
twisti@1441 589
twisti@1441 590
duke@435 591 // Stores long into offset pointed to by base
duke@435 592 void AdapterGenerator::store_c2i_long(Register r, Register base,
duke@435 593 const int st_off, bool is_stack) {
duke@435 594 #ifdef _LP64
duke@435 595 // In V9, longs are given 2 64-bit slots in the interpreter, but the
duke@435 596 // data is passed in only 1 slot.
duke@435 597 __ stx(r, base, next_arg_slot(st_off));
duke@435 598 #else
ysr@777 599 #ifdef COMPILER2
duke@435 600 // Misaligned store of 64-bit data
duke@435 601 __ stw(r, base, arg_slot(st_off)); // lo bits
duke@435 602 __ srlx(r, 32, r);
duke@435 603 __ stw(r, base, next_arg_slot(st_off)); // hi bits
duke@435 604 #else
duke@435 605 if (is_stack) {
duke@435 606 // Misaligned store of 64-bit data
duke@435 607 __ stw(r, base, arg_slot(st_off)); // lo bits
duke@435 608 __ srlx(r, 32, r);
duke@435 609 __ stw(r, base, next_arg_slot(st_off)); // hi bits
duke@435 610 } else {
duke@435 611 __ stw(r->successor(), base, arg_slot(st_off) ); // lo bits
duke@435 612 __ stw(r , base, next_arg_slot(st_off)); // hi bits
duke@435 613 }
duke@435 614 #endif // COMPILER2
ysr@777 615 #endif // _LP64
duke@435 616 }
duke@435 617
duke@435 618 void AdapterGenerator::store_c2i_object(Register r, Register base,
duke@435 619 const int st_off) {
duke@435 620 __ st_ptr (r, base, arg_slot(st_off));
duke@435 621 }
duke@435 622
duke@435 623 void AdapterGenerator::store_c2i_int(Register r, Register base,
duke@435 624 const int st_off) {
duke@435 625 __ st (r, base, arg_slot(st_off));
duke@435 626 }
duke@435 627
duke@435 628 // Stores into offset pointed to by base
duke@435 629 void AdapterGenerator::store_c2i_double(VMReg r_2,
duke@435 630 VMReg r_1, Register base, const int st_off) {
duke@435 631 #ifdef _LP64
duke@435 632 // In V9, doubles are given 2 64-bit slots in the interpreter, but the
duke@435 633 // data is passed in only 1 slot.
duke@435 634 __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
duke@435 635 #else
duke@435 636 // Need to marshal 64-bit value from misaligned Lesp loads
duke@435 637 __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
duke@435 638 __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
duke@435 639 #endif
duke@435 640 }
duke@435 641
duke@435 642 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
duke@435 643 const int st_off) {
duke@435 644 __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
duke@435 645 }
duke@435 646
duke@435 647 void AdapterGenerator::gen_c2i_adapter(
duke@435 648 int total_args_passed,
duke@435 649 // VMReg max_arg,
duke@435 650 int comp_args_on_stack, // VMRegStackSlots
duke@435 651 const BasicType *sig_bt,
duke@435 652 const VMRegPair *regs,
twisti@4101 653 Label& L_skip_fixup) {
duke@435 654
duke@435 655 // Before we get into the guts of the C2I adapter, see if we should be here
duke@435 656 // at all. We've come from compiled code and are attempting to jump to the
duke@435 657 // interpreter, which means the caller made a static call to get here
duke@435 658 // (vcalls always get a compiled target if there is one). Check for a
duke@435 659 // compiled target. If there is one, we need to patch the caller's call.
duke@435 660 // However we will run interpreted if we come thru here. The next pass
duke@435 661 // thru the call site will run compiled. If we ran compiled here then
duke@435 662 // we can (theorectically) do endless i2c->c2i->i2c transitions during
duke@435 663 // deopt/uncommon trap cycles. If we always go interpreted here then
duke@435 664 // we can have at most one and don't need to play any tricks to keep
duke@435 665 // from endlessly growing the stack.
duke@435 666 //
duke@435 667 // Actually if we detected that we had an i2c->c2i transition here we
duke@435 668 // ought to be able to reset the world back to the state of the interpreted
duke@435 669 // call and not bother building another interpreter arg area. We don't
duke@435 670 // do that at this point.
duke@435 671
duke@435 672 patch_callers_callsite();
duke@435 673
twisti@4101 674 __ bind(L_skip_fixup);
duke@435 675
duke@435 676 // Since all args are passed on the stack, total_args_passed*wordSize is the
duke@435 677 // space we need. Add in varargs area needed by the interpreter. Round up
duke@435 678 // to stack alignment.
twisti@1861 679 const int arg_size = total_args_passed * Interpreter::stackElementSize;
duke@435 680 const int varargs_area =
duke@435 681 (frame::varargs_offset - frame::register_save_words)*wordSize;
duke@435 682 const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
duke@435 683
twisti@4101 684 const int bias = STACK_BIAS;
duke@435 685 const int interp_arg_offset = frame::varargs_offset*wordSize +
twisti@1861 686 (total_args_passed-1)*Interpreter::stackElementSize;
duke@435 687
twisti@4101 688 const Register base = SP;
twisti@4101 689
twisti@4101 690 // Make some extra space on the stack.
twisti@4101 691 __ sub(SP, __ ensure_simm13_or_reg(extraspace, G3_scratch), SP);
duke@435 692 set_Rdisp(G3_scratch);
twisti@4101 693
twisti@4101 694 // Write the args into the outgoing interpreter space.
twisti@4101 695 for (int i = 0; i < total_args_passed; i++) {
twisti@1861 696 const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
duke@435 697 VMReg r_1 = regs[i].first();
duke@435 698 VMReg r_2 = regs[i].second();
duke@435 699 if (!r_1->is_valid()) {
duke@435 700 assert(!r_2->is_valid(), "");
duke@435 701 continue;
duke@435 702 }
duke@435 703 if (r_1->is_stack()) { // Pretend stack targets are loaded into G1
twisti@4101 704 RegisterOrConstant ld_off = reg2offset(r_1) + extraspace + bias;
twisti@4101 705 ld_off = __ ensure_simm13_or_reg(ld_off, Rdisp);
duke@435 706 r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
duke@435 707 if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
duke@435 708 else __ ldx(base, ld_off, G1_scratch);
duke@435 709 }
duke@435 710
duke@435 711 if (r_1->is_Register()) {
duke@435 712 Register r = r_1->as_Register()->after_restore();
duke@435 713 if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
duke@435 714 store_c2i_object(r, base, st_off);
duke@435 715 } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
duke@435 716 store_c2i_long(r, base, st_off, r_2->is_stack());
duke@435 717 } else {
duke@435 718 store_c2i_int(r, base, st_off);
duke@435 719 }
duke@435 720 } else {
duke@435 721 assert(r_1->is_FloatRegister(), "");
duke@435 722 if (sig_bt[i] == T_FLOAT) {
duke@435 723 store_c2i_float(r_1->as_FloatRegister(), base, st_off);
duke@435 724 } else {
duke@435 725 assert(sig_bt[i] == T_DOUBLE, "wrong type");
duke@435 726 store_c2i_double(r_2, r_1, base, st_off);
duke@435 727 }
duke@435 728 }
duke@435 729 }
duke@435 730
twisti@4101 731 // Load the interpreter entry point.
coleenp@4037 732 __ ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), G3_scratch);
duke@435 733
duke@435 734 // Pass O5_savedSP as an argument to the interpreter.
duke@435 735 // The interpreter will restore SP to this value before returning.
twisti@4101 736 __ add(SP, __ ensure_simm13_or_reg(extraspace, G1), O5_savedSP);
duke@435 737
duke@435 738 __ mov((frame::varargs_offset)*wordSize -
twisti@1861 739 1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
duke@435 740 // Jump to the interpreter just as if interpreter was doing it.
duke@435 741 __ jmpl(G3_scratch, 0, G0);
duke@435 742 // Setup Lesp for the call. Cannot actually set Lesp as the current Lesp
duke@435 743 // (really L0) is in use by the compiled frame as a generic temp. However,
duke@435 744 // the interpreter does not know where its args are without some kind of
duke@435 745 // arg pointer being passed in. Pass it in Gargs.
duke@435 746 __ delayed()->add(SP, G1, Gargs);
duke@435 747 }
duke@435 748
twisti@3969 749 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, Register temp2_reg,
twisti@3969 750 address code_start, address code_end,
twisti@3969 751 Label& L_ok) {
twisti@3969 752 Label L_fail;
twisti@3969 753 __ set(ExternalAddress(code_start), temp_reg);
twisti@3969 754 __ set(pointer_delta(code_end, code_start, 1), temp2_reg);
twisti@3969 755 __ cmp(pc_reg, temp_reg);
twisti@3969 756 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pn, L_fail);
twisti@3969 757 __ delayed()->add(temp_reg, temp2_reg, temp_reg);
twisti@3969 758 __ cmp(pc_reg, temp_reg);
twisti@3969 759 __ cmp_and_brx_short(pc_reg, temp_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
twisti@3969 760 __ bind(L_fail);
twisti@3969 761 }
twisti@3969 762
duke@435 763 void AdapterGenerator::gen_i2c_adapter(
duke@435 764 int total_args_passed,
duke@435 765 // VMReg max_arg,
duke@435 766 int comp_args_on_stack, // VMRegStackSlots
duke@435 767 const BasicType *sig_bt,
duke@435 768 const VMRegPair *regs) {
duke@435 769
duke@435 770 // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
duke@435 771 // layout. Lesp was saved by the calling I-frame and will be restored on
duke@435 772 // return. Meanwhile, outgoing arg space is all owned by the callee
duke@435 773 // C-frame, so we can mangle it at will. After adjusting the frame size,
duke@435 774 // hoist register arguments and repack other args according to the compiled
duke@435 775 // code convention. Finally, end in a jump to the compiled code. The entry
duke@435 776 // point address is the start of the buffer.
duke@435 777
duke@435 778 // We will only enter here from an interpreted frame and never from after
duke@435 779 // passing thru a c2i. Azul allowed this but we do not. If we lose the
duke@435 780 // race and use a c2i we will remain interpreted for the race loser(s).
duke@435 781 // This removes all sorts of headaches on the x86 side and also eliminates
duke@435 782 // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
duke@435 783
twisti@3969 784 // More detail:
twisti@3969 785 // Adapters can be frameless because they do not require the caller
twisti@3969 786 // to perform additional cleanup work, such as correcting the stack pointer.
twisti@3969 787 // An i2c adapter is frameless because the *caller* frame, which is interpreted,
twisti@3969 788 // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
twisti@3969 789 // even if a callee has modified the stack pointer.
twisti@3969 790 // A c2i adapter is frameless because the *callee* frame, which is interpreted,
twisti@3969 791 // routinely repairs its caller's stack pointer (from sender_sp, which is set
twisti@3969 792 // up via the senderSP register).
twisti@3969 793 // In other words, if *either* the caller or callee is interpreted, we can
twisti@3969 794 // get the stack pointer repaired after a call.
twisti@3969 795 // This is why c2i and i2c adapters cannot be indefinitely composed.
twisti@3969 796 // In particular, if a c2i adapter were to somehow call an i2c adapter,
twisti@3969 797 // both caller and callee would be compiled methods, and neither would
twisti@3969 798 // clean up the stack pointer changes performed by the two adapters.
twisti@3969 799 // If this happens, control eventually transfers back to the compiled
twisti@3969 800 // caller, but with an uncorrected stack, causing delayed havoc.
twisti@3969 801
twisti@3969 802 if (VerifyAdapterCalls &&
twisti@3969 803 (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
twisti@3969 804 // So, let's test for cascading c2i/i2c adapters right now.
twisti@3969 805 // assert(Interpreter::contains($return_addr) ||
twisti@3969 806 // StubRoutines::contains($return_addr),
twisti@3969 807 // "i2c adapter must return to an interpreter frame");
twisti@3969 808 __ block_comment("verify_i2c { ");
twisti@3969 809 Label L_ok;
twisti@3969 810 if (Interpreter::code() != NULL)
twisti@3969 811 range_check(masm, O7, O0, O1,
twisti@3969 812 Interpreter::code()->code_start(), Interpreter::code()->code_end(),
twisti@3969 813 L_ok);
twisti@3969 814 if (StubRoutines::code1() != NULL)
twisti@3969 815 range_check(masm, O7, O0, O1,
twisti@3969 816 StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
twisti@3969 817 L_ok);
twisti@3969 818 if (StubRoutines::code2() != NULL)
twisti@3969 819 range_check(masm, O7, O0, O1,
twisti@3969 820 StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
twisti@3969 821 L_ok);
twisti@3969 822 const char* msg = "i2c adapter must return to an interpreter frame";
twisti@3969 823 __ block_comment(msg);
twisti@3969 824 __ stop(msg);
twisti@3969 825 __ bind(L_ok);
twisti@3969 826 __ block_comment("} verify_i2ce ");
twisti@3969 827 }
twisti@3969 828
duke@435 829 // As you can see from the list of inputs & outputs there are not a lot
duke@435 830 // of temp registers to work with: mostly G1, G3 & G4.
duke@435 831
duke@435 832 // Inputs:
duke@435 833 // G2_thread - TLS
duke@435 834 // G5_method - Method oop
jrose@1145 835 // G4 (Gargs) - Pointer to interpreter's args
jrose@1145 836 // O0..O4 - free for scratch
jrose@1145 837 // O5_savedSP - Caller's saved SP, to be restored if needed
duke@435 838 // O6 - Current SP!
duke@435 839 // O7 - Valid return address
jrose@1145 840 // L0-L7, I0-I7 - Caller's temps (no frame pushed yet)
duke@435 841
duke@435 842 // Outputs:
duke@435 843 // G2_thread - TLS
duke@435 844 // O0-O5 - Outgoing args in compiled layout
duke@435 845 // O6 - Adjusted or restored SP
duke@435 846 // O7 - Valid return address
twisti@1919 847 // L0-L7, I0-I7 - Caller's temps (no frame pushed yet)
duke@435 848 // F0-F7 - more outgoing args
duke@435 849
duke@435 850
jrose@1145 851 // Gargs is the incoming argument base, and also an outgoing argument.
duke@435 852 __ sub(Gargs, BytesPerWord, Gargs);
duke@435 853
duke@435 854 // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
duke@435 855 // WITH O7 HOLDING A VALID RETURN PC
duke@435 856 //
duke@435 857 // | |
duke@435 858 // : java stack :
duke@435 859 // | |
duke@435 860 // +--------------+ <--- start of outgoing args
duke@435 861 // | receiver | |
duke@435 862 // : rest of args : |---size is java-arg-words
duke@435 863 // | | |
duke@435 864 // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
duke@435 865 // | | |
duke@435 866 // : unused : |---Space for max Java stack, plus stack alignment
duke@435 867 // | | |
duke@435 868 // +--------------+ <--- SP + 16*wordsize
duke@435 869 // | |
duke@435 870 // : window :
duke@435 871 // | |
duke@435 872 // +--------------+ <--- SP
duke@435 873
duke@435 874 // WE REPACK THE STACK. We use the common calling convention layout as
duke@435 875 // discovered by calling SharedRuntime::calling_convention. We assume it
duke@435 876 // causes an arbitrary shuffle of memory, which may require some register
duke@435 877 // temps to do the shuffle. We hope for (and optimize for) the case where
duke@435 878 // temps are not needed. We may have to resize the stack slightly, in case
duke@435 879 // we need alignment padding (32-bit interpreter can pass longs & doubles
duke@435 880 // misaligned, but the compilers expect them aligned).
duke@435 881 //
duke@435 882 // | |
duke@435 883 // : java stack :
duke@435 884 // | |
duke@435 885 // +--------------+ <--- start of outgoing args
duke@435 886 // | pad, align | |
duke@435 887 // +--------------+ |
twisti@4101 888 // | ints, longs, | |
twisti@4101 889 // | floats, | |---Outgoing stack args.
twisti@4101 890 // : doubles : | First few args in registers.
twisti@4101 891 // | | |
duke@435 892 // +--------------+ <--- SP' + 16*wordsize
duke@435 893 // | |
duke@435 894 // : window :
duke@435 895 // | |
duke@435 896 // +--------------+ <--- SP'
duke@435 897
duke@435 898 // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
duke@435 899 // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
duke@435 900 // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
duke@435 901
duke@435 902 // Cut-out for having no stack args. Since up to 6 args are passed
duke@435 903 // in registers, we will commonly have no stack args.
duke@435 904 if (comp_args_on_stack > 0) {
duke@435 905 // Convert VMReg stack slots to words.
duke@435 906 int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
duke@435 907 // Round up to miminum stack alignment, in wordSize
duke@435 908 comp_words_on_stack = round_to(comp_words_on_stack, 2);
duke@435 909 // Now compute the distance from Lesp to SP. This calculation does not
duke@435 910 // include the space for total_args_passed because Lesp has not yet popped
duke@435 911 // the arguments.
duke@435 912 __ sub(SP, (comp_words_on_stack)*wordSize, SP);
duke@435 913 }
duke@435 914
duke@435 915 // Now generate the shuffle code. Pick up all register args and move the
duke@435 916 // rest through G1_scratch.
twisti@4101 917 for (int i = 0; i < total_args_passed; i++) {
duke@435 918 if (sig_bt[i] == T_VOID) {
duke@435 919 // Longs and doubles are passed in native word order, but misaligned
duke@435 920 // in the 32-bit build.
duke@435 921 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 922 continue;
duke@435 923 }
duke@435 924
duke@435 925 // Pick up 0, 1 or 2 words from Lesp+offset. Assume mis-aligned in the
duke@435 926 // 32-bit build and aligned in the 64-bit build. Look for the obvious
duke@435 927 // ldx/lddf optimizations.
duke@435 928
duke@435 929 // Load in argument order going down.
twisti@1861 930 const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
duke@435 931 set_Rdisp(G1_scratch);
duke@435 932
duke@435 933 VMReg r_1 = regs[i].first();
duke@435 934 VMReg r_2 = regs[i].second();
duke@435 935 if (!r_1->is_valid()) {
duke@435 936 assert(!r_2->is_valid(), "");
duke@435 937 continue;
duke@435 938 }
duke@435 939 if (r_1->is_stack()) { // Pretend stack targets are loaded into F8/F9
duke@435 940 r_1 = F8->as_VMReg(); // as part of the load/store shuffle
duke@435 941 if (r_2->is_valid()) r_2 = r_1->next();
duke@435 942 }
duke@435 943 if (r_1->is_Register()) { // Register argument
duke@435 944 Register r = r_1->as_Register()->after_restore();
duke@435 945 if (!r_2->is_valid()) {
duke@435 946 __ ld(Gargs, arg_slot(ld_off), r);
duke@435 947 } else {
duke@435 948 #ifdef _LP64
duke@435 949 // In V9, longs are given 2 64-bit slots in the interpreter, but the
duke@435 950 // data is passed in only 1 slot.
twisti@1441 951 RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
duke@435 952 next_arg_slot(ld_off) : arg_slot(ld_off);
duke@435 953 __ ldx(Gargs, slot, r);
duke@435 954 #else
twisti@4101 955 fatal("longs should be on stack");
duke@435 956 #endif
duke@435 957 }
duke@435 958 } else {
duke@435 959 assert(r_1->is_FloatRegister(), "");
duke@435 960 if (!r_2->is_valid()) {
twisti@4101 961 __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
duke@435 962 } else {
duke@435 963 #ifdef _LP64
duke@435 964 // In V9, doubles are given 2 64-bit slots in the interpreter, but the
duke@435 965 // data is passed in only 1 slot. This code also handles longs that
duke@435 966 // are passed on the stack, but need a stack-to-stack move through a
duke@435 967 // spare float register.
