src/cpu/sparc/vm/sharedRuntime_sparc.cpp

Fri, 30 Apr 2010 08:37:24 -0700

author
twisti
date
Fri, 30 Apr 2010 08:37:24 -0700
changeset 1861
2338d41fbd81
parent 1686
576e77447e3c
child 1907
c18cbe5936b8
child 1919
61b2245abf36
permissions
-rw-r--r--

6943304: remove tagged stack interpreter
Reviewed-by: coleenp, never, gbenson

duke@435 1 /*
never@1622 2 * Copyright 2003-2010 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_sharedRuntime_sparc.cpp.incl"
duke@435 27
duke@435 28 #define __ masm->
duke@435 29
duke@435 30 #ifdef COMPILER2
duke@435 31 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
duke@435 32 #endif // COMPILER2
duke@435 33
duke@435 34 DeoptimizationBlob* SharedRuntime::_deopt_blob;
duke@435 35 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
duke@435 36 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
duke@435 37 RuntimeStub* SharedRuntime::_wrong_method_blob;
duke@435 38 RuntimeStub* SharedRuntime::_ic_miss_blob;
duke@435 39 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
duke@435 40 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
duke@435 41 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
duke@435 42
duke@435 43 class RegisterSaver {
duke@435 44
duke@435 45 // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
duke@435 46 // The Oregs are problematic. In the 32bit build the compiler can
duke@435 47 // have O registers live with 64 bit quantities. A window save will
duke@435 48 // cut the heads off of the registers. We have to do a very extensive
duke@435 49 // stack dance to save and restore these properly.
duke@435 50
duke@435 51 // Note that the Oregs problem only exists if we block at either a polling
duke@435 52 // page exception a compiled code safepoint that was not originally a call
duke@435 53 // or deoptimize following one of these kinds of safepoints.
duke@435 54
duke@435 55 // Lots of registers to save. For all builds, a window save will preserve
duke@435 56 // the %i and %l registers. For the 32-bit longs-in-two entries and 64-bit
duke@435 57 // builds a window-save will preserve the %o registers. In the LION build
duke@435 58 // we need to save the 64-bit %o registers which requires we save them
duke@435 59 // before the window-save (as then they become %i registers and get their
duke@435 60 // heads chopped off on interrupt). We have to save some %g registers here
duke@435 61 // as well.
duke@435 62 enum {
duke@435 63 // This frame's save area. Includes extra space for the native call:
duke@435 64 // vararg's layout space and the like. Briefly holds the caller's
duke@435 65 // register save area.
duke@435 66 call_args_area = frame::register_save_words_sp_offset +
duke@435 67 frame::memory_parameter_word_sp_offset*wordSize,
duke@435 68 // Make sure save locations are always 8 byte aligned.
duke@435 69 // can't use round_to because it doesn't produce compile time constant
duke@435 70 start_of_extra_save_area = ((call_args_area + 7) & ~7),
duke@435 71 g1_offset = start_of_extra_save_area, // g-regs needing saving
duke@435 72 g3_offset = g1_offset+8,
duke@435 73 g4_offset = g3_offset+8,
duke@435 74 g5_offset = g4_offset+8,
duke@435 75 o0_offset = g5_offset+8,
duke@435 76 o1_offset = o0_offset+8,
duke@435 77 o2_offset = o1_offset+8,
duke@435 78 o3_offset = o2_offset+8,
duke@435 79 o4_offset = o3_offset+8,
duke@435 80 o5_offset = o4_offset+8,
duke@435 81 start_of_flags_save_area = o5_offset+8,
duke@435 82 ccr_offset = start_of_flags_save_area,
duke@435 83 fsr_offset = ccr_offset + 8,
duke@435 84 d00_offset = fsr_offset+8, // Start of float save area
duke@435 85 register_save_size = d00_offset+8*32
duke@435 86 };
duke@435 87
duke@435 88
duke@435 89 public:
duke@435 90
duke@435 91 static int Oexception_offset() { return o0_offset; };
duke@435 92 static int G3_offset() { return g3_offset; };
duke@435 93 static int G5_offset() { return g5_offset; };
duke@435 94 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
duke@435 95 static void restore_live_registers(MacroAssembler* masm);
duke@435 96
duke@435 97 // During deoptimization only the result register need to be restored
duke@435 98 // all the other values have already been extracted.
duke@435 99
duke@435 100 static void restore_result_registers(MacroAssembler* masm);
duke@435 101 };
duke@435 102
duke@435 103 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
duke@435 104 // Record volatile registers as callee-save values in an OopMap so their save locations will be
duke@435 105 // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
duke@435 106 // deoptimization; see compiledVFrame::create_stack_value). The caller's I, L and O registers
duke@435 107 // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
duke@435 108 // (as the stub's I's) when the runtime routine called by the stub creates its frame.
duke@435 109 int i;
kvn@1442 110 // Always make the frame size 16 byte aligned.
duke@435 111 int frame_size = round_to(additional_frame_words + register_save_size, 16);
duke@435 112 // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
duke@435 113 int frame_size_in_slots = frame_size / sizeof(jint);
duke@435 114 // CodeBlob frame size is in words.
duke@435 115 *total_frame_words = frame_size / wordSize;
duke@435 116 // OopMap* map = new OopMap(*total_frame_words, 0);
duke@435 117 OopMap* map = new OopMap(frame_size_in_slots, 0);
duke@435 118
duke@435 119 #if !defined(_LP64)
duke@435 120
duke@435 121 // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
duke@435 122 __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
duke@435 123 __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
duke@435 124 __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
duke@435 125 __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
duke@435 126 __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
duke@435 127 __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
duke@435 128 #endif /* _LP64 */
duke@435 129
duke@435 130 __ save(SP, -frame_size, SP);
duke@435 131
duke@435 132 #ifndef _LP64
duke@435 133 // Reload the 64 bit Oregs. Although they are now Iregs we load them
duke@435 134 // to Oregs here to avoid interrupts cutting off their heads
duke@435 135
duke@435 136 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
duke@435 137 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
duke@435 138 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
duke@435 139 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
duke@435 140 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
duke@435 141 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
duke@435 142
duke@435 143 __ stx(O0, SP, o0_offset+STACK_BIAS);
duke@435 144 map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
duke@435 145
duke@435 146 __ stx(O1, SP, o1_offset+STACK_BIAS);
duke@435 147
duke@435 148 map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
duke@435 149
duke@435 150 __ stx(O2, SP, o2_offset+STACK_BIAS);
duke@435 151 map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
duke@435 152
duke@435 153 __ stx(O3, SP, o3_offset+STACK_BIAS);
duke@435 154 map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
duke@435 155
duke@435 156 __ stx(O4, SP, o4_offset+STACK_BIAS);
duke@435 157 map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
duke@435 158
duke@435 159 __ stx(O5, SP, o5_offset+STACK_BIAS);
duke@435 160 map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
duke@435 161 #endif /* _LP64 */
duke@435 162
coleenp@548 163
coleenp@548 164 #ifdef _LP64
coleenp@548 165 int debug_offset = 0;
coleenp@548 166 #else
coleenp@548 167 int debug_offset = 4;
coleenp@548 168 #endif
duke@435 169 // Save the G's
duke@435 170 __ stx(G1, SP, g1_offset+STACK_BIAS);
coleenp@548 171 map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
duke@435 172
duke@435 173 __ stx(G3, SP, g3_offset+STACK_BIAS);
coleenp@548 174 map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
duke@435 175
duke@435 176 __ stx(G4, SP, g4_offset+STACK_BIAS);
coleenp@548 177 map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
duke@435 178
duke@435 179 __ stx(G5, SP, g5_offset+STACK_BIAS);
coleenp@548 180 map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
duke@435 181
duke@435 182 // This is really a waste but we'll keep things as they were for now
duke@435 183 if (true) {
duke@435 184 #ifndef _LP64
duke@435 185 map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
duke@435 186 map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
duke@435 187 map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
duke@435 188 map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
duke@435 189 map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
duke@435 190 map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
duke@435 191 map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
duke@435 192 map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
duke@435 193 map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
duke@435 194 map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
coleenp@548 195 #endif /* _LP64 */
duke@435 196 }
duke@435 197
duke@435 198
duke@435 199 // Save the flags
duke@435 200 __ rdccr( G5 );
duke@435 201 __ stx(G5, SP, ccr_offset+STACK_BIAS);
duke@435 202 __ stxfsr(SP, fsr_offset+STACK_BIAS);
duke@435 203
kvn@1442 204 // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
duke@435 205 int offset = d00_offset;
kvn@1442 206 for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
duke@435 207 FloatRegister f = as_FloatRegister(i);
duke@435 208 __ stf(FloatRegisterImpl::D, f, SP, offset+STACK_BIAS);
kvn@1442 209 // Record as callee saved both halves of double registers (2 float registers).
duke@435 210 map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
kvn@1442 211 map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
duke@435 212 offset += sizeof(double);
duke@435 213 }
duke@435 214
duke@435 215 // And we're done.
duke@435 216
duke@435 217 return map;
duke@435 218 }
duke@435 219
duke@435 220
duke@435 221 // Pop the current frame and restore all the registers that we
duke@435 222 // saved.
duke@435 223 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
duke@435 224
duke@435 225 // Restore all the FP registers
kvn@1442 226 for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
duke@435 227 __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
duke@435 228 }
duke@435 229
duke@435 230 __ ldx(SP, ccr_offset+STACK_BIAS, G1);
duke@435 231 __ wrccr (G1) ;
duke@435 232
duke@435 233 // Restore the G's
duke@435 234 // Note that G2 (AKA GThread) must be saved and restored separately.
duke@435 235 // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
duke@435 236
duke@435 237 __ ldx(SP, g1_offset+STACK_BIAS, G1);
duke@435 238 __ ldx(SP, g3_offset+STACK_BIAS, G3);
duke@435 239 __ ldx(SP, g4_offset+STACK_BIAS, G4);
duke@435 240 __ ldx(SP, g5_offset+STACK_BIAS, G5);
duke@435 241
duke@435 242
duke@435 243 #if !defined(_LP64)
duke@435 244 // Restore the 64-bit O's.
duke@435 245 __ ldx(SP, o0_offset+STACK_BIAS, O0);
duke@435 246 __ ldx(SP, o1_offset+STACK_BIAS, O1);
duke@435 247 __ ldx(SP, o2_offset+STACK_BIAS, O2);
duke@435 248 __ ldx(SP, o3_offset+STACK_BIAS, O3);
duke@435 249 __ ldx(SP, o4_offset+STACK_BIAS, O4);
duke@435 250 __ ldx(SP, o5_offset+STACK_BIAS, O5);
duke@435 251
duke@435 252 // And temporarily place them in TLS
duke@435 253
duke@435 254 __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
duke@435 255 __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
duke@435 256 __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
duke@435 257 __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
duke@435 258 __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
duke@435 259 __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
duke@435 260 #endif /* _LP64 */
duke@435 261
duke@435 262 // Restore flags
duke@435 263
duke@435 264 __ ldxfsr(SP, fsr_offset+STACK_BIAS);
duke@435 265
duke@435 266 __ restore();
duke@435 267
duke@435 268 #if !defined(_LP64)
duke@435 269 // Now reload the 64bit Oregs after we've restore the window.
duke@435 270 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
duke@435 271 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
duke@435 272 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
duke@435 273 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
duke@435 274 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
duke@435 275 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
duke@435 276 #endif /* _LP64 */
duke@435 277
duke@435 278 }
duke@435 279
duke@435 280 // Pop the current frame and restore the registers that might be holding
duke@435 281 // a result.
duke@435 282 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
duke@435 283
duke@435 284 #if !defined(_LP64)
duke@435 285 // 32bit build returns longs in G1
duke@435 286 __ ldx(SP, g1_offset+STACK_BIAS, G1);
duke@435 287
duke@435 288 // Retrieve the 64-bit O's.
duke@435 289 __ ldx(SP, o0_offset+STACK_BIAS, O0);
duke@435 290 __ ldx(SP, o1_offset+STACK_BIAS, O1);
duke@435 291 // and save to TLS
duke@435 292 __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
duke@435 293 __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
duke@435 294 #endif /* _LP64 */
duke@435 295
duke@435 296 __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
duke@435 297
duke@435 298 __ restore();
duke@435 299
duke@435 300 #if !defined(_LP64)
duke@435 301 // Now reload the 64bit Oregs after we've restore the window.
duke@435 302 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
duke@435 303 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
duke@435 304 #endif /* _LP64 */
duke@435 305
duke@435 306 }
duke@435 307
duke@435 308 // The java_calling_convention describes stack locations as ideal slots on
duke@435 309 // a frame with no abi restrictions. Since we must observe abi restrictions
duke@435 310 // (like the placement of the register window) the slots must be biased by
duke@435 311 // the following value.
duke@435 312 static int reg2offset(VMReg r) {
duke@435 313 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
duke@435 314 }
duke@435 315
duke@435 316 // ---------------------------------------------------------------------------
duke@435 317 // Read the array of BasicTypes from a signature, and compute where the
duke@435 318 // arguments should go. Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
duke@435 319 // quantities. Values less than VMRegImpl::stack0 are registers, those above
duke@435 320 // refer to 4-byte stack slots. All stack slots are based off of the window
duke@435 321 // top. VMRegImpl::stack0 refers to the first slot past the 16-word window,
duke@435 322 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
duke@435 323 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
duke@435 324 // integer registers. Values 64-95 are the (32-bit only) float registers.
duke@435 325 // Each 32-bit quantity is given its own number, so the integer registers
duke@435 326 // (in either 32- or 64-bit builds) use 2 numbers. For example, there is
duke@435 327 // an O0-low and an O0-high. Essentially, all int register numbers are doubled.
duke@435 328
duke@435 329 // Register results are passed in O0-O5, for outgoing call arguments. To
duke@435 330 // convert to incoming arguments, convert all O's to I's. The regs array
duke@435 331 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
duke@435 332 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
duke@435 333 // 32-bit value was passed). If both are VMRegImpl::Bad(), it means no value was
duke@435 334 // passed (used as a placeholder for the other half of longs and doubles in
duke@435 335 // the 64-bit build). regs[].second() is either VMRegImpl::Bad() or regs[].second() is
duke@435 336 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
duke@435 337 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
duke@435 338 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
duke@435 339 // same VMRegPair.
duke@435 340
duke@435 341 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
duke@435 342 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
duke@435 343 // units regardless of build.
duke@435 344
duke@435 345
duke@435 346 // ---------------------------------------------------------------------------
duke@435 347 // The compiled Java calling convention. The Java convention always passes
duke@435 348 // 64-bit values in adjacent aligned locations (either registers or stack),
duke@435 349 // floats in float registers and doubles in aligned float pairs. Values are
duke@435 350 // packed in the registers. There is no backing varargs store for values in
duke@435 351 // registers. In the 32-bit build, longs are passed in G1 and G4 (cannot be
duke@435 352 // passed in I's, because longs in I's get their heads chopped off at
duke@435 353 // interrupt).
duke@435 354 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
duke@435 355 VMRegPair *regs,
duke@435 356 int total_args_passed,
duke@435 357 int is_outgoing) {
duke@435 358 assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
duke@435 359
duke@435 360 // Convention is to pack the first 6 int/oop args into the first 6 registers
duke@435 361 // (I0-I5), extras spill to the stack. Then pack the first 8 float args
duke@435 362 // into F0-F7, extras spill to the stack. Then pad all register sets to
duke@435 363 // align. Then put longs and doubles into the same registers as they fit,
duke@435 364 // else spill to the stack.
duke@435 365 const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
duke@435 366 const int flt_reg_max = 8;
duke@435 367 //
duke@435 368 // Where 32-bit 1-reg longs start being passed
duke@435 369 // In tiered we must pass on stack because c1 can't use a "pair" in a single reg.
duke@435 370 // So make it look like we've filled all the G regs that c2 wants to use.
duke@435 371 Register g_reg = TieredCompilation ? noreg : G1;
duke@435 372
duke@435 373 // Count int/oop and float args. See how many stack slots we'll need and
duke@435 374 // where the longs & doubles will go.
duke@435 375 int int_reg_cnt = 0;
duke@435 376 int flt_reg_cnt = 0;
duke@435 377 // int stk_reg_pairs = frame::register_save_words*(wordSize>>2);
duke@435 378 // int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots();
duke@435 379 int stk_reg_pairs = 0;
duke@435 380 for (int i = 0; i < total_args_passed; i++) {
duke@435 381 switch (sig_bt[i]) {
duke@435 382 case T_LONG: // LP64, longs compete with int args
duke@435 383 assert(sig_bt[i+1] == T_VOID, "");
duke@435 384 #ifdef _LP64
duke@435 385 if (int_reg_cnt < int_reg_max) int_reg_cnt++;
duke@435 386 #endif
duke@435 387 break;
duke@435 388 case T_OBJECT:
duke@435 389 case T_ARRAY:
duke@435 390 case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
duke@435 391 if (int_reg_cnt < int_reg_max) int_reg_cnt++;
duke@435 392 #ifndef _LP64
duke@435 393 else stk_reg_pairs++;
duke@435 394 #endif
duke@435 395 break;
duke@435 396 case T_INT:
duke@435 397 case T_SHORT:
duke@435 398 case T_CHAR:
duke@435 399 case T_BYTE:
duke@435 400 case T_BOOLEAN:
duke@435 401 if (int_reg_cnt < int_reg_max) int_reg_cnt++;
duke@435 402 else stk_reg_pairs++;
duke@435 403 break;
duke@435 404 case T_FLOAT:
duke@435 405 if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++;
duke@435 406 else stk_reg_pairs++;
duke@435 407 break;
duke@435 408 case T_DOUBLE:
duke@435 409 assert(sig_bt[i+1] == T_VOID, "");
duke@435 410 break;
duke@435 411 case T_VOID:
duke@435 412 break;
duke@435 413 default:
duke@435 414 ShouldNotReachHere();
duke@435 415 }
duke@435 416 }
duke@435 417
duke@435 418 // This is where the longs/doubles start on the stack.