twisti@1441 968 RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
duke@435 969 next_arg_slot(ld_off) : arg_slot(ld_off);
twisti@4101 970 __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
duke@435 971 #else
duke@435 972 // Need to marshal 64-bit value from misaligned Lesp loads
duke@435 973 __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
twisti@4101 974 __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
duke@435 975 #endif
duke@435 976 }
duke@435 977 }
duke@435 978 // Was the argument really intended to be on the stack, but was loaded
duke@435 979 // into F8/F9?
duke@435 980 if (regs[i].first()->is_stack()) {
duke@435 981 assert(r_1->as_FloatRegister() == F8, "fix this code");
duke@435 982 // Convert stack slot to an SP offset
duke@435 983 int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
duke@435 984 // Store down the shuffled stack word. Target address _is_ aligned.
twisti@1441 985 RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
twisti@1441 986 if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
twisti@1441 987 else __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
duke@435 988 }
duke@435 989 }
twisti@4101 990
twisti@4101 991 // Jump to the compiled code just as if compiled code was doing it.
twisti@4101 992 __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3);
twisti@4101 993
twisti@4101 994 // 6243940 We might end up in handle_wrong_method if
twisti@4101 995 // the callee is deoptimized as we race thru here. If that
twisti@4101 996 // happens we don't want to take a safepoint because the
twisti@4101 997 // caller frame will look interpreted and arguments are now
twisti@4101 998 // "compiled" so it is much better to make this transition
twisti@4101 999 // invisible to the stack walking code. Unfortunately if
twisti@4101 1000 // we try and find the callee by normal means a safepoint
twisti@4101 1001 // is possible. So we stash the desired callee in the thread
twisti@4101 1002 // and the vm will find there should this case occur.
twisti@4101 1003 Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
twisti@4101 1004 __ st_ptr(G5_method, callee_target_addr);
twisti@4101 1005
twisti@4101 1006 if (StressNonEntrant) {
twisti@4101 1007 // Open a big window for deopt failure
twisti@4101 1008 __ save_frame(0);
twisti@4101 1009 __ mov(G0, L0);
twisti@4101 1010 Label loop;
twisti@4101 1011 __ bind(loop);
twisti@4101 1012 __ sub(L0, 1, L0);
twisti@4101 1013 __ br_null_short(L0, Assembler::pt, loop);
twisti@4101 1014 __ restore();
duke@435 1015 }
twisti@4101 1016
twisti@4101 1017 __ jmpl(G3, 0, G0);
twisti@4101 1018 __ delayed()->nop();
duke@435 1019 }
duke@435 1020
duke@435 1021 // ---------------------------------------------------------------
duke@435 1022 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
duke@435 1023 int total_args_passed,
duke@435 1024 // VMReg max_arg,
duke@435 1025 int comp_args_on_stack, // VMRegStackSlots
duke@435 1026 const BasicType *sig_bt,
never@1622 1027 const VMRegPair *regs,
never@1622 1028 AdapterFingerPrint* fingerprint) {
duke@435 1029 address i2c_entry = __ pc();
duke@435 1030
duke@435 1031 AdapterGenerator agen(masm);
duke@435 1032
duke@435 1033 agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
duke@435 1034
duke@435 1035
duke@435 1036 // -------------------------------------------------------------------------
coleenp@4037 1037 // Generate a C2I adapter. On entry we know G5 holds the Method*. The
duke@435 1038 // args start out packed in the compiled layout. They need to be unpacked
duke@435 1039 // into the interpreter layout. This will almost always require some stack
duke@435 1040 // space. We grow the current (compiled) stack, then repack the args. We
duke@435 1041 // finally end in a jump to the generic interpreter entry point. On exit
duke@435 1042 // from the interpreter, the interpreter will restore our SP (lest the
duke@435 1043 // compiled code, which relys solely on SP and not FP, get sick).
duke@435 1044
duke@435 1045 address c2i_unverified_entry = __ pc();
twisti@4101 1046 Label L_skip_fixup;
duke@435 1047 {
twisti@4101 1048 Register R_temp = G1; // another scratch register
duke@435 1049
twisti@1162 1050 AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
duke@435 1051
duke@435 1052 __ verify_oop(O0);
coleenp@548 1053 __ load_klass(O0, G3_scratch);
duke@435 1054
coleenp@4037 1055 __ ld_ptr(G5_method, CompiledICHolder::holder_klass_offset(), R_temp);
duke@435 1056 __ cmp(G3_scratch, R_temp);
duke@435 1057
duke@435 1058 Label ok, ok2;
duke@435 1059 __ brx(Assembler::equal, false, Assembler::pt, ok);
coleenp@4037 1060 __ delayed()->ld_ptr(G5_method, CompiledICHolder::holder_method_offset(), G5_method);
twisti@1162 1061 __ jump_to(ic_miss, G3_scratch);
duke@435 1062 __ delayed()->nop();
duke@435 1063
duke@435 1064 __ bind(ok);
duke@435 1065 // Method might have been compiled since the call site was patched to
duke@435 1066 // interpreted if that is the case treat it as a miss so we can get
duke@435 1067 // the call site corrected.
coleenp@4037 1068 __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
duke@435 1069 __ bind(ok2);
twisti@4101 1070 __ br_null(G3_scratch, false, Assembler::pt, L_skip_fixup);
twisti@4101 1071 __ delayed()->nop();
twisti@1162 1072 __ jump_to(ic_miss, G3_scratch);
duke@435 1073 __ delayed()->nop();
duke@435 1074
duke@435 1075 }
duke@435 1076
duke@435 1077 address c2i_entry = __ pc();
duke@435 1078
twisti@4101 1079 agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, L_skip_fixup);
duke@435 1080
duke@435 1081 __ flush();
never@1622 1082 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
duke@435 1083
duke@435 1084 }
duke@435 1085
duke@435 1086 // Helper function for native calling conventions
duke@435 1087 static VMReg int_stk_helper( int i ) {
duke@435 1088 // Bias any stack based VMReg we get by ignoring the window area
duke@435 1089 // but not the register parameter save area.
duke@435 1090 //
duke@435 1091 // This is strange for the following reasons. We'd normally expect
duke@435 1092 // the calling convention to return an VMReg for a stack slot
duke@435 1093 // completely ignoring any abi reserved area. C2 thinks of that
duke@435 1094 // abi area as only out_preserve_stack_slots. This does not include
duke@435 1095 // the area allocated by the C abi to store down integer arguments
duke@435 1096 // because the java calling convention does not use it. So
duke@435 1097 // since c2 assumes that there are only out_preserve_stack_slots
duke@435 1098 // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
duke@435 1099 // location the c calling convention must add in this bias amount
duke@435 1100 // to make up for the fact that the out_preserve_stack_slots is
duke@435 1101 // insufficient for C calls. What a mess. I sure hope those 6
duke@435 1102 // stack words were worth it on every java call!
duke@435 1103
duke@435 1104 // Another way of cleaning this up would be for out_preserve_stack_slots
duke@435 1105 // to take a parameter to say whether it was C or java calling conventions.
duke@435 1106 // Then things might look a little better (but not much).
duke@435 1107
duke@435 1108 int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
duke@435 1109 if( mem_parm_offset < 0 ) {
duke@435 1110 return as_oRegister(i)->as_VMReg();
duke@435 1111 } else {
duke@435 1112 int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
duke@435 1113 // Now return a biased offset that will be correct when out_preserve_slots is added back in
duke@435 1114 return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
duke@435 1115 }
duke@435 1116 }
duke@435 1117
duke@435 1118
duke@435 1119 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
duke@435 1120 VMRegPair *regs,
duke@435 1121 int total_args_passed) {
duke@435 1122
duke@435 1123 // Return the number of VMReg stack_slots needed for the args.
duke@435 1124 // This value does not include an abi space (like register window
duke@435 1125 // save area).
duke@435 1126
duke@435 1127 // The native convention is V8 if !LP64
duke@435 1128 // The LP64 convention is the V9 convention which is slightly more sane.
duke@435 1129
duke@435 1130 // We return the amount of VMReg stack slots we need to reserve for all
duke@435 1131 // the arguments NOT counting out_preserve_stack_slots. Since we always
duke@435 1132 // have space for storing at least 6 registers to memory we start with that.
duke@435 1133 // See int_stk_helper for a further discussion.
duke@435 1134 int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
duke@435 1135
duke@435 1136 #ifdef _LP64
duke@435 1137 // V9 convention: All things "as-if" on double-wide stack slots.
duke@435 1138 // Hoist any int/ptr/long's in the first 6 to int regs.
duke@435 1139 // Hoist any flt/dbl's in the first 16 dbl regs.
duke@435 1140 int j = 0; // Count of actual args, not HALVES
duke@435 1141 for( int i=0; i<total_args_passed; i++, j++ ) {
duke@435 1142 switch( sig_bt[i] ) {
duke@435 1143 case T_BOOLEAN:
duke@435 1144 case T_BYTE:
duke@435 1145 case T_CHAR:
duke@435 1146 case T_INT:
duke@435 1147 case T_SHORT:
duke@435 1148 regs[i].set1( int_stk_helper( j ) ); break;
duke@435 1149 case T_LONG:
duke@435 1150 assert( sig_bt[i+1] == T_VOID, "expecting half" );
duke@435 1151 case T_ADDRESS: // raw pointers, like current thread, for VM calls
duke@435 1152 case T_ARRAY:
duke@435 1153 case T_OBJECT:
roland@4051 1154 case T_METADATA:
duke@435 1155 regs[i].set2( int_stk_helper( j ) );
duke@435 1156 break;
duke@435 1157 case T_FLOAT:
duke@435 1158 if ( j < 16 ) {
duke@435 1159 // V9ism: floats go in ODD registers
duke@435 1160 regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
duke@435 1161 } else {
duke@435 1162 // V9ism: floats go in ODD stack slot
duke@435 1163 regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
duke@435 1164 }
duke@435 1165 break;
duke@435 1166 case T_DOUBLE:
duke@435 1167 assert( sig_bt[i+1] == T_VOID, "expecting half" );
duke@435 1168 if ( j < 16 ) {
duke@435 1169 // V9ism: doubles go in EVEN/ODD regs
duke@435 1170 regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
duke@435 1171 } else {
duke@435 1172 // V9ism: doubles go in EVEN/ODD stack slots
duke@435 1173 regs[i].set2(VMRegImpl::stack2reg(j<<1));
duke@435 1174 }
duke@435 1175 break;
duke@435 1176 case T_VOID: regs[i].set_bad(); j--; break; // Do not count HALVES
duke@435 1177 default:
duke@435 1178 ShouldNotReachHere();
duke@435 1179 }
duke@435 1180 if (regs[i].first()->is_stack()) {
duke@435 1181 int off = regs[i].first()->reg2stack();
duke@435 1182 if (off > max_stack_slots) max_stack_slots = off;
duke@435 1183 }
duke@435 1184 if (regs[i].second()->is_stack()) {
duke@435 1185 int off = regs[i].second()->reg2stack();
duke@435 1186 if (off > max_stack_slots) max_stack_slots = off;
duke@435 1187 }
duke@435 1188 }
duke@435 1189
duke@435 1190 #else // _LP64
duke@435 1191 // V8 convention: first 6 things in O-regs, rest on stack.
duke@435 1192 // Alignment is willy-nilly.
duke@435 1193 for( int i=0; i<total_args_passed; i++ ) {
duke@435 1194 switch( sig_bt[i] ) {
duke@435 1195 case T_ADDRESS: // raw pointers, like current thread, for VM calls
duke@435 1196 case T_ARRAY:
duke@435 1197 case T_BOOLEAN:
duke@435 1198 case T_BYTE:
duke@435 1199 case T_CHAR:
duke@435 1200 case T_FLOAT:
duke@435 1201 case T_INT:
duke@435 1202 case T_OBJECT:
roland@4051 1203 case T_METADATA:
duke@435 1204 case T_SHORT:
duke@435 1205 regs[i].set1( int_stk_helper( i ) );
duke@435 1206 break;
duke@435 1207 case T_DOUBLE:
duke@435 1208 case T_LONG:
duke@435 1209 assert( sig_bt[i+1] == T_VOID, "expecting half" );
duke@435 1210 regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
duke@435 1211 break;
duke@435 1212 case T_VOID: regs[i].set_bad(); break;
duke@435 1213 default:
duke@435 1214 ShouldNotReachHere();
duke@435 1215 }
duke@435 1216 if (regs[i].first()->is_stack()) {
duke@435 1217 int off = regs[i].first()->reg2stack();
duke@435 1218 if (off > max_stack_slots) max_stack_slots = off;
duke@435 1219 }
duke@435 1220 if (regs[i].second()->is_stack()) {
duke@435 1221 int off = regs[i].second()->reg2stack();
duke@435 1222 if (off > max_stack_slots) max_stack_slots = off;
duke@435 1223 }
duke@435 1224 }
duke@435 1225 #endif // _LP64
duke@435 1226
duke@435 1227 return round_to(max_stack_slots + 1, 2);
duke@435 1228
duke@435 1229 }
duke@435 1230
duke@435 1231
duke@435 1232 // ---------------------------------------------------------------------------
duke@435 1233 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1234 switch (ret_type) {
duke@435 1235 case T_FLOAT:
duke@435 1236 __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
duke@435 1237 break;
duke@435 1238 case T_DOUBLE:
duke@435 1239 __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
duke@435 1240 break;
duke@435 1241 }
duke@435 1242 }
duke@435 1243
duke@435 1244 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1245 switch (ret_type) {
duke@435 1246 case T_FLOAT:
duke@435 1247 __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
duke@435 1248 break;
duke@435 1249 case T_DOUBLE:
duke@435 1250 __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
duke@435 1251 break;
duke@435 1252 }
duke@435 1253 }
duke@435 1254
duke@435 1255 // Check and forward and pending exception. Thread is stored in
duke@435 1256 // L7_thread_cache and possibly NOT in G2_thread. Since this is a native call, there
duke@435 1257 // is no exception handler. We merely pop this frame off and throw the
duke@435 1258 // exception in the caller's frame.
duke@435 1259 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
duke@435 1260 Label L;
duke@435 1261 __ br_null(Rex_oop, false, Assembler::pt, L);
duke@435 1262 __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
duke@435 1263 // Since this is a native call, we *know* the proper exception handler
duke@435 1264 // without calling into the VM: it's the empty function. Just pop this
duke@435 1265 // frame and then jump to forward_exception_entry; O7 will contain the
duke@435 1266 // native caller's return PC.
twisti@1162 1267 AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
twisti@1162 1268 __ jump_to(exception_entry, G3_scratch);
duke@435 1269 __ delayed()->restore(); // Pop this frame off.
duke@435 1270 __ bind(L);
duke@435 1271 }
duke@435 1272
duke@435 1273 // A simple move of integer like type
duke@435 1274 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1275 if (src.first()->is_stack()) {
duke@435 1276 if (dst.first()->is_stack()) {
duke@435 1277 // stack to stack
duke@435 1278 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 1279 __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1280 } else {
duke@435 1281 // stack to reg
duke@435 1282 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
duke@435 1283 }
duke@435 1284 } else if (dst.first()->is_stack()) {
duke@435 1285 // reg to stack
duke@435 1286 __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1287 } else {
duke@435 1288 __ mov(src.first()->as_Register(), dst.first()->as_Register());
duke@435 1289 }
duke@435 1290 }
duke@435 1291
duke@435 1292 // On 64 bit we will store integer like items to the stack as
duke@435 1293 // 64 bits items (sparc abi) even though java would only store
duke@435 1294 // 32bits for a parameter. On 32bit it will simply be 32 bits
duke@435 1295 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
duke@435 1296 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1297 if (src.first()->is_stack()) {
duke@435 1298 if (dst.first()->is_stack()) {
duke@435 1299 // stack to stack
duke@435 1300 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 1301 __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1302 } else {
duke@435 1303 // stack to reg
duke@435 1304 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
duke@435 1305 }
duke@435 1306 } else if (dst.first()->is_stack()) {
duke@435 1307 // reg to stack
duke@435 1308 __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1309 } else {
duke@435 1310 __ mov(src.first()->as_Register(), dst.first()->as_Register());
duke@435 1311 }
duke@435 1312 }
duke@435 1313
duke@435 1314
never@3500 1315 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
never@3500 1316 if (src.first()->is_stack()) {
never@3500 1317 if (dst.first()->is_stack()) {
never@3500 1318 // stack to stack
never@3500 1319 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, L5);
never@3500 1320 __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
never@3500 1321 } else {
never@3500 1322 // stack to reg
never@3500 1323 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
never@3500 1324 }
never@3500 1325 } else if (dst.first()->is_stack()) {
never@3500 1326 // reg to stack
never@3500 1327 __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
never@3500 1328 } else {
never@3500 1329 __ mov(src.first()->as_Register(), dst.first()->as_Register());
never@3500 1330 }
never@3500 1331 }
never@3500 1332
never@3500 1333
duke@435 1334 // An oop arg. Must pass a handle not the oop itself
duke@435 1335 static void object_move(MacroAssembler* masm,
duke@435 1336 OopMap* map,
duke@435 1337 int oop_handle_offset,
duke@435 1338 int framesize_in_slots,
duke@435 1339 VMRegPair src,
duke@435 1340 VMRegPair dst,
duke@435 1341 bool is_receiver,
duke@435 1342 int* receiver_offset) {
duke@435 1343
duke@435 1344 // must pass a handle. First figure out the location we use as a handle
duke@435 1345
duke@435 1346 if (src.first()->is_stack()) {
duke@435 1347 // Oop is already on the stack
duke@435 1348 Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
duke@435 1349 __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
duke@435 1350 __ ld_ptr(rHandle, 0, L4);
duke@435 1351 #ifdef _LP64
duke@435 1352 __ movr( Assembler::rc_z, L4, G0, rHandle );
duke@435 1353 #else
duke@435 1354 __ tst( L4 );
duke@435 1355 __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
duke@435 1356 #endif
duke@435 1357 if (dst.first()->is_stack()) {
duke@435 1358 __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1359 }
duke@435 1360 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
duke@435 1361 if (is_receiver) {
duke@435 1362 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
duke@435 1363 }
duke@435 1364 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
duke@435 1365 } else {
duke@435 1366 // Oop is in an input register pass we must flush it to the stack
duke@435 1367 const Register rOop = src.first()->as_Register();
duke@435 1368 const Register rHandle = L5;
duke@435 1369 int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
duke@435 1370 int offset = oop_slot*VMRegImpl::stack_slot_size;
duke@435 1371 Label skip;
duke@435 1372 __ st_ptr(rOop, SP, offset + STACK_BIAS);
duke@435 1373 if (is_receiver) {
duke@435 1374 *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
duke@435 1375 }
duke@435 1376 map->set_oop(VMRegImpl::stack2reg(oop_slot));
duke@435 1377 __ add(SP, offset + STACK_BIAS, rHandle);
duke@435 1378 #ifdef _LP64
duke@435 1379 __ movr( Assembler::rc_z, rOop, G0, rHandle );
duke@435 1380 #else
duke@435 1381 __ tst( rOop );
duke@435 1382 __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
duke@435 1383 #endif
duke@435 1384
duke@435 1385 if (dst.first()->is_stack()) {
duke@435 1386 __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1387 } else {
duke@435 1388 __ mov(rHandle, dst.first()->as_Register());
duke@435 1389 }
duke@435 1390 }
duke@435 1391 }
duke@435 1392
duke@435 1393 // A float arg may have to do float reg int reg conversion
duke@435 1394 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1395 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
duke@435 1396
duke@435 1397 if (src.first()->is_stack()) {
duke@435 1398 if (dst.first()->is_stack()) {
duke@435 1399 // stack to stack the easiest of the bunch
duke@435 1400 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 1401 __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1402 } else {
duke@435 1403 // stack to reg
duke@435 1404 if (dst.first()->is_Register()) {
duke@435 1405 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
duke@435 1406 } else {
duke@435 1407 __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
duke@435 1408 }
duke@435 1409 }
duke@435 1410 } else if (dst.first()->is_stack()) {
duke@435 1411 // reg to stack
duke@435 1412 if (src.first()->is_Register()) {
duke@435 1413 __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1414 } else {
duke@435 1415 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1416 }
duke@435 1417 } else {
duke@435 1418 // reg to reg
duke@435 1419 if (src.first()->is_Register()) {
duke@435 1420 if (dst.first()->is_Register()) {
duke@435 1421 // gpr -> gpr
duke@435 1422 __ mov(src.first()->as_Register(), dst.first()->as_Register());
duke@435 1423 } else {
duke@435 1424 // gpr -> fpr
duke@435 1425 __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
duke@435 1426 __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
duke@435 1427 }
duke@435 1428 } else if (dst.first()->is_Register()) {
duke@435 1429 // fpr -> gpr
duke@435 1430 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
duke@435 1431 __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
duke@435 1432 } else {
duke@435 1433 // fpr -> fpr
duke@435 1434 // In theory these overlap but the ordering is such that this is likely a nop
duke@435 1435 if ( src.first() != dst.first()) {
duke@435 1436 __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
duke@435 1437 }
duke@435 1438 }
duke@435 1439 }
duke@435 1440 }
duke@435 1441
duke@435 1442 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1443 VMRegPair src_lo(src.first());
duke@435 1444 VMRegPair src_hi(src.second());
duke@435 1445 VMRegPair dst_lo(dst.first());
duke@435 1446 VMRegPair dst_hi(dst.second());
duke@435 1447 simple_move32(masm, src_lo, dst_lo);
duke@435 1448 simple_move32(masm, src_hi, dst_hi);
duke@435 1449 }
duke@435 1450
duke@435 1451 // A long move
duke@435 1452 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1453
duke@435 1454 // Do the simple ones here else do two int moves
duke@435 1455 if (src.is_single_phys_reg() ) {
duke@435 1456 if (dst.is_single_phys_reg()) {
duke@435 1457 __ mov(src.first()->as_Register(), dst.first()->as_Register());
duke@435 1458 } else {
duke@435 1459 // split src into two separate registers
duke@435 1460 // Remember hi means hi address or lsw on sparc
duke@435 1461 // Move msw to lsw
duke@435 1462 if (dst.second()->is_reg()) {
duke@435 1463 // MSW -> MSW
duke@435 1464 __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
duke@435 1465 // Now LSW -> LSW
duke@435 1466 // this will only move lo -> lo and ignore hi
duke@435 1467 VMRegPair split(dst.second());
duke@435 1468 simple_move32(masm, src, split);
duke@435 1469 } else {
duke@435 1470 VMRegPair split(src.first(), L4->as_VMReg());
duke@435 1471 // MSW -> MSW (lo ie. first word)
duke@435 1472 __ srax(src.first()->as_Register(), 32, L4);
duke@435 1473 split_long_move(masm, split, dst);
duke@435 1474 }
duke@435 1475 }
duke@435 1476 } else if (dst.is_single_phys_reg()) {
duke@435 1477 if (src.is_adjacent_aligned_on_stack(2)) {
never@739 1478 __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
duke@435 1479 } else {
duke@435 1480 // dst is a single reg.
duke@435 1481 // Remember lo is low address not msb for stack slots
duke@435 1482 // and lo is the "real" register for registers
duke@435 1483 // src is
duke@435 1484
duke@435 1485 VMRegPair split;
duke@435 1486
duke@435 1487 if (src.first()->is_reg()) {
duke@435 1488 // src.lo (msw) is a reg, src.hi is stk/reg
duke@435 1489 // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
duke@435 1490 split.set_pair(dst.first(), src.first());
duke@435 1491 } else {
duke@435 1492 // msw is stack move to L5
duke@435 1493 // lsw is stack move to dst.lo (real reg)
duke@435 1494 // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
duke@435 1495 split.set_pair(dst.first(), L5->as_VMReg());
duke@435 1496 }
duke@435 1497
duke@435 1498 // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
duke@435 1499 // msw -> src.lo/L5, lsw -> dst.lo
duke@435 1500 split_long_move(masm, src, split);
duke@435 1501
duke@435 1502 // So dst now has the low order correct position the
duke@435 1503 // msw half
duke@435 1504 __ sllx(split.first()->as_Register(), 32, L5);
duke@435 1505
duke@435 1506 const Register d = dst.first()->as_Register();
duke@435 1507 __ or3(L5, d, d);
duke@435 1508 }
duke@435 1509 } else {
duke@435 1510 // For LP64 we can probably do better.
duke@435 1511 split_long_move(masm, src, dst);
duke@435 1512 }
duke@435 1513 }
duke@435 1514
duke@435 1515 // A double move
duke@435 1516 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1517
duke@435 1518 // The painful thing here is that like long_move a VMRegPair might be
duke@435 1519 // 1: a single physical register
duke@435 1520 // 2: two physical registers (v8)
duke@435 1521 // 3: a physical reg [lo] and a stack slot [hi] (v8)
duke@435 1522 // 4: two stack slots
duke@435 1523
duke@435 1524 // Since src is always a java calling convention we know that the src pair
duke@435 1525 // is always either all registers or all stack (and aligned?)
duke@435 1526
duke@435 1527 // in a register [lo] and a stack slot [hi]
duke@435 1528 if (src.first()->is_stack()) {
duke@435 1529 if (dst.first()->is_stack()) {
duke@435 1530 // stack to stack the easiest of the bunch
duke@435 1531 // ought to be a way to do this where if alignment is ok we use ldd/std when possible
duke@435 1532 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 1533 __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
duke@435 1534 __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1535 __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
duke@435 1536 } else {
duke@435 1537 // stack to reg
duke@435 1538 if (dst.second()->is_stack()) {
duke@435 1539 // stack -> reg, stack -> stack
duke@435 1540 __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
duke@435 1541 if (dst.first()->is_Register()) {
duke@435 1542 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
duke@435 1543 } else {
duke@435 1544 __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
duke@435 1545 }
duke@435 1546 // This was missing. (very rare case)
duke@435 1547 __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
duke@435 1548 } else {
duke@435 1549 // stack -> reg
duke@435 1550 // Eventually optimize for alignment QQQ
duke@435 1551 if (dst.first()->is_Register()) {
duke@435 1552 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
duke@435 1553 __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
duke@435 1554 } else {
duke@435 1555 __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
duke@435 1556 __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
duke@435 1557 }
duke@435 1558 }
duke@435 1559 }
duke@435 1560 } else if (dst.first()->is_stack()) {
duke@435 1561 // reg to stack
duke@435 1562 if (src.first()->is_Register()) {
duke@435 1563 // Eventually optimize for alignment QQQ
duke@435 1564 __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1565 if (src.second()->is_stack()) {
duke@435 1566 __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
duke@435 1567 __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
duke@435 1568 } else {
duke@435 1569 __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
duke@435 1570 }
duke@435 1571 } else {
duke@435 1572 // fpr to stack
duke@435 1573 if (src.second()->is_stack()) {
duke@435 1574 ShouldNotReachHere();
duke@435 1575 } else {
duke@435 1576 // Is the stack aligned?
duke@435 1577 if (reg2offset(dst.first()) & 0x7) {
duke@435 1578 // No do as pairs
duke@435 1579 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1580 __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
duke@435 1581 } else {
duke@435 1582 __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1583 }
duke@435 1584 }
duke@435 1585 }
duke@435 1586 } else {
duke@435 1587 // reg to reg
duke@435 1588 if (src.first()->is_Register()) {
duke@435 1589 if (dst.first()->is_Register()) {
duke@435 1590 // gpr -> gpr
duke@435 1591 __ mov(src.first()->as_Register(), dst.first()->as_Register());
duke@435 1592 __ mov(src.second()->as_Register(), dst.second()->as_Register());
duke@435 1593 } else {
duke@435 1594 // gpr -> fpr
duke@435 1595 // ought to be able to do a single store
duke@435 1596 __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
duke@435 1597 __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
duke@435 1598 // ought to be able to do a single load
duke@435 1599 __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
duke@435 1600 __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
duke@435 1601 }
duke@435 1602 } else if (dst.first()->is_Register()) {
duke@435 1603 // fpr -> gpr
duke@435 1604 // ought to be able to do a single store
duke@435 1605 __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
duke@435 1606 // ought to be able to do a single load
duke@435 1607 // REMEMBER first() is low address not LSB
duke@435 1608 __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
duke@435 1609 if (dst.second()->is_Register()) {
duke@435 1610 __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
duke@435 1611 } else {
duke@435 1612 __ ld(FP, -4 + STACK_BIAS, L4);
duke@435 1613 __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
duke@435 1614 }
duke@435 1615 } else {
duke@435 1616 // fpr -> fpr
duke@435 1617 // In theory these overlap but the ordering is such that this is likely a nop
duke@435 1618 if ( src.first() != dst.first()) {
duke@435 1619 __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
duke@435 1620 }
duke@435 1621 }
duke@435 1622 }
duke@435 1623 }
duke@435 1624
duke@435 1625 // Creates an inner frame if one hasn't already been created, and
duke@435 1626 // saves a copy of the thread in L7_thread_cache
duke@435 1627 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
duke@435 1628 if (!*already_created) {
duke@435 1629 __ save_frame(0);
duke@435 1630 // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
duke@435 1631 // Don't use save_thread because it smashes G2 and we merely want to save a
duke@435 1632 // copy
duke@435 1633 __ mov(G2_thread, L7_thread_cache);
duke@435 1634 *already_created = true;
duke@435 1635 }
duke@435 1636 }
duke@435 1637
never@3500 1638
never@3500 1639 static void save_or_restore_arguments(MacroAssembler* masm,
never@3500 1640 const int stack_slots,
never@3500 1641 const int total_in_args,
never@3500 1642 const int arg_save_area,
never@3500 1643 OopMap* map,
never@3500 1644 VMRegPair* in_regs,
never@3500 1645 BasicType* in_sig_bt) {
never@3500 1646 // if map is non-NULL then the code should store the values,
never@3500 1647 // otherwise it should load them.
never@3500 1648 if (map != NULL) {
never@3500 1649 // Fill in the map
never@3500 1650 for (int i = 0; i < total_in_args; i++) {
never@3500 1651 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1652 if (in_regs[i].first()->is_stack()) {
never@3500 1653 int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
never@3500 1654 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
never@3500 1655 } else if (in_regs[i].first()->is_Register()) {
never@3500 1656 map->set_oop(in_regs[i].first());
never@3500 1657 } else {
never@3500 1658 ShouldNotReachHere();
never@3500 1659 }
never@3500 1660 }
never@3500 1661 }
never@3500 1662 }
never@3500 1663
never@3500 1664 // Save or restore double word values
never@3500 1665 int handle_index = 0;
never@3500 1666 for (int i = 0; i < total_in_args; i++) {
never@3500 1667 int slot = handle_index + arg_save_area;
never@3500 1668 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1669 if (in_sig_bt[i] == T_LONG && in_regs[i].first()->is_Register()) {
never@3500 1670 const Register reg = in_regs[i].first()->as_Register();
never@3500 1671 if (reg->is_global()) {
never@3500 1672 handle_index += 2;
never@3500 1673 assert(handle_index <= stack_slots, "overflow");
never@3500 1674 if (map != NULL) {
never@3500 1675 __ stx(reg, SP, offset + STACK_BIAS);
never@3500 1676 } else {
never@3500 1677 __ ldx(SP, offset + STACK_BIAS, reg);
never@3500 1678 }
never@3500 1679 }
never@3500 1680 } else if (in_sig_bt[i] == T_DOUBLE && in_regs[i].first()->is_FloatRegister()) {
never@3500 1681 handle_index += 2;
never@3500 1682 assert(handle_index <= stack_slots, "overflow");
never@3500 1683 if (map != NULL) {
never@3500 1684 __ stf(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
never@3500 1685 } else {
never@3500 1686 __ ldf(FloatRegisterImpl::D, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
never@3500 1687 }
never@3500 1688 }
never@3500 1689 }
never@3500 1690 // Save floats
never@3500 1691 for (int i = 0; i < total_in_args; i++) {
never@3500 1692 int slot = handle_index + arg_save_area;
never@3500 1693 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1694 if (in_sig_bt[i] == T_FLOAT && in_regs[i].first()->is_FloatRegister()) {
never@3500 1695 handle_index++;
never@3500 1696 assert(handle_index <= stack_slots, "overflow");
never@3500 1697 if (map != NULL) {
never@3500 1698 __ stf(FloatRegisterImpl::S, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
never@3500 1699 } else {
never@3500 1700 __ ldf(FloatRegisterImpl::S, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
never@3500 1701 }
never@3500 1702 }
never@3500 1703 }
never@3500 1704
never@3500 1705 }
never@3500 1706
never@3500 1707
never@3500 1708 // Check GC_locker::needs_gc and enter the runtime if it's true. This
never@3500 1709 // keeps a new JNI critical region from starting until a GC has been
never@3500 1710 // forced. Save down any oops in registers and describe them in an
never@3500 1711 // OopMap.
never@3500 1712 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
never@3500 1713 const int stack_slots,
never@3500 1714 const int total_in_args,
never@3500 1715 const int arg_save_area,
never@3500 1716 OopMapSet* oop_maps,
never@3500 1717 VMRegPair* in_regs,
never@3500 1718 BasicType* in_sig_bt) {
never@3500 1719 __ block_comment("check GC_locker::needs_gc");
never@3500 1720 Label cont;
never@3500 1721 AddressLiteral sync_state(GC_locker::needs_gc_address());
never@3500 1722 __ load_bool_contents(sync_state, G3_scratch);
never@3500 1723 __ cmp_zero_and_br(Assembler::equal, G3_scratch, cont);
never@3500 1724 __ delayed()->nop();
never@3500 1725
never@3500 1726 // Save down any values that are live in registers and call into the
never@3500 1727 // runtime to halt for a GC
never@3500 1728 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
never@3500 1729 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1730 arg_save_area, map, in_regs, in_sig_bt);
never@3500 1731
never@3500 1732 __ mov(G2_thread, L7_thread_cache);
never@3500 1733
never@3500 1734 __ set_last_Java_frame(SP, noreg);
never@3500 1735
never@3500 1736 __ block_comment("block_for_jni_critical");
never@3500 1737 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical), relocInfo::runtime_call_type);
never@3500 1738 __ delayed()->mov(L7_thread_cache, O0);
never@3500 1739 oop_maps->add_gc_map( __ offset(), map);
never@3500 1740
never@3500 1741 __ restore_thread(L7_thread_cache); // restore G2_thread
never@3500 1742 __ reset_last_Java_frame();
never@3500 1743
never@3500 1744 // Reload all the register arguments
never@3500 1745 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1746 arg_save_area, NULL, in_regs, in_sig_bt);
never@3500 1747
never@3500 1748 __ bind(cont);
never@3500 1749 #ifdef ASSERT
never@3500 1750 if (StressCriticalJNINatives) {
never@3500 1751 // Stress register saving
never@3500 1752 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
never@3500 1753 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1754 arg_save_area, map, in_regs, in_sig_bt);
never@3500 1755 // Destroy argument registers
never@3500 1756 for (int i = 0; i < total_in_args; i++) {
never@3500 1757 if (in_regs[i].first()->is_Register()) {
never@3500 1758 const Register reg = in_regs[i].first()->as_Register();
never@3500 1759 if (reg->is_global()) {
never@3500 1760 __ mov(G0, reg);
never@3500 1761 }
never@3500 1762 } else if (in_regs[i].first()->is_FloatRegister()) {
never@3500 1763 __ fneg(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
never@3500 1764 }
never@3500 1765 }
never@3500 1766
never@3500 1767 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1768 arg_save_area, NULL, in_regs, in_sig_bt);
never@3500 1769 }
never@3500 1770 #endif
never@3500 1771 }
never@3500 1772
never@3500 1773 // Unpack an array argument into a pointer to the body and the length
never@3500 1774 // if the array is non-null, otherwise pass 0 for both.
never@3500 1775 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
never@3500 1776 // Pass the length, ptr pair
never@3500 1777 Label is_null, done;
never@3500 1778 if (reg.first()->is_stack()) {
never@3500 1779 VMRegPair tmp = reg64_to_VMRegPair(L2);
never@3500 1780 // Load the arg up from the stack
never@3500 1781 move_ptr(masm, reg, tmp);
never@3500 1782 reg = tmp;
never@3500 1783 }
never@3500 1784 __ cmp(reg.first()->as_Register(), G0);
never@3500 1785 __ brx(Assembler::equal, false, Assembler::pt, is_null);
never@3500 1786 __ delayed()->add(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type), L4);
never@3500 1787 move_ptr(masm, reg64_to_VMRegPair(L4), body_arg);
never@3500 1788 __ ld(reg.first()->as_Register(), arrayOopDesc::length_offset_in_bytes(), L4);
never@3500 1789 move32_64(masm, reg64_to_VMRegPair(L4), length_arg);
never@3500 1790 __ ba_short(done);
never@3500 1791 __ bind(is_null);
never@3500 1792 // Pass zeros
never@3500 1793 move_ptr(masm, reg64_to_VMRegPair(G0), body_arg);
never@3500 1794 move32_64(masm, reg64_to_VMRegPair(G0), length_arg);
never@3500 1795 __ bind(done);
never@3500 1796 }
never@3500 1797
twisti@3969 1798 static void verify_oop_args(MacroAssembler* masm,
twisti@4101 1799 methodHandle method,
twisti@3969 1800 const BasicType* sig_bt,
twisti@3969 1801 const VMRegPair* regs) {
twisti@3969 1802 Register temp_reg = G5_method; // not part of any compiled calling seq
twisti@3969 1803 if (VerifyOops) {
twisti@4101 1804 for (int i = 0; i < method->size_of_parameters(); i++) {
twisti@3969 1805 if (sig_bt[i] == T_OBJECT ||
twisti@3969 1806 sig_bt[i] == T_ARRAY) {
twisti@3969 1807 VMReg r = regs[i].first();
twisti@3969 1808 assert(r->is_valid(), "bad oop arg");
twisti@3969 1809 if (r->is_stack()) {
twisti@3969 1810 RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
twisti@3969 1811 ld_off = __ ensure_simm13_or_reg(ld_off, temp_reg);
twisti@3969 1812 __ ld_ptr(SP, ld_off, temp_reg);
twisti@3969 1813 __ verify_oop(temp_reg);
twisti@3969 1814 } else {
twisti@3969 1815 __ verify_oop(r->as_Register());
twisti@3969 1816 }
twisti@3969 1817 }
twisti@3969 1818 }
twisti@3969 1819 }
twisti@3969 1820 }
twisti@3969 1821
twisti@3969 1822 static void gen_special_dispatch(MacroAssembler* masm,
twisti@4101 1823 methodHandle method,
twisti@3969 1824 const BasicType* sig_bt,
twisti@3969 1825 const VMRegPair* regs) {
twisti@4101 1826 verify_oop_args(masm, method, sig_bt, regs);
twisti@4101 1827 vmIntrinsics::ID iid = method->intrinsic_id();
twisti@3969 1828
twisti@3969 1829 // Now write the args into the outgoing interpreter space
twisti@3969 1830 bool has_receiver = false;
twisti@3969 1831 Register receiver_reg = noreg;
twisti@3969 1832 int member_arg_pos = -1;
twisti@3969 1833 Register member_reg = noreg;
twisti@4101 1834 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
twisti@3969 1835 if (ref_kind != 0) {
twisti@4101 1836 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument
twisti@3969 1837 member_reg = G5_method; // known to be free at this point
twisti@3969 1838 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
twisti@4101 1839 } else if (iid == vmIntrinsics::_invokeBasic) {
twisti@3969 1840 has_receiver = true;
twisti@3969 1841 } else {
twisti@4101 1842 fatal(err_msg_res("unexpected intrinsic id %d", iid));
twisti@3969 1843 }
twisti@3969 1844
twisti@3969 1845 if (member_reg != noreg) {
twisti@3969 1846 // Load the member_arg into register, if necessary.