duke@435 419 stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
duke@435 420
duke@435 421 int int_reg_pairs = (int_reg_cnt+1) & ~1; // 32-bit 2-reg longs only
duke@435 422 int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
duke@435 423
duke@435 424 // int stk_reg = frame::register_save_words*(wordSize>>2);
duke@435 425 // int stk_reg = SharedRuntime::out_preserve_stack_slots();
duke@435 426 int stk_reg = 0;
duke@435 427 int int_reg = 0;
duke@435 428 int flt_reg = 0;
duke@435 429
duke@435 430 // Now do the signature layout
duke@435 431 for (int i = 0; i < total_args_passed; i++) {
duke@435 432 switch (sig_bt[i]) {
duke@435 433 case T_INT:
duke@435 434 case T_SHORT:
duke@435 435 case T_CHAR:
duke@435 436 case T_BYTE:
duke@435 437 case T_BOOLEAN:
duke@435 438 #ifndef _LP64
duke@435 439 case T_OBJECT:
duke@435 440 case T_ARRAY:
duke@435 441 case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
duke@435 442 #endif // _LP64
duke@435 443 if (int_reg < int_reg_max) {
duke@435 444 Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
duke@435 445 regs[i].set1(r->as_VMReg());
duke@435 446 } else {
duke@435 447 regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
duke@435 448 }
duke@435 449 break;
duke@435 450
duke@435 451 #ifdef _LP64
duke@435 452 case T_OBJECT:
duke@435 453 case T_ARRAY:
duke@435 454 case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
duke@435 455 if (int_reg < int_reg_max) {
duke@435 456 Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
duke@435 457 regs[i].set2(r->as_VMReg());
duke@435 458 } else {
duke@435 459 regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
duke@435 460 stk_reg_pairs += 2;
duke@435 461 }
duke@435 462 break;
duke@435 463 #endif // _LP64
duke@435 464
duke@435 465 case T_LONG:
duke@435 466 assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
duke@435 467 #ifdef _LP64
duke@435 468 if (int_reg < int_reg_max) {
duke@435 469 Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
duke@435 470 regs[i].set2(r->as_VMReg());
duke@435 471 } else {
duke@435 472 regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
duke@435 473 stk_reg_pairs += 2;
duke@435 474 }
duke@435 475 #else
never@739 476 #ifdef COMPILER2
duke@435 477 // For 32-bit build, can't pass longs in O-regs because they become
duke@435 478 // I-regs and get trashed. Use G-regs instead. G1 and G4 are almost
duke@435 479 // spare and available. This convention isn't used by the Sparc ABI or
duke@435 480 // anywhere else. If we're tiered then we don't use G-regs because c1
never@739 481 // can't deal with them as a "pair". (Tiered makes this code think g's are filled)
duke@435 482 // G0: zero
duke@435 483 // G1: 1st Long arg
duke@435 484 // G2: global allocated to TLS
duke@435 485 // G3: used in inline cache check
duke@435 486 // G4: 2nd Long arg
duke@435 487 // G5: used in inline cache check
duke@435 488 // G6: used by OS
duke@435 489 // G7: used by OS
duke@435 490
duke@435 491 if (g_reg == G1) {
duke@435 492 regs[i].set2(G1->as_VMReg()); // This long arg in G1
duke@435 493 g_reg = G4; // Where the next arg goes
duke@435 494 } else if (g_reg == G4) {
duke@435 495 regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4
duke@435 496 g_reg = noreg; // No more longs in registers
duke@435 497 } else {
duke@435 498 regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
duke@435 499 stk_reg_pairs += 2;
duke@435 500 }
duke@435 501 #else // COMPILER2
duke@435 502 if (int_reg_pairs + 1 < int_reg_max) {
duke@435 503 if (is_outgoing) {
duke@435 504 regs[i].set_pair(as_oRegister(int_reg_pairs + 1)->as_VMReg(), as_oRegister(int_reg_pairs)->as_VMReg());
duke@435 505 } else {
duke@435 506 regs[i].set_pair(as_iRegister(int_reg_pairs + 1)->as_VMReg(), as_iRegister(int_reg_pairs)->as_VMReg());
duke@435 507 }
duke@435 508 int_reg_pairs += 2;
duke@435 509 } else {
duke@435 510 regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
duke@435 511 stk_reg_pairs += 2;
duke@435 512 }
duke@435 513 #endif // COMPILER2
never@739 514 #endif // _LP64
duke@435 515 break;
duke@435 516
duke@435 517 case T_FLOAT:
duke@435 518 if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
duke@435 519 else regs[i].set1( VMRegImpl::stack2reg(stk_reg++));
duke@435 520 break;
duke@435 521 case T_DOUBLE:
duke@435 522 assert(sig_bt[i+1] == T_VOID, "expecting half");
duke@435 523 if (flt_reg_pairs + 1 < flt_reg_max) {
duke@435 524 regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg());
duke@435 525 flt_reg_pairs += 2;
duke@435 526 } else {
duke@435 527 regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
duke@435 528 stk_reg_pairs += 2;
duke@435 529 }
duke@435 530 break;
duke@435 531 case T_VOID: regs[i].set_bad(); break; // Halves of longs & doubles
duke@435 532 default:
duke@435 533 ShouldNotReachHere();
duke@435 534 }
duke@435 535 }
duke@435 536
duke@435 537 // retun the amount of stack space these arguments will need.
duke@435 538 return stk_reg_pairs;
duke@435 539
duke@435 540 }
duke@435 541
twisti@1441 542 // Helper class mostly to avoid passing masm everywhere, and handle
twisti@1441 543 // store displacement overflow logic.
duke@435 544 class AdapterGenerator {
duke@435 545 MacroAssembler *masm;
duke@435 546 Register Rdisp;
duke@435 547 void set_Rdisp(Register r) { Rdisp = r; }
duke@435 548
duke@435 549 void patch_callers_callsite();
duke@435 550
duke@435 551 // base+st_off points to top of argument
twisti@1861 552 int arg_offset(const int st_off) { return st_off; }
duke@435 553 int next_arg_offset(const int st_off) {
twisti@1861 554 return st_off - Interpreter::stackElementSize;
twisti@1441 555 }
twisti@1441 556
twisti@1441 557 // Argument slot values may be loaded first into a register because
twisti@1441 558 // they might not fit into displacement.
twisti@1441 559 RegisterOrConstant arg_slot(const int st_off);
twisti@1441 560 RegisterOrConstant next_arg_slot(const int st_off);
twisti@1441 561
duke@435 562 // Stores long into offset pointed to by base
duke@435 563 void store_c2i_long(Register r, Register base,
duke@435 564 const int st_off, bool is_stack);
duke@435 565 void store_c2i_object(Register r, Register base,
duke@435 566 const int st_off);
duke@435 567 void store_c2i_int(Register r, Register base,
duke@435 568 const int st_off);
duke@435 569 void store_c2i_double(VMReg r_2,
duke@435 570 VMReg r_1, Register base, const int st_off);
duke@435 571 void store_c2i_float(FloatRegister f, Register base,
duke@435 572 const int st_off);
duke@435 573
duke@435 574 public:
duke@435 575 void gen_c2i_adapter(int total_args_passed,
duke@435 576 // VMReg max_arg,
duke@435 577 int comp_args_on_stack, // VMRegStackSlots
duke@435 578 const BasicType *sig_bt,
duke@435 579 const VMRegPair *regs,
duke@435 580 Label& skip_fixup);
duke@435 581 void gen_i2c_adapter(int total_args_passed,
duke@435 582 // VMReg max_arg,
duke@435 583 int comp_args_on_stack, // VMRegStackSlots
duke@435 584 const BasicType *sig_bt,
duke@435 585 const VMRegPair *regs);
duke@435 586
duke@435 587 AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
duke@435 588 };
duke@435 589
duke@435 590
duke@435 591 // Patch the callers callsite with entry to compiled code if it exists.
duke@435 592 void AdapterGenerator::patch_callers_callsite() {
duke@435 593 Label L;
duke@435 594 __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
duke@435 595 __ br_null(G3_scratch, false, __ pt, L);
duke@435 596 // Schedule the branch target address early.
duke@435 597 __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
duke@435 598 // Call into the VM to patch the caller, then jump to compiled callee
duke@435 599 __ save_frame(4); // Args in compiled layout; do not blow them
duke@435 600
duke@435 601 // Must save all the live Gregs the list is:
duke@435 602 // G1: 1st Long arg (32bit build)
duke@435 603 // G2: global allocated to TLS
duke@435 604 // G3: used in inline cache check (scratch)
duke@435 605 // G4: 2nd Long arg (32bit build);
duke@435 606 // G5: used in inline cache check (methodOop)
duke@435 607
duke@435 608 // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
duke@435 609
duke@435 610 #ifdef _LP64
duke@435 611 // mov(s,d)
duke@435 612 __ mov(G1, L1);
duke@435 613 __ mov(G4, L4);
duke@435 614 __ mov(G5_method, L5);
duke@435 615 __ mov(G5_method, O0); // VM needs target method
duke@435 616 __ mov(I7, O1); // VM needs caller's callsite
duke@435 617 // Must be a leaf call...
duke@435 618 // can be very far once the blob has been relocated
twisti@1162 619 AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
duke@435 620 __ relocate(relocInfo::runtime_call_type);
twisti@1162 621 __ jumpl_to(dest, O7, O7);
duke@435 622 __ delayed()->mov(G2_thread, L7_thread_cache);
duke@435 623 __ mov(L7_thread_cache, G2_thread);
duke@435 624 __ mov(L1, G1);
duke@435 625 __ mov(L4, G4);
duke@435 626 __ mov(L5, G5_method);
duke@435 627 #else
duke@435 628 __ stx(G1, FP, -8 + STACK_BIAS);
duke@435 629 __ stx(G4, FP, -16 + STACK_BIAS);
duke@435 630 __ mov(G5_method, L5);
duke@435 631 __ mov(G5_method, O0); // VM needs target method
duke@435 632 __ mov(I7, O1); // VM needs caller's callsite
duke@435 633 // Must be a leaf call...
duke@435 634 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
duke@435 635 __ delayed()->mov(G2_thread, L7_thread_cache);
duke@435 636 __ mov(L7_thread_cache, G2_thread);
duke@435 637 __ ldx(FP, -8 + STACK_BIAS, G1);
duke@435 638 __ ldx(FP, -16 + STACK_BIAS, G4);
duke@435 639 __ mov(L5, G5_method);
duke@435 640 __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
duke@435 641 #endif /* _LP64 */
duke@435 642
duke@435 643 __ restore(); // Restore args
duke@435 644 __ bind(L);
duke@435 645 }
duke@435 646
twisti@1441 647
twisti@1441 648 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
twisti@1441 649 RegisterOrConstant roc(arg_offset(st_off));
twisti@1441 650 return __ ensure_simm13_or_reg(roc, Rdisp);
duke@435 651 }
duke@435 652
twisti@1441 653 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
twisti@1441 654 RegisterOrConstant roc(next_arg_offset(st_off));
twisti@1441 655 return __ ensure_simm13_or_reg(roc, Rdisp);
duke@435 656 }
twisti@1441 657
twisti@1441 658
duke@435 659 // Stores long into offset pointed to by base
duke@435 660 void AdapterGenerator::store_c2i_long(Register r, Register base,
duke@435 661 const int st_off, bool is_stack) {
duke@435 662 #ifdef _LP64
duke@435 663 // In V9, longs are given 2 64-bit slots in the interpreter, but the
duke@435 664 // data is passed in only 1 slot.
duke@435 665 __ stx(r, base, next_arg_slot(st_off));
duke@435 666 #else
ysr@777 667 #ifdef COMPILER2
duke@435 668 // Misaligned store of 64-bit data
duke@435 669 __ stw(r, base, arg_slot(st_off)); // lo bits
duke@435 670 __ srlx(r, 32, r);
duke@435 671 __ stw(r, base, next_arg_slot(st_off)); // hi bits
duke@435 672 #else
duke@435 673 if (is_stack) {
duke@435 674 // Misaligned store of 64-bit data
duke@435 675 __ stw(r, base, arg_slot(st_off)); // lo bits
duke@435 676 __ srlx(r, 32, r);
duke@435 677 __ stw(r, base, next_arg_slot(st_off)); // hi bits
duke@435 678 } else {
duke@435 679 __ stw(r->successor(), base, arg_slot(st_off) ); // lo bits
duke@435 680 __ stw(r , base, next_arg_slot(st_off)); // hi bits
duke@435 681 }
duke@435 682 #endif // COMPILER2
ysr@777 683 #endif // _LP64
duke@435 684 }
duke@435 685
duke@435 686 void AdapterGenerator::store_c2i_object(Register r, Register base,
duke@435 687 const int st_off) {
duke@435 688 __ st_ptr (r, base, arg_slot(st_off));
duke@435 689 }
duke@435 690
duke@435 691 void AdapterGenerator::store_c2i_int(Register r, Register base,
duke@435 692 const int st_off) {
duke@435 693 __ st (r, base, arg_slot(st_off));
duke@435 694 }
duke@435 695
duke@435 696 // Stores into offset pointed to by base
duke@435 697 void AdapterGenerator::store_c2i_double(VMReg r_2,
duke@435 698 VMReg r_1, Register base, const int st_off) {
duke@435 699 #ifdef _LP64
duke@435 700 // In V9, doubles are given 2 64-bit slots in the interpreter, but the
duke@435 701 // data is passed in only 1 slot.
duke@435 702 __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
duke@435 703 #else
duke@435 704 // Need to marshal 64-bit value from misaligned Lesp loads
duke@435 705 __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
duke@435 706 __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
duke@435 707 #endif
duke@435 708 }
duke@435 709
duke@435 710 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
duke@435 711 const int st_off) {
duke@435 712 __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
duke@435 713 }
duke@435 714
duke@435 715 void AdapterGenerator::gen_c2i_adapter(
duke@435 716 int total_args_passed,
duke@435 717 // VMReg max_arg,
duke@435 718 int comp_args_on_stack, // VMRegStackSlots
duke@435 719 const BasicType *sig_bt,
duke@435 720 const VMRegPair *regs,
duke@435 721 Label& skip_fixup) {
duke@435 722
duke@435 723 // Before we get into the guts of the C2I adapter, see if we should be here
duke@435 724 // at all. We've come from compiled code and are attempting to jump to the
duke@435 725 // interpreter, which means the caller made a static call to get here
duke@435 726 // (vcalls always get a compiled target if there is one). Check for a
duke@435 727 // compiled target. If there is one, we need to patch the caller's call.
duke@435 728 // However we will run interpreted if we come thru here. The next pass
duke@435 729 // thru the call site will run compiled. If we ran compiled here then
duke@435 730 // we can (theorectically) do endless i2c->c2i->i2c transitions during
duke@435 731 // deopt/uncommon trap cycles. If we always go interpreted here then
duke@435 732 // we can have at most one and don't need to play any tricks to keep
duke@435 733 // from endlessly growing the stack.
duke@435 734 //
duke@435 735 // Actually if we detected that we had an i2c->c2i transition here we
duke@435 736 // ought to be able to reset the world back to the state of the interpreted
duke@435 737 // call and not bother building another interpreter arg area. We don't
duke@435 738 // do that at this point.
duke@435 739
duke@435 740 patch_callers_callsite();
duke@435 741
duke@435 742 __ bind(skip_fixup);
duke@435 743
duke@435 744 // Since all args are passed on the stack, total_args_passed*wordSize is the
duke@435 745 // space we need. Add in varargs area needed by the interpreter. Round up
duke@435 746 // to stack alignment.
twisti@1861 747 const int arg_size = total_args_passed * Interpreter::stackElementSize;
duke@435 748 const int varargs_area =
duke@435 749 (frame::varargs_offset - frame::register_save_words)*wordSize;
duke@435 750 const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
duke@435 751
duke@435 752 int bias = STACK_BIAS;
duke@435 753 const int interp_arg_offset = frame::varargs_offset*wordSize +
twisti@1861 754 (total_args_passed-1)*Interpreter::stackElementSize;
duke@435 755
duke@435 756 Register base = SP;
duke@435 757
duke@435 758 #ifdef _LP64
duke@435 759 // In the 64bit build because of wider slots and STACKBIAS we can run
duke@435 760 // out of bits in the displacement to do loads and stores. Use g3 as
duke@435 761 // temporary displacement.
duke@435 762 if (! __ is_simm13(extraspace)) {
duke@435 763 __ set(extraspace, G3_scratch);
duke@435 764 __ sub(SP, G3_scratch, SP);
duke@435 765 } else {
duke@435 766 __ sub(SP, extraspace, SP);
duke@435 767 }
duke@435 768 set_Rdisp(G3_scratch);
duke@435 769 #else
duke@435 770 __ sub(SP, extraspace, SP);
duke@435 771 #endif // _LP64
duke@435 772
duke@435 773 // First write G1 (if used) to where ever it must go
duke@435 774 for (int i=0; i<total_args_passed; i++) {
twisti@1861 775 const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
duke@435 776 VMReg r_1 = regs[i].first();
duke@435 777 VMReg r_2 = regs[i].second();
duke@435 778 if (r_1 == G1_scratch->as_VMReg()) {
duke@435 779 if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
duke@435 780 store_c2i_object(G1_scratch, base, st_off);
duke@435 781 } else if (sig_bt[i] == T_LONG) {
duke@435 782 assert(!TieredCompilation, "should not use register args for longs");
duke@435 783 store_c2i_long(G1_scratch, base, st_off, false);
duke@435 784 } else {
duke@435 785 store_c2i_int(G1_scratch, base, st_off);
duke@435 786 }
duke@435 787 }
duke@435 788 }
duke@435 789
duke@435 790 // Now write the args into the outgoing interpreter space
duke@435 791 for (int i=0; i<total_args_passed; i++) {
twisti@1861 792 const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
duke@435 793 VMReg r_1 = regs[i].first();
duke@435 794 VMReg r_2 = regs[i].second();
duke@435 795 if (!r_1->is_valid()) {
duke@435 796 assert(!r_2->is_valid(), "");
duke@435 797 continue;
duke@435 798 }
duke@435 799 // Skip G1 if found as we did it first in order to free it up
duke@435 800 if (r_1 == G1_scratch->as_VMReg()) {
duke@435 801 continue;
duke@435 802 }
duke@435 803 #ifdef ASSERT
duke@435 804 bool G1_forced = false;
duke@435 805 #endif // ASSERT
duke@435 806 if (r_1->is_stack()) { // Pretend stack targets are loaded into G1
duke@435 807 #ifdef _LP64
duke@435 808 Register ld_off = Rdisp;
duke@435 809 __ set(reg2offset(r_1) + extraspace + bias, ld_off);
duke@435 810 #else
duke@435 811 int ld_off = reg2offset(r_1) + extraspace + bias;
kvn@1686 812 #endif // _LP64
duke@435 813 #ifdef ASSERT
duke@435 814 G1_forced = true;
duke@435 815 #endif // ASSERT
duke@435 816 r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
duke@435 817 if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
duke@435 818 else __ ldx(base, ld_off, G1_scratch);
duke@435 819 }
duke@435 820
duke@435 821 if (r_1->is_Register()) {
duke@435 822 Register r = r_1->as_Register()->after_restore();
duke@435 823 if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
duke@435 824 store_c2i_object(r, base, st_off);
duke@435 825 } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
kvn@1686 826 #ifndef _LP64
duke@435 827 if (TieredCompilation) {
duke@435 828 assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs");
duke@435 829 }
kvn@1686 830 #endif // _LP64
duke@435 831 store_c2i_long(r, base, st_off, r_2->is_stack());
duke@435 832 } else {
duke@435 833 store_c2i_int(r, base, st_off);
duke@435 834 }
duke@435 835 } else {
duke@435 836 assert(r_1->is_FloatRegister(), "");
duke@435 837 if (sig_bt[i] == T_FLOAT) {
duke@435 838 store_c2i_float(r_1->as_FloatRegister(), base, st_off);
duke@435 839 } else {
duke@435 840 assert(sig_bt[i] == T_DOUBLE, "wrong type");
duke@435 841 store_c2i_double(r_2, r_1, base, st_off);
duke@435 842 }
duke@435 843 }
duke@435 844 }
duke@435 845
duke@435 846 #ifdef _LP64
duke@435 847 // Need to reload G3_scratch, used for temporary displacements.
duke@435 848 __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
duke@435 849
duke@435 850 // Pass O5_savedSP as an argument to the interpreter.
duke@435 851 // The interpreter will restore SP to this value before returning.
duke@435 852 __ set(extraspace, G1);
duke@435 853 __ add(SP, G1, O5_savedSP);
duke@435 854 #else
duke@435 855 // Pass O5_savedSP as an argument to the interpreter.
duke@435 856 // The interpreter will restore SP to this value before returning.
duke@435 857 __ add(SP, extraspace, O5_savedSP);
duke@435 858 #endif // _LP64
duke@435 859
duke@435 860 __ mov((frame::varargs_offset)*wordSize -
twisti@1861 861 1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
duke@435 862 // Jump to the interpreter just as if interpreter was doing it.
duke@435 863 __ jmpl(G3_scratch, 0, G0);
duke@435 864 // Setup Lesp for the call. Cannot actually set Lesp as the current Lesp
duke@435 865 // (really L0) is in use by the compiled frame as a generic temp. However,
duke@435 866 // the interpreter does not know where its args are without some kind of
duke@435 867 // arg pointer being passed in. Pass it in Gargs.
duke@435 868 __ delayed()->add(SP, G1, Gargs);
duke@435 869 }
duke@435 870
duke@435 871 void AdapterGenerator::gen_i2c_adapter(
duke@435 872 int total_args_passed,
duke@435 873 // VMReg max_arg,
duke@435 874 int comp_args_on_stack, // VMRegStackSlots
duke@435 875 const BasicType *sig_bt,
duke@435 876 const VMRegPair *regs) {
duke@435 877
duke@435 878 // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
duke@435 879 // layout. Lesp was saved by the calling I-frame and will be restored on
duke@435 880 // return. Meanwhile, outgoing arg space is all owned by the callee
duke@435 881 // C-frame, so we can mangle it at will. After adjusting the frame size,
duke@435 882 // hoist register arguments and repack other args according to the compiled
duke@435 883 // code convention. Finally, end in a jump to the compiled code. The entry
duke@435 884 // point address is the start of the buffer.
duke@435 885
duke@435 886 // We will only enter here from an interpreted frame and never from after
duke@435 887 // passing thru a c2i. Azul allowed this but we do not. If we lose the
duke@435 888 // race and use a c2i we will remain interpreted for the race loser(s).
duke@435 889 // This removes all sorts of headaches on the x86 side and also eliminates
duke@435 890 // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
duke@435 891
duke@435 892 // As you can see from the list of inputs & outputs there are not a lot
duke@435 893 // of temp registers to work with: mostly G1, G3 & G4.
duke@435 894
duke@435 895 // Inputs:
duke@435 896 // G2_thread - TLS
duke@435 897 // G5_method - Method oop
jrose@1145 898 // G4 (Gargs) - Pointer to interpreter's args
jrose@1145 899 // O0..O4 - free for scratch
jrose@1145 900 // O5_savedSP - Caller's saved SP, to be restored if needed
duke@435 901 // O6 - Current SP!
duke@435 902 // O7 - Valid return address
jrose@1145 903 // L0-L7, I0-I7 - Caller's temps (no frame pushed yet)
duke@435 904
duke@435 905 // Outputs:
duke@435 906 // G2_thread - TLS
duke@435 907 // G1, G4 - Outgoing long args in 32-bit build
duke@435 908 // O0-O5 - Outgoing args in compiled layout
duke@435 909 // O6 - Adjusted or restored SP
duke@435 910 // O7 - Valid return address
duke@435 911 // L0-L7, I0-I7 - Caller's temps (no frame pushed yet)
duke@435 912 // F0-F7 - more outgoing args
duke@435 913
duke@435 914
jrose@1145 915 // Gargs is the incoming argument base, and also an outgoing argument.
duke@435 916 __ sub(Gargs, BytesPerWord, Gargs);
duke@435 917
duke@435 918 #ifdef ASSERT
duke@435 919 {
duke@435 920 // on entry OsavedSP and SP should be equal
duke@435 921 Label ok;
duke@435 922 __ cmp(O5_savedSP, SP);
duke@435 923 __ br(Assembler::equal, false, Assembler::pt, ok);
duke@435 924 __ delayed()->nop();
duke@435 925 __ stop("I5_savedSP not set");
duke@435 926 __ should_not_reach_here();
duke@435 927 __ bind(ok);
duke@435 928 }
duke@435 929 #endif
duke@435 930
duke@435 931 // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
duke@435 932 // WITH O7 HOLDING A VALID RETURN PC
duke@435 933 //
duke@435 934 // | |
duke@435 935 // : java stack :
duke@435 936 // | |
duke@435 937 // +--------------+ <--- start of outgoing args
duke@435 938 // | receiver | |
duke@435 939 // : rest of args : |---size is java-arg-words
duke@435 940 // | | |
duke@435 941 // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
duke@435 942 // | | |
duke@435 943 // : unused : |---Space for max Java stack, plus stack alignment
duke@435 944 // | | |
duke@435 945 // +--------------+ <--- SP + 16*wordsize
duke@435 946 // | |
duke@435 947 // : window :
duke@435 948 // | |
duke@435 949 // +--------------+ <--- SP
duke@435 950
duke@435 951 // WE REPACK THE STACK. We use the common calling convention layout as
duke@435 952 // discovered by calling SharedRuntime::calling_convention. We assume it
duke@435 953 // causes an arbitrary shuffle of memory, which may require some register
duke@435 954 // temps to do the shuffle. We hope for (and optimize for) the case where
duke@435 955 // temps are not needed. We may have to resize the stack slightly, in case
duke@435 956 // we need alignment padding (32-bit interpreter can pass longs & doubles
duke@435 957 // misaligned, but the compilers expect them aligned).
duke@435 958 //
duke@435 959 // | |
duke@435 960 // : java stack :
duke@435 961 // | |
duke@435 962 // +--------------+ <--- start of outgoing args
duke@435 963 // | pad, align | |
duke@435 964 // +--------------+ |
duke@435 965 // | ints, floats | |---Outgoing stack args, packed low.
duke@435 966 // +--------------+ | First few args in registers.
duke@435 967 // : doubles : |
duke@435 968 // | longs | |
duke@435 969 // +--------------+ <--- SP' + 16*wordsize
duke@435 970 // | |
duke@435 971 // : window :
duke@435 972 // | |
duke@435 973 // +--------------+ <--- SP'
duke@435 974
duke@435 975 // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
duke@435 976 // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
duke@435 977 // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
duke@435 978
duke@435 979 // Cut-out for having no stack args. Since up to 6 args are passed
duke@435 980 // in registers, we will commonly have no stack args.
duke@435 981 if (comp_args_on_stack > 0) {
duke@435 982
duke@435 983 // Convert VMReg stack slots to words.
duke@435 984 int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
duke@435 985 // Round up to miminum stack alignment, in wordSize
duke@435 986 comp_words_on_stack = round_to(comp_words_on_stack, 2);
duke@435 987 // Now compute the distance from Lesp to SP. This calculation does not
duke@435 988 // include the space for total_args_passed because Lesp has not yet popped
duke@435 989 // the arguments.
duke@435 990 __ sub(SP, (comp_words_on_stack)*wordSize, SP);
duke@435 991 }
duke@435 992
duke@435 993 // Will jump to the compiled code just as if compiled code was doing it.
duke@435 994 // Pre-load the register-jump target early, to schedule it better.
duke@435 995 __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
duke@435 996
duke@435 997 // Now generate the shuffle code. Pick up all register args and move the
duke@435 998 // rest through G1_scratch.
duke@435 999 for (int i=0; i<total_args_passed; i++) {
duke@435 1000 if (sig_bt[i] == T_VOID) {
duke@435 1001 // Longs and doubles are passed in native word order, but misaligned
duke@435 1002 // in the 32-bit build.
duke@435 1003 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 1004 continue;
duke@435 1005 }
duke@435 1006
duke@435 1007 // Pick up 0, 1 or 2 words from Lesp+offset. Assume mis-aligned in the
duke@435 1008 // 32-bit build and aligned in the 64-bit build. Look for the obvious
duke@435 1009 // ldx/lddf optimizations.
duke@435 1010
duke@435 1011 // Load in argument order going down.
twisti@1861 1012 const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
duke@435 1013 set_Rdisp(G1_scratch);
duke@435 1014
duke@435 1015 VMReg r_1 = regs[i].first();
duke@435 1016 VMReg r_2 = regs[i].second();
duke@435 1017 if (!r_1->is_valid()) {
duke@435 1018 assert(!r_2->is_valid(), "");
duke@435 1019 continue;
duke@435 1020 }
duke@435 1021 if (r_1->is_stack()) { // Pretend stack targets are loaded into F8/F9
duke@435 1022 r_1 = F8->as_VMReg(); // as part of the load/store shuffle
duke@435 1023 if (r_2->is_valid()) r_2 = r_1->next();
duke@435 1024 }
duke@435 1025 if (r_1->is_Register()) { // Register argument
duke@435 1026 Register r = r_1->as_Register()->after_restore();
duke@435 1027 if (!r_2->is_valid()) {
duke@435 1028 __ ld(Gargs, arg_slot(ld_off), r);
duke@435 1029 } else {
duke@435 1030 #ifdef _LP64
duke@435 1031 // In V9, longs are given 2 64-bit slots in the interpreter, but the
duke@435 1032 // data is passed in only 1 slot.
twisti@1441 1033 RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
duke@435 1034 next_arg_slot(ld_off) : arg_slot(ld_off);
duke@435 1035 __ ldx(Gargs, slot, r);
duke@435 1036 #else
duke@435 1037 // Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the
duke@435 1038 // stack shuffle. Load the first 2 longs into G1/G4 later.
duke@435 1039 #endif
duke@435 1040 }
duke@435 1041 } else {
duke@435 1042 assert(r_1->is_FloatRegister(), "");
duke@435 1043 if (!r_2->is_valid()) {
duke@435 1044 __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
duke@435 1045 } else {
duke@435 1046 #ifdef _LP64
duke@435 1047 // In V9, doubles are given 2 64-bit slots in the interpreter, but the
duke@435 1048 // data is passed in only 1 slot. This code also handles longs that
duke@435 1049 // are passed on the stack, but need a stack-to-stack move through a
duke@435 1050 // spare float register.
twisti@1441 1051 RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
duke@435 1052 next_arg_slot(ld_off) : arg_slot(ld_off);
duke@435 1053 __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
duke@435 1054 #else
duke@435 1055 // Need to marshal 64-bit value from misaligned Lesp loads
duke@435 1056 __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
duke@435 1057 __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
duke@435 1058 #endif
duke@435 1059 }
duke@435 1060 }
duke@435 1061 // Was the argument really intended to be on the stack, but was loaded
duke@435 1062 // into F8/F9?
duke@435 1063 if (regs[i].first()->is_stack()) {
duke@435 1064 assert(r_1->as_FloatRegister() == F8, "fix this code");
duke@435 1065 // Convert stack slot to an SP offset
duke@435 1066 int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
duke@435 1067 // Store down the shuffled stack word. Target address _is_ aligned.
twisti@1441 1068 RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
twisti@1441 1069 if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
twisti@1441 1070 else __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
duke@435 1071 }
duke@435 1072 }
duke@435 1073 bool made_space = false;
duke@435 1074 #ifndef _LP64
duke@435 1075 // May need to pick up a few long args in G1/G4
duke@435 1076 bool g4_crushed = false;
duke@435 1077 bool g3_crushed = false;
duke@435 1078 for (int i=0; i<total_args_passed; i++) {
duke@435 1079 if (regs[i].first()->is_Register() && regs[i].second()->is_valid()) {
duke@435 1080 // Load in argument order going down
twisti@1861 1081 int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
duke@435 1082 // Need to marshal 64-bit value from misaligned Lesp loads
duke@435 1083 Register r = regs[i].first()->as_Register()->after_restore();
duke@435 1084 if (r == G1 || r == G4) {
duke@435 1085 assert(!g4_crushed, "ordering problem");
duke@435 1086 if (r == G4){
duke@435 1087 g4_crushed = true;
duke@435 1088 __ lduw(Gargs, arg_slot(ld_off) , G3_scratch); // Load lo bits
duke@435 1089 __ ld (Gargs, next_arg_slot(ld_off), r); // Load hi bits
duke@435 1090 } else {
duke@435 1091 // better schedule this way
duke@435 1092 __ ld (Gargs, next_arg_slot(ld_off), r); // Load hi bits
duke@435 1093 __ lduw(Gargs, arg_slot(ld_off) , G3_scratch); // Load lo bits
duke@435 1094 }
duke@435 1095 g3_crushed = true;
duke@435 1096 __ sllx(r, 32, r);
duke@435 1097 __ or3(G3_scratch, r, r);
duke@435 1098 } else {
duke@435 1099 assert(r->is_out(), "longs passed in two O registers");
duke@435 1100 __ ld (Gargs, arg_slot(ld_off) , r->successor()); // Load lo bits
duke@435 1101 __ ld (Gargs, next_arg_slot(ld_off), r); // Load hi bits
duke@435 1102 }
duke@435 1103 }
duke@435 1104 }
duke@435 1105 #endif
duke@435 1106
duke@435 1107 // Jump to the compiled code just as if compiled code was doing it.
duke@435 1108 //
duke@435 1109 #ifndef _LP64
duke@435 1110 if (g3_crushed) {
duke@435 1111 // Rats load was wasted, at least it is in cache...
twisti@1162 1112 __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3);
duke@435 1113 }
duke@435 1114 #endif /* _LP64 */
duke@435 1115
duke@435 1116 // 6243940 We might end up in handle_wrong_method if
duke@435 1117 // the callee is deoptimized as we race thru here. If that
duke@435 1118 // happens we don't want to take a safepoint because the
duke@435 1119 // caller frame will look interpreted and arguments are now
duke@435 1120 // "compiled" so it is much better to make this transition
duke@435 1121 // invisible to the stack walking code. Unfortunately if
duke@435 1122 // we try and find the callee by normal means a safepoint
duke@435 1123 // is possible. So we stash the desired callee in the thread
duke@435 1124 // and the vm will find there should this case occur.
twisti@1162 1125 Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
duke@435 1126 __ st_ptr(G5_method, callee_target_addr);
duke@435 1127
duke@435 1128 if (StressNonEntrant) {
duke@435 1129 // Open a big window for deopt failure
duke@435 1130 __ save_frame(0);
duke@435 1131 __ mov(G0, L0);
duke@435 1132 Label loop;
duke@435 1133 __ bind(loop);
duke@435 1134 __ sub(L0, 1, L0);
duke@435 1135 __ br_null(L0, false, Assembler::pt, loop);
duke@435 1136 __ delayed()->nop();
duke@435 1137
duke@435 1138 __ restore();
duke@435 1139 }
duke@435 1140
duke@435 1141
duke@435 1142 __ jmpl(G3, 0, G0);
duke@435 1143 __ delayed()->nop();
duke@435 1144 }
duke@435 1145
duke@435 1146 // ---------------------------------------------------------------
duke@435 1147 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
duke@435 1148 int total_args_passed,
duke@435 1149 // VMReg max_arg,
duke@435 1150 int comp_args_on_stack, // VMRegStackSlots
duke@435 1151 const BasicType *sig_bt,
never@1622 1152 const VMRegPair *regs,
never@1622 1153 AdapterFingerPrint* fingerprint) {
duke@435 1154 address i2c_entry = __ pc();
duke@435 1155
duke@435 1156 AdapterGenerator agen(masm);
duke@435 1157
duke@435 1158 agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
duke@435 1159
duke@435 1160
duke@435 1161 // -------------------------------------------------------------------------
duke@435 1162 // Generate a C2I adapter. On entry we know G5 holds the methodOop. The
duke@435 1163 // args start out packed in the compiled layout. They need to be unpacked
duke@435 1164 // into the interpreter layout. This will almost always require some stack
duke@435 1165 // space. We grow the current (compiled) stack, then repack the args. We
duke@435 1166 // finally end in a jump to the generic interpreter entry point. On exit
duke@435 1167 // from the interpreter, the interpreter will restore our SP (lest the
duke@435 1168 // compiled code, which relys solely on SP and not FP, get sick).
duke@435 1169
duke@435 1170 address c2i_unverified_entry = __ pc();
duke@435 1171 Label skip_fixup;
duke@435 1172 {
duke@435 1173 #if !defined(_LP64) && defined(COMPILER2)
duke@435 1174 Register R_temp = L0; // another scratch register
duke@435 1175 #else
duke@435 1176 Register R_temp = G1; // another scratch register
duke@435 1177 #endif
duke@435 1178
twisti@1162 1179 AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
duke@435 1180
duke@435 1181 __ verify_oop(O0);
duke@435 1182 __ verify_oop(G5_method);
coleenp@548 1183 __ load_klass(O0, G3_scratch);
duke@435 1184 __ verify_oop(G3_scratch);
duke@435 1185
duke@435 1186 #if !defined(_LP64) && defined(COMPILER2)
duke@435 1187 __ save(SP, -frame::register_save_words*wordSize, SP);
duke@435 1188 __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
duke@435 1189 __ verify_oop(R_temp);
duke@435 1190 __ cmp(G3_scratch, R_temp);
duke@435 1191 __ restore();
duke@435 1192 #else
duke@435 1193 __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
duke@435 1194 __ verify_oop(R_temp);
duke@435 1195 __ cmp(G3_scratch, R_temp);
duke@435 1196 #endif
duke@435 1197
duke@435 1198 Label ok, ok2;
duke@435 1199 __ brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 1200 __ delayed()->ld_ptr(G5_method, compiledICHolderOopDesc::holder_method_offset(), G5_method);
twisti@1162 1201 __ jump_to(ic_miss, G3_scratch);
duke@435 1202 __ delayed()->nop();
duke@435 1203
duke@435 1204 __ bind(ok);
duke@435 1205 // Method might have been compiled since the call site was patched to
duke@435 1206 // interpreted if that is the case treat it as a miss so we can get
duke@435 1207 // the call site corrected.
duke@435 1208 __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
duke@435 1209 __ bind(ok2);
duke@435 1210 __ br_null(G3_scratch, false, __ pt, skip_fixup);
duke@435 1211 __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
twisti@1162 1212 __ jump_to(ic_miss, G3_scratch);
duke@435 1213 __ delayed()->nop();
duke@435 1214
duke@435 1215 }
duke@435 1216
duke@435 1217 address c2i_entry = __ pc();
duke@435 1218
duke@435 1219 agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
duke@435 1220
duke@435 1221 __ flush();
never@1622 1222 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
duke@435 1223
duke@435 1224 }
duke@435 1225
duke@435 1226 // Helper function for native calling conventions
duke@435 1227 static VMReg int_stk_helper( int i ) {
duke@435 1228 // Bias any stack based VMReg we get by ignoring the window area
duke@435 1229 // but not the register parameter save area.
duke@435 1230 //
duke@435 1231 // This is strange for the following reasons. We'd normally expect
duke@435 1232 // the calling convention to return an VMReg for a stack slot
duke@435 1233 // completely ignoring any abi reserved area. C2 thinks of that
duke@435 1234 // abi area as only out_preserve_stack_slots. This does not include
duke@435 1235 // the area allocated by the C abi to store down integer arguments
duke@435 1236 // because the java calling convention does not use it. So
duke@435 1237 // since c2 assumes that there are only out_preserve_stack_slots
duke@435 1238 // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
duke@435 1239 // location the c calling convention must add in this bias amount
duke@435 1240 // to make up for the fact that the out_preserve_stack_slots is
duke@435 1241 // insufficient for C calls. What a mess. I sure hope those 6
duke@435 1242 // stack words were worth it on every java call!
duke@435 1243
duke@435 1244 // Another way of cleaning this up would be for out_preserve_stack_slots
duke@435 1245 // to take a parameter to say whether it was C or java calling conventions.
duke@435 1246 // Then things might look a little better (but not much).
duke@435 1247
duke@435 1248 int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
duke@435 1249 if( mem_parm_offset < 0 ) {
duke@435 1250 return as_oRegister(i)->as_VMReg();
duke@435 1251 } else {
duke@435 1252 int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
duke@435 1253 // Now return a biased offset that will be correct when out_preserve_slots is added back in
duke@435 1254 return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
duke@435 1255 }
duke@435 1256 }
duke@435 1257
duke@435 1258
duke@435 1259 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
duke@435 1260 VMRegPair *regs,
duke@435 1261 int total_args_passed) {
duke@435 1262
duke@435 1263 // Return the number of VMReg stack_slots needed for the args.
duke@435 1264 // This value does not include an abi space (like register window
duke@435 1265 // save area).
duke@435 1266
duke@435 1267 // The native convention is V8 if !LP64
duke@435 1268 // The LP64 convention is the V9 convention which is slightly more sane.
duke@435 1269
duke@435 1270 // We return the amount of VMReg stack slots we need to reserve for all
duke@435 1271 // the arguments NOT counting out_preserve_stack_slots. Since we always
duke@435 1272 // have space for storing at least 6 registers to memory we start with that.
duke@435 1273 // See int_stk_helper for a further discussion.
duke@435 1274 int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
duke@435 1275
duke@435 1276 #ifdef _LP64
duke@435 1277 // V9 convention: All things "as-if" on double-wide stack slots.
duke@435 1278 // Hoist any int/ptr/long's in the first 6 to int regs.
duke@435 1279 // Hoist any flt/dbl's in the first 16 dbl regs.