twisti@4101 1847 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
twisti@3969 1848 VMReg r = regs[member_arg_pos].first();
twisti@3969 1849 if (r->is_stack()) {
twisti@3969 1850 RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
twisti@3969 1851 ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
twisti@3969 1852 __ ld_ptr(SP, ld_off, member_reg);
twisti@3969 1853 } else {
twisti@3969 1854 // no data motion is needed
twisti@3969 1855 member_reg = r->as_Register();
twisti@3969 1856 }
twisti@3969 1857 }
twisti@3969 1858
twisti@3969 1859 if (has_receiver) {
twisti@3969 1860 // Make sure the receiver is loaded into a register.
twisti@4101 1861 assert(method->size_of_parameters() > 0, "oob");
twisti@3969 1862 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
twisti@3969 1863 VMReg r = regs[0].first();
twisti@3969 1864 assert(r->is_valid(), "bad receiver arg");
twisti@3969 1865 if (r->is_stack()) {
twisti@3969 1866 // Porting note: This assumes that compiled calling conventions always
twisti@3969 1867 // pass the receiver oop in a register. If this is not true on some
twisti@3969 1868 // platform, pick a temp and load the receiver from stack.
twisti@4101 1869 fatal("receiver always in a register");
twisti@3969 1870 receiver_reg = G3_scratch; // known to be free at this point
twisti@3969 1871 RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
twisti@3969 1872 ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
twisti@3969 1873 __ ld_ptr(SP, ld_off, receiver_reg);
twisti@3969 1874 } else {
twisti@3969 1875 // no data motion is needed
twisti@3969 1876 receiver_reg = r->as_Register();
twisti@3969 1877 }
twisti@3969 1878 }
twisti@3969 1879
twisti@3969 1880 // Figure out which address we are really jumping to:
twisti@4101 1881 MethodHandles::generate_method_handle_dispatch(masm, iid,
twisti@3969 1882 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
twisti@3969 1883 }
twisti@3969 1884
duke@435 1885 // ---------------------------------------------------------------------------
duke@435 1886 // Generate a native wrapper for a given method. The method takes arguments
duke@435 1887 // in the Java compiled code convention, marshals them to the native
duke@435 1888 // convention (handlizes oops, etc), transitions to native, makes the call,
duke@435 1889 // returns to java state (possibly blocking), unhandlizes any result and
duke@435 1890 // returns.
twisti@3969 1891 //
twisti@3969 1892 // Critical native functions are a shorthand for the use of
twisti@3969 1893 // GetPrimtiveArrayCritical and disallow the use of any other JNI
twisti@3969 1894 // functions. The wrapper is expected to unpack the arguments before
twisti@3969 1895 // passing them to the callee and perform checks before and after the
twisti@3969 1896 // native call to ensure that they GC_locker
twisti@3969 1897 // lock_critical/unlock_critical semantics are followed. Some other
twisti@3969 1898 // parts of JNI setup are skipped like the tear down of the JNI handle
twisti@3969 1899 // block and the check for pending exceptions it's impossible for them
twisti@3969 1900 // to be thrown.
twisti@3969 1901 //
twisti@3969 1902 // They are roughly structured like this:
twisti@3969 1903 // if (GC_locker::needs_gc())
twisti@3969 1904 // SharedRuntime::block_for_jni_critical();
twisti@3969 1905 // tranistion to thread_in_native
twisti@3969 1906 // unpack arrray arguments and call native entry point
twisti@3969 1907 // check for safepoint in progress
twisti@3969 1908 // check if any thread suspend flags are set
twisti@3969 1909 // call into JVM and possible unlock the JNI critical
twisti@3969 1910 // if a GC was suppressed while in the critical native.
twisti@3969 1911 // transition back to thread_in_Java
twisti@3969 1912 // return to caller
twisti@3969 1913 //
twisti@4101 1914 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
duke@435 1915 methodHandle method,
twisti@2687 1916 int compile_id,
twisti@3969 1917 BasicType* in_sig_bt,
twisti@3969 1918 VMRegPair* in_regs,
duke@435 1919 BasicType ret_type) {
twisti@3969 1920 if (method->is_method_handle_intrinsic()) {
twisti@3969 1921 vmIntrinsics::ID iid = method->intrinsic_id();
twisti@3969 1922 intptr_t start = (intptr_t)__ pc();
twisti@3969 1923 int vep_offset = ((intptr_t)__ pc()) - start;
twisti@3969 1924 gen_special_dispatch(masm,
twisti@4101 1925 method,
twisti@3969 1926 in_sig_bt,
twisti@3969 1927 in_regs);
twisti@3969 1928 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
twisti@3969 1929 __ flush();
twisti@3969 1930 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
twisti@3969 1931 return nmethod::new_native_nmethod(method,
twisti@3969 1932 compile_id,
twisti@3969 1933 masm->code(),
twisti@3969 1934 vep_offset,
twisti@3969 1935 frame_complete,
twisti@3969 1936 stack_slots / VMRegImpl::slots_per_word,
twisti@3969 1937 in_ByteSize(-1),
twisti@3969 1938 in_ByteSize(-1),
twisti@3969 1939 (OopMapSet*)NULL);
twisti@3969 1940 }
never@3500 1941 bool is_critical_native = true;
never@3500 1942 address native_func = method->critical_native_function();
never@3500 1943 if (native_func == NULL) {
never@3500 1944 native_func = method->native_function();
never@3500 1945 is_critical_native = false;
never@3500 1946 }
never@3500 1947 assert(native_func != NULL, "must have function");
duke@435 1948
duke@435 1949 // Native nmethod wrappers never take possesion of the oop arguments.
duke@435 1950 // So the caller will gc the arguments. The only thing we need an
duke@435 1951 // oopMap for is if the call is static
duke@435 1952 //
duke@435 1953 // An OopMap for lock (and class if static), and one for the VM call itself
duke@435 1954 OopMapSet *oop_maps = new OopMapSet();
duke@435 1955 intptr_t start = (intptr_t)__ pc();
duke@435 1956
duke@435 1957 // First thing make an ic check to see if we should even be here
duke@435 1958 {
duke@435 1959 Label L;
duke@435 1960 const Register temp_reg = G3_scratch;
twisti@1162 1961 AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
duke@435 1962 __ verify_oop(O0);
coleenp@548 1963 __ load_klass(O0, temp_reg);
kvn@3037 1964 __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
duke@435 1965
twisti@1162 1966 __ jump_to(ic_miss, temp_reg);
duke@435 1967 __ delayed()->nop();
duke@435 1968 __ align(CodeEntryAlignment);
duke@435 1969 __ bind(L);
duke@435 1970 }
duke@435 1971
duke@435 1972 int vep_offset = ((intptr_t)__ pc()) - start;
duke@435 1973
duke@435 1974 #ifdef COMPILER1
duke@435 1975 if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
duke@435 1976 // Object.hashCode can pull the hashCode from the header word
duke@435 1977 // instead of doing a full VM transition once it's been computed.
duke@435 1978 // Since hashCode is usually polymorphic at call sites we can't do
duke@435 1979 // this optimization at the call site without a lot of work.
duke@435 1980 Label slowCase;
duke@435 1981 Register receiver = O0;
duke@435 1982 Register result = O0;
duke@435 1983 Register header = G3_scratch;
duke@435 1984 Register hash = G3_scratch; // overwrite header value with hash value
duke@435 1985 Register mask = G1; // to get hash field from header
duke@435 1986
duke@435 1987 // Read the header and build a mask to get its hash field. Give up if the object is not unlocked.
duke@435 1988 // We depend on hash_mask being at most 32 bits and avoid the use of
duke@435 1989 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
duke@435 1990 // vm: see markOop.hpp.
duke@435 1991 __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
duke@435 1992 __ sethi(markOopDesc::hash_mask, mask);
duke@435 1993 __ btst(markOopDesc::unlocked_value, header);
duke@435 1994 __ br(Assembler::zero, false, Assembler::pn, slowCase);
duke@435 1995 if (UseBiasedLocking) {
duke@435 1996 // Check if biased and fall through to runtime if so
duke@435 1997 __ delayed()->nop();
duke@435 1998 __ btst(markOopDesc::biased_lock_bit_in_place, header);
duke@435 1999 __ br(Assembler::notZero, false, Assembler::pn, slowCase);
duke@435 2000 }
duke@435 2001 __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
duke@435 2002
duke@435 2003 // Check for a valid (non-zero) hash code and get its value.
duke@435 2004 #ifdef _LP64
duke@435 2005 __ srlx(header, markOopDesc::hash_shift, hash);
duke@435 2006 #else
duke@435 2007 __ srl(header, markOopDesc::hash_shift, hash);
duke@435 2008 #endif
duke@435 2009 __ andcc(hash, mask, hash);
duke@435 2010 __ br(Assembler::equal, false, Assembler::pn, slowCase);
duke@435 2011 __ delayed()->nop();
duke@435 2012
duke@435 2013 // leaf return.
duke@435 2014 __ retl();
duke@435 2015 __ delayed()->mov(hash, result);
duke@435 2016 __ bind(slowCase);
duke@435 2017 }
duke@435 2018 #endif // COMPILER1
duke@435 2019
duke@435 2020
duke@435 2021 // We have received a description of where all the java arg are located
duke@435 2022 // on entry to the wrapper. We need to convert these args to where
duke@435 2023 // the jni function will expect them. To figure out where they go
duke@435 2024 // we convert the java signature to a C signature by inserting
duke@435 2025 // the hidden arguments as arg[0] and possibly arg[1] (static method)
duke@435 2026
twisti@4101 2027 const int total_in_args = method->size_of_parameters();
never@3500 2028 int total_c_args = total_in_args;
never@3500 2029 int total_save_slots = 6 * VMRegImpl::slots_per_word;
never@3500 2030 if (!is_critical_native) {
never@3500 2031 total_c_args += 1;
never@3500 2032 if (method->is_static()) {
never@3500 2033 total_c_args++;
never@3500 2034 }
never@3500 2035 } else {
never@3500 2036 for (int i = 0; i < total_in_args; i++) {
never@3500 2037 if (in_sig_bt[i] == T_ARRAY) {
never@3500 2038 // These have to be saved and restored across the safepoint
never@3500 2039 total_c_args++;
never@3500 2040 }
never@3500 2041 }
duke@435 2042 }
duke@435 2043
duke@435 2044 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
never@3500 2045 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
never@3500 2046 BasicType* in_elem_bt = NULL;
duke@435 2047
duke@435 2048 int argc = 0;
never@3500 2049 if (!is_critical_native) {
never@3500 2050 out_sig_bt[argc++] = T_ADDRESS;
never@3500 2051 if (method->is_static()) {
never@3500 2052 out_sig_bt[argc++] = T_OBJECT;
never@3500 2053 }
never@3500 2054
never@3500 2055 for (int i = 0; i < total_in_args ; i++ ) {
never@3500 2056 out_sig_bt[argc++] = in_sig_bt[i];
never@3500 2057 }
never@3500 2058 } else {
never@3500 2059 Thread* THREAD = Thread::current();
never@3500 2060 in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
never@3500 2061 SignatureStream ss(method->signature());
never@3500 2062 for (int i = 0; i < total_in_args ; i++ ) {
never@3500 2063 if (in_sig_bt[i] == T_ARRAY) {
never@3500 2064 // Arrays are passed as int, elem* pair
never@3500 2065 out_sig_bt[argc++] = T_INT;
never@3500 2066 out_sig_bt[argc++] = T_ADDRESS;
never@3500 2067 Symbol* atype = ss.as_symbol(CHECK_NULL);
never@3500 2068 const char* at = atype->as_C_string();
never@3500 2069 if (strlen(at) == 2) {
never@3500 2070 assert(at[0] == '[', "must be");
never@3500 2071 switch (at[1]) {
never@3500 2072 case 'B': in_elem_bt[i] = T_BYTE; break;
never@3500 2073 case 'C': in_elem_bt[i] = T_CHAR; break;
never@3500 2074 case 'D': in_elem_bt[i] = T_DOUBLE; break;
never@3500 2075 case 'F': in_elem_bt[i] = T_FLOAT; break;
never@3500 2076 case 'I': in_elem_bt[i] = T_INT; break;
never@3500 2077 case 'J': in_elem_bt[i] = T_LONG; break;
never@3500 2078 case 'S': in_elem_bt[i] = T_SHORT; break;
never@3500 2079 case 'Z': in_elem_bt[i] = T_BOOLEAN; break;
never@3500 2080 default: ShouldNotReachHere();
never@3500 2081 }
never@3500 2082 }
never@3500 2083 } else {
never@3500 2084 out_sig_bt[argc++] = in_sig_bt[i];
never@3500 2085 in_elem_bt[i] = T_VOID;
never@3500 2086 }
never@3500 2087 if (in_sig_bt[i] != T_VOID) {
never@3500 2088 assert(in_sig_bt[i] == ss.type(), "must match");
never@3500 2089 ss.next();
never@3500 2090 }
never@3500 2091 }
duke@435 2092 }
duke@435 2093
duke@435 2094 // Now figure out where the args must be stored and how much stack space
duke@435 2095 // they require (neglecting out_preserve_stack_slots but space for storing
duke@435 2096 // the 1st six register arguments). It's weird see int_stk_helper.
duke@435 2097 //
duke@435 2098 int out_arg_slots;
duke@435 2099 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
duke@435 2100
never@3500 2101 if (is_critical_native) {
never@3500 2102 // Critical natives may have to call out so they need a save area
never@3500 2103 // for register arguments.
never@3500 2104 int double_slots = 0;
never@3500 2105 int single_slots = 0;
never@3500 2106 for ( int i = 0; i < total_in_args; i++) {
never@3500 2107 if (in_regs[i].first()->is_Register()) {
never@3500 2108 const Register reg = in_regs[i].first()->as_Register();
never@3500 2109 switch (in_sig_bt[i]) {
never@3500 2110 case T_ARRAY:
never@3500 2111 case T_BOOLEAN:
never@3500 2112 case T_BYTE:
never@3500 2113 case T_SHORT:
never@3500 2114 case T_CHAR:
never@3500 2115 case T_INT: assert(reg->is_in(), "don't need to save these"); break;
never@3500 2116 case T_LONG: if (reg->is_global()) double_slots++; break;
never@3500 2117 default: ShouldNotReachHere();
never@3500 2118 }
never@3500 2119 } else if (in_regs[i].first()->is_FloatRegister()) {
never@3500 2120 switch (in_sig_bt[i]) {
never@3500 2121 case T_FLOAT: single_slots++; break;
never@3500 2122 case T_DOUBLE: double_slots++; break;
never@3500 2123 default: ShouldNotReachHere();
never@3500 2124 }
never@3500 2125 }
never@3500 2126 }
never@3500 2127 total_save_slots = double_slots * 2 + single_slots;
never@3500 2128 }
never@3500 2129
duke@435 2130 // Compute framesize for the wrapper. We need to handlize all oops in
duke@435 2131 // registers. We must create space for them here that is disjoint from
duke@435 2132 // the windowed save area because we have no control over when we might
duke@435 2133 // flush the window again and overwrite values that gc has since modified.
duke@435 2134 // (The live window race)
duke@435 2135 //
duke@435 2136 // We always just allocate 6 word for storing down these object. This allow
duke@435 2137 // us to simply record the base and use the Ireg number to decide which
duke@435 2138 // slot to use. (Note that the reg number is the inbound number not the
duke@435 2139 // outbound number).
duke@435 2140 // We must shuffle args to match the native convention, and include var-args space.
duke@435 2141
duke@435 2142 // Calculate the total number of stack slots we will need.
duke@435 2143
duke@435 2144 // First count the abi requirement plus all of the outgoing args
duke@435 2145 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
duke@435 2146
duke@435 2147 // Now the space for the inbound oop handle area
duke@435 2148
never@3500 2149 int oop_handle_offset = round_to(stack_slots, 2);
never@3500 2150 stack_slots += total_save_slots;
duke@435 2151
duke@435 2152 // Now any space we need for handlizing a klass if static method
duke@435 2153
duke@435 2154 int klass_slot_offset = 0;
duke@435 2155 int klass_offset = -1;
duke@435 2156 int lock_slot_offset = 0;
duke@435 2157 bool is_static = false;
duke@435 2158
duke@435 2159 if (method->is_static()) {
duke@435 2160 klass_slot_offset = stack_slots;
duke@435 2161 stack_slots += VMRegImpl::slots_per_word;
duke@435 2162 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
duke@435 2163 is_static = true;
duke@435 2164 }
duke@435 2165
duke@435 2166 // Plus a lock if needed
duke@435 2167
duke@435 2168 if (method->is_synchronized()) {
duke@435 2169 lock_slot_offset = stack_slots;
duke@435 2170 stack_slots += VMRegImpl::slots_per_word;
duke@435 2171 }
duke@435 2172
duke@435 2173 // Now a place to save return value or as a temporary for any gpr -> fpr moves
duke@435 2174 stack_slots += 2;
duke@435 2175
duke@435 2176 // Ok The space we have allocated will look like:
duke@435 2177 //
duke@435 2178 //
duke@435 2179 // FP-> | |
duke@435 2180 // |---------------------|
duke@435 2181 // | 2 slots for moves |
duke@435 2182 // |---------------------|
duke@435 2183 // | lock box (if sync) |
duke@435 2184 // |---------------------| <- lock_slot_offset
duke@435 2185 // | klass (if static) |
duke@435 2186 // |---------------------| <- klass_slot_offset
duke@435 2187 // | oopHandle area |
duke@435 2188 // |---------------------| <- oop_handle_offset
duke@435 2189 // | outbound memory |
duke@435 2190 // | based arguments |
duke@435 2191 // | |
duke@435 2192 // |---------------------|
duke@435 2193 // | vararg area |
duke@435 2194 // |---------------------|
duke@435 2195 // | |
duke@435 2196 // SP-> | out_preserved_slots |
duke@435 2197 //
duke@435 2198 //
duke@435 2199
duke@435 2200
duke@435 2201 // Now compute actual number of stack words we need rounding to make
duke@435 2202 // stack properly aligned.
duke@435 2203 stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
duke@435 2204
duke@435 2205 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
duke@435 2206
duke@435 2207 // Generate stack overflow check before creating frame
duke@435 2208 __ generate_stack_overflow_check(stack_size);
duke@435 2209
duke@435 2210 // Generate a new frame for the wrapper.
duke@435 2211 __ save(SP, -stack_size, SP);
duke@435 2212
duke@435 2213 int frame_complete = ((intptr_t)__ pc()) - start;
duke@435 2214
duke@435 2215 __ verify_thread();
duke@435 2216
never@3500 2217 if (is_critical_native) {
never@3500 2218 check_needs_gc_for_critical_native(masm, stack_slots, total_in_args,
never@3500 2219 oop_handle_offset, oop_maps, in_regs, in_sig_bt);
never@3500 2220 }
duke@435 2221
duke@435 2222 //
duke@435 2223 // We immediately shuffle the arguments so that any vm call we have to
duke@435 2224 // make from here on out (sync slow path, jvmti, etc.) we will have
duke@435 2225 // captured the oops from our caller and have a valid oopMap for
duke@435 2226 // them.