duke@435 1280 int j = 0; // Count of actual args, not HALVES
duke@435 1281 for( int i=0; i<total_args_passed; i++, j++ ) {
duke@435 1282 switch( sig_bt[i] ) {
duke@435 1283 case T_BOOLEAN:
duke@435 1284 case T_BYTE:
duke@435 1285 case T_CHAR:
duke@435 1286 case T_INT:
duke@435 1287 case T_SHORT:
duke@435 1288 regs[i].set1( int_stk_helper( j ) ); break;
duke@435 1289 case T_LONG:
duke@435 1290 assert( sig_bt[i+1] == T_VOID, "expecting half" );
duke@435 1291 case T_ADDRESS: // raw pointers, like current thread, for VM calls
duke@435 1292 case T_ARRAY:
duke@435 1293 case T_OBJECT:
duke@435 1294 regs[i].set2( int_stk_helper( j ) );
duke@435 1295 break;
duke@435 1296 case T_FLOAT:
duke@435 1297 if ( j < 16 ) {
duke@435 1298 // V9ism: floats go in ODD registers
duke@435 1299 regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
duke@435 1300 } else {
duke@435 1301 // V9ism: floats go in ODD stack slot
duke@435 1302 regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
duke@435 1303 }
duke@435 1304 break;
duke@435 1305 case T_DOUBLE:
duke@435 1306 assert( sig_bt[i+1] == T_VOID, "expecting half" );
duke@435 1307 if ( j < 16 ) {
duke@435 1308 // V9ism: doubles go in EVEN/ODD regs
duke@435 1309 regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
duke@435 1310 } else {
duke@435 1311 // V9ism: doubles go in EVEN/ODD stack slots
duke@435 1312 regs[i].set2(VMRegImpl::stack2reg(j<<1));
duke@435 1313 }
duke@435 1314 break;
duke@435 1315 case T_VOID: regs[i].set_bad(); j--; break; // Do not count HALVES
duke@435 1316 default:
duke@435 1317 ShouldNotReachHere();
duke@435 1318 }
duke@435 1319 if (regs[i].first()->is_stack()) {
duke@435 1320 int off = regs[i].first()->reg2stack();
duke@435 1321 if (off > max_stack_slots) max_stack_slots = off;
duke@435 1322 }
duke@435 1323 if (regs[i].second()->is_stack()) {
duke@435 1324 int off = regs[i].second()->reg2stack();
duke@435 1325 if (off > max_stack_slots) max_stack_slots = off;
duke@435 1326 }
duke@435 1327 }
duke@435 1328
duke@435 1329 #else // _LP64
duke@435 1330 // V8 convention: first 6 things in O-regs, rest on stack.
duke@435 1331 // Alignment is willy-nilly.
duke@435 1332 for( int i=0; i<total_args_passed; i++ ) {
duke@435 1333 switch( sig_bt[i] ) {
duke@435 1334 case T_ADDRESS: // raw pointers, like current thread, for VM calls
duke@435 1335 case T_ARRAY:
duke@435 1336 case T_BOOLEAN:
duke@435 1337 case T_BYTE:
duke@435 1338 case T_CHAR:
duke@435 1339 case T_FLOAT:
duke@435 1340 case T_INT:
duke@435 1341 case T_OBJECT:
duke@435 1342 case T_SHORT:
duke@435 1343 regs[i].set1( int_stk_helper( i ) );
duke@435 1344 break;
duke@435 1345 case T_DOUBLE:
duke@435 1346 case T_LONG:
duke@435 1347 assert( sig_bt[i+1] == T_VOID, "expecting half" );
duke@435 1348 regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
duke@435 1349 break;
duke@435 1350 case T_VOID: regs[i].set_bad(); break;
duke@435 1351 default:
duke@435 1352 ShouldNotReachHere();
duke@435 1353 }
duke@435 1354 if (regs[i].first()->is_stack()) {
duke@435 1355 int off = regs[i].first()->reg2stack();
duke@435 1356 if (off > max_stack_slots) max_stack_slots = off;
duke@435 1357 }
duke@435 1358 if (regs[i].second()->is_stack()) {
duke@435 1359 int off = regs[i].second()->reg2stack();
duke@435 1360 if (off > max_stack_slots) max_stack_slots = off;
duke@435 1361 }
duke@435 1362 }
duke@435 1363 #endif // _LP64
duke@435 1364
duke@435 1365 return round_to(max_stack_slots + 1, 2);
duke@435 1366
duke@435 1367 }
duke@435 1368
duke@435 1369
duke@435 1370 // ---------------------------------------------------------------------------
duke@435 1371 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1372 switch (ret_type) {
duke@435 1373 case T_FLOAT:
duke@435 1374 __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
duke@435 1375 break;
duke@435 1376 case T_DOUBLE:
duke@435 1377 __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
duke@435 1378 break;
duke@435 1379 }
duke@435 1380 }
duke@435 1381
duke@435 1382 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1383 switch (ret_type) {
duke@435 1384 case T_FLOAT:
duke@435 1385 __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
duke@435 1386 break;
duke@435 1387 case T_DOUBLE:
duke@435 1388 __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
duke@435 1389 break;
duke@435 1390 }
duke@435 1391 }
duke@435 1392
duke@435 1393 // Check and forward and pending exception. Thread is stored in
duke@435 1394 // L7_thread_cache and possibly NOT in G2_thread. Since this is a native call, there
duke@435 1395 // is no exception handler. We merely pop this frame off and throw the
duke@435 1396 // exception in the caller's frame.
duke@435 1397 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
duke@435 1398 Label L;
duke@435 1399 __ br_null(Rex_oop, false, Assembler::pt, L);
duke@435 1400 __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
duke@435 1401 // Since this is a native call, we *know* the proper exception handler
duke@435 1402 // without calling into the VM: it's the empty function. Just pop this
duke@435 1403 // frame and then jump to forward_exception_entry; O7 will contain the
duke@435 1404 // native caller's return PC.
twisti@1162 1405 AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
twisti@1162 1406 __ jump_to(exception_entry, G3_scratch);
duke@435 1407 __ delayed()->restore(); // Pop this frame off.
duke@435 1408 __ bind(L);
duke@435 1409 }
duke@435 1410
duke@435 1411 // A simple move of integer like type
duke@435 1412 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1413 if (src.first()->is_stack()) {
duke@435 1414 if (dst.first()->is_stack()) {
duke@435 1415 // stack to stack
duke@435 1416 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 1417 __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1418 } else {
duke@435 1419 // stack to reg
duke@435 1420 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
duke@435 1421 }
duke@435 1422 } else if (dst.first()->is_stack()) {
duke@435 1423 // reg to stack
duke@435 1424 __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1425 } else {
duke@435 1426 __ mov(src.first()->as_Register(), dst.first()->as_Register());
duke@435 1427 }
duke@435 1428 }
duke@435 1429
duke@435 1430 // On 64 bit we will store integer like items to the stack as
duke@435 1431 // 64 bits items (sparc abi) even though java would only store
duke@435 1432 // 32bits for a parameter. On 32bit it will simply be 32 bits
duke@435 1433 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
duke@435 1434 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1435 if (src.first()->is_stack()) {
duke@435 1436 if (dst.first()->is_stack()) {
duke@435 1437 // stack to stack
duke@435 1438 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 1439 __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1440 } else {
duke@435 1441 // stack to reg
duke@435 1442 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
duke@435 1443 }
duke@435 1444 } else if (dst.first()->is_stack()) {
duke@435 1445 // reg to stack
duke@435 1446 __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1447 } else {
duke@435 1448 __ mov(src.first()->as_Register(), dst.first()->as_Register());
duke@435 1449 }
duke@435 1450 }
duke@435 1451
duke@435 1452
duke@435 1453 // An oop arg. Must pass a handle not the oop itself
duke@435 1454 static void object_move(MacroAssembler* masm,
duke@435 1455 OopMap* map,
duke@435 1456 int oop_handle_offset,
duke@435 1457 int framesize_in_slots,
duke@435 1458 VMRegPair src,
duke@435 1459 VMRegPair dst,
duke@435 1460 bool is_receiver,
duke@435 1461 int* receiver_offset) {
duke@435 1462
duke@435 1463 // must pass a handle. First figure out the location we use as a handle
duke@435 1464
duke@435 1465 if (src.first()->is_stack()) {
duke@435 1466 // Oop is already on the stack
duke@435 1467 Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
duke@435 1468 __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
duke@435 1469 __ ld_ptr(rHandle, 0, L4);
duke@435 1470 #ifdef _LP64
duke@435 1471 __ movr( Assembler::rc_z, L4, G0, rHandle );
duke@435 1472 #else
duke@435 1473 __ tst( L4 );
duke@435 1474 __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
duke@435 1475 #endif
duke@435 1476 if (dst.first()->is_stack()) {
duke@435 1477 __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1478 }
duke@435 1479 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
duke@435 1480 if (is_receiver) {
duke@435 1481 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
duke@435 1482 }
duke@435 1483 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
duke@435 1484 } else {
duke@435 1485 // Oop is in an input register pass we must flush it to the stack
duke@435 1486 const Register rOop = src.first()->as_Register();
duke@435 1487 const Register rHandle = L5;
duke@435 1488 int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
duke@435 1489 int offset = oop_slot*VMRegImpl::stack_slot_size;
duke@435 1490 Label skip;
duke@435 1491 __ st_ptr(rOop, SP, offset + STACK_BIAS);
duke@435 1492 if (is_receiver) {
duke@435 1493 *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
duke@435 1494 }
duke@435 1495 map->set_oop(VMRegImpl::stack2reg(oop_slot));
duke@435 1496 __ add(SP, offset + STACK_BIAS, rHandle);
duke@435 1497 #ifdef _LP64
duke@435 1498 __ movr( Assembler::rc_z, rOop, G0, rHandle );
duke@435 1499 #else
duke@435 1500 __ tst( rOop );
duke@435 1501 __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
duke@435 1502 #endif
duke@435 1503
duke@435 1504 if (dst.first()->is_stack()) {
duke@435 1505 __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1506 } else {
duke@435 1507 __ mov(rHandle, dst.first()->as_Register());
duke@435 1508 }
duke@435 1509 }
duke@435 1510 }
duke@435 1511
duke@435 1512 // A float arg may have to do float reg int reg conversion
duke@435 1513 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1514 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
duke@435 1515
duke@435 1516 if (src.first()->is_stack()) {
duke@435 1517 if (dst.first()->is_stack()) {
duke@435 1518 // stack to stack the easiest of the bunch
duke@435 1519 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 1520 __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1521 } else {
duke@435 1522 // stack to reg
duke@435 1523 if (dst.first()->is_Register()) {
duke@435 1524 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
duke@435 1525 } else {
duke@435 1526 __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
duke@435 1527 }
duke@435 1528 }
duke@435 1529 } else if (dst.first()->is_stack()) {
duke@435 1530 // reg to stack
duke@435 1531 if (src.first()->is_Register()) {
duke@435 1532 __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1533 } else {
duke@435 1534 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1535 }
duke@435 1536 } else {
duke@435 1537 // reg to reg
duke@435 1538 if (src.first()->is_Register()) {
duke@435 1539 if (dst.first()->is_Register()) {
duke@435 1540 // gpr -> gpr
duke@435 1541 __ mov(src.first()->as_Register(), dst.first()->as_Register());
duke@435 1542 } else {
duke@435 1543 // gpr -> fpr
duke@435 1544 __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
duke@435 1545 __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
duke@435 1546 }
duke@435 1547 } else if (dst.first()->is_Register()) {
duke@435 1548 // fpr -> gpr
duke@435 1549 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
duke@435 1550 __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
duke@435 1551 } else {
duke@435 1552 // fpr -> fpr
duke@435 1553 // In theory these overlap but the ordering is such that this is likely a nop
duke@435 1554 if ( src.first() != dst.first()) {
duke@435 1555 __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
duke@435 1556 }
duke@435 1557 }
duke@435 1558 }
duke@435 1559 }
duke@435 1560
duke@435 1561 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1562 VMRegPair src_lo(src.first());
duke@435 1563 VMRegPair src_hi(src.second());
duke@435 1564 VMRegPair dst_lo(dst.first());
duke@435 1565 VMRegPair dst_hi(dst.second());
duke@435 1566 simple_move32(masm, src_lo, dst_lo);
duke@435 1567 simple_move32(masm, src_hi, dst_hi);
duke@435 1568 }
duke@435 1569
duke@435 1570 // A long move
duke@435 1571 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1572
duke@435 1573 // Do the simple ones here else do two int moves
duke@435 1574 if (src.is_single_phys_reg() ) {
duke@435 1575 if (dst.is_single_phys_reg()) {
duke@435 1576 __ mov(src.first()->as_Register(), dst.first()->as_Register());
duke@435 1577 } else {
duke@435 1578 // split src into two separate registers
duke@435 1579 // Remember hi means hi address or lsw on sparc
duke@435 1580 // Move msw to lsw
duke@435 1581 if (dst.second()->is_reg()) {
duke@435 1582 // MSW -> MSW
duke@435 1583 __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
duke@435 1584 // Now LSW -> LSW
duke@435 1585 // this will only move lo -> lo and ignore hi
duke@435 1586 VMRegPair split(dst.second());
duke@435 1587 simple_move32(masm, src, split);
duke@435 1588 } else {
duke@435 1589 VMRegPair split(src.first(), L4->as_VMReg());
duke@435 1590 // MSW -> MSW (lo ie. first word)
duke@435 1591 __ srax(src.first()->as_Register(), 32, L4);
duke@435 1592 split_long_move(masm, split, dst);
duke@435 1593 }
duke@435 1594 }
duke@435 1595 } else if (dst.is_single_phys_reg()) {
duke@435 1596 if (src.is_adjacent_aligned_on_stack(2)) {
never@739 1597 __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
duke@435 1598 } else {
duke@435 1599 // dst is a single reg.
duke@435 1600 // Remember lo is low address not msb for stack slots
duke@435 1601 // and lo is the "real" register for registers
duke@435 1602 // src is
duke@435 1603
duke@435 1604 VMRegPair split;
duke@435 1605
duke@435 1606 if (src.first()->is_reg()) {
duke@435 1607 // src.lo (msw) is a reg, src.hi is stk/reg
duke@435 1608 // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
duke@435 1609 split.set_pair(dst.first(), src.first());
duke@435 1610 } else {
duke@435 1611 // msw is stack move to L5
duke@435 1612 // lsw is stack move to dst.lo (real reg)
duke@435 1613 // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
duke@435 1614 split.set_pair(dst.first(), L5->as_VMReg());
duke@435 1615 }
duke@435 1616
duke@435 1617 // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
duke@435 1618 // msw -> src.lo/L5, lsw -> dst.lo
duke@435 1619 split_long_move(masm, src, split);
duke@435 1620
duke@435 1621 // So dst now has the low order correct position the
duke@435 1622 // msw half
duke@435 1623 __ sllx(split.first()->as_Register(), 32, L5);
duke@435 1624
duke@435 1625 const Register d = dst.first()->as_Register();
duke@435 1626 __ or3(L5, d, d);
duke@435 1627 }
duke@435 1628 } else {
duke@435 1629 // For LP64 we can probably do better.
duke@435 1630 split_long_move(masm, src, dst);
duke@435 1631 }
duke@435 1632 }
duke@435 1633
duke@435 1634 // A double move
duke@435 1635 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1636
duke@435 1637 // The painful thing here is that like long_move a VMRegPair might be
duke@435 1638 // 1: a single physical register
duke@435 1639 // 2: two physical registers (v8)
duke@435 1640 // 3: a physical reg [lo] and a stack slot [hi] (v8)
duke@435 1641 // 4: two stack slots
duke@435 1642
duke@435 1643 // Since src is always a java calling convention we know that the src pair
duke@435 1644 // is always either all registers or all stack (and aligned?)
duke@435 1645
duke@435 1646 // in a register [lo] and a stack slot [hi]
duke@435 1647 if (src.first()->is_stack()) {
duke@435 1648 if (dst.first()->is_stack()) {
duke@435 1649 // stack to stack the easiest of the bunch
duke@435 1650 // ought to be a way to do this where if alignment is ok we use ldd/std when possible
duke@435 1651 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 1652 __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
duke@435 1653 __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1654 __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
duke@435 1655 } else {
duke@435 1656 // stack to reg
duke@435 1657 if (dst.second()->is_stack()) {
duke@435 1658 // stack -> reg, stack -> stack
duke@435 1659 __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
duke@435 1660 if (dst.first()->is_Register()) {
duke@435 1661 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
duke@435 1662 } else {
duke@435 1663 __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
duke@435 1664 }
duke@435 1665 // This was missing. (very rare case)
duke@435 1666 __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
duke@435 1667 } else {
duke@435 1668 // stack -> reg
duke@435 1669 // Eventually optimize for alignment QQQ
duke@435 1670 if (dst.first()->is_Register()) {
duke@435 1671 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
duke@435 1672 __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
duke@435 1673 } else {
duke@435 1674 __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
duke@435 1675 __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
duke@435 1676 }
duke@435 1677 }
duke@435 1678 }
duke@435 1679 } else if (dst.first()->is_stack()) {
duke@435 1680 // reg to stack
duke@435 1681 if (src.first()->is_Register()) {
duke@435 1682 // Eventually optimize for alignment QQQ
duke@435 1683 __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1684 if (src.second()->is_stack()) {
duke@435 1685 __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
duke@435 1686 __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
duke@435 1687 } else {
duke@435 1688 __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
duke@435 1689 }
duke@435 1690 } else {
duke@435 1691 // fpr to stack
duke@435 1692 if (src.second()->is_stack()) {
duke@435 1693 ShouldNotReachHere();
duke@435 1694 } else {
duke@435 1695 // Is the stack aligned?
duke@435 1696 if (reg2offset(dst.first()) & 0x7) {
duke@435 1697 // No do as pairs
duke@435 1698 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1699 __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
duke@435 1700 } else {
duke@435 1701 __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
duke@435 1702 }
duke@435 1703 }
duke@435 1704 }
duke@435 1705 } else {
duke@435 1706 // reg to reg
duke@435 1707 if (src.first()->is_Register()) {
duke@435 1708 if (dst.first()->is_Register()) {
duke@435 1709 // gpr -> gpr
duke@435 1710 __ mov(src.first()->as_Register(), dst.first()->as_Register());
duke@435 1711 __ mov(src.second()->as_Register(), dst.second()->as_Register());
duke@435 1712 } else {
duke@435 1713 // gpr -> fpr
duke@435 1714 // ought to be able to do a single store
duke@435 1715 __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
duke@435 1716 __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
duke@435 1717 // ought to be able to do a single load
duke@435 1718 __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
duke@435 1719 __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
duke@435 1720 }
duke@435 1721 } else if (dst.first()->is_Register()) {
duke@435 1722 // fpr -> gpr
duke@435 1723 // ought to be able to do a single store
duke@435 1724 __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
duke@435 1725 // ought to be able to do a single load
duke@435 1726 // REMEMBER first() is low address not LSB
duke@435 1727 __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
duke@435 1728 if (dst.second()->is_Register()) {
duke@435 1729 __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
duke@435 1730 } else {
duke@435 1731 __ ld(FP, -4 + STACK_BIAS, L4);
duke@435 1732 __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
duke@435 1733 }
duke@435 1734 } else {
duke@435 1735 // fpr -> fpr
duke@435 1736 // In theory these overlap but the ordering is such that this is likely a nop
duke@435 1737 if ( src.first() != dst.first()) {
duke@435 1738 __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
duke@435 1739 }
duke@435 1740 }
duke@435 1741 }
duke@435 1742 }
duke@435 1743
duke@435 1744 // Creates an inner frame if one hasn't already been created, and
duke@435 1745 // saves a copy of the thread in L7_thread_cache
duke@435 1746 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
duke@435 1747 if (!*already_created) {
duke@435 1748 __ save_frame(0);
duke@435 1749 // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
duke@435 1750 // Don't use save_thread because it smashes G2 and we merely want to save a
duke@435 1751 // copy
duke@435 1752 __ mov(G2_thread, L7_thread_cache);
duke@435 1753 *already_created = true;
duke@435 1754 }
duke@435 1755 }
duke@435 1756
duke@435 1757 // ---------------------------------------------------------------------------
duke@435 1758 // Generate a native wrapper for a given method. The method takes arguments
duke@435 1759 // in the Java compiled code convention, marshals them to the native
duke@435 1760 // convention (handlizes oops, etc), transitions to native, makes the call,
duke@435 1761 // returns to java state (possibly blocking), unhandlizes any result and
duke@435 1762 // returns.
duke@435 1763 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
duke@435 1764 methodHandle method,
duke@435 1765 int total_in_args,
duke@435 1766 int comp_args_on_stack, // in VMRegStackSlots
duke@435 1767 BasicType *in_sig_bt,
duke@435 1768 VMRegPair *in_regs,
duke@435 1769 BasicType ret_type) {
duke@435 1770
duke@435 1771 // Native nmethod wrappers never take possesion of the oop arguments.
duke@435 1772 // So the caller will gc the arguments. The only thing we need an
duke@435 1773 // oopMap for is if the call is static
duke@435 1774 //
duke@435 1775 // An OopMap for lock (and class if static), and one for the VM call itself
duke@435 1776 OopMapSet *oop_maps = new OopMapSet();
duke@435 1777 intptr_t start = (intptr_t)__ pc();
duke@435 1778
duke@435 1779 // First thing make an ic check to see if we should even be here
duke@435 1780 {
duke@435 1781 Label L;
duke@435 1782 const Register temp_reg = G3_scratch;
twisti@1162 1783 AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
duke@435 1784 __ verify_oop(O0);
coleenp@548 1785 __ load_klass(O0, temp_reg);
duke@435 1786 __ cmp(temp_reg, G5_inline_cache_reg);
duke@435 1787 __ brx(Assembler::equal, true, Assembler::pt, L);
duke@435 1788 __ delayed()->nop();
duke@435 1789
twisti@1162 1790 __ jump_to(ic_miss, temp_reg);
duke@435 1791 __ delayed()->nop();
duke@435 1792 __ align(CodeEntryAlignment);
duke@435 1793 __ bind(L);
duke@435 1794 }
duke@435 1795
duke@435 1796 int vep_offset = ((intptr_t)__ pc()) - start;
duke@435 1797
duke@435 1798 #ifdef COMPILER1
duke@435 1799 if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
duke@435 1800 // Object.hashCode can pull the hashCode from the header word
duke@435 1801 // instead of doing a full VM transition once it's been computed.
duke@435 1802 // Since hashCode is usually polymorphic at call sites we can't do
duke@435 1803 // this optimization at the call site without a lot of work.
duke@435 1804 Label slowCase;
duke@435 1805 Register receiver = O0;
duke@435 1806 Register result = O0;
duke@435 1807 Register header = G3_scratch;
duke@435 1808 Register hash = G3_scratch; // overwrite header value with hash value
duke@435 1809 Register mask = G1; // to get hash field from header
duke@435 1810
duke@435 1811 // Read the header and build a mask to get its hash field. Give up if the object is not unlocked.
duke@435 1812 // We depend on hash_mask being at most 32 bits and avoid the use of
duke@435 1813 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
duke@435 1814 // vm: see markOop.hpp.
duke@435 1815 __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
duke@435 1816 __ sethi(markOopDesc::hash_mask, mask);
duke@435 1817 __ btst(markOopDesc::unlocked_value, header);
duke@435 1818 __ br(Assembler::zero, false, Assembler::pn, slowCase);
duke@435 1819 if (UseBiasedLocking) {
duke@435 1820 // Check if biased and fall through to runtime if so
duke@435 1821 __ delayed()->nop();
duke@435 1822 __ btst(markOopDesc::biased_lock_bit_in_place, header);
duke@435 1823 __ br(Assembler::notZero, false, Assembler::pn, slowCase);
duke@435 1824 }
duke@435 1825 __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
duke@435 1826
duke@435 1827 // Check for a valid (non-zero) hash code and get its value.
duke@435 1828 #ifdef _LP64
duke@435 1829 __ srlx(header, markOopDesc::hash_shift, hash);
duke@435 1830 #else
duke@435 1831 __ srl(header, markOopDesc::hash_shift, hash);
duke@435 1832 #endif
duke@435 1833 __ andcc(hash, mask, hash);
duke@435 1834 __ br(Assembler::equal, false, Assembler::pn, slowCase);
duke@435 1835 __ delayed()->nop();
duke@435 1836
duke@435 1837 // leaf return.
duke@435 1838 __ retl();
duke@435 1839 __ delayed()->mov(hash, result);
duke@435 1840 __ bind(slowCase);
duke@435 1841 }
duke@435 1842 #endif // COMPILER1
duke@435 1843
duke@435 1844
duke@435 1845 // We have received a description of where all the java arg are located
duke@435 1846 // on entry to the wrapper. We need to convert these args to where
duke@435 1847 // the jni function will expect them. To figure out where they go
duke@435 1848 // we convert the java signature to a C signature by inserting
duke@435 1849 // the hidden arguments as arg[0] and possibly arg[1] (static method)
duke@435 1850
duke@435 1851 int total_c_args = total_in_args + 1;
duke@435 1852 if (method->is_static()) {
duke@435 1853 total_c_args++;
duke@435 1854 }
duke@435 1855
duke@435 1856 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
duke@435 1857 VMRegPair * out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
duke@435 1858
duke@435 1859 int argc = 0;
duke@435 1860 out_sig_bt[argc++] = T_ADDRESS;
duke@435 1861 if (method->is_static()) {
duke@435 1862 out_sig_bt[argc++] = T_OBJECT;
duke@435 1863 }
duke@435 1864
duke@435 1865 for (int i = 0; i < total_in_args ; i++ ) {
duke@435 1866 out_sig_bt[argc++] = in_sig_bt[i];
duke@435 1867 }
duke@435 1868
duke@435 1869 // Now figure out where the args must be stored and how much stack space
duke@435 1870 // they require (neglecting out_preserve_stack_slots but space for storing
duke@435 1871 // the 1st six register arguments). It's weird see int_stk_helper.
duke@435 1872 //
duke@435 1873 int out_arg_slots;
duke@435 1874 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
duke@435 1875
duke@435 1876 // Compute framesize for the wrapper. We need to handlize all oops in
duke@435 1877 // registers. We must create space for them here that is disjoint from
duke@435 1878 // the windowed save area because we have no control over when we might
duke@435 1879 // flush the window again and overwrite values that gc has since modified.
duke@435 1880 // (The live window race)
duke@435 1881 //
duke@435 1882 // We always just allocate 6 word for storing down these object. This allow
duke@435 1883 // us to simply record the base and use the Ireg number to decide which
duke@435 1884 // slot to use. (Note that the reg number is the inbound number not the
duke@435 1885 // outbound number).
duke@435 1886 // We must shuffle args to match the native convention, and include var-args space.
duke@435 1887
duke@435 1888 // Calculate the total number of stack slots we will need.
duke@435 1889
duke@435 1890 // First count the abi requirement plus all of the outgoing args
duke@435 1891 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
duke@435 1892
duke@435 1893 // Now the space for the inbound oop handle area
duke@435 1894
duke@435 1895 int oop_handle_offset = stack_slots;
duke@435 1896 stack_slots += 6*VMRegImpl::slots_per_word;
duke@435 1897
duke@435 1898 // Now any space we need for handlizing a klass if static method
duke@435 1899
duke@435 1900 int oop_temp_slot_offset = 0;
duke@435 1901 int klass_slot_offset = 0;
duke@435 1902 int klass_offset = -1;
duke@435 1903 int lock_slot_offset = 0;
duke@435 1904 bool is_static = false;
duke@435 1905
duke@435 1906 if (method->is_static()) {
duke@435 1907 klass_slot_offset = stack_slots;
duke@435 1908 stack_slots += VMRegImpl::slots_per_word;
duke@435 1909 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
duke@435 1910 is_static = true;
duke@435 1911 }
duke@435 1912
duke@435 1913 // Plus a lock if needed
duke@435 1914
duke@435 1915 if (method->is_synchronized()) {
duke@435 1916 lock_slot_offset = stack_slots;
duke@435 1917 stack_slots += VMRegImpl::slots_per_word;
duke@435 1918 }
duke@435 1919
duke@435 1920 // Now a place to save return value or as a temporary for any gpr -> fpr moves
duke@435 1921 stack_slots += 2;
duke@435 1922
duke@435 1923 // Ok The space we have allocated will look like:
duke@435 1924 //
duke@435 1925 //
duke@435 1926 // FP-> | |
duke@435 1927 // |---------------------|
duke@435 1928 // | 2 slots for moves |
duke@435 1929 // |---------------------|
duke@435 1930 // | lock box (if sync) |
duke@435 1931 // |---------------------| <- lock_slot_offset
duke@435 1932 // | klass (if static) |
duke@435 1933 // |---------------------| <- klass_slot_offset
duke@435 1934 // | oopHandle area |
duke@435 1935 // |---------------------| <- oop_handle_offset
duke@435 1936 // | outbound memory |
duke@435 1937 // | based arguments |
duke@435 1938 // | |
duke@435 1939 // |---------------------|
duke@435 1940 // | vararg area |
duke@435 1941 // |---------------------|
duke@435 1942 // | |
duke@435 1943 // SP-> | out_preserved_slots |
duke@435 1944 //
duke@435 1945 //
duke@435 1946
duke@435 1947
duke@435 1948 // Now compute actual number of stack words we need rounding to make
duke@435 1949 // stack properly aligned.
duke@435 1950 stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
duke@435 1951
duke@435 1952 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
duke@435 1953
duke@435 1954 // Generate stack overflow check before creating frame
duke@435 1955 __ generate_stack_overflow_check(stack_size);
duke@435 1956
duke@435 1957 // Generate a new frame for the wrapper.
duke@435 1958 __ save(SP, -stack_size, SP);
duke@435 1959
duke@435 1960 int frame_complete = ((intptr_t)__ pc()) - start;
duke@435 1961
duke@435 1962 __ verify_thread();
duke@435 1963
duke@435 1964
duke@435 1965 //
duke@435 1966 // We immediately shuffle the arguments so that any vm call we have to
duke@435 1967 // make from here on out (sync slow path, jvmti, etc.) we will have
duke@435 1968 // captured the oops from our caller and have a valid oopMap for
duke@435 1969 // them.
duke@435 1970
duke@435 1971 // -----------------
duke@435 1972 // The Grand Shuffle
duke@435 1973 //
duke@435 1974 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
duke@435 1975 // (derived from JavaThread* which is in L7_thread_cache) and, if static,
duke@435 1976 // the class mirror instead of a receiver. This pretty much guarantees that
duke@435 1977 // register layout will not match. We ignore these extra arguments during
duke@435 1978 // the shuffle. The shuffle is described by the two calling convention
duke@435 1979 // vectors we have in our possession. We simply walk the java vector to
duke@435 1980 // get the source locations and the c vector to get the destinations.
duke@435 1981 // Because we have a new window and the argument registers are completely
duke@435 1982 // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
duke@435 1983 // here.
duke@435 1984
duke@435 1985 // This is a trick. We double the stack slots so we can claim
duke@435 1986 // the oops in the caller's frame. Since we are sure to have
duke@435 1987 // more args than the caller doubling is enough to make
duke@435 1988 // sure we can capture all the incoming oop args from the
duke@435 1989 // caller.
duke@435 1990 //
duke@435 1991 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
duke@435 1992 int c_arg = total_c_args - 1;
duke@435 1993 // Record sp-based slot for receiver on stack for non-static methods
duke@435 1994 int receiver_offset = -1;
duke@435 1995
duke@435 1996 // We move the arguments backward because the floating point registers
duke@435 1997 // destination will always be to a register with a greater or equal register
duke@435 1998 // number or the stack.
duke@435 1999
duke@435 2000 #ifdef ASSERT
duke@435 2001 bool reg_destroyed[RegisterImpl::number_of_registers];
duke@435 2002 bool freg_destroyed[FloatRegisterImpl::number_of_registers];
duke@435 2003 for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
duke@435 2004 reg_destroyed[r] = false;
duke@435 2005 }
duke@435 2006 for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
duke@435 2007 freg_destroyed[f] = false;
duke@435 2008 }
duke@435 2009
duke@435 2010 #endif /* ASSERT */
duke@435 2011
duke@435 2012 for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
duke@435 2013
duke@435 2014 #ifdef ASSERT
duke@435 2015 if (in_regs[i].first()->is_Register()) {
duke@435 2016 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
duke@435 2017 } else if (in_regs[i].first()->is_FloatRegister()) {
duke@435 2018 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
duke@435 2019 }
duke@435 2020 if (out_regs[c_arg].first()->is_Register()) {
duke@435 2021 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
duke@435 2022 } else if (out_regs[c_arg].first()->is_FloatRegister()) {
duke@435 2023 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
duke@435 2024 }
duke@435 2025 #endif /* ASSERT */
duke@435 2026
duke@435 2027 switch (in_sig_bt[i]) {
duke@435 2028 case T_ARRAY:
duke@435 2029 case T_OBJECT:
duke@435 2030 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
duke@435 2031 ((i == 0) && (!is_static)),
duke@435 2032 &receiver_offset);
duke@435 2033 break;
duke@435 2034 case T_VOID:
duke@435 2035 break;
duke@435 2036
duke@435 2037 case T_FLOAT:
duke@435 2038 float_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 2039 break;
duke@435 2040
duke@435 2041 case T_DOUBLE:
duke@435 2042 assert( i + 1 < total_in_args &&
duke@435 2043 in_sig_bt[i + 1] == T_VOID &&
duke@435 2044 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
duke@435 2045 double_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 2046 break;
duke@435 2047
duke@435 2048 case T_LONG :
duke@435 2049 long_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 2050 break;
duke@435 2051
duke@435 2052 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
duke@435 2053
duke@435 2054 default:
duke@435 2055 move32_64(masm, in_regs[i], out_regs[c_arg]);
duke@435 2056 }
duke@435 2057 }
duke@435 2058
duke@435 2059 // Pre-load a static method's oop into O1. Used both by locking code and
duke@435 2060 // the normal JNI call code.
duke@435 2061 if (method->is_static()) {
duke@435 2062 __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
duke@435 2063
duke@435 2064 // Now handlize the static class mirror in O1. It's known not-null.
duke@435 2065 __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
duke@435 2066 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
duke@435 2067 __ add(SP, klass_offset + STACK_BIAS, O1);
duke@435 2068 }
duke@435 2069
duke@435 2070
duke@435 2071 const Register L6_handle = L6;
duke@435 2072
duke@435 2073 if (method->is_synchronized()) {
duke@435 2074 __ mov(O1, L6_handle);
duke@435 2075 }
duke@435 2076
duke@435 2077 // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
duke@435 2078 // except O6/O7. So if we must call out we must push a new frame. We immediately
duke@435 2079 // push a new frame and flush the windows.
duke@435 2080
duke@435 2081 #ifdef _LP64
duke@435 2082 intptr_t thepc = (intptr_t) __ pc();
duke@435 2083 {
duke@435 2084 address here = __ pc();
duke@435 2085 // Call the next instruction
duke@435 2086 __ call(here + 8, relocInfo::none);
duke@435 2087 __ delayed()->nop();
duke@435 2088 }
duke@435 2089 #else
duke@435 2090 intptr_t thepc = __ load_pc_address(O7, 0);
duke@435 2091 #endif /* _LP64 */
duke@435 2092
duke@435 2093 // We use the same pc/oopMap repeatedly when we call out
duke@435 2094 oop_maps->add_gc_map(thepc - start, map);
duke@435 2095
duke@435 2096 // O7 now has the pc loaded that we will use when we finally call to native.
duke@435 2097
duke@435 2098 // Save thread in L7; it crosses a bunch of VM calls below
duke@435 2099 // Don't use save_thread because it smashes G2 and we merely
duke@435 2100 // want to save a copy
duke@435 2101 __ mov(G2_thread, L7_thread_cache);
duke@435 2102
duke@435 2103
duke@435 2104 // If we create an inner frame once is plenty
duke@435 2105 // when we create it we must also save G2_thread
duke@435 2106 bool inner_frame_created = false;
duke@435 2107
duke@435 2108 // dtrace method entry support
duke@435 2109 {
duke@435 2110 SkipIfEqual skip_if(
duke@435 2111 masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
duke@435 2112 // create inner frame
duke@435 2113 __ save_frame(0);
duke@435 2114 __ mov(G2_thread, L7_thread_cache);
duke@435 2115 __ set_oop_constant(JNIHandles::make_local(method()), O1);
duke@435 2116 __ call_VM_leaf(L7_thread_cache,
duke@435 2117 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 2118 G2_thread, O1);
duke@435 2119 __ restore();
duke@435 2120 }
duke@435 2121
dcubed@1045 2122 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 2123 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2124 // create inner frame
dcubed@1045 2125 __ save_frame(0);
dcubed@1045 2126 __ mov(G2_thread, L7_thread_cache);
dcubed@1045 2127 __ set_oop_constant(JNIHandles::make_local(method()), O1);
dcubed@1045 2128 __ call_VM_leaf(L7_thread_cache,
dcubed@1045 2129 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 2130 G2_thread, O1);
dcubed@1045 2131 __ restore();
dcubed@1045 2132 }
dcubed@1045 2133
duke@435 2134 // We are in the jni frame unless saved_frame is true in which case
duke@435 2135 // we are in one frame deeper (the "inner" frame). If we are in the
duke@435 2136 // "inner" frames the args are in the Iregs and if the jni frame then
duke@435 2137 // they are in the Oregs.
duke@435 2138 // If we ever need to go to the VM (for locking, jvmti) then
duke@435 2139 // we will always be in the "inner" frame.
duke@435 2140
duke@435 2141 // Lock a synchronized method
duke@435 2142 int lock_offset = -1; // Set if locked
duke@435 2143 if (method->is_synchronized()) {
duke@435 2144 Register Roop = O1;
duke@435 2145 const Register L3_box = L3;
duke@435 2146
duke@435 2147 create_inner_frame(masm, &inner_frame_created);
duke@435 2148
duke@435 2149 __ ld_ptr(I1, 0, O1);
duke@435 2150 Label done;
duke@435 2151
duke@435 2152 lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
duke@435 2153 __ add(FP, lock_offset+STACK_BIAS, L3_box);
duke@435 2154 #ifdef ASSERT
duke@435 2155 if (UseBiasedLocking) {
duke@435 2156 // making the box point to itself will make it clear it went unused
duke@435 2157 // but also be obviously invalid
duke@435 2158 __ st_ptr(L3_box, L3_box, 0);
duke@435 2159 }
duke@435 2160 #endif // ASSERT
duke@435 2161 //
duke@435 2162 // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
duke@435 2163 //
duke@435 2164 __ compiler_lock_object(Roop, L1, L3_box, L2);
duke@435 2165 __ br(Assembler::equal, false, Assembler::pt, done);
duke@435 2166 __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
duke@435 2167
duke@435 2168
duke@435 2169 // None of the above fast optimizations worked so we have to get into the
duke@435 2170 // slow case of monitor enter. Inline a special case of call_VM that
duke@435 2171 // disallows any pending_exception.
duke@435 2172 __ mov(Roop, O0); // Need oop in O0
duke@435 2173 __ mov(L3_box, O1);
duke@435 2174
duke@435 2175 // Record last_Java_sp, in case the VM code releases the JVM lock.
duke@435 2176
duke@435 2177 __ set_last_Java_frame(FP, I7);
duke@435 2178
duke@435 2179 // do the call
duke@435 2180 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
duke@435 2181 __ delayed()->mov(L7_thread_cache, O2);
duke@435 2182
duke@435 2183 __ restore_thread(L7_thread_cache); // restore G2_thread
duke@435 2184 __ reset_last_Java_frame();
duke@435 2185
duke@435 2186 #ifdef ASSERT
duke@435 2187 { Label L;
duke@435 2188 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
duke@435 2189 __ br_null(O0, false, Assembler::pt, L);
duke@435 2190 __ delayed()->nop();
duke@435 2191 __ stop("no pending exception allowed on exit from IR::monitorenter");
duke@435 2192 __ bind(L);
duke@435 2193 }
duke@435 2194 #endif
duke@435 2195 __ bind(done);
duke@435 2196 }
duke@435 2197
duke@435 2198
duke@435 2199 // Finally just about ready to make the JNI call
duke@435 2200
duke@435 2201 __ flush_windows();
duke@435 2202 if (inner_frame_created) {
duke@435 2203 __ restore();
duke@435 2204 } else {
duke@435 2205 // Store only what we need from this frame
duke@435 2206 // QQQ I think that non-v9 (like we care) we don't need these saves
duke@435 2207 // either as the flush traps and the current window goes too.
duke@435 2208 __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
duke@435 2209 __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
duke@435 2210 }
duke@435 2211
duke@435 2212 // get JNIEnv* which is first argument to native
duke@435 2213
duke@435 2214 __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
duke@435 2215
duke@435 2216 // Use that pc we placed in O7 a while back as the current frame anchor
duke@435 2217
duke@435 2218 __ set_last_Java_frame(SP, O7);
duke@435 2219
duke@435 2220 // Transition from _thread_in_Java to _thread_in_native.