duke@435 2227
duke@435 2228 // -----------------
duke@435 2229 // The Grand Shuffle
duke@435 2230 //
duke@435 2231 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
duke@435 2232 // (derived from JavaThread* which is in L7_thread_cache) and, if static,
duke@435 2233 // the class mirror instead of a receiver. This pretty much guarantees that
duke@435 2234 // register layout will not match. We ignore these extra arguments during
duke@435 2235 // the shuffle. The shuffle is described by the two calling convention
duke@435 2236 // vectors we have in our possession. We simply walk the java vector to
duke@435 2237 // get the source locations and the c vector to get the destinations.
duke@435 2238 // Because we have a new window and the argument registers are completely
duke@435 2239 // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
duke@435 2240 // here.
duke@435 2241
duke@435 2242 // This is a trick. We double the stack slots so we can claim
duke@435 2243 // the oops in the caller's frame. Since we are sure to have
duke@435 2244 // more args than the caller doubling is enough to make
duke@435 2245 // sure we can capture all the incoming oop args from the
duke@435 2246 // caller.
duke@435 2247 //
duke@435 2248 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
duke@435 2249 // Record sp-based slot for receiver on stack for non-static methods
duke@435 2250 int receiver_offset = -1;
duke@435 2251
duke@435 2252 // We move the arguments backward because the floating point registers
duke@435 2253 // destination will always be to a register with a greater or equal register
duke@435 2254 // number or the stack.
duke@435 2255
duke@435 2256 #ifdef ASSERT
duke@435 2257 bool reg_destroyed[RegisterImpl::number_of_registers];
duke@435 2258 bool freg_destroyed[FloatRegisterImpl::number_of_registers];
duke@435 2259 for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
duke@435 2260 reg_destroyed[r] = false;
duke@435 2261 }
duke@435 2262 for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
duke@435 2263 freg_destroyed[f] = false;
duke@435 2264 }
duke@435 2265
duke@435 2266 #endif /* ASSERT */
duke@435 2267
never@3500 2268 for ( int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0 ; i--, c_arg-- ) {
duke@435 2269
duke@435 2270 #ifdef ASSERT
duke@435 2271 if (in_regs[i].first()->is_Register()) {
duke@435 2272 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
duke@435 2273 } else if (in_regs[i].first()->is_FloatRegister()) {
duke@435 2274 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
duke@435 2275 }
duke@435 2276 if (out_regs[c_arg].first()->is_Register()) {
duke@435 2277 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
duke@435 2278 } else if (out_regs[c_arg].first()->is_FloatRegister()) {
duke@435 2279 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
duke@435 2280 }
duke@435 2281 #endif /* ASSERT */
duke@435 2282
duke@435 2283 switch (in_sig_bt[i]) {
duke@435 2284 case T_ARRAY:
never@3500 2285 if (is_critical_native) {
never@3500 2286 unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg], out_regs[c_arg - 1]);
never@3500 2287 c_arg--;
never@3500 2288 break;
never@3500 2289 }
duke@435 2290 case T_OBJECT:
never@3500 2291 assert(!is_critical_native, "no oop arguments");
duke@435 2292 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
duke@435 2293 ((i == 0) && (!is_static)),
duke@435 2294 &receiver_offset);
duke@435 2295 break;
duke@435 2296 case T_VOID:
duke@435 2297 break;
duke@435 2298
duke@435 2299 case T_FLOAT:
duke@435 2300 float_move(masm, in_regs[i], out_regs[c_arg]);
never@3500 2301 break;
duke@435 2302
duke@435 2303 case T_DOUBLE:
duke@435 2304 assert( i + 1 < total_in_args &&
duke@435 2305 in_sig_bt[i + 1] == T_VOID &&
duke@435 2306 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
duke@435 2307 double_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 2308 break;
duke@435 2309
duke@435 2310 case T_LONG :
duke@435 2311 long_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 2312 break;
duke@435 2313
duke@435 2314 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
duke@435 2315
duke@435 2316 default:
duke@435 2317 move32_64(masm, in_regs[i], out_regs[c_arg]);
duke@435 2318 }
duke@435 2319 }
duke@435 2320
duke@435 2321 // Pre-load a static method's oop into O1. Used both by locking code and
duke@435 2322 // the normal JNI call code.
never@3500 2323 if (method->is_static() && !is_critical_native) {
coleenp@4251 2324 __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()), O1);
duke@435 2325
duke@435 2326 // Now handlize the static class mirror in O1. It's known not-null.
duke@435 2327 __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
duke@435 2328 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
duke@435 2329 __ add(SP, klass_offset + STACK_BIAS, O1);
duke@435 2330 }
duke@435 2331
duke@435 2332
duke@435 2333 const Register L6_handle = L6;
duke@435 2334
duke@435 2335 if (method->is_synchronized()) {
never@3500 2336 assert(!is_critical_native, "unhandled");
duke@435 2337 __ mov(O1, L6_handle);
duke@435 2338 }
duke@435 2339
duke@435 2340 // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
duke@435 2341 // except O6/O7. So if we must call out we must push a new frame. We immediately
duke@435 2342 // push a new frame and flush the windows.
duke@435 2343 #ifdef _LP64
duke@435 2344 intptr_t thepc = (intptr_t) __ pc();
duke@435 2345 {
duke@435 2346 address here = __ pc();
duke@435 2347 // Call the next instruction
duke@435 2348 __ call(here + 8, relocInfo::none);
duke@435 2349 __ delayed()->nop();
duke@435 2350 }
duke@435 2351 #else
duke@435 2352 intptr_t thepc = __ load_pc_address(O7, 0);
duke@435 2353 #endif /* _LP64 */
duke@435 2354
duke@435 2355 // We use the same pc/oopMap repeatedly when we call out
duke@435 2356 oop_maps->add_gc_map(thepc - start, map);
duke@435 2357
duke@435 2358 // O7 now has the pc loaded that we will use when we finally call to native.
duke@435 2359
duke@435 2360 // Save thread in L7; it crosses a bunch of VM calls below
duke@435 2361 // Don't use save_thread because it smashes G2 and we merely
duke@435 2362 // want to save a copy
duke@435 2363 __ mov(G2_thread, L7_thread_cache);
duke@435 2364
duke@435 2365
duke@435 2366 // If we create an inner frame once is plenty
duke@435 2367 // when we create it we must also save G2_thread
duke@435 2368 bool inner_frame_created = false;
duke@435 2369
duke@435 2370 // dtrace method entry support
duke@435 2371 {
duke@435 2372 SkipIfEqual skip_if(
duke@435 2373 masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
duke@435 2374 // create inner frame
duke@435 2375 __ save_frame(0);
duke@435 2376 __ mov(G2_thread, L7_thread_cache);
coleenp@4037 2377 __ set_metadata_constant(method(), O1);
duke@435 2378 __ call_VM_leaf(L7_thread_cache,
duke@435 2379 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 2380 G2_thread, O1);
duke@435 2381 __ restore();
duke@435 2382 }
duke@435 2383
dcubed@1045 2384 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 2385 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2386 // create inner frame
dcubed@1045 2387 __ save_frame(0);
dcubed@1045 2388 __ mov(G2_thread, L7_thread_cache);
coleenp@4037 2389 __ set_metadata_constant(method(), O1);
dcubed@1045 2390 __ call_VM_leaf(L7_thread_cache,
dcubed@1045 2391 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 2392 G2_thread, O1);
dcubed@1045 2393 __ restore();
dcubed@1045 2394 }
dcubed@1045 2395
duke@435 2396 // We are in the jni frame unless saved_frame is true in which case
duke@435 2397 // we are in one frame deeper (the "inner" frame). If we are in the
duke@435 2398 // "inner" frames the args are in the Iregs and if the jni frame then
duke@435 2399 // they are in the Oregs.
duke@435 2400 // If we ever need to go to the VM (for locking, jvmti) then
duke@435 2401 // we will always be in the "inner" frame.
duke@435 2402
duke@435 2403 // Lock a synchronized method
duke@435 2404 int lock_offset = -1; // Set if locked
duke@435 2405 if (method->is_synchronized()) {
duke@435 2406 Register Roop = O1;
duke@435 2407 const Register L3_box = L3;
duke@435 2408
duke@435 2409 create_inner_frame(masm, &inner_frame_created);
duke@435 2410
duke@435 2411 __ ld_ptr(I1, 0, O1);
duke@435 2412 Label done;
duke@435 2413
duke@435 2414 lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
duke@435 2415 __ add(FP, lock_offset+STACK_BIAS, L3_box);
duke@435 2416 #ifdef ASSERT
duke@435 2417 if (UseBiasedLocking) {
duke@435 2418 // making the box point to itself will make it clear it went unused
duke@435 2419 // but also be obviously invalid
duke@435 2420 __ st_ptr(L3_box, L3_box, 0);
duke@435 2421 }
duke@435 2422 #endif // ASSERT
duke@435 2423 //
duke@435 2424 // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
duke@435 2425 //
duke@435 2426 __ compiler_lock_object(Roop, L1, L3_box, L2);
duke@435 2427 __ br(Assembler::equal, false, Assembler::pt, done);
duke@435 2428 __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
duke@435 2429
duke@435 2430
duke@435 2431 // None of the above fast optimizations worked so we have to get into the
duke@435 2432 // slow case of monitor enter. Inline a special case of call_VM that
duke@435 2433 // disallows any pending_exception.
duke@435 2434 __ mov(Roop, O0); // Need oop in O0
duke@435 2435 __ mov(L3_box, O1);
duke@435 2436
duke@435 2437 // Record last_Java_sp, in case the VM code releases the JVM lock.
duke@435 2438
duke@435 2439 __ set_last_Java_frame(FP, I7);
duke@435 2440
duke@435 2441 // do the call
duke@435 2442 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
duke@435 2443 __ delayed()->mov(L7_thread_cache, O2);
duke@435 2444
duke@435 2445 __ restore_thread(L7_thread_cache); // restore G2_thread
duke@435 2446 __ reset_last_Java_frame();
duke@435 2447
duke@435 2448 #ifdef ASSERT
duke@435 2449 { Label L;
duke@435 2450 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
kvn@3037 2451 __ br_null_short(O0, Assembler::pt, L);
duke@435 2452 __ stop("no pending exception allowed on exit from IR::monitorenter");
duke@435 2453 __ bind(L);
duke@435 2454 }
duke@435 2455 #endif
duke@435 2456 __ bind(done);
duke@435 2457 }
duke@435 2458
duke@435 2459
duke@435 2460 // Finally just about ready to make the JNI call
duke@435 2461
duke@435 2462 __ flush_windows();
duke@435 2463 if (inner_frame_created) {
duke@435 2464 __ restore();
duke@435 2465 } else {
duke@435 2466 // Store only what we need from this frame
duke@435 2467 // QQQ I think that non-v9 (like we care) we don't need these saves
duke@435 2468 // either as the flush traps and the current window goes too.
duke@435 2469 __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
duke@435 2470 __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
duke@435 2471 }
duke@435 2472
duke@435 2473 // get JNIEnv* which is first argument to native
never@3500 2474 if (!is_critical_native) {
never@3500 2475 __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
never@3500 2476 }
duke@435 2477
duke@435 2478 // Use that pc we placed in O7 a while back as the current frame anchor
duke@435 2479 __ set_last_Java_frame(SP, O7);
duke@435 2480
never@3500 2481 // We flushed the windows ages ago now mark them as flushed before transitioning.
never@3500 2482 __ set(JavaFrameAnchor::flushed, G3_scratch);
never@3500 2483 __ st(G3_scratch, G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
never@3500 2484
duke@435 2485 // Transition from _thread_in_Java to _thread_in_native.
duke@435 2486 __ set(_thread_in_native, G3_scratch);
duke@435 2487
duke@435 2488 #ifdef _LP64
never@3500 2489 AddressLiteral dest(native_func);
duke@435 2490 __ relocate(relocInfo::runtime_call_type);
twisti@1162 2491 __ jumpl_to(dest, O7, O7);
duke@435 2492 #else
never@3500 2493 __ call(native_func, relocInfo::runtime_call_type);
duke@435 2494 #endif
never@3500 2495 __ delayed()->st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
duke@435 2496
duke@435 2497 __ restore_thread(L7_thread_cache); // restore G2_thread
duke@435 2498
duke@435 2499 // Unpack native results. For int-types, we do any needed sign-extension
duke@435 2500 // and move things into I0. The return value there will survive any VM
duke@435 2501 // calls for blocking or unlocking. An FP or OOP result (handle) is done
duke@435 2502 // specially in the slow-path code.
duke@435 2503 switch (ret_type) {
duke@435 2504 case T_VOID: break; // Nothing to do!
duke@435 2505 case T_FLOAT: break; // Got it where we want it (unless slow-path)
duke@435 2506 case T_DOUBLE: break; // Got it where we want it (unless slow-path)
duke@435 2507 // In 64 bits build result is in O0, in O0, O1 in 32bit build
duke@435 2508 case T_LONG:
duke@435 2509 #ifndef _LP64
duke@435 2510 __ mov(O1, I1);
duke@435 2511 #endif
duke@435 2512 // Fall thru
duke@435 2513 case T_OBJECT: // Really a handle
duke@435 2514 case T_ARRAY:
duke@435 2515 case T_INT:
duke@435 2516 __ mov(O0, I0);
duke@435 2517 break;
duke@435 2518 case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
duke@435 2519 case T_BYTE : __ sll(O0, 24, O0); __ sra(O0, 24, I0); break;
duke@435 2520 case T_CHAR : __ sll(O0, 16, O0); __ srl(O0, 16, I0); break; // cannot use and3, 0xFFFF too big as immediate value!
duke@435 2521 case T_SHORT : __ sll(O0, 16, O0); __ sra(O0, 16, I0); break;
duke@435 2522 break; // Cannot de-handlize until after reclaiming jvm_lock
duke@435 2523 default:
duke@435 2524 ShouldNotReachHere();
duke@435 2525 }
duke@435 2526
never@3500 2527 Label after_transition;
duke@435 2528 // must we block?
duke@435 2529
duke@435 2530 // Block, if necessary, before resuming in _thread_in_Java state.
duke@435 2531 // In order for GC to work, don't clear the last_Java_sp until after blocking.
duke@435 2532 { Label no_block;
twisti@1162 2533 AddressLiteral sync_state(SafepointSynchronize::address_of_state());
duke@435 2534
duke@435 2535 // Switch thread to "native transition" state before reading the synchronization state.
duke@435 2536 // This additional state is necessary because reading and testing the synchronization
duke@435 2537 // state is not atomic w.r.t. GC, as this scenario demonstrates:
duke@435 2538 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
duke@435 2539 // VM thread changes sync state to synchronizing and suspends threads for GC.
duke@435 2540 // Thread A is resumed to finish this native method, but doesn't block here since it
duke@435 2541 // didn't see any synchronization is progress, and escapes.
duke@435 2542 __ set(_thread_in_native_trans, G3_scratch);
twisti@1162 2543 __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
duke@435 2544 if(os::is_MP()) {
duke@435 2545 if (UseMembar) {
duke@435 2546 // Force this write out before the read below
duke@435 2547 __ membar(Assembler::StoreLoad);
duke@435 2548 } else {
duke@435 2549 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 2550 // We use the current thread pointer to calculate a thread specific
duke@435 2551 // offset to write to within the page. This minimizes bus traffic
duke@435 2552 // due to cache line collision.
duke@435 2553 __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
duke@435 2554 }
duke@435 2555 }
duke@435 2556 __ load_contents(sync_state, G3_scratch);
duke@435 2557 __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
duke@435 2558
duke@435 2559 Label L;
twisti@1162 2560 Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
duke@435 2561 __ br(Assembler::notEqual, false, Assembler::pn, L);
twisti@1162 2562 __ delayed()->ld(suspend_state, G3_scratch);
kvn@3037 2563 __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
duke@435 2564 __ bind(L);
duke@435 2565
duke@435 2566 // Block. Save any potential method result value before the operation and
duke@435 2567 // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
duke@435 2568 // lets us share the oopMap we used when we went native rather the create
duke@435 2569 // a distinct one for this pc
duke@435 2570 //
duke@435 2571 save_native_result(masm, ret_type, stack_slots);
never@3500 2572 if (!is_critical_native) {
never@3500 2573 __ call_VM_leaf(L7_thread_cache,
never@3500 2574 CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
never@3500 2575 G2_thread);
never@3500 2576 } else {
never@3500 2577 __ call_VM_leaf(L7_thread_cache,
never@3500 2578 CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition),
never@3500 2579 G2_thread);
never@3500 2580 }
duke@435 2581
duke@435 2582 // Restore any method result value
duke@435 2583 restore_native_result(masm, ret_type, stack_slots);
never@3500 2584
never@3500 2585 if (is_critical_native) {
never@3500 2586 // The call above performed the transition to thread_in_Java so
never@3500 2587 // skip the transition logic below.
never@3500 2588 __ ba(after_transition);
never@3500 2589 __ delayed()->nop();
never@3500 2590 }
never@3500 2591
duke@435 2592 __ bind(no_block);
duke@435 2593 }
duke@435 2594
duke@435 2595 // thread state is thread_in_native_trans. Any safepoint blocking has already
duke@435 2596 // happened so we can now change state to _thread_in_Java.
duke@435 2597 __ set(_thread_in_Java, G3_scratch);
twisti@1162 2598 __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
never@3500 2599 __ bind(after_transition);
duke@435 2600
duke@435 2601 Label no_reguard;
twisti@1162 2602 __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
kvn@3037 2603 __ cmp_and_br_short(G3_scratch, JavaThread::stack_guard_yellow_disabled, Assembler::notEqual, Assembler::pt, no_reguard);
duke@435 2604
duke@435 2605 save_native_result(masm, ret_type, stack_slots);
duke@435 2606 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
duke@435 2607 __ delayed()->nop();
duke@435 2608
duke@435 2609 __ restore_thread(L7_thread_cache); // restore G2_thread
duke@435 2610 restore_native_result(masm, ret_type, stack_slots);
duke@435 2611
duke@435 2612 __ bind(no_reguard);
duke@435 2613
duke@435 2614 // Handle possible exception (will unlock if necessary)
duke@435 2615
duke@435 2616 // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
duke@435 2617
duke@435 2618 // Unlock
duke@435 2619 if (method->is_synchronized()) {
duke@435 2620 Label done;
duke@435 2621 Register I2_ex_oop = I2;
duke@435 2622 const Register L3_box = L3;
duke@435 2623 // Get locked oop from the handle we passed to jni
duke@435 2624 __ ld_ptr(L6_handle, 0, L4);
duke@435 2625 __ add(SP, lock_offset+STACK_BIAS, L3_box);
duke@435 2626 // Must save pending exception around the slow-path VM call. Since it's a
duke@435 2627 // leaf call, the pending exception (if any) can be kept in a register.
duke@435 2628 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
duke@435 2629 // Now unlock
duke@435 2630 // (Roop, Rmark, Rbox, Rscratch)
duke@435 2631 __ compiler_unlock_object(L4, L1, L3_box, L2);
duke@435 2632 __ br(Assembler::equal, false, Assembler::pt, done);
duke@435 2633 __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
duke@435 2634
duke@435 2635 // save and restore any potential method result value around the unlocking
duke@435 2636 // operation. Will save in I0 (or stack for FP returns).
duke@435 2637 save_native_result(masm, ret_type, stack_slots);
duke@435 2638
duke@435 2639 // Must clear pending-exception before re-entering the VM. Since this is
duke@435 2640 // a leaf call, pending-exception-oop can be safely kept in a register.
duke@435 2641 __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
duke@435 2642
duke@435 2643 // slow case of monitor enter. Inline a special case of call_VM that
duke@435 2644 // disallows any pending_exception.