duke@435 2221 __ set(_thread_in_native, G3_scratch);
twisti@1162 2222 __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
duke@435 2223
duke@435 2224 // We flushed the windows ages ago now mark them as flushed
duke@435 2225
duke@435 2226 // mark windows as flushed
duke@435 2227 __ set(JavaFrameAnchor::flushed, G3_scratch);
duke@435 2228
twisti@1162 2229 Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
duke@435 2230
duke@435 2231 #ifdef _LP64
twisti@1162 2232 AddressLiteral dest(method->native_function());
duke@435 2233 __ relocate(relocInfo::runtime_call_type);
twisti@1162 2234 __ jumpl_to(dest, O7, O7);
duke@435 2235 #else
duke@435 2236 __ call(method->native_function(), relocInfo::runtime_call_type);
duke@435 2237 #endif
duke@435 2238 __ delayed()->st(G3_scratch, flags);
duke@435 2239
duke@435 2240 __ restore_thread(L7_thread_cache); // restore G2_thread
duke@435 2241
duke@435 2242 // Unpack native results. For int-types, we do any needed sign-extension
duke@435 2243 // and move things into I0. The return value there will survive any VM
duke@435 2244 // calls for blocking or unlocking. An FP or OOP result (handle) is done
duke@435 2245 // specially in the slow-path code.
duke@435 2246 switch (ret_type) {
duke@435 2247 case T_VOID: break; // Nothing to do!
duke@435 2248 case T_FLOAT: break; // Got it where we want it (unless slow-path)
duke@435 2249 case T_DOUBLE: break; // Got it where we want it (unless slow-path)
duke@435 2250 // In 64 bits build result is in O0, in O0, O1 in 32bit build
duke@435 2251 case T_LONG:
duke@435 2252 #ifndef _LP64
duke@435 2253 __ mov(O1, I1);
duke@435 2254 #endif
duke@435 2255 // Fall thru
duke@435 2256 case T_OBJECT: // Really a handle
duke@435 2257 case T_ARRAY:
duke@435 2258 case T_INT:
duke@435 2259 __ mov(O0, I0);
duke@435 2260 break;
duke@435 2261 case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
duke@435 2262 case T_BYTE : __ sll(O0, 24, O0); __ sra(O0, 24, I0); break;
duke@435 2263 case T_CHAR : __ sll(O0, 16, O0); __ srl(O0, 16, I0); break; // cannot use and3, 0xFFFF too big as immediate value!
duke@435 2264 case T_SHORT : __ sll(O0, 16, O0); __ sra(O0, 16, I0); break;
duke@435 2265 break; // Cannot de-handlize until after reclaiming jvm_lock
duke@435 2266 default:
duke@435 2267 ShouldNotReachHere();
duke@435 2268 }
duke@435 2269
duke@435 2270 // must we block?
duke@435 2271
duke@435 2272 // Block, if necessary, before resuming in _thread_in_Java state.
duke@435 2273 // In order for GC to work, don't clear the last_Java_sp until after blocking.
duke@435 2274 { Label no_block;
twisti@1162 2275 AddressLiteral sync_state(SafepointSynchronize::address_of_state());
duke@435 2276
duke@435 2277 // Switch thread to "native transition" state before reading the synchronization state.
duke@435 2278 // This additional state is necessary because reading and testing the synchronization
duke@435 2279 // state is not atomic w.r.t. GC, as this scenario demonstrates:
duke@435 2280 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
duke@435 2281 // VM thread changes sync state to synchronizing and suspends threads for GC.
duke@435 2282 // Thread A is resumed to finish this native method, but doesn't block here since it
duke@435 2283 // didn't see any synchronization is progress, and escapes.
duke@435 2284 __ set(_thread_in_native_trans, G3_scratch);
twisti@1162 2285 __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
duke@435 2286 if(os::is_MP()) {
duke@435 2287 if (UseMembar) {
duke@435 2288 // Force this write out before the read below
duke@435 2289 __ membar(Assembler::StoreLoad);
duke@435 2290 } else {
duke@435 2291 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 2292 // We use the current thread pointer to calculate a thread specific
duke@435 2293 // offset to write to within the page. This minimizes bus traffic
duke@435 2294 // due to cache line collision.
duke@435 2295 __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
duke@435 2296 }
duke@435 2297 }
duke@435 2298 __ load_contents(sync_state, G3_scratch);
duke@435 2299 __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
duke@435 2300
duke@435 2301 Label L;
twisti@1162 2302 Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
duke@435 2303 __ br(Assembler::notEqual, false, Assembler::pn, L);
twisti@1162 2304 __ delayed()->ld(suspend_state, G3_scratch);
duke@435 2305 __ cmp(G3_scratch, 0);
duke@435 2306 __ br(Assembler::equal, false, Assembler::pt, no_block);
duke@435 2307 __ delayed()->nop();
duke@435 2308 __ bind(L);
duke@435 2309
duke@435 2310 // Block. Save any potential method result value before the operation and
duke@435 2311 // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
duke@435 2312 // lets us share the oopMap we used when we went native rather the create
duke@435 2313 // a distinct one for this pc
duke@435 2314 //
duke@435 2315 save_native_result(masm, ret_type, stack_slots);
duke@435 2316 __ call_VM_leaf(L7_thread_cache,
duke@435 2317 CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
duke@435 2318 G2_thread);
duke@435 2319
duke@435 2320 // Restore any method result value
duke@435 2321 restore_native_result(masm, ret_type, stack_slots);
duke@435 2322 __ bind(no_block);
duke@435 2323 }
duke@435 2324
duke@435 2325 // thread state is thread_in_native_trans. Any safepoint blocking has already
duke@435 2326 // happened so we can now change state to _thread_in_Java.
duke@435 2327
duke@435 2328
duke@435 2329 __ set(_thread_in_Java, G3_scratch);
twisti@1162 2330 __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
duke@435 2331
duke@435 2332
duke@435 2333 Label no_reguard;
twisti@1162 2334 __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
duke@435 2335 __ cmp(G3_scratch, JavaThread::stack_guard_yellow_disabled);
duke@435 2336 __ br(Assembler::notEqual, false, Assembler::pt, no_reguard);
duke@435 2337 __ delayed()->nop();
duke@435 2338
duke@435 2339 save_native_result(masm, ret_type, stack_slots);
duke@435 2340 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
duke@435 2341 __ delayed()->nop();
duke@435 2342
duke@435 2343 __ restore_thread(L7_thread_cache); // restore G2_thread
duke@435 2344 restore_native_result(masm, ret_type, stack_slots);
duke@435 2345
duke@435 2346 __ bind(no_reguard);
duke@435 2347
duke@435 2348 // Handle possible exception (will unlock if necessary)
duke@435 2349
duke@435 2350 // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
duke@435 2351
duke@435 2352 // Unlock
duke@435 2353 if (method->is_synchronized()) {
duke@435 2354 Label done;
duke@435 2355 Register I2_ex_oop = I2;
duke@435 2356 const Register L3_box = L3;
duke@435 2357 // Get locked oop from the handle we passed to jni
duke@435 2358 __ ld_ptr(L6_handle, 0, L4);
duke@435 2359 __ add(SP, lock_offset+STACK_BIAS, L3_box);
duke@435 2360 // Must save pending exception around the slow-path VM call. Since it's a
duke@435 2361 // leaf call, the pending exception (if any) can be kept in a register.
duke@435 2362 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
duke@435 2363 // Now unlock
duke@435 2364 // (Roop, Rmark, Rbox, Rscratch)
duke@435 2365 __ compiler_unlock_object(L4, L1, L3_box, L2);
duke@435 2366 __ br(Assembler::equal, false, Assembler::pt, done);
duke@435 2367 __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
duke@435 2368
duke@435 2369 // save and restore any potential method result value around the unlocking
duke@435 2370 // operation. Will save in I0 (or stack for FP returns).
duke@435 2371 save_native_result(masm, ret_type, stack_slots);
duke@435 2372
duke@435 2373 // Must clear pending-exception before re-entering the VM. Since this is
duke@435 2374 // a leaf call, pending-exception-oop can be safely kept in a register.
duke@435 2375 __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
duke@435 2376
duke@435 2377 // slow case of monitor enter. Inline a special case of call_VM that
duke@435 2378 // disallows any pending_exception.
duke@435 2379 __ mov(L3_box, O1);
duke@435 2380
duke@435 2381 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
duke@435 2382 __ delayed()->mov(L4, O0); // Need oop in O0
duke@435 2383
duke@435 2384 __ restore_thread(L7_thread_cache); // restore G2_thread
duke@435 2385
duke@435 2386 #ifdef ASSERT
duke@435 2387 { Label L;
duke@435 2388 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
duke@435 2389 __ br_null(O0, false, Assembler::pt, L);
duke@435 2390 __ delayed()->nop();
duke@435 2391 __ stop("no pending exception allowed on exit from IR::monitorexit");
duke@435 2392 __ bind(L);
duke@435 2393 }
duke@435 2394 #endif
duke@435 2395 restore_native_result(masm, ret_type, stack_slots);
duke@435 2396 // check_forward_pending_exception jump to forward_exception if any pending
duke@435 2397 // exception is set. The forward_exception routine expects to see the
duke@435 2398 // exception in pending_exception and not in a register. Kind of clumsy,
duke@435 2399 // since all folks who branch to forward_exception must have tested
duke@435 2400 // pending_exception first and hence have it in a register already.
duke@435 2401 __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
duke@435 2402 __ bind(done);
duke@435 2403 }
duke@435 2404
duke@435 2405 // Tell dtrace about this method exit
duke@435 2406 {
duke@435 2407 SkipIfEqual skip_if(
duke@435 2408 masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
duke@435 2409 save_native_result(masm, ret_type, stack_slots);
duke@435 2410 __ set_oop_constant(JNIHandles::make_local(method()), O1);
duke@435 2411 __ call_VM_leaf(L7_thread_cache,
duke@435 2412 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2413 G2_thread, O1);
duke@435 2414 restore_native_result(masm, ret_type, stack_slots);
duke@435 2415 }
duke@435 2416
duke@435 2417 // Clear "last Java frame" SP and PC.
duke@435 2418 __ verify_thread(); // G2_thread must be correct
duke@435 2419 __ reset_last_Java_frame();
duke@435 2420
duke@435 2421 // Unpack oop result
duke@435 2422 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
duke@435 2423 Label L;
duke@435 2424 __ addcc(G0, I0, G0);
duke@435 2425 __ brx(Assembler::notZero, true, Assembler::pt, L);
duke@435 2426 __ delayed()->ld_ptr(I0, 0, I0);
duke@435 2427 __ mov(G0, I0);
duke@435 2428 __ bind(L);
duke@435 2429 __ verify_oop(I0);
duke@435 2430 }
duke@435 2431
duke@435 2432 // reset handle block
duke@435 2433 __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
duke@435 2434 __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
duke@435 2435
duke@435 2436 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
duke@435 2437 check_forward_pending_exception(masm, G3_scratch);
duke@435 2438
duke@435 2439
duke@435 2440 // Return
duke@435 2441
duke@435 2442 #ifndef _LP64
duke@435 2443 if (ret_type == T_LONG) {
duke@435 2444
duke@435 2445 // Must leave proper result in O0,O1 and G1 (c2/tiered only)
duke@435 2446 __ sllx(I0, 32, G1); // Shift bits into high G1
duke@435 2447 __ srl (I1, 0, I1); // Zero extend O1 (harmless?)
duke@435 2448 __ or3 (I1, G1, G1); // OR 64 bits into G1
duke@435 2449 }
duke@435 2450 #endif
duke@435 2451
duke@435 2452 __ ret();
duke@435 2453 __ delayed()->restore();
duke@435 2454
duke@435 2455 __ flush();
duke@435 2456
duke@435 2457 nmethod *nm = nmethod::new_native_nmethod(method,
duke@435 2458 masm->code(),
duke@435 2459 vep_offset,
duke@435 2460 frame_complete,
duke@435 2461 stack_slots / VMRegImpl::slots_per_word,
duke@435 2462 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
duke@435 2463 in_ByteSize(lock_offset),
duke@435 2464 oop_maps);
duke@435 2465 return nm;
duke@435 2466
duke@435 2467 }
duke@435 2468
kamg@551 2469 #ifdef HAVE_DTRACE_H
kamg@551 2470 // ---------------------------------------------------------------------------
kamg@551 2471 // Generate a dtrace nmethod for a given signature. The method takes arguments
kamg@551 2472 // in the Java compiled code convention, marshals them to the native
kamg@551 2473 // abi and then leaves nops at the position you would expect to call a native
kamg@551 2474 // function. When the probe is enabled the nops are replaced with a trap
kamg@551 2475 // instruction that dtrace inserts and the trace will cause a notification
kamg@551 2476 // to dtrace.
kamg@551 2477 //
kamg@551 2478 // The probes are only able to take primitive types and java/lang/String as
kamg@551 2479 // arguments. No other java types are allowed. Strings are converted to utf8
kamg@551 2480 // strings so that from dtrace point of view java strings are converted to C
kamg@551 2481 // strings. There is an arbitrary fixed limit on the total space that a method
kamg@551 2482 // can use for converting the strings. (256 chars per string in the signature).
kamg@551 2483 // So any java string larger then this is truncated.
kamg@551 2484
kamg@551 2485 static int fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
kamg@551 2486 static bool offsets_initialized = false;
kamg@551 2487
kamg@551 2488 static VMRegPair reg64_to_VMRegPair(Register r) {
kamg@551 2489 VMRegPair ret;
kamg@551 2490 if (wordSize == 8) {
kamg@551 2491 ret.set2(r->as_VMReg());
kamg@551 2492 } else {
kamg@551 2493 ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
kamg@551 2494 }
kamg@551 2495 return ret;
kamg@551 2496 }
kamg@551 2497
kamg@551 2498
kamg@551 2499 nmethod *SharedRuntime::generate_dtrace_nmethod(
kamg@551 2500 MacroAssembler *masm, methodHandle method) {
kamg@551 2501
kamg@551 2502
kamg@551 2503 // generate_dtrace_nmethod is guarded by a mutex so we are sure to
kamg@551 2504 // be single threaded in this method.
kamg@551 2505 assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
kamg@551 2506
kamg@551 2507 // Fill in the signature array, for the calling-convention call.
kamg@551 2508 int total_args_passed = method->size_of_parameters();
kamg@551 2509
kamg@551 2510 BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
kamg@551 2511 VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kamg@551 2512
kamg@551 2513 // The signature we are going to use for the trap that dtrace will see
kamg@551 2514 // java/lang/String is converted. We drop "this" and any other object
kamg@551 2515 // is converted to NULL. (A one-slot java/lang/Long object reference
kamg@551 2516 // is converted to a two-slot long, which is why we double the allocation).
kamg@551 2517 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
kamg@551 2518 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
kamg@551 2519
kamg@551 2520 int i=0;
kamg@551 2521 int total_strings = 0;
kamg@551 2522 int first_arg_to_pass = 0;
kamg@551 2523 int total_c_args = 0;
kamg@551 2524
kamg@551 2525 // Skip the receiver as dtrace doesn't want to see it
kamg@551 2526 if( !method->is_static() ) {
kamg@551 2527 in_sig_bt[i++] = T_OBJECT;
kamg@551 2528 first_arg_to_pass = 1;
kamg@551 2529 }
kamg@551 2530
kamg@551 2531 SignatureStream ss(method->signature());
kamg@551 2532 for ( ; !ss.at_return_type(); ss.next()) {
kamg@551 2533 BasicType bt = ss.type();
kamg@551 2534 in_sig_bt[i++] = bt; // Collect remaining bits of signature
kamg@551 2535 out_sig_bt[total_c_args++] = bt;
kamg@551 2536 if( bt == T_OBJECT) {
kamg@551 2537 symbolOop s = ss.as_symbol_or_null();
kamg@551 2538 if (s == vmSymbols::java_lang_String()) {
kamg@551 2539 total_strings++;
kamg@551 2540 out_sig_bt[total_c_args-1] = T_ADDRESS;
kamg@551 2541 } else if (s == vmSymbols::java_lang_Boolean() ||
kamg@551 2542 s == vmSymbols::java_lang_Byte()) {
kamg@551 2543 out_sig_bt[total_c_args-1] = T_BYTE;
kamg@551 2544 } else if (s == vmSymbols::java_lang_Character() ||
kamg@551 2545 s == vmSymbols::java_lang_Short()) {
kamg@551 2546 out_sig_bt[total_c_args-1] = T_SHORT;
kamg@551 2547 } else if (s == vmSymbols::java_lang_Integer() ||
kamg@551 2548 s == vmSymbols::java_lang_Float()) {
kamg@551 2549 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 2550 } else if (s == vmSymbols::java_lang_Long() ||
kamg@551 2551 s == vmSymbols::java_lang_Double()) {
kamg@551 2552 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 2553 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2554 }
kamg@551 2555 } else if ( bt == T_LONG || bt == T_DOUBLE ) {
kamg@551 2556 in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kamg@551 2557 // We convert double to long
kamg@551 2558 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 2559 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2560 } else if ( bt == T_FLOAT) {
kamg@551 2561 // We convert float to int
kamg@551 2562 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 2563 }
kamg@551 2564 }
kamg@551 2565
kamg@551 2566 assert(i==total_args_passed, "validly parsed signature");
kamg@551 2567
kamg@551 2568 // Now get the compiled-Java layout as input arguments
kamg@551 2569 int comp_args_on_stack;
kamg@551 2570 comp_args_on_stack = SharedRuntime::java_calling_convention(
kamg@551 2571 in_sig_bt, in_regs, total_args_passed, false);
kamg@551 2572
kamg@551 2573 // We have received a description of where all the java arg are located
kamg@551 2574 // on entry to the wrapper. We need to convert these args to where
kamg@551 2575 // the a native (non-jni) function would expect them. To figure out
kamg@551 2576 // where they go we convert the java signature to a C signature and remove
kamg@551 2577 // T_VOID for any long/double we might have received.
kamg@551 2578
kamg@551 2579
kamg@551 2580 // Now figure out where the args must be stored and how much stack space
kamg@551 2581 // they require (neglecting out_preserve_stack_slots but space for storing
kamg@551 2582 // the 1st six register arguments). It's weird see int_stk_helper.
kamg@551 2583 //
kamg@551 2584 int out_arg_slots;
kamg@551 2585 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
kamg@551 2586
kamg@551 2587 // Calculate the total number of stack slots we will need.
kamg@551 2588
kamg@551 2589 // First count the abi requirement plus all of the outgoing args
kamg@551 2590 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
kamg@551 2591
kamg@551 2592 // Plus a temp for possible converion of float/double/long register args
kamg@551 2593
kamg@551 2594 int conversion_temp = stack_slots;
kamg@551 2595 stack_slots += 2;
kamg@551 2596
kamg@551 2597
kamg@551 2598 // Now space for the string(s) we must convert
kamg@551 2599
kamg@551 2600 int string_locs = stack_slots;
kamg@551 2601 stack_slots += total_strings *
kamg@551 2602 (max_dtrace_string_size / VMRegImpl::stack_slot_size);
kamg@551 2603
kamg@551 2604 // Ok The space we have allocated will look like:
kamg@551 2605 //
kamg@551 2606 //
kamg@551 2607 // FP-> | |
kamg@551 2608 // |---------------------|
kamg@551 2609 // | string[n] |
kamg@551 2610 // |---------------------| <- string_locs[n]
kamg@551 2611 // | string[n-1] |
kamg@551 2612 // |---------------------| <- string_locs[n-1]
kamg@551 2613 // | ... |
kamg@551 2614 // | ... |
kamg@551 2615 // |---------------------| <- string_locs[1]
kamg@551 2616 // | string[0] |
kamg@551 2617 // |---------------------| <- string_locs[0]
kamg@551 2618 // | temp |
kamg@551 2619 // |---------------------| <- conversion_temp
kamg@551 2620 // | outbound memory |
kamg@551 2621 // | based arguments |
kamg@551 2622 // | |
kamg@551 2623 // |---------------------|
kamg@551 2624 // | |
kamg@551 2625 // SP-> | out_preserved_slots |
kamg@551 2626 //
kamg@551 2627 //
kamg@551 2628
kamg@551 2629 // Now compute actual number of stack words we need rounding to make
kamg@551 2630 // stack properly aligned.