duke@435 2645 __ mov(L3_box, O1);
duke@435 2646
duke@435 2647 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
duke@435 2648 __ delayed()->mov(L4, O0); // Need oop in O0
duke@435 2649
duke@435 2650 __ restore_thread(L7_thread_cache); // restore G2_thread
duke@435 2651
duke@435 2652 #ifdef ASSERT
duke@435 2653 { Label L;
duke@435 2654 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
kvn@3037 2655 __ br_null_short(O0, Assembler::pt, L);
duke@435 2656 __ stop("no pending exception allowed on exit from IR::monitorexit");
duke@435 2657 __ bind(L);
duke@435 2658 }
duke@435 2659 #endif
duke@435 2660 restore_native_result(masm, ret_type, stack_slots);
duke@435 2661 // check_forward_pending_exception jump to forward_exception if any pending
duke@435 2662 // exception is set. The forward_exception routine expects to see the
duke@435 2663 // exception in pending_exception and not in a register. Kind of clumsy,
duke@435 2664 // since all folks who branch to forward_exception must have tested
duke@435 2665 // pending_exception first and hence have it in a register already.
duke@435 2666 __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
duke@435 2667 __ bind(done);
duke@435 2668 }
duke@435 2669
duke@435 2670 // Tell dtrace about this method exit
duke@435 2671 {
duke@435 2672 SkipIfEqual skip_if(
duke@435 2673 masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
duke@435 2674 save_native_result(masm, ret_type, stack_slots);
coleenp@4037 2675 __ set_metadata_constant(method(), O1);
duke@435 2676 __ call_VM_leaf(L7_thread_cache,
duke@435 2677 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2678 G2_thread, O1);
duke@435 2679 restore_native_result(masm, ret_type, stack_slots);
duke@435 2680 }
duke@435 2681
duke@435 2682 // Clear "last Java frame" SP and PC.
duke@435 2683 __ verify_thread(); // G2_thread must be correct
duke@435 2684 __ reset_last_Java_frame();
duke@435 2685
duke@435 2686 // Unpack oop result
duke@435 2687 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
duke@435 2688 Label L;
duke@435 2689 __ addcc(G0, I0, G0);
duke@435 2690 __ brx(Assembler::notZero, true, Assembler::pt, L);
duke@435 2691 __ delayed()->ld_ptr(I0, 0, I0);
duke@435 2692 __ mov(G0, I0);
duke@435 2693 __ bind(L);
duke@435 2694 __ verify_oop(I0);
duke@435 2695 }
duke@435 2696
never@3500 2697 if (!is_critical_native) {
never@3500 2698 // reset handle block
never@3500 2699 __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
never@3500 2700 __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
never@3500 2701
never@3500 2702 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
never@3500 2703 check_forward_pending_exception(masm, G3_scratch);
never@3500 2704 }
duke@435 2705
duke@435 2706
duke@435 2707 // Return
duke@435 2708
duke@435 2709 #ifndef _LP64
duke@435 2710 if (ret_type == T_LONG) {
duke@435 2711
duke@435 2712 // Must leave proper result in O0,O1 and G1 (c2/tiered only)
duke@435 2713 __ sllx(I0, 32, G1); // Shift bits into high G1
duke@435 2714 __ srl (I1, 0, I1); // Zero extend O1 (harmless?)
duke@435 2715 __ or3 (I1, G1, G1); // OR 64 bits into G1
duke@435 2716 }
duke@435 2717 #endif
duke@435 2718
duke@435 2719 __ ret();
duke@435 2720 __ delayed()->restore();
duke@435 2721
duke@435 2722 __ flush();
duke@435 2723
duke@435 2724 nmethod *nm = nmethod::new_native_nmethod(method,
twisti@2687 2725 compile_id,
duke@435 2726 masm->code(),
duke@435 2727 vep_offset,
duke@435 2728 frame_complete,
duke@435 2729 stack_slots / VMRegImpl::slots_per_word,
duke@435 2730 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
duke@435 2731 in_ByteSize(lock_offset),
duke@435 2732 oop_maps);
never@3500 2733
never@3500 2734 if (is_critical_native) {
never@3500 2735 nm->set_lazy_critical_native(true);
never@3500 2736 }
duke@435 2737 return nm;
duke@435 2738
duke@435 2739 }
duke@435 2740
kamg@551 2741 #ifdef HAVE_DTRACE_H
kamg@551 2742 // ---------------------------------------------------------------------------
kamg@551 2743 // Generate a dtrace nmethod for a given signature. The method takes arguments
kamg@551 2744 // in the Java compiled code convention, marshals them to the native
kamg@551 2745 // abi and then leaves nops at the position you would expect to call a native
kamg@551 2746 // function. When the probe is enabled the nops are replaced with a trap
kamg@551 2747 // instruction that dtrace inserts and the trace will cause a notification
kamg@551 2748 // to dtrace.
kamg@551 2749 //
kamg@551 2750 // The probes are only able to take primitive types and java/lang/String as
kamg@551 2751 // arguments. No other java types are allowed. Strings are converted to utf8
kamg@551 2752 // strings so that from dtrace point of view java strings are converted to C
kamg@551 2753 // strings. There is an arbitrary fixed limit on the total space that a method
kamg@551 2754 // can use for converting the strings. (256 chars per string in the signature).
kamg@551 2755 // So any java string larger then this is truncated.
kamg@551 2756
kamg@551 2757 static int fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
kamg@551 2758 static bool offsets_initialized = false;
kamg@551 2759
kamg@551 2760 nmethod *SharedRuntime::generate_dtrace_nmethod(
kamg@551 2761 MacroAssembler *masm, methodHandle method) {
kamg@551 2762
kamg@551 2763
kamg@551 2764 // generate_dtrace_nmethod is guarded by a mutex so we are sure to
kamg@551 2765 // be single threaded in this method.
kamg@551 2766 assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
kamg@551 2767
kamg@551 2768 // Fill in the signature array, for the calling-convention call.
kamg@551 2769 int total_args_passed = method->size_of_parameters();
kamg@551 2770
kamg@551 2771 BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
kamg@551 2772 VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kamg@551 2773
kamg@551 2774 // The signature we are going to use for the trap that dtrace will see
kamg@551 2775 // java/lang/String is converted. We drop "this" and any other object
kamg@551 2776 // is converted to NULL. (A one-slot java/lang/Long object reference
kamg@551 2777 // is converted to a two-slot long, which is why we double the allocation).
kamg@551 2778 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
kamg@551 2779 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
kamg@551 2780
kamg@551 2781 int i=0;
kamg@551 2782 int total_strings = 0;
kamg@551 2783 int first_arg_to_pass = 0;
kamg@551 2784 int total_c_args = 0;
kamg@551 2785
kamg@551 2786 // Skip the receiver as dtrace doesn't want to see it
kamg@551 2787 if( !method->is_static() ) {
kamg@551 2788 in_sig_bt[i++] = T_OBJECT;
kamg@551 2789 first_arg_to_pass = 1;
kamg@551 2790 }
kamg@551 2791
kamg@551 2792 SignatureStream ss(method->signature());
kamg@551 2793 for ( ; !ss.at_return_type(); ss.next()) {
kamg@551 2794 BasicType bt = ss.type();
kamg@551 2795 in_sig_bt[i++] = bt; // Collect remaining bits of signature
kamg@551 2796 out_sig_bt[total_c_args++] = bt;
kamg@551 2797 if( bt == T_OBJECT) {
coleenp@2497 2798 Symbol* s = ss.as_symbol_or_null();
kamg@551 2799 if (s == vmSymbols::java_lang_String()) {
kamg@551 2800 total_strings++;
kamg@551 2801 out_sig_bt[total_c_args-1] = T_ADDRESS;
kamg@551 2802 } else if (s == vmSymbols::java_lang_Boolean() ||
kamg@551 2803 s == vmSymbols::java_lang_Byte()) {
kamg@551 2804 out_sig_bt[total_c_args-1] = T_BYTE;
kamg@551 2805 } else if (s == vmSymbols::java_lang_Character() ||
kamg@551 2806 s == vmSymbols::java_lang_Short()) {
kamg@551 2807 out_sig_bt[total_c_args-1] = T_SHORT;
kamg@551 2808 } else if (s == vmSymbols::java_lang_Integer() ||
kamg@551 2809 s == vmSymbols::java_lang_Float()) {
kamg@551 2810 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 2811 } else if (s == vmSymbols::java_lang_Long() ||
kamg@551 2812 s == vmSymbols::java_lang_Double()) {
kamg@551 2813 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 2814 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2815 }
kamg@551 2816 } else if ( bt == T_LONG || bt == T_DOUBLE ) {
kamg@551 2817 in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kamg@551 2818 // We convert double to long
kamg@551 2819 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 2820 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2821 } else if ( bt == T_FLOAT) {
kamg@551 2822 // We convert float to int
kamg@551 2823 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 2824 }
kamg@551 2825 }
kamg@551 2826
kamg@551 2827 assert(i==total_args_passed, "validly parsed signature");
kamg@551 2828
kamg@551 2829 // Now get the compiled-Java layout as input arguments
kamg@551 2830 int comp_args_on_stack;
kamg@551 2831 comp_args_on_stack = SharedRuntime::java_calling_convention(
kamg@551 2832 in_sig_bt, in_regs, total_args_passed, false);
kamg@551 2833
kamg@551 2834 // We have received a description of where all the java arg are located
kamg@551 2835 // on entry to the wrapper. We need to convert these args to where
kamg@551 2836 // the a native (non-jni) function would expect them. To figure out
kamg@551 2837 // where they go we convert the java signature to a C signature and remove
kamg@551 2838 // T_VOID for any long/double we might have received.
kamg@551 2839
kamg@551 2840
kamg@551 2841 // Now figure out where the args must be stored and how much stack space
kamg@551 2842 // they require (neglecting out_preserve_stack_slots but space for storing
kamg@551 2843 // the 1st six register arguments). It's weird see int_stk_helper.
kamg@551 2844 //
kamg@551 2845 int out_arg_slots;
kamg@551 2846 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
kamg@551 2847
kamg@551 2848 // Calculate the total number of stack slots we will need.
kamg@551 2849
kamg@551 2850 // First count the abi requirement plus all of the outgoing args
kamg@551 2851 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
kamg@551 2852
kamg@551 2853 // Plus a temp for possible converion of float/double/long register args
kamg@551 2854
kamg@551 2855 int conversion_temp = stack_slots;
kamg@551 2856 stack_slots += 2;
kamg@551 2857
kamg@551 2858
kamg@551 2859 // Now space for the string(s) we must convert
kamg@551 2860
kamg@551 2861 int string_locs = stack_slots;
kamg@551 2862 stack_slots += total_strings *
kamg@551 2863 (max_dtrace_string_size / VMRegImpl::stack_slot_size);
kamg@551 2864
kamg@551 2865 // Ok The space we have allocated will look like:
kamg@551 2866 //
kamg@551 2867 //
kamg@551 2868 // FP-> | |
kamg@551 2869 // |---------------------|
kamg@551 2870 // | string[n] |
kamg@551 2871 // |---------------------| <- string_locs[n]
kamg@551 2872 // | string[n-1] |
kamg@551 2873 // |---------------------| <- string_locs[n-1]
kamg@551 2874 // | ... |
kamg@551 2875 // | ... |
kamg@551 2876 // |---------------------| <- string_locs[1]
kamg@551 2877 // | string[0] |
kamg@551 2878 // |---------------------| <- string_locs[0]
kamg@551 2879 // | temp |
kamg@551 2880 // |---------------------| <- conversion_temp
kamg@551 2881 // | outbound memory |
kamg@551 2882 // | based arguments |
kamg@551 2883 // | |
kamg@551 2884 // |---------------------|
kamg@551 2885 // | |
kamg@551 2886 // SP-> | out_preserved_slots |
kamg@551 2887 //
kamg@551 2888 //
kamg@551 2889
kamg@551 2890 // Now compute actual number of stack words we need rounding to make
kamg@551 2891 // stack properly aligned.
kamg@551 2892 stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
kamg@551 2893
kamg@551 2894 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
kamg@551 2895
kamg@551 2896 intptr_t start = (intptr_t)__ pc();
kamg@551 2897
kamg@551 2898 // First thing make an ic check to see if we should even be here
kamg@551 2899
kamg@551 2900 {
kamg@551 2901 Label L;
kamg@551 2902 const Register temp_reg = G3_scratch;
twisti@1162 2903 AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
kamg@551 2904 __ verify_oop(O0);
kamg@551 2905 __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
kvn@3037 2906 __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
kamg@551 2907
twisti@1162 2908 __ jump_to(ic_miss, temp_reg);
kamg@551 2909 __ delayed()->nop();
kamg@551 2910 __ align(CodeEntryAlignment);
kamg@551 2911 __ bind(L);
kamg@551 2912 }
kamg@551 2913
kamg@551 2914 int vep_offset = ((intptr_t)__ pc()) - start;
kamg@551 2915
kamg@551 2916
kamg@551 2917 // The instruction at the verified entry point must be 5 bytes or longer
kamg@551 2918 // because it can be patched on the fly by make_non_entrant. The stack bang
kamg@551 2919 // instruction fits that requirement.
kamg@551 2920
kamg@551 2921 // Generate stack overflow check before creating frame
kamg@551 2922 __ generate_stack_overflow_check(stack_size);
kamg@551 2923
kamg@551 2924 assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
kamg@551 2925 "valid size for make_non_entrant");
kamg@551 2926
kamg@551 2927 // Generate a new frame for the wrapper.
kamg@551 2928 __ save(SP, -stack_size, SP);
kamg@551 2929
kamg@551 2930 // Frame is now completed as far a size and linkage.
kamg@551 2931
kamg@551 2932 int frame_complete = ((intptr_t)__ pc()) - start;
kamg@551 2933
kamg@551 2934 #ifdef ASSERT
kamg@551 2935 bool reg_destroyed[RegisterImpl::number_of_registers];
kamg@551 2936 bool freg_destroyed[FloatRegisterImpl::number_of_registers];
kamg@551 2937 for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
kamg@551 2938 reg_destroyed[r] = false;
kamg@551 2939 }
kamg@551 2940 for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
kamg@551 2941 freg_destroyed[f] = false;
kamg@551 2942 }
kamg@551 2943
kamg@551 2944 #endif /* ASSERT */
kamg@551 2945
kamg@551 2946 VMRegPair zero;
kamg@611 2947 const Register g0 = G0; // without this we get a compiler warning (why??)
kamg@611 2948 zero.set2(g0->as_VMReg());
kamg@551 2949
kamg@551 2950 int c_arg, j_arg;
kamg@551 2951
kamg@551 2952 Register conversion_off = noreg;
kamg@551 2953
kamg@551 2954 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2955 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2956
kamg@551 2957 VMRegPair src = in_regs[j_arg];
kamg@551 2958 VMRegPair dst = out_regs[c_arg];
kamg@551 2959
kamg@551 2960 #ifdef ASSERT
kamg@551 2961 if (src.first()->is_Register()) {
kamg@551 2962 assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
kamg@551 2963 } else if (src.first()->is_FloatRegister()) {
kamg@551 2964 assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
kamg@551 2965 FloatRegisterImpl::S)], "ack!");
kamg@551 2966 }
kamg@551 2967 if (dst.first()->is_Register()) {
kamg@551 2968 reg_destroyed[dst.first()->as_Register()->encoding()] = true;
kamg@551 2969 } else if (dst.first()->is_FloatRegister()) {
kamg@551 2970 freg_destroyed[dst.first()->as_FloatRegister()->encoding(
kamg@551 2971 FloatRegisterImpl::S)] = true;
kamg@551 2972 }
kamg@551 2973 #endif /* ASSERT */
kamg@551 2974
kamg@551 2975 switch (in_sig_bt[j_arg]) {
kamg@551 2976 case T_ARRAY:
kamg@551 2977 case T_OBJECT:
kamg@551 2978 {
kamg@551 2979 if (out_sig_bt[c_arg] == T_BYTE || out_sig_bt[c_arg] == T_SHORT ||
kamg@551 2980 out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 2981 // need to unbox a one-slot value
kamg@551 2982 Register in_reg = L0;
kamg@551 2983 Register tmp = L2;
kamg@551 2984 if ( src.first()->is_reg() ) {
kamg@551 2985 in_reg = src.first()->as_Register();
kamg@551 2986 } else {
kamg@551 2987 assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
kamg@551 2988 "must be");
kamg@551 2989 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
kamg@551 2990 }
kamg@551 2991 // If the final destination is an acceptable register
kamg@551 2992 if ( dst.first()->is_reg() ) {
kamg@551 2993 if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
kamg@551 2994 tmp = dst.first()->as_Register();
kamg@551 2995 }
kamg@551 2996 }
kamg@551 2997
kamg@551 2998 Label skipUnbox;
kamg@551 2999 if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
kamg@551 3000 __ mov(G0, tmp->successor());
kamg@551 3001 }
kamg@551 3002 __ br_null(in_reg, true, Assembler::pn, skipUnbox);
kamg@551 3003 __ delayed()->mov(G0, tmp);
kamg@551 3004
kvn@600 3005 BasicType bt = out_sig_bt[c_arg];
kvn@600 3006 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kvn@600 3007 switch (bt) {
kamg@551 3008 case T_BYTE:
kamg@551 3009 __ ldub(in_reg, box_offset, tmp); break;
kamg@551 3010 case T_SHORT:
kamg@551 3011 __ lduh(in_reg, box_offset, tmp); break;
kamg@551 3012 case T_INT:
kamg@551 3013 __ ld(in_reg, box_offset, tmp); break;
kamg@551 3014 case T_LONG:
kamg@551 3015 __ ld_long(in_reg, box_offset, tmp); break;
kamg@551 3016 default: ShouldNotReachHere();
kamg@551 3017 }
kamg@551 3018
kamg@551 3019 __ bind(skipUnbox);
kamg@551 3020 // If tmp wasn't final destination copy to final destination
kamg@551 3021 if (tmp == L2) {
kamg@551 3022 VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
kamg@551 3023 if (out_sig_bt[c_arg] == T_LONG) {
kamg@551 3024 long_move(masm, tmp_as_VM, dst);
kamg@551 3025 } else {
kamg@551 3026 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
kamg@551 3027 }
kamg@551 3028 }
kamg@551 3029 if (out_sig_bt[c_arg] == T_LONG) {
kamg@551 3030 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 3031 ++c_arg; // move over the T_VOID to keep the loop indices in sync
kamg@551 3032 }
kamg@551 3033 } else if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 3034 Register s =
kamg@551 3035 src.first()->is_reg() ? src.first()->as_Register() : L2;
kamg@551 3036 Register d =
kamg@551 3037 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
kamg@551 3038
kamg@551 3039 // We store the oop now so that the conversion pass can reach
kamg@551 3040 // while in the inner frame. This will be the only store if
kamg@551 3041 // the oop is NULL.
kamg@551 3042 if (s != L2) {
kamg@551 3043 // src is register
kamg@551 3044 if (d != L2) {
kamg@551 3045 // dst is register
kamg@551 3046 __ mov(s, d);
kamg@551 3047 } else {
kamg@551 3048 assert(Assembler::is_simm13(reg2offset(dst.first()) +
kamg@551 3049 STACK_BIAS), "must be");
kamg@551 3050 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
kamg@551 3051 }
kamg@551 3052 } else {
kamg@551 3053 // src not a register
kamg@551 3054 assert(Assembler::is_simm13(reg2offset(src.first()) +
kamg@551 3055 STACK_BIAS), "must be");
kamg@551 3056 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
kamg@551 3057 if (d == L2) {
kamg@551 3058 assert(Assembler::is_simm13(reg2offset(dst.first()) +
kamg@551 3059 STACK_BIAS), "must be");
kamg@551 3060 __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
kamg@551 3061 }
kamg@551 3062 }
kamg@551 3063 } else if (out_sig_bt[c_arg] != T_VOID) {
kamg@551 3064 // Convert the arg to NULL
kamg@551 3065 if (dst.first()->is_reg()) {
kamg@551 3066 __ mov(G0, dst.first()->as_Register());
kamg@551 3067 } else {
kamg@551 3068 assert(Assembler::is_simm13(reg2offset(dst.first()) +
kamg@551 3069 STACK_BIAS), "must be");
kamg@551 3070 __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
kamg@551 3071 }
kamg@551 3072 }
kamg@551 3073 }
kamg@551 3074 break;
kamg@551 3075 case T_VOID:
kamg@551 3076 break;
kamg@551 3077
kamg@551 3078 case T_FLOAT:
kamg@551 3079 if (src.first()->is_stack()) {
kamg@551 3080 // Stack to stack/reg is simple
kamg@551 3081 move32_64(masm, src, dst);
kamg@551 3082 } else {
kamg@551 3083 if (dst.first()->is_reg()) {
kamg@551 3084 // freg -> reg
kamg@551 3085 int off =
kamg@551 3086 STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
kamg@551 3087 Register d = dst.first()->as_Register();
kamg@551 3088 if (Assembler::is_simm13(off)) {
kamg@551 3089 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
kamg@551 3090 SP, off);
kamg@551 3091 __ ld(SP, off, d);
kamg@551 3092 } else {
kamg@551 3093 if (conversion_off == noreg) {
kamg@551 3094 __ set(off, L6);
kamg@551 3095 conversion_off = L6;
kamg@551 3096 }
kamg@551 3097 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
kamg@551 3098 SP, conversion_off);
kamg@551 3099 __ ld(SP, conversion_off , d);
kamg@551 3100 }
kamg@551 3101 } else {
kamg@551 3102 // freg -> mem
kamg@551 3103 int off = STACK_BIAS + reg2offset(dst.first());
kamg@551 3104 if (Assembler::is_simm13(off)) {
kamg@551 3105 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
kamg@551 3106 SP, off);
kamg@551 3107 } else {
kamg@551 3108 if (conversion_off == noreg) {
kamg@551 3109 __ set(off, L6);
kamg@551 3110 conversion_off = L6;
kamg@551 3111 }
kamg@551 3112 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
kamg@551 3113 SP, conversion_off);
kamg@551 3114 }
kamg@551 3115 }
kamg@551 3116 }
kamg@551 3117 break;
kamg@551 3118
kamg@551 3119 case T_DOUBLE:
kamg@551 3120 assert( j_arg + 1 < total_args_passed &&
kamg@551 3121 in_sig_bt[j_arg + 1] == T_VOID &&
kamg@551 3122 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
kamg@551 3123 if (src.first()->is_stack()) {
kamg@551 3124 // Stack to stack/reg is simple
kamg@551 3125 long_move(masm, src, dst);
kamg@551 3126 } else {
kamg@551 3127 Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
kamg@551 3128
kamg@551 3129 // Destination could be an odd reg on 32bit in which case
kamg@551 3130 // we can't load direct to the destination.
kamg@551 3131
kamg@551 3132 if (!d->is_even() && wordSize == 4) {
kamg@551 3133 d = L2;
kamg@551 3134 }
kamg@551 3135 int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
kamg@551 3136 if (Assembler::is_simm13(off)) {
kamg@551 3137 __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
kamg@551 3138 SP, off);
kamg@551 3139 __ ld_long(SP, off, d);
kamg@551 3140 } else {
kamg@551 3141 if (conversion_off == noreg) {
kamg@551 3142 __ set(off, L6);
kamg@551 3143 conversion_off = L6;
kamg@551 3144 }
kamg@551 3145 __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
kamg@551 3146 SP, conversion_off);
kamg@551 3147 __ ld_long(SP, conversion_off, d);
kamg@551 3148 }
kamg@551 3149 if (d == L2) {
kamg@551 3150 long_move(masm, reg64_to_VMRegPair(L2), dst);
kamg@551 3151 }
kamg@551 3152 }
kamg@551 3153 break;
kamg@551 3154
kamg@551 3155 case T_LONG :
kamg@551 3156 // 32bit can't do a split move of something like g1 -> O0, O1
kamg@551 3157 // so use a memory temp
kamg@551 3158 if (src.is_single_phys_reg() && wordSize == 4) {
kamg@551 3159 Register tmp = L2;
kamg@551 3160 if (dst.first()->is_reg() &&
kamg@551 3161 (wordSize == 8 || dst.first()->as_Register()->is_even())) {
kamg@551 3162 tmp = dst.first()->as_Register();
kamg@551 3163 }
kamg@551 3164
kamg@551 3165 int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
kamg@551 3166 if (Assembler::is_simm13(off)) {
kamg@551 3167 __ stx(src.first()->as_Register(), SP, off);
kamg@551 3168 __ ld_long(SP, off, tmp);
kamg@551 3169 } else {
kamg@551 3170 if (conversion_off == noreg) {
kamg@551 3171 __ set(off, L6);
kamg@551 3172 conversion_off = L6;
kamg@551 3173 }
kamg@551 3174 __ stx(src.first()->as_Register(), SP, conversion_off);
kamg@551 3175 __ ld_long(SP, conversion_off, tmp);
kamg@551 3176 }
kamg@551 3177
kamg@551 3178 if (tmp == L2) {
kamg@551 3179 long_move(masm, reg64_to_VMRegPair(L2), dst);
kamg@551 3180 }
kamg@551 3181 } else {
kamg@551 3182 long_move(masm, src, dst);
kamg@551 3183 }
kamg@551 3184 break;
kamg@551 3185
kamg@551 3186 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
kamg@551 3187
kamg@551 3188 default:
kamg@551 3189 move32_64(masm, src, dst);
kamg@551 3190 }
kamg@551 3191 }
kamg@551 3192
kamg@551 3193
kamg@551 3194 // If we have any strings we must store any register based arg to the stack
kamg@551 3195 // This includes any still live xmm registers too.
kamg@551 3196
kamg@551 3197 if (total_strings > 0 ) {
kamg@551 3198
kamg@551 3199 // protect all the arg registers
kamg@551 3200 __ save_frame(0);
kamg@551 3201 __ mov(G2_thread, L7_thread_cache);
kamg@551 3202 const Register L2_string_off = L2;
kamg@551 3203
kamg@551 3204 // Get first string offset
kamg@551 3205 __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
kamg@551 3206
kamg@551 3207 for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
kamg@551 3208 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 3209
kamg@551 3210 VMRegPair dst = out_regs[c_arg];
kamg@551 3211 const Register d = dst.first()->is_reg() ?
kamg@551 3212 dst.first()->as_Register()->after_save() : noreg;
kamg@551 3213
kamg@551 3214 // It's a string the oop and it was already copied to the out arg
kamg@551 3215 // position
kamg@551 3216 if (d != noreg) {
kamg@551 3217 __ mov(d, O0);
kamg@551 3218 } else {
kamg@551 3219 assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
kamg@551 3220 "must be");
kamg@551 3221 __ ld_ptr(FP, reg2offset(dst.first()) + STACK_BIAS, O0);
kamg@551 3222 }
kamg@551 3223 Label skip;
kamg@551 3224
kamg@551 3225 __ br_null(O0, false, Assembler::pn, skip);
kamg@551 3226 __ delayed()->add(FP, L2_string_off, O1);
kamg@551 3227
kamg@551 3228 if (d != noreg) {
kamg@551 3229 __ mov(O1, d);
kamg@551 3230 } else {
kamg@551 3231 assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
kamg@551 3232 "must be");
kamg@551 3233 __ st_ptr(O1, FP, reg2offset(dst.first()) + STACK_BIAS);
kamg@551 3234 }
kamg@551 3235
kamg@551 3236 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
kamg@551 3237 relocInfo::runtime_call_type);
kamg@551 3238 __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
kamg@551 3239
kamg@551 3240 __ bind(skip);
kamg@551 3241
kamg@551 3242 }
kamg@551 3243
kamg@551 3244 }
kamg@551 3245 __ mov(L7_thread_cache, G2_thread);
kamg@551 3246 __ restore();
kamg@551 3247
kamg@551 3248 }
kamg@551 3249
kamg@551 3250
kamg@551 3251 // Ok now we are done. Need to place the nop that dtrace wants in order to
kamg@551 3252 // patch in the trap
kamg@551 3253
kamg@551 3254 int patch_offset = ((intptr_t)__ pc()) - start;
kamg@551 3255
kamg@551 3256 __ nop();
kamg@551 3257
kamg@551 3258
kamg@551 3259 // Return
kamg@551 3260
kamg@551 3261 __ ret();
kamg@551 3262 __ delayed()->restore();
kamg@551 3263
kamg@551 3264 __ flush();
kamg@551 3265
kamg@551 3266 nmethod *nm = nmethod::new_dtrace_nmethod(
kamg@551 3267 method, masm->code(), vep_offset, patch_offset, frame_complete,
kamg@551 3268 stack_slots / VMRegImpl::slots_per_word);
kamg@551 3269 return nm;
kamg@551 3270
kamg@551 3271 }
kamg@551 3272
kamg@551 3273 #endif // HAVE_DTRACE_H
kamg@551 3274
duke@435 3275 // this function returns the adjust size (in number of words) to a c2i adapter
duke@435 3276 // activation for use during deoptimization
duke@435 3277 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
duke@435 3278 assert(callee_locals >= callee_parameters,
duke@435 3279 "test and remove; got more parms than locals");
duke@435 3280 if (callee_locals < callee_parameters)
duke@435 3281 return 0; // No adjustment for negative locals
twisti@1861 3282 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
duke@435 3283 return round_to(diff, WordsPerLong);
duke@435 3284 }
duke@435 3285
duke@435 3286 // "Top of Stack" slots that may be unused by the calling convention but must
duke@435 3287 // otherwise be preserved.
duke@435 3288 // On Intel these are not necessary and the value can be zero.
duke@435 3289 // On Sparc this describes the words reserved for storing a register window
duke@435 3290 // when an interrupt occurs.
duke@435 3291 uint SharedRuntime::out_preserve_stack_slots() {
duke@435 3292 return frame::register_save_words * VMRegImpl::slots_per_word;
duke@435 3293 }
duke@435 3294
duke@435 3295 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
duke@435 3296 //
duke@435 3297 // Common out the new frame generation for deopt and uncommon trap
duke@435 3298 //
duke@435 3299 Register G3pcs = G3_scratch; // Array of new pcs (input)
duke@435 3300 Register Oreturn0 = O0;
duke@435 3301 Register Oreturn1 = O1;
duke@435 3302 Register O2UnrollBlock = O2;
duke@435 3303 Register O3array = O3; // Array of frame sizes (input)
duke@435 3304 Register O4array_size = O4; // number of frames (input)
duke@435 3305 Register O7frame_size = O7; // number of frames (input)
duke@435 3306
duke@435 3307 __ ld_ptr(O3array, 0, O7frame_size);
duke@435 3308 __ sub(G0, O7frame_size, O7frame_size);
duke@435 3309 __ save(SP, O7frame_size, SP);
duke@435 3310 __ ld_ptr(G3pcs, 0, I7); // load frame's new pc
duke@435 3311
duke@435 3312 #ifdef ASSERT
duke@435 3313 // make sure that the frames are aligned properly
duke@435 3314 #ifndef _LP64
duke@435 3315 __ btst(wordSize*2-1, SP);
coleenp@3627 3316 __ breakpoint_trap(Assembler::notZero, Assembler::ptr_cc);
duke@435 3317 #endif
duke@435 3318 #endif
duke@435 3319
duke@435 3320 // Deopt needs to pass some extra live values from frame to frame
duke@435 3321
duke@435 3322 if (deopt) {
duke@435 3323 __ mov(Oreturn0->after_save(), Oreturn0);
duke@435 3324 __ mov(Oreturn1->after_save(), Oreturn1);
duke@435 3325 }
duke@435 3326
duke@435 3327 __ mov(O4array_size->after_save(), O4array_size);
duke@435 3328 __ sub(O4array_size, 1, O4array_size);
duke@435 3329 __ mov(O3array->after_save(), O3array);
duke@435 3330 __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
duke@435 3331 __ add(G3pcs, wordSize, G3pcs); // point to next pc value
duke@435 3332
duke@435 3333 #ifdef ASSERT
duke@435 3334 // trash registers to show a clear pattern in backtraces
duke@435 3335 __ set(0xDEAD0000, I0);
duke@435 3336 __ add(I0, 2, I1);
duke@435 3337 __ add(I0, 4, I2);
duke@435 3338 __ add(I0, 6, I3);
duke@435 3339 __ add(I0, 8, I4);
duke@435 3340 // Don't touch I5 could have valuable savedSP
duke@435 3341 __ set(0xDEADBEEF, L0);
duke@435 3342 __ mov(L0, L1);
duke@435 3343 __ mov(L0, L2);
duke@435 3344 __ mov(L0, L3);
duke@435 3345 __ mov(L0, L4);
duke@435 3346 __ mov(L0, L5);
duke@435 3347
duke@435 3348 // trash the return value as there is nothing to return yet
duke@435 3349 __ set(0xDEAD0001, O7);
duke@435 3350 #endif
duke@435 3351
duke@435 3352 __ mov(SP, O5_savedSP);
duke@435 3353 }
duke@435 3354
duke@435 3355
duke@435 3356 static void make_new_frames(MacroAssembler* masm, bool deopt) {
duke@435 3357 //
duke@435 3358 // loop through the UnrollBlock info and create new frames
duke@435 3359 //
duke@435 3360 Register G3pcs = G3_scratch;
duke@435 3361 Register Oreturn0 = O0;
duke@435 3362 Register Oreturn1 = O1;
duke@435 3363 Register O2UnrollBlock = O2;
duke@435 3364 Register O3array = O3;
duke@435 3365 Register O4array_size = O4;
duke@435 3366 Label loop;
duke@435 3367
duke@435 3368 // Before we make new frames, check to see if stack is available.
duke@435 3369 // Do this after the caller's return address is on top of stack
duke@435 3370 if (UseStackBanging) {
duke@435 3371 // Get total frame size for interpreted frames
twisti@1162 3372 __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
duke@435 3373 __ bang_stack_size(O4, O3, G3_scratch);
duke@435 3374 }
duke@435 3375
twisti@1162 3376 __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
twisti@1162 3377 __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
twisti@1162 3378 __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
duke@435 3379
duke@435 3380 // Adjust old interpreter frame to make space for new frame's extra java locals
duke@435 3381 //
duke@435 3382 // We capture the original sp for the transition frame only because it is needed in
duke@435 3383 // order to properly calculate interpreter_sp_adjustment. Even though in real life
duke@435 3384 // every interpreter frame captures a savedSP it is only needed at the transition
duke@435 3385 // (fortunately). If we had to have it correct everywhere then we would need to
duke@435 3386 // be told the sp_adjustment for each frame we create. If the frame size array
duke@435 3387 // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
duke@435 3388 // for each frame we create and keep up the illusion every where.
duke@435 3389 //
duke@435 3390
twisti@1162 3391 __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
duke@435 3392 __ mov(SP, O5_savedSP); // remember initial sender's original sp before adjustment
duke@435 3393 __ sub(SP, O7, SP);
duke@435 3394
duke@435 3395 #ifdef ASSERT
duke@435 3396 // make sure that there is at least one entry in the array
duke@435 3397 __ tst(O4array_size);
coleenp@3627 3398 __ breakpoint_trap(Assembler::zero, Assembler::icc);
duke@435 3399 #endif
duke@435 3400
duke@435 3401 // Now push the new interpreter frames
duke@435 3402 __ bind(loop);
duke@435 3403
duke@435 3404 // allocate a new frame, filling the registers
duke@435 3405
duke@435 3406 gen_new_frame(masm, deopt); // allocate an interpreter frame
duke@435 3407
kvn@3037 3408 __ cmp_zero_and_br(Assembler::notZero, O4array_size, loop);
duke@435 3409 __ delayed()->add(O3array, wordSize, O3array);
duke@435 3410 __ ld_ptr(G3pcs, 0, O7); // load final frame new pc
duke@435 3411
duke@435 3412 }
duke@435 3413
duke@435 3414 //------------------------------generate_deopt_blob----------------------------
duke@435 3415 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
duke@435 3416 // instead.
duke@435 3417 void SharedRuntime::generate_deopt_blob() {
duke@435 3418 // allocate space for the code
duke@435 3419 ResourceMark rm;
duke@435 3420 // setup code generation tools
duke@435 3421 int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
kvn@3582 3422 if (UseStackBanging) {
kvn@3582 3423 pad += StackShadowPages*16 + 32;
kvn@3582 3424 }
duke@435 3425 #ifdef _LP64
duke@435 3426 CodeBuffer buffer("deopt_blob", 2100+pad, 512);
duke@435 3427 #else
duke@435 3428 // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
duke@435 3429 // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
duke@435 3430 CodeBuffer buffer("deopt_blob", 1600+pad, 512);
duke@435 3431 #endif /* _LP64 */
duke@435 3432 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3433 FloatRegister Freturn0 = F0;
duke@435 3434 Register Greturn1 = G1;
duke@435 3435 Register Oreturn0 = O0;
duke@435 3436 Register Oreturn1 = O1;
duke@435 3437 Register O2UnrollBlock = O2;
never@1472 3438 Register L0deopt_mode = L0;
never@1472 3439 Register G4deopt_mode = G4_scratch;
duke@435 3440 int frame_size_words;
twisti@1162 3441 Address saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
duke@435 3442 #if !defined(_LP64) && defined(COMPILER2)
twisti@1162 3443 Address saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
duke@435 3444 #endif
duke@435 3445 Label cont;
duke@435 3446
duke@435 3447 OopMapSet *oop_maps = new OopMapSet();
duke@435 3448
duke@435 3449 //
duke@435 3450 // This is the entry point for code which is returning to a de-optimized
duke@435 3451 // frame.
duke@435 3452 // The steps taken by this frame are as follows:
duke@435 3453 // - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
duke@435 3454 // and all potentially live registers (at a pollpoint many registers can be live).
duke@435 3455 //
duke@435 3456 // - call the C routine: Deoptimization::fetch_unroll_info (this function
duke@435 3457 // returns information about the number and size of interpreter frames
duke@435 3458 // which are equivalent to the frame which is being deoptimized)
duke@435 3459 // - deallocate the unpack frame, restoring only results values. Other
duke@435 3460 // volatile registers will now be captured in the vframeArray as needed.
duke@435 3461 // - deallocate the deoptimization frame
duke@435 3462 // - in a loop using the information returned in the previous step
duke@435 3463 // push new interpreter frames (take care to propagate the return
duke@435 3464 // values through each new frame pushed)
duke@435 3465 // - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
duke@435 3466 // - call the C routine: Deoptimization::unpack_frames (this function
duke@435 3467 // lays out values on the interpreter frame which was just created)
duke@435 3468 // - deallocate the dummy unpack_frame
duke@435 3469 // - ensure that all the return values are correctly set and then do
duke@435 3470 // a return to the interpreter entry point
duke@435 3471 //
duke@435 3472 // Refer to the following methods for more information:
duke@435 3473 // - Deoptimization::fetch_unroll_info
duke@435 3474 // - Deoptimization::unpack_frames
duke@435 3475
duke@435 3476 OopMap* map = NULL;
duke@435 3477
duke@435 3478 int start = __ offset();
duke@435 3479
duke@435 3480 // restore G2, the trampoline destroyed it
duke@435 3481 __ get_thread();
duke@435 3482
duke@435 3483 // On entry we have been called by the deoptimized nmethod with a call that
duke@435 3484 // replaced the original call (or safepoint polling location) so the deoptimizing
duke@435 3485 // pc is now in O7. Return values are still in the expected places
duke@435 3486
duke@435 3487 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
kvn@3037 3488 __ ba(cont);
never@1472 3489 __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
duke@435 3490
duke@435 3491 int exception_offset = __ offset() - start;
duke@435 3492
duke@435 3493 // restore G2, the trampoline destroyed it
duke@435 3494 __ get_thread();
duke@435 3495
duke@435 3496 // On entry we have been jumped to by the exception handler (or exception_blob
duke@435 3497 // for server). O0 contains the exception oop and O7 contains the original
duke@435 3498 // exception pc. So if we push a frame here it will look to the
duke@435 3499 // stack walking code (fetch_unroll_info) just like a normal call so
duke@435 3500 // state will be extracted normally.