kamg@551 2631 stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
kamg@551 2632
kamg@551 2633 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
kamg@551 2634
kamg@551 2635 intptr_t start = (intptr_t)__ pc();
kamg@551 2636
kamg@551 2637 // First thing make an ic check to see if we should even be here
kamg@551 2638
kamg@551 2639 {
kamg@551 2640 Label L;
kamg@551 2641 const Register temp_reg = G3_scratch;
twisti@1162 2642 AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
kamg@551 2643 __ verify_oop(O0);
kamg@551 2644 __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
kamg@551 2645 __ cmp(temp_reg, G5_inline_cache_reg);
kamg@551 2646 __ brx(Assembler::equal, true, Assembler::pt, L);
kamg@551 2647 __ delayed()->nop();
kamg@551 2648
twisti@1162 2649 __ jump_to(ic_miss, temp_reg);
kamg@551 2650 __ delayed()->nop();
kamg@551 2651 __ align(CodeEntryAlignment);
kamg@551 2652 __ bind(L);
kamg@551 2653 }
kamg@551 2654
kamg@551 2655 int vep_offset = ((intptr_t)__ pc()) - start;
kamg@551 2656
kamg@551 2657
kamg@551 2658 // The instruction at the verified entry point must be 5 bytes or longer
kamg@551 2659 // because it can be patched on the fly by make_non_entrant. The stack bang
kamg@551 2660 // instruction fits that requirement.
kamg@551 2661
kamg@551 2662 // Generate stack overflow check before creating frame
kamg@551 2663 __ generate_stack_overflow_check(stack_size);
kamg@551 2664
kamg@551 2665 assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
kamg@551 2666 "valid size for make_non_entrant");
kamg@551 2667
kamg@551 2668 // Generate a new frame for the wrapper.
kamg@551 2669 __ save(SP, -stack_size, SP);
kamg@551 2670
kamg@551 2671 // Frame is now completed as far a size and linkage.
kamg@551 2672
kamg@551 2673 int frame_complete = ((intptr_t)__ pc()) - start;
kamg@551 2674
kamg@551 2675 #ifdef ASSERT
kamg@551 2676 bool reg_destroyed[RegisterImpl::number_of_registers];
kamg@551 2677 bool freg_destroyed[FloatRegisterImpl::number_of_registers];
kamg@551 2678 for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
kamg@551 2679 reg_destroyed[r] = false;
kamg@551 2680 }
kamg@551 2681 for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
kamg@551 2682 freg_destroyed[f] = false;
kamg@551 2683 }
kamg@551 2684
kamg@551 2685 #endif /* ASSERT */
kamg@551 2686
kamg@551 2687 VMRegPair zero;
kamg@611 2688 const Register g0 = G0; // without this we get a compiler warning (why??)
kamg@611 2689 zero.set2(g0->as_VMReg());
kamg@551 2690
kamg@551 2691 int c_arg, j_arg;
kamg@551 2692
kamg@551 2693 Register conversion_off = noreg;
kamg@551 2694
kamg@551 2695 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2696 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2697
kamg@551 2698 VMRegPair src = in_regs[j_arg];
kamg@551 2699 VMRegPair dst = out_regs[c_arg];
kamg@551 2700
kamg@551 2701 #ifdef ASSERT
kamg@551 2702 if (src.first()->is_Register()) {
kamg@551 2703 assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
kamg@551 2704 } else if (src.first()->is_FloatRegister()) {
kamg@551 2705 assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
kamg@551 2706 FloatRegisterImpl::S)], "ack!");
kamg@551 2707 }
kamg@551 2708 if (dst.first()->is_Register()) {
kamg@551 2709 reg_destroyed[dst.first()->as_Register()->encoding()] = true;
kamg@551 2710 } else if (dst.first()->is_FloatRegister()) {
kamg@551 2711 freg_destroyed[dst.first()->as_FloatRegister()->encoding(
kamg@551 2712 FloatRegisterImpl::S)] = true;
kamg@551 2713 }
kamg@551 2714 #endif /* ASSERT */
kamg@551 2715
kamg@551 2716 switch (in_sig_bt[j_arg]) {
kamg@551 2717 case T_ARRAY:
kamg@551 2718 case T_OBJECT:
kamg@551 2719 {
kamg@551 2720 if (out_sig_bt[c_arg] == T_BYTE || out_sig_bt[c_arg] == T_SHORT ||
kamg@551 2721 out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 2722 // need to unbox a one-slot value
kamg@551 2723 Register in_reg = L0;
kamg@551 2724 Register tmp = L2;
kamg@551 2725 if ( src.first()->is_reg() ) {
kamg@551 2726 in_reg = src.first()->as_Register();
kamg@551 2727 } else {
kamg@551 2728 assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
kamg@551 2729 "must be");
kamg@551 2730 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
kamg@551 2731 }
kamg@551 2732 // If the final destination is an acceptable register
kamg@551 2733 if ( dst.first()->is_reg() ) {
kamg@551 2734 if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
kamg@551 2735 tmp = dst.first()->as_Register();
kamg@551 2736 }
kamg@551 2737 }
kamg@551 2738
kamg@551 2739 Label skipUnbox;
kamg@551 2740 if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
kamg@551 2741 __ mov(G0, tmp->successor());
kamg@551 2742 }
kamg@551 2743 __ br_null(in_reg, true, Assembler::pn, skipUnbox);
kamg@551 2744 __ delayed()->mov(G0, tmp);
kamg@551 2745
kvn@600 2746 BasicType bt = out_sig_bt[c_arg];
kvn@600 2747 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kvn@600 2748 switch (bt) {
kamg@551 2749 case T_BYTE:
kamg@551 2750 __ ldub(in_reg, box_offset, tmp); break;
kamg@551 2751 case T_SHORT:
kamg@551 2752 __ lduh(in_reg, box_offset, tmp); break;
kamg@551 2753 case T_INT:
kamg@551 2754 __ ld(in_reg, box_offset, tmp); break;
kamg@551 2755 case T_LONG:
kamg@551 2756 __ ld_long(in_reg, box_offset, tmp); break;
kamg@551 2757 default: ShouldNotReachHere();
kamg@551 2758 }
kamg@551 2759
kamg@551 2760 __ bind(skipUnbox);
kamg@551 2761 // If tmp wasn't final destination copy to final destination
kamg@551 2762 if (tmp == L2) {
kamg@551 2763 VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
kamg@551 2764 if (out_sig_bt[c_arg] == T_LONG) {
kamg@551 2765 long_move(masm, tmp_as_VM, dst);
kamg@551 2766 } else {
kamg@551 2767 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
kamg@551 2768 }
kamg@551 2769 }
kamg@551 2770 if (out_sig_bt[c_arg] == T_LONG) {
kamg@551 2771 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2772 ++c_arg; // move over the T_VOID to keep the loop indices in sync
kamg@551 2773 }
kamg@551 2774 } else if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2775 Register s =
kamg@551 2776 src.first()->is_reg() ? src.first()->as_Register() : L2;
kamg@551 2777 Register d =
kamg@551 2778 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
kamg@551 2779
kamg@551 2780 // We store the oop now so that the conversion pass can reach
kamg@551 2781 // while in the inner frame. This will be the only store if
kamg@551 2782 // the oop is NULL.
kamg@551 2783 if (s != L2) {
kamg@551 2784 // src is register
kamg@551 2785 if (d != L2) {
kamg@551 2786 // dst is register
kamg@551 2787 __ mov(s, d);
kamg@551 2788 } else {
kamg@551 2789 assert(Assembler::is_simm13(reg2offset(dst.first()) +
kamg@551 2790 STACK_BIAS), "must be");
kamg@551 2791 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
kamg@551 2792 }
kamg@551 2793 } else {
kamg@551 2794 // src not a register
kamg@551 2795 assert(Assembler::is_simm13(reg2offset(src.first()) +
kamg@551 2796 STACK_BIAS), "must be");
kamg@551 2797 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
kamg@551 2798 if (d == L2) {
kamg@551 2799 assert(Assembler::is_simm13(reg2offset(dst.first()) +
kamg@551 2800 STACK_BIAS), "must be");
kamg@551 2801 __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
kamg@551 2802 }
kamg@551 2803 }
kamg@551 2804 } else if (out_sig_bt[c_arg] != T_VOID) {
kamg@551 2805 // Convert the arg to NULL
kamg@551 2806 if (dst.first()->is_reg()) {
kamg@551 2807 __ mov(G0, dst.first()->as_Register());
kamg@551 2808 } else {
kamg@551 2809 assert(Assembler::is_simm13(reg2offset(dst.first()) +
kamg@551 2810 STACK_BIAS), "must be");
kamg@551 2811 __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
kamg@551 2812 }
kamg@551 2813 }
kamg@551 2814 }
kamg@551 2815 break;
kamg@551 2816 case T_VOID:
kamg@551 2817 break;
kamg@551 2818
kamg@551 2819 case T_FLOAT:
kamg@551 2820 if (src.first()->is_stack()) {
kamg@551 2821 // Stack to stack/reg is simple
kamg@551 2822 move32_64(masm, src, dst);
kamg@551 2823 } else {
kamg@551 2824 if (dst.first()->is_reg()) {
kamg@551 2825 // freg -> reg
kamg@551 2826 int off =
kamg@551 2827 STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
kamg@551 2828 Register d = dst.first()->as_Register();
kamg@551 2829 if (Assembler::is_simm13(off)) {
kamg@551 2830 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
kamg@551 2831 SP, off);
kamg@551 2832 __ ld(SP, off, d);
kamg@551 2833 } else {
kamg@551 2834 if (conversion_off == noreg) {
kamg@551 2835 __ set(off, L6);
kamg@551 2836 conversion_off = L6;
kamg@551 2837 }
kamg@551 2838 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
kamg@551 2839 SP, conversion_off);
kamg@551 2840 __ ld(SP, conversion_off , d);
kamg@551 2841 }
kamg@551 2842 } else {
kamg@551 2843 // freg -> mem
kamg@551 2844 int off = STACK_BIAS + reg2offset(dst.first());
kamg@551 2845 if (Assembler::is_simm13(off)) {
kamg@551 2846 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
kamg@551 2847 SP, off);
kamg@551 2848 } else {
kamg@551 2849 if (conversion_off == noreg) {
kamg@551 2850 __ set(off, L6);
kamg@551 2851 conversion_off = L6;
kamg@551 2852 }
kamg@551 2853 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
kamg@551 2854 SP, conversion_off);
kamg@551 2855 }
kamg@551 2856 }
kamg@551 2857 }
kamg@551 2858 break;
kamg@551 2859
kamg@551 2860 case T_DOUBLE:
kamg@551 2861 assert( j_arg + 1 < total_args_passed &&
kamg@551 2862 in_sig_bt[j_arg + 1] == T_VOID &&
kamg@551 2863 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
kamg@551 2864 if (src.first()->is_stack()) {
kamg@551 2865 // Stack to stack/reg is simple
kamg@551 2866 long_move(masm, src, dst);
kamg@551 2867 } else {
kamg@551 2868 Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
kamg@551 2869
kamg@551 2870 // Destination could be an odd reg on 32bit in which case
kamg@551 2871 // we can't load direct to the destination.
kamg@551 2872
kamg@551 2873 if (!d->is_even() && wordSize == 4) {
kamg@551 2874 d = L2;
kamg@551 2875 }
kamg@551 2876 int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
kamg@551 2877 if (Assembler::is_simm13(off)) {
kamg@551 2878 __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
kamg@551 2879 SP, off);
kamg@551 2880 __ ld_long(SP, off, d);
kamg@551 2881 } else {
kamg@551 2882 if (conversion_off == noreg) {
kamg@551 2883 __ set(off, L6);
kamg@551 2884 conversion_off = L6;
kamg@551 2885 }
kamg@551 2886 __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
kamg@551 2887 SP, conversion_off);
kamg@551 2888 __ ld_long(SP, conversion_off, d);
kamg@551 2889 }
kamg@551 2890 if (d == L2) {
kamg@551 2891 long_move(masm, reg64_to_VMRegPair(L2), dst);
kamg@551 2892 }
kamg@551 2893 }
kamg@551 2894 break;
kamg@551 2895
kamg@551 2896 case T_LONG :
kamg@551 2897 // 32bit can't do a split move of something like g1 -> O0, O1
kamg@551 2898 // so use a memory temp
kamg@551 2899 if (src.is_single_phys_reg() && wordSize == 4) {
kamg@551 2900 Register tmp = L2;
kamg@551 2901 if (dst.first()->is_reg() &&
kamg@551 2902 (wordSize == 8 || dst.first()->as_Register()->is_even())) {
kamg@551 2903 tmp = dst.first()->as_Register();
kamg@551 2904 }
kamg@551 2905
kamg@551 2906 int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
kamg@551 2907 if (Assembler::is_simm13(off)) {
kamg@551 2908 __ stx(src.first()->as_Register(), SP, off);
kamg@551 2909 __ ld_long(SP, off, tmp);
kamg@551 2910 } else {
kamg@551 2911 if (conversion_off == noreg) {
kamg@551 2912 __ set(off, L6);
kamg@551 2913 conversion_off = L6;
kamg@551 2914 }
kamg@551 2915 __ stx(src.first()->as_Register(), SP, conversion_off);
kamg@551 2916 __ ld_long(SP, conversion_off, tmp);
kamg@551 2917 }
kamg@551 2918
kamg@551 2919 if (tmp == L2) {
kamg@551 2920 long_move(masm, reg64_to_VMRegPair(L2), dst);
kamg@551 2921 }
kamg@551 2922 } else {
kamg@551 2923 long_move(masm, src, dst);
kamg@551 2924 }
kamg@551 2925 break;
kamg@551 2926
kamg@551 2927 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
kamg@551 2928
kamg@551 2929 default:
kamg@551 2930 move32_64(masm, src, dst);
kamg@551 2931 }
kamg@551 2932 }
kamg@551 2933
kamg@551 2934
kamg@551 2935 // If we have any strings we must store any register based arg to the stack
kamg@551 2936 // This includes any still live xmm registers too.
kamg@551 2937
kamg@551 2938 if (total_strings > 0 ) {
kamg@551 2939
kamg@551 2940 // protect all the arg registers
kamg@551 2941 __ save_frame(0);
kamg@551 2942 __ mov(G2_thread, L7_thread_cache);
kamg@551 2943 const Register L2_string_off = L2;
kamg@551 2944
kamg@551 2945 // Get first string offset
kamg@551 2946 __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
kamg@551 2947
kamg@551 2948 for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
kamg@551 2949 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2950
kamg@551 2951 VMRegPair dst = out_regs[c_arg];
kamg@551 2952 const Register d = dst.first()->is_reg() ?
kamg@551 2953 dst.first()->as_Register()->after_save() : noreg;
kamg@551 2954
kamg@551 2955 // It's a string the oop and it was already copied to the out arg
kamg@551 2956 // position
kamg@551 2957 if (d != noreg) {
kamg@551 2958 __ mov(d, O0);
kamg@551 2959 } else {
kamg@551 2960 assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
kamg@551 2961 "must be");
kamg@551 2962 __ ld_ptr(FP, reg2offset(dst.first()) + STACK_BIAS, O0);
kamg@551 2963 }
kamg@551 2964 Label skip;
kamg@551 2965
kamg@551 2966 __ br_null(O0, false, Assembler::pn, skip);
kamg@551 2967 __ delayed()->add(FP, L2_string_off, O1);
kamg@551 2968
kamg@551 2969 if (d != noreg) {
kamg@551 2970 __ mov(O1, d);
kamg@551 2971 } else {
kamg@551 2972 assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
kamg@551 2973 "must be");
kamg@551 2974 __ st_ptr(O1, FP, reg2offset(dst.first()) + STACK_BIAS);
kamg@551 2975 }
kamg@551 2976
kamg@551 2977 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
kamg@551 2978 relocInfo::runtime_call_type);
kamg@551 2979 __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
kamg@551 2980
kamg@551 2981 __ bind(skip);
kamg@551 2982
kamg@551 2983 }
kamg@551 2984
kamg@551 2985 }
kamg@551 2986 __ mov(L7_thread_cache, G2_thread);
kamg@551 2987 __ restore();
kamg@551 2988
kamg@551 2989 }
kamg@551 2990
kamg@551 2991
kamg@551 2992 // Ok now we are done. Need to place the nop that dtrace wants in order to
kamg@551 2993 // patch in the trap
kamg@551 2994
kamg@551 2995 int patch_offset = ((intptr_t)__ pc()) - start;
kamg@551 2996
kamg@551 2997 __ nop();
kamg@551 2998
kamg@551 2999
kamg@551 3000 // Return
kamg@551 3001
kamg@551 3002 __ ret();
kamg@551 3003 __ delayed()->restore();
kamg@551 3004
kamg@551 3005 __ flush();
kamg@551 3006
kamg@551 3007 nmethod *nm = nmethod::new_dtrace_nmethod(
kamg@551 3008 method, masm->code(), vep_offset, patch_offset, frame_complete,
kamg@551 3009 stack_slots / VMRegImpl::slots_per_word);
kamg@551 3010 return nm;
kamg@551 3011
kamg@551 3012 }
kamg@551 3013
kamg@551 3014 #endif // HAVE_DTRACE_H
kamg@551 3015
duke@435 3016 // this function returns the adjust size (in number of words) to a c2i adapter
duke@435 3017 // activation for use during deoptimization
duke@435 3018 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
duke@435 3019 assert(callee_locals >= callee_parameters,
duke@435 3020 "test and remove; got more parms than locals");
duke@435 3021 if (callee_locals < callee_parameters)
duke@435 3022 return 0; // No adjustment for negative locals
twisti@1861 3023 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
duke@435 3024 return round_to(diff, WordsPerLong);
duke@435 3025 }
duke@435 3026
duke@435 3027 // "Top of Stack" slots that may be unused by the calling convention but must
duke@435 3028 // otherwise be preserved.
duke@435 3029 // On Intel these are not necessary and the value can be zero.
duke@435 3030 // On Sparc this describes the words reserved for storing a register window
duke@435 3031 // when an interrupt occurs.
duke@435 3032 uint SharedRuntime::out_preserve_stack_slots() {
duke@435 3033 return frame::register_save_words * VMRegImpl::slots_per_word;
duke@435 3034 }
duke@435 3035
duke@435 3036 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
duke@435 3037 //
duke@435 3038 // Common out the new frame generation for deopt and uncommon trap
duke@435 3039 //
duke@435 3040 Register G3pcs = G3_scratch; // Array of new pcs (input)
duke@435 3041 Register Oreturn0 = O0;
duke@435 3042 Register Oreturn1 = O1;
duke@435 3043 Register O2UnrollBlock = O2;
duke@435 3044 Register O3array = O3; // Array of frame sizes (input)
duke@435 3045 Register O4array_size = O4; // number of frames (input)
duke@435 3046 Register O7frame_size = O7; // number of frames (input)
duke@435 3047
duke@435 3048 __ ld_ptr(O3array, 0, O7frame_size);
duke@435 3049 __ sub(G0, O7frame_size, O7frame_size);
duke@435 3050 __ save(SP, O7frame_size, SP);
duke@435 3051 __ ld_ptr(G3pcs, 0, I7); // load frame's new pc
duke@435 3052
duke@435 3053 #ifdef ASSERT
duke@435 3054 // make sure that the frames are aligned properly
duke@435 3055 #ifndef _LP64
duke@435 3056 __ btst(wordSize*2-1, SP);
duke@435 3057 __ breakpoint_trap(Assembler::notZero);
duke@435 3058 #endif
duke@435 3059 #endif
duke@435 3060
duke@435 3061 // Deopt needs to pass some extra live values from frame to frame
duke@435 3062
duke@435 3063 if (deopt) {
duke@435 3064 __ mov(Oreturn0->after_save(), Oreturn0);
duke@435 3065 __ mov(Oreturn1->after_save(), Oreturn1);
duke@435 3066 }
duke@435 3067
duke@435 3068 __ mov(O4array_size->after_save(), O4array_size);
duke@435 3069 __ sub(O4array_size, 1, O4array_size);
duke@435 3070 __ mov(O3array->after_save(), O3array);
duke@435 3071 __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
duke@435 3072 __ add(G3pcs, wordSize, G3pcs); // point to next pc value
duke@435 3073
duke@435 3074 #ifdef ASSERT
duke@435 3075 // trash registers to show a clear pattern in backtraces
duke@435 3076 __ set(0xDEAD0000, I0);
duke@435 3077 __ add(I0, 2, I1);
duke@435 3078 __ add(I0, 4, I2);
duke@435 3079 __ add(I0, 6, I3);
duke@435 3080 __ add(I0, 8, I4);
duke@435 3081 // Don't touch I5 could have valuable savedSP
duke@435 3082 __ set(0xDEADBEEF, L0);
duke@435 3083 __ mov(L0, L1);
duke@435 3084 __ mov(L0, L2);
duke@435 3085 __ mov(L0, L3);
duke@435 3086 __ mov(L0, L4);
duke@435 3087 __ mov(L0, L5);
duke@435 3088
duke@435 3089 // trash the return value as there is nothing to return yet
duke@435 3090 __ set(0xDEAD0001, O7);
duke@435 3091 #endif
duke@435 3092
duke@435 3093 __ mov(SP, O5_savedSP);
duke@435 3094 }
duke@435 3095
duke@435 3096
duke@435 3097 static void make_new_frames(MacroAssembler* masm, bool deopt) {
duke@435 3098 //
duke@435 3099 // loop through the UnrollBlock info and create new frames
duke@435 3100 //
duke@435 3101 Register G3pcs = G3_scratch;
duke@435 3102 Register Oreturn0 = O0;
duke@435 3103 Register Oreturn1 = O1;
duke@435 3104 Register O2UnrollBlock = O2;
duke@435 3105 Register O3array = O3;
duke@435 3106 Register O4array_size = O4;
duke@435 3107 Label loop;
duke@435 3108
duke@435 3109 // Before we make new frames, check to see if stack is available.