duke@435 3501
duke@435 3502 // save exception oop in JavaThread and fall through into the
duke@435 3503 // exception_in_tls case since they are handled in same way except
duke@435 3504 // for where the pending exception is kept.
twisti@1162 3505 __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
duke@435 3506
duke@435 3507 //
duke@435 3508 // Vanilla deoptimization with an exception pending in exception_oop
duke@435 3509 //
duke@435 3510 int exception_in_tls_offset = __ offset() - start;
duke@435 3511
duke@435 3512 // No need to update oop_map as each call to save_live_registers will produce identical oopmap
duke@435 3513 (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
duke@435 3514
duke@435 3515 // Restore G2_thread
duke@435 3516 __ get_thread();
duke@435 3517
duke@435 3518 #ifdef ASSERT
duke@435 3519 {
duke@435 3520 // verify that there is really an exception oop in exception_oop
duke@435 3521 Label has_exception;
twisti@1162 3522 __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
kvn@3037 3523 __ br_notnull_short(Oexception, Assembler::pt, has_exception);
duke@435 3524 __ stop("no exception in thread");
duke@435 3525 __ bind(has_exception);
duke@435 3526
duke@435 3527 // verify that there is no pending exception
duke@435 3528 Label no_pending_exception;
twisti@1162 3529 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 3530 __ ld_ptr(exception_addr, Oexception);
kvn@3037 3531 __ br_null_short(Oexception, Assembler::pt, no_pending_exception);
duke@435 3532 __ stop("must not have pending exception here");
duke@435 3533 __ bind(no_pending_exception);
duke@435 3534 }
duke@435 3535 #endif
duke@435 3536
kvn@3037 3537 __ ba(cont);
never@1472 3538 __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
duke@435 3539
duke@435 3540 //
duke@435 3541 // Reexecute entry, similar to c2 uncommon trap
duke@435 3542 //
duke@435 3543 int reexecute_offset = __ offset() - start;
duke@435 3544
duke@435 3545 // No need to update oop_map as each call to save_live_registers will produce identical oopmap
duke@435 3546 (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
duke@435 3547
never@1472 3548 __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
duke@435 3549
duke@435 3550 __ bind(cont);
duke@435 3551
duke@435 3552 __ set_last_Java_frame(SP, noreg);
duke@435 3553
duke@435 3554 // do the call by hand so we can get the oopmap
duke@435 3555
duke@435 3556 __ mov(G2_thread, L7_thread_cache);
duke@435 3557 __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
duke@435 3558 __ delayed()->mov(G2_thread, O0);
duke@435 3559
duke@435 3560 // Set an oopmap for the call site this describes all our saved volatile registers
duke@435 3561
duke@435 3562 oop_maps->add_gc_map( __ offset()-start, map);
duke@435 3563
duke@435 3564 __ mov(L7_thread_cache, G2_thread);
duke@435 3565
duke@435 3566 __ reset_last_Java_frame();
duke@435 3567
duke@435 3568 // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
duke@435 3569 // so this move will survive
duke@435 3570
never@1472 3571 __ mov(L0deopt_mode, G4deopt_mode);
duke@435 3572
duke@435 3573 __ mov(O0, O2UnrollBlock->after_save());
duke@435 3574
duke@435 3575 RegisterSaver::restore_result_registers(masm);
duke@435 3576
duke@435 3577 Label noException;
kvn@3037 3578 __ cmp_and_br_short(G4deopt_mode, Deoptimization::Unpack_exception, Assembler::notEqual, Assembler::pt, noException);
duke@435 3579
duke@435 3580 // Move the pending exception from exception_oop to Oexception so
duke@435 3581 // the pending exception will be picked up the interpreter.
duke@435 3582 __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
duke@435 3583 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
duke@435 3584 __ bind(noException);
duke@435 3585
duke@435 3586 // deallocate the deoptimization frame taking care to preserve the return values
duke@435 3587 __ mov(Oreturn0, Oreturn0->after_save());
duke@435 3588 __ mov(Oreturn1, Oreturn1->after_save());
duke@435 3589 __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
duke@435 3590 __ restore();
duke@435 3591
duke@435 3592 // Allocate new interpreter frame(s) and possible c2i adapter frame
duke@435 3593
duke@435 3594 make_new_frames(masm, true);
duke@435 3595
duke@435 3596 // push a dummy "unpack_frame" taking care of float return values and
duke@435 3597 // call Deoptimization::unpack_frames to have the unpacker layout
duke@435 3598 // information in the interpreter frames just created and then return
duke@435 3599 // to the interpreter entry point
duke@435 3600 __ save(SP, -frame_size_words*wordSize, SP);
duke@435 3601 __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
duke@435 3602 #if !defined(_LP64)
duke@435 3603 #if defined(COMPILER2)
iveresov@2138 3604 // 32-bit 1-register longs return longs in G1
iveresov@2138 3605 __ stx(Greturn1, saved_Greturn1_addr);
duke@435 3606 #endif
duke@435 3607 __ set_last_Java_frame(SP, noreg);
never@1472 3608 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
duke@435 3609 #else
duke@435 3610 // LP64 uses g4 in set_last_Java_frame
never@1472 3611 __ mov(G4deopt_mode, O1);
duke@435 3612 __ set_last_Java_frame(SP, G0);
duke@435 3613 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
duke@435 3614 #endif
duke@435 3615 __ reset_last_Java_frame();
duke@435 3616 __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
duke@435 3617
duke@435 3618 #if !defined(_LP64) && defined(COMPILER2)
duke@435 3619 // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
iveresov@2138 3620 // I0/I1 if the return value is long.
iveresov@2138 3621 Label not_long;
kvn@3037 3622 __ cmp_and_br_short(O0,T_LONG, Assembler::notEqual, Assembler::pt, not_long);
iveresov@2138 3623 __ ldd(saved_Greturn1_addr,I0);
iveresov@2138 3624 __ bind(not_long);
duke@435 3625 #endif
duke@435 3626 __ ret();
duke@435 3627 __ delayed()->restore();
duke@435 3628
duke@435 3629 masm->flush();
duke@435 3630 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
duke@435 3631 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
duke@435 3632 }
duke@435 3633
duke@435 3634 #ifdef COMPILER2
duke@435 3635
duke@435 3636 //------------------------------generate_uncommon_trap_blob--------------------
duke@435 3637 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
duke@435 3638 // instead.
duke@435 3639 void SharedRuntime::generate_uncommon_trap_blob() {
duke@435 3640 // allocate space for the code
duke@435 3641 ResourceMark rm;
duke@435 3642 // setup code generation tools
duke@435 3643 int pad = VerifyThread ? 512 : 0;
kvn@3582 3644 if (UseStackBanging) {
kvn@3582 3645 pad += StackShadowPages*16 + 32;
kvn@3582 3646 }
duke@435 3647 #ifdef _LP64
duke@435 3648 CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
duke@435 3649 #else
duke@435 3650 // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
duke@435 3651 // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
duke@435 3652 CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
duke@435 3653 #endif
duke@435 3654 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3655 Register O2UnrollBlock = O2;
duke@435 3656 Register O2klass_index = O2;
duke@435 3657
duke@435 3658 //
duke@435 3659 // This is the entry point for all traps the compiler takes when it thinks
duke@435 3660 // it cannot handle further execution of compilation code. The frame is
duke@435 3661 // deoptimized in these cases and converted into interpreter frames for
duke@435 3662 // execution
duke@435 3663 // The steps taken by this frame are as follows:
duke@435 3664 // - push a fake "unpack_frame"
duke@435 3665 // - call the C routine Deoptimization::uncommon_trap (this function
duke@435 3666 // packs the current compiled frame into vframe arrays and returns
duke@435 3667 // information about the number and size of interpreter frames which
duke@435 3668 // are equivalent to the frame which is being deoptimized)
duke@435 3669 // - deallocate the "unpack_frame"
duke@435 3670 // - deallocate the deoptimization frame
duke@435 3671 // - in a loop using the information returned in the previous step
duke@435 3672 // push interpreter frames;
duke@435 3673 // - create a dummy "unpack_frame"
duke@435 3674 // - call the C routine: Deoptimization::unpack_frames (this function
duke@435 3675 // lays out values on the interpreter frame which was just created)
duke@435 3676 // - deallocate the dummy unpack_frame
duke@435 3677 // - return to the interpreter entry point
duke@435 3678 //
duke@435 3679 // Refer to the following methods for more information:
duke@435 3680 // - Deoptimization::uncommon_trap
duke@435 3681 // - Deoptimization::unpack_frame
duke@435 3682
duke@435 3683 // the unloaded class index is in O0 (first parameter to this blob)
duke@435 3684
duke@435 3685 // push a dummy "unpack_frame"
duke@435 3686 // and call Deoptimization::uncommon_trap to pack the compiled frame into
duke@435 3687 // vframe array and return the UnrollBlock information
duke@435 3688 __ save_frame(0);
duke@435 3689 __ set_last_Java_frame(SP, noreg);
duke@435 3690 __ mov(I0, O2klass_index);
duke@435 3691 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
duke@435 3692 __ reset_last_Java_frame();
duke@435 3693 __ mov(O0, O2UnrollBlock->after_save());
duke@435 3694 __ restore();
duke@435 3695
duke@435 3696 // deallocate the deoptimized frame taking care to preserve the return values
duke@435 3697 __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
duke@435 3698 __ restore();
duke@435 3699
duke@435 3700 // Allocate new interpreter frame(s) and possible c2i adapter frame
duke@435 3701
duke@435 3702 make_new_frames(masm, false);
duke@435 3703
duke@435 3704 // push a dummy "unpack_frame" taking care of float return values and
duke@435 3705 // call Deoptimization::unpack_frames to have the unpacker layout
duke@435 3706 // information in the interpreter frames just created and then return
duke@435 3707 // to the interpreter entry point
duke@435 3708 __ save_frame(0);
duke@435 3709 __ set_last_Java_frame(SP, noreg);
duke@435 3710 __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
duke@435 3711 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
duke@435 3712 __ reset_last_Java_frame();
duke@435 3713 __ ret();
duke@435 3714 __ delayed()->restore();
duke@435 3715
duke@435 3716 masm->flush();
duke@435 3717 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
duke@435 3718 }
duke@435 3719
duke@435 3720 #endif // COMPILER2
duke@435 3721
duke@435 3722 //------------------------------generate_handler_blob-------------------
duke@435 3723 //
duke@435 3724 // Generate a special Compile2Runtime blob that saves all registers, and sets
duke@435 3725 // up an OopMap.
duke@435 3726 //
duke@435 3727 // This blob is jumped to (via a breakpoint and the signal handler) from a
duke@435 3728 // safepoint in compiled code. On entry to this blob, O7 contains the
duke@435 3729 // address in the original nmethod at which we should resume normal execution.
duke@435 3730 // Thus, this blob looks like a subroutine which must preserve lots of
duke@435 3731 // registers and return normally. Note that O7 is never register-allocated,
duke@435 3732 // so it is guaranteed to be free here.
duke@435 3733 //
duke@435 3734
duke@435 3735 // The hardest part of what this blob must do is to save the 64-bit %o
duke@435 3736 // registers in the 32-bit build. A simple 'save' turn the %o's to %i's and
duke@435 3737 // an interrupt will chop off their heads. Making space in the caller's frame
duke@435 3738 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
duke@435 3739 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
duke@435 3740 // SP and mess up HIS OopMaps. So we first adjust the caller's SP, then save
duke@435 3741 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
duke@435 3742 // Tricky, tricky, tricky...
duke@435 3743
kvn@4103 3744 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
duke@435 3745 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 3746
duke@435 3747 // allocate space for the code
duke@435 3748 ResourceMark rm;
duke@435 3749 // setup code generation tools
duke@435 3750 // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
duke@435 3751 // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
duke@435 3752 // even larger with TraceJumps
duke@435 3753 int pad = TraceJumps ? 512 : 0;
duke@435 3754 CodeBuffer buffer("handler_blob", 1600 + pad, 512);
duke@435 3755 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3756 int frame_size_words;
duke@435 3757 OopMapSet *oop_maps = new OopMapSet();
duke@435 3758 OopMap* map = NULL;
duke@435 3759
duke@435 3760 int start = __ offset();
duke@435 3761
kvn@4103 3762 bool cause_return = (poll_type == POLL_AT_RETURN);
duke@435 3763 // If this causes a return before the processing, then do a "restore"
duke@435 3764 if (cause_return) {
duke@435 3765 __ restore();
duke@435 3766 } else {
duke@435 3767 // Make it look like we were called via the poll
duke@435 3768 // so that frame constructor always sees a valid return address
duke@435 3769 __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
duke@435 3770 __ sub(O7, frame::pc_return_offset, O7);
duke@435 3771 }
duke@435 3772
duke@435 3773 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
duke@435 3774
duke@435 3775 // setup last_Java_sp (blows G4)
duke@435 3776 __ set_last_Java_frame(SP, noreg);
duke@435 3777
duke@435 3778 // call into the runtime to handle illegal instructions exception
duke@435 3779 // Do not use call_VM_leaf, because we need to make a GC map at this call site.
duke@435 3780 __ mov(G2_thread, O0);
duke@435 3781 __ save_thread(L7_thread_cache);
duke@435 3782 __ call(call_ptr);
duke@435 3783 __ delayed()->nop();
duke@435 3784
duke@435 3785 // Set an oopmap for the call site.
duke@435 3786 // We need this not only for callee-saved registers, but also for volatile
duke@435 3787 // registers that the compiler might be keeping live across a safepoint.
duke@435 3788
duke@435 3789 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 3790
duke@435 3791 __ restore_thread(L7_thread_cache);
duke@435 3792 // clear last_Java_sp
duke@435 3793 __ reset_last_Java_frame();
duke@435 3794
duke@435 3795 // Check for exceptions
duke@435 3796 Label pending;
duke@435 3797
duke@435 3798 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
kvn@3037 3799 __ br_notnull_short(O1, Assembler::pn, pending);
duke@435 3800
duke@435 3801 RegisterSaver::restore_live_registers(masm);
duke@435 3802
duke@435 3803 // We are back the the original state on entry and ready to go.
duke@435 3804
duke@435 3805 __ retl();
duke@435 3806 __ delayed()->nop();
duke@435 3807
duke@435 3808 // Pending exception after the safepoint
duke@435 3809
duke@435 3810 __ bind(pending);
duke@435 3811
duke@435 3812 RegisterSaver::restore_live_registers(masm);
duke@435 3813
duke@435 3814 // We are back the the original state on entry.
duke@435 3815
duke@435 3816 // Tail-call forward_exception_entry, with the issuing PC in O7,
duke@435 3817 // so it looks like the original nmethod called forward_exception_entry.
duke@435 3818 __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
duke@435 3819 __ JMP(O0, 0);
duke@435 3820 __ delayed()->nop();
duke@435 3821
duke@435 3822 // -------------
duke@435 3823 // make sure all code is generated
duke@435 3824 masm->flush();
duke@435 3825
duke@435 3826 // return exception blob
duke@435 3827 return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
duke@435 3828 }
duke@435 3829
duke@435 3830 //
duke@435 3831 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
duke@435 3832 //
duke@435 3833 // Generate a stub that calls into vm to find out the proper destination
duke@435 3834 // of a java call. All the argument registers are live at this point
duke@435 3835 // but since this is generic code we don't know what they are and the caller
duke@435 3836 // must do any gc of the args.
duke@435 3837 //
never@2950 3838 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
duke@435 3839 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 3840
duke@435 3841 // allocate space for the code
duke@435 3842 ResourceMark rm;
duke@435 3843 // setup code generation tools
duke@435 3844 // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
duke@435 3845 // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
duke@435 3846 // even larger with TraceJumps
duke@435 3847 int pad = TraceJumps ? 512 : 0;
duke@435 3848 CodeBuffer buffer(name, 1600 + pad, 512);
duke@435 3849 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3850 int frame_size_words;
duke@435 3851 OopMapSet *oop_maps = new OopMapSet();
duke@435 3852 OopMap* map = NULL;
duke@435 3853
duke@435 3854 int start = __ offset();
duke@435 3855
duke@435 3856 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
duke@435 3857
duke@435 3858 int frame_complete = __ offset();
duke@435 3859
duke@435 3860 // setup last_Java_sp (blows G4)
duke@435 3861 __ set_last_Java_frame(SP, noreg);
duke@435 3862
duke@435 3863 // call into the runtime to handle illegal instructions exception
duke@435 3864 // Do not use call_VM_leaf, because we need to make a GC map at this call site.
duke@435 3865 __ mov(G2_thread, O0);
duke@435 3866 __ save_thread(L7_thread_cache);
duke@435 3867 __ call(destination, relocInfo::runtime_call_type);
duke@435 3868 __ delayed()->nop();
duke@435 3869
duke@435 3870 // O0 contains the address we are going to jump to assuming no exception got installed
duke@435 3871
duke@435 3872 // Set an oopmap for the call site.
duke@435 3873 // We need this not only for callee-saved registers, but also for volatile
duke@435 3874 // registers that the compiler might be keeping live across a safepoint.
duke@435 3875
duke@435 3876 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 3877
duke@435 3878 __ restore_thread(L7_thread_cache);
duke@435 3879 // clear last_Java_sp
duke@435 3880 __ reset_last_Java_frame();
duke@435 3881
duke@435 3882 // Check for exceptions
duke@435 3883 Label pending;
duke@435 3884
duke@435 3885 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
kvn@3037 3886 __ br_notnull_short(O1, Assembler::pn, pending);
duke@435 3887
coleenp@4037 3888 // get the returned Method*
coleenp@4037 3889
coleenp@4037 3890 __ get_vm_result_2(G5_method);
duke@435 3891 __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
duke@435 3892
duke@435 3893 // O0 is where we want to jump, overwrite G3 which is saved and scratch
duke@435 3894
duke@435 3895 __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
duke@435 3896
duke@435 3897 RegisterSaver::restore_live_registers(masm);
duke@435 3898
duke@435 3899 // We are back the the original state on entry and ready to go.
duke@435 3900
duke@435 3901 __ JMP(G3, 0);
duke@435 3902 __ delayed()->nop();
duke@435 3903
duke@435 3904 // Pending exception after the safepoint
duke@435 3905
duke@435 3906 __ bind(pending);
duke@435 3907
duke@435 3908 RegisterSaver::restore_live_registers(masm);
duke@435 3909
duke@435 3910 // We are back the the original state on entry.
duke@435 3911
duke@435 3912 // Tail-call forward_exception_entry, with the issuing PC in O7,
duke@435 3913 // so it looks like the original nmethod called forward_exception_entry.
duke@435 3914 __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
duke@435 3915 __ JMP(O0, 0);
duke@435 3916 __ delayed()->nop();
duke@435 3917
duke@435 3918 // -------------
duke@435 3919 // make sure all code is generated
duke@435 3920 masm->flush();
duke@435 3921
duke@435 3922 // return the blob
duke@435 3923 // frame_size_words or bytes??
duke@435 3924 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
duke@435 3925 }

mercurial