duke@435 3110 // Do this after the caller's return address is on top of stack
duke@435 3111 if (UseStackBanging) {
duke@435 3112 // Get total frame size for interpreted frames
twisti@1162 3113 __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
duke@435 3114 __ bang_stack_size(O4, O3, G3_scratch);
duke@435 3115 }
duke@435 3116
twisti@1162 3117 __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
twisti@1162 3118 __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
twisti@1162 3119 __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
duke@435 3120
duke@435 3121 // Adjust old interpreter frame to make space for new frame's extra java locals
duke@435 3122 //
duke@435 3123 // We capture the original sp for the transition frame only because it is needed in
duke@435 3124 // order to properly calculate interpreter_sp_adjustment. Even though in real life
duke@435 3125 // every interpreter frame captures a savedSP it is only needed at the transition
duke@435 3126 // (fortunately). If we had to have it correct everywhere then we would need to
duke@435 3127 // be told the sp_adjustment for each frame we create. If the frame size array
duke@435 3128 // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
duke@435 3129 // for each frame we create and keep up the illusion every where.
duke@435 3130 //
duke@435 3131
twisti@1162 3132 __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
duke@435 3133 __ mov(SP, O5_savedSP); // remember initial sender's original sp before adjustment
duke@435 3134 __ sub(SP, O7, SP);
duke@435 3135
duke@435 3136 #ifdef ASSERT
duke@435 3137 // make sure that there is at least one entry in the array
duke@435 3138 __ tst(O4array_size);
duke@435 3139 __ breakpoint_trap(Assembler::zero);
duke@435 3140 #endif
duke@435 3141
duke@435 3142 // Now push the new interpreter frames
duke@435 3143 __ bind(loop);
duke@435 3144
duke@435 3145 // allocate a new frame, filling the registers
duke@435 3146
duke@435 3147 gen_new_frame(masm, deopt); // allocate an interpreter frame
duke@435 3148
duke@435 3149 __ tst(O4array_size);
duke@435 3150 __ br(Assembler::notZero, false, Assembler::pn, loop);
duke@435 3151 __ delayed()->add(O3array, wordSize, O3array);
duke@435 3152 __ ld_ptr(G3pcs, 0, O7); // load final frame new pc
duke@435 3153
duke@435 3154 }
duke@435 3155
duke@435 3156 //------------------------------generate_deopt_blob----------------------------
duke@435 3157 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
duke@435 3158 // instead.
duke@435 3159 void SharedRuntime::generate_deopt_blob() {
duke@435 3160 // allocate space for the code
duke@435 3161 ResourceMark rm;
duke@435 3162 // setup code generation tools
duke@435 3163 int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
duke@435 3164 #ifdef _LP64
duke@435 3165 CodeBuffer buffer("deopt_blob", 2100+pad, 512);
duke@435 3166 #else
duke@435 3167 // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
duke@435 3168 // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
duke@435 3169 CodeBuffer buffer("deopt_blob", 1600+pad, 512);
duke@435 3170 #endif /* _LP64 */
duke@435 3171 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3172 FloatRegister Freturn0 = F0;
duke@435 3173 Register Greturn1 = G1;
duke@435 3174 Register Oreturn0 = O0;
duke@435 3175 Register Oreturn1 = O1;
duke@435 3176 Register O2UnrollBlock = O2;
never@1472 3177 Register L0deopt_mode = L0;
never@1472 3178 Register G4deopt_mode = G4_scratch;
duke@435 3179 int frame_size_words;
twisti@1162 3180 Address saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
duke@435 3181 #if !defined(_LP64) && defined(COMPILER2)
twisti@1162 3182 Address saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
duke@435 3183 #endif
duke@435 3184 Label cont;
duke@435 3185
duke@435 3186 OopMapSet *oop_maps = new OopMapSet();
duke@435 3187
duke@435 3188 //
duke@435 3189 // This is the entry point for code which is returning to a de-optimized
duke@435 3190 // frame.
duke@435 3191 // The steps taken by this frame are as follows:
duke@435 3192 // - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
duke@435 3193 // and all potentially live registers (at a pollpoint many registers can be live).
duke@435 3194 //
duke@435 3195 // - call the C routine: Deoptimization::fetch_unroll_info (this function
duke@435 3196 // returns information about the number and size of interpreter frames
duke@435 3197 // which are equivalent to the frame which is being deoptimized)
duke@435 3198 // - deallocate the unpack frame, restoring only results values. Other
duke@435 3199 // volatile registers will now be captured in the vframeArray as needed.
duke@435 3200 // - deallocate the deoptimization frame
duke@435 3201 // - in a loop using the information returned in the previous step
duke@435 3202 // push new interpreter frames (take care to propagate the return
duke@435 3203 // values through each new frame pushed)
duke@435 3204 // - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
duke@435 3205 // - call the C routine: Deoptimization::unpack_frames (this function
duke@435 3206 // lays out values on the interpreter frame which was just created)
duke@435 3207 // - deallocate the dummy unpack_frame
duke@435 3208 // - ensure that all the return values are correctly set and then do
duke@435 3209 // a return to the interpreter entry point
duke@435 3210 //
duke@435 3211 // Refer to the following methods for more information:
duke@435 3212 // - Deoptimization::fetch_unroll_info
duke@435 3213 // - Deoptimization::unpack_frames
duke@435 3214
duke@435 3215 OopMap* map = NULL;
duke@435 3216
duke@435 3217 int start = __ offset();
duke@435 3218
duke@435 3219 // restore G2, the trampoline destroyed it
duke@435 3220 __ get_thread();
duke@435 3221
duke@435 3222 // On entry we have been called by the deoptimized nmethod with a call that
duke@435 3223 // replaced the original call (or safepoint polling location) so the deoptimizing
duke@435 3224 // pc is now in O7. Return values are still in the expected places
duke@435 3225
duke@435 3226 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
duke@435 3227 __ ba(false, cont);
never@1472 3228 __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
duke@435 3229
duke@435 3230 int exception_offset = __ offset() - start;
duke@435 3231
duke@435 3232 // restore G2, the trampoline destroyed it
duke@435 3233 __ get_thread();
duke@435 3234
duke@435 3235 // On entry we have been jumped to by the exception handler (or exception_blob
duke@435 3236 // for server). O0 contains the exception oop and O7 contains the original
duke@435 3237 // exception pc. So if we push a frame here it will look to the
duke@435 3238 // stack walking code (fetch_unroll_info) just like a normal call so
duke@435 3239 // state will be extracted normally.
duke@435 3240
duke@435 3241 // save exception oop in JavaThread and fall through into the
duke@435 3242 // exception_in_tls case since they are handled in same way except
duke@435 3243 // for where the pending exception is kept.
twisti@1162 3244 __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
duke@435 3245
duke@435 3246 //
duke@435 3247 // Vanilla deoptimization with an exception pending in exception_oop
duke@435 3248 //
duke@435 3249 int exception_in_tls_offset = __ offset() - start;
duke@435 3250
duke@435 3251 // No need to update oop_map as each call to save_live_registers will produce identical oopmap
duke@435 3252 (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
duke@435 3253
duke@435 3254 // Restore G2_thread
duke@435 3255 __ get_thread();
duke@435 3256
duke@435 3257 #ifdef ASSERT
duke@435 3258 {
duke@435 3259 // verify that there is really an exception oop in exception_oop
duke@435 3260 Label has_exception;
twisti@1162 3261 __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
duke@435 3262 __ br_notnull(Oexception, false, Assembler::pt, has_exception);
duke@435 3263 __ delayed()-> nop();
duke@435 3264 __ stop("no exception in thread");
duke@435 3265 __ bind(has_exception);
duke@435 3266
duke@435 3267 // verify that there is no pending exception
duke@435 3268 Label no_pending_exception;
twisti@1162 3269 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 3270 __ ld_ptr(exception_addr, Oexception);
duke@435 3271 __ br_null(Oexception, false, Assembler::pt, no_pending_exception);
duke@435 3272 __ delayed()->nop();
duke@435 3273 __ stop("must not have pending exception here");
duke@435 3274 __ bind(no_pending_exception);
duke@435 3275 }
duke@435 3276 #endif
duke@435 3277
duke@435 3278 __ ba(false, cont);
never@1472 3279 __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
duke@435 3280
duke@435 3281 //
duke@435 3282 // Reexecute entry, similar to c2 uncommon trap
duke@435 3283 //
duke@435 3284 int reexecute_offset = __ offset() - start;
duke@435 3285
duke@435 3286 // No need to update oop_map as each call to save_live_registers will produce identical oopmap
duke@435 3287 (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
duke@435 3288
never@1472 3289 __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
duke@435 3290
duke@435 3291 __ bind(cont);
duke@435 3292
duke@435 3293 __ set_last_Java_frame(SP, noreg);
duke@435 3294
duke@435 3295 // do the call by hand so we can get the oopmap
duke@435 3296
duke@435 3297 __ mov(G2_thread, L7_thread_cache);
duke@435 3298 __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
duke@435 3299 __ delayed()->mov(G2_thread, O0);
duke@435 3300
duke@435 3301 // Set an oopmap for the call site this describes all our saved volatile registers
duke@435 3302
duke@435 3303 oop_maps->add_gc_map( __ offset()-start, map);
duke@435 3304
duke@435 3305 __ mov(L7_thread_cache, G2_thread);
duke@435 3306
duke@435 3307 __ reset_last_Java_frame();
duke@435 3308
duke@435 3309 // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
duke@435 3310 // so this move will survive
duke@435 3311
never@1472 3312 __ mov(L0deopt_mode, G4deopt_mode);
duke@435 3313
duke@435 3314 __ mov(O0, O2UnrollBlock->after_save());
duke@435 3315
duke@435 3316 RegisterSaver::restore_result_registers(masm);
duke@435 3317
duke@435 3318 Label noException;
never@1472 3319 __ cmp(G4deopt_mode, Deoptimization::Unpack_exception); // Was exception pending?
duke@435 3320 __ br(Assembler::notEqual, false, Assembler::pt, noException);
duke@435 3321 __ delayed()->nop();
duke@435 3322
duke@435 3323 // Move the pending exception from exception_oop to Oexception so
duke@435 3324 // the pending exception will be picked up the interpreter.
duke@435 3325 __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
duke@435 3326 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
duke@435 3327 __ bind(noException);
duke@435 3328
duke@435 3329 // deallocate the deoptimization frame taking care to preserve the return values
duke@435 3330 __ mov(Oreturn0, Oreturn0->after_save());
duke@435 3331 __ mov(Oreturn1, Oreturn1->after_save());
duke@435 3332 __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
duke@435 3333 __ restore();
duke@435 3334
duke@435 3335 // Allocate new interpreter frame(s) and possible c2i adapter frame
duke@435 3336
duke@435 3337 make_new_frames(masm, true);
duke@435 3338
duke@435 3339 // push a dummy "unpack_frame" taking care of float return values and
duke@435 3340 // call Deoptimization::unpack_frames to have the unpacker layout
duke@435 3341 // information in the interpreter frames just created and then return
duke@435 3342 // to the interpreter entry point
duke@435 3343 __ save(SP, -frame_size_words*wordSize, SP);
duke@435 3344 __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
duke@435 3345 #if !defined(_LP64)
duke@435 3346 #if defined(COMPILER2)
duke@435 3347 if (!TieredCompilation) {
duke@435 3348 // 32-bit 1-register longs return longs in G1
duke@435 3349 __ stx(Greturn1, saved_Greturn1_addr);
duke@435 3350 }
duke@435 3351 #endif
duke@435 3352 __ set_last_Java_frame(SP, noreg);
never@1472 3353 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
duke@435 3354 #else
duke@435 3355 // LP64 uses g4 in set_last_Java_frame
never@1472 3356 __ mov(G4deopt_mode, O1);
duke@435 3357 __ set_last_Java_frame(SP, G0);
duke@435 3358 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
duke@435 3359 #endif
duke@435 3360 __ reset_last_Java_frame();
duke@435 3361 __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
duke@435 3362
duke@435 3363 // In tiered we never use C2 to compile methods returning longs so
duke@435 3364 // the result is where we expect it already.
duke@435 3365
duke@435 3366 #if !defined(_LP64) && defined(COMPILER2)
duke@435 3367 // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
duke@435 3368 // I0/I1 if the return value is long. In the tiered world there is
duke@435 3369 // a mismatch between how C1 and C2 return longs compiles and so
duke@435 3370 // currently compilation of methods which return longs is disabled
duke@435 3371 // for C2 and so is this code. Eventually C1 and C2 will do the
duke@435 3372 // same thing for longs in the tiered world.
duke@435 3373 if (!TieredCompilation) {
duke@435 3374 Label not_long;
duke@435 3375 __ cmp(O0,T_LONG);
duke@435 3376 __ br(Assembler::notEqual, false, Assembler::pt, not_long);
duke@435 3377 __ delayed()->nop();
duke@435 3378 __ ldd(saved_Greturn1_addr,I0);
duke@435 3379 __ bind(not_long);
duke@435 3380 }
duke@435 3381 #endif
duke@435 3382 __ ret();
duke@435 3383 __ delayed()->restore();
duke@435 3384
duke@435 3385 masm->flush();
duke@435 3386 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
duke@435 3387 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
duke@435 3388 }
duke@435 3389
duke@435 3390 #ifdef COMPILER2
duke@435 3391
duke@435 3392 //------------------------------generate_uncommon_trap_blob--------------------
duke@435 3393 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
duke@435 3394 // instead.
duke@435 3395 void SharedRuntime::generate_uncommon_trap_blob() {
duke@435 3396 // allocate space for the code
duke@435 3397 ResourceMark rm;
duke@435 3398 // setup code generation tools
duke@435 3399 int pad = VerifyThread ? 512 : 0;
duke@435 3400 #ifdef _LP64
duke@435 3401 CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
duke@435 3402 #else
duke@435 3403 // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
duke@435 3404 // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
duke@435 3405 CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
duke@435 3406 #endif
duke@435 3407 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3408 Register O2UnrollBlock = O2;
duke@435 3409 Register O2klass_index = O2;
duke@435 3410
duke@435 3411 //
duke@435 3412 // This is the entry point for all traps the compiler takes when it thinks
duke@435 3413 // it cannot handle further execution of compilation code. The frame is
duke@435 3414 // deoptimized in these cases and converted into interpreter frames for
duke@435 3415 // execution
duke@435 3416 // The steps taken by this frame are as follows:
duke@435 3417 // - push a fake "unpack_frame"
duke@435 3418 // - call the C routine Deoptimization::uncommon_trap (this function
duke@435 3419 // packs the current compiled frame into vframe arrays and returns
duke@435 3420 // information about the number and size of interpreter frames which
duke@435 3421 // are equivalent to the frame which is being deoptimized)
duke@435 3422 // - deallocate the "unpack_frame"
duke@435 3423 // - deallocate the deoptimization frame
duke@435 3424 // - in a loop using the information returned in the previous step
duke@435 3425 // push interpreter frames;
duke@435 3426 // - create a dummy "unpack_frame"
duke@435 3427 // - call the C routine: Deoptimization::unpack_frames (this function
duke@435 3428 // lays out values on the interpreter frame which was just created)
duke@435 3429 // - deallocate the dummy unpack_frame
duke@435 3430 // - return to the interpreter entry point
duke@435 3431 //
duke@435 3432 // Refer to the following methods for more information:
duke@435 3433 // - Deoptimization::uncommon_trap
duke@435 3434 // - Deoptimization::unpack_frame
duke@435 3435
duke@435 3436 // the unloaded class index is in O0 (first parameter to this blob)
duke@435 3437
duke@435 3438 // push a dummy "unpack_frame"
duke@435 3439 // and call Deoptimization::uncommon_trap to pack the compiled frame into
duke@435 3440 // vframe array and return the UnrollBlock information
duke@435 3441 __ save_frame(0);
duke@435 3442 __ set_last_Java_frame(SP, noreg);
duke@435 3443 __ mov(I0, O2klass_index);
duke@435 3444 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
duke@435 3445 __ reset_last_Java_frame();
duke@435 3446 __ mov(O0, O2UnrollBlock->after_save());
duke@435 3447 __ restore();
duke@435 3448
duke@435 3449 // deallocate the deoptimized frame taking care to preserve the return values
duke@435 3450 __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
duke@435 3451 __ restore();
duke@435 3452
duke@435 3453 // Allocate new interpreter frame(s) and possible c2i adapter frame
duke@435 3454
duke@435 3455 make_new_frames(masm, false);
duke@435 3456
duke@435 3457 // push a dummy "unpack_frame" taking care of float return values and
duke@435 3458 // call Deoptimization::unpack_frames to have the unpacker layout
duke@435 3459 // information in the interpreter frames just created and then return
duke@435 3460 // to the interpreter entry point
duke@435 3461 __ save_frame(0);
duke@435 3462 __ set_last_Java_frame(SP, noreg);
duke@435 3463 __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
duke@435 3464 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
duke@435 3465 __ reset_last_Java_frame();
duke@435 3466 __ ret();
duke@435 3467 __ delayed()->restore();
duke@435 3468
duke@435 3469 masm->flush();
duke@435 3470 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
duke@435 3471 }
duke@435 3472
duke@435 3473 #endif // COMPILER2
duke@435 3474
duke@435 3475 //------------------------------generate_handler_blob-------------------
duke@435 3476 //
duke@435 3477 // Generate a special Compile2Runtime blob that saves all registers, and sets
duke@435 3478 // up an OopMap.
duke@435 3479 //
duke@435 3480 // This blob is jumped to (via a breakpoint and the signal handler) from a
duke@435 3481 // safepoint in compiled code. On entry to this blob, O7 contains the
duke@435 3482 // address in the original nmethod at which we should resume normal execution.
duke@435 3483 // Thus, this blob looks like a subroutine which must preserve lots of
duke@435 3484 // registers and return normally. Note that O7 is never register-allocated,
duke@435 3485 // so it is guaranteed to be free here.
duke@435 3486 //
duke@435 3487
duke@435 3488 // The hardest part of what this blob must do is to save the 64-bit %o
duke@435 3489 // registers in the 32-bit build. A simple 'save' turn the %o's to %i's and
duke@435 3490 // an interrupt will chop off their heads. Making space in the caller's frame
duke@435 3491 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
duke@435 3492 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
duke@435 3493 // SP and mess up HIS OopMaps. So we first adjust the caller's SP, then save
duke@435 3494 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
duke@435 3495 // Tricky, tricky, tricky...
duke@435 3496
duke@435 3497 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
duke@435 3498 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 3499
duke@435 3500 // allocate space for the code
duke@435 3501 ResourceMark rm;
duke@435 3502 // setup code generation tools
duke@435 3503 // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
duke@435 3504 // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
duke@435 3505 // even larger with TraceJumps
duke@435 3506 int pad = TraceJumps ? 512 : 0;
duke@435 3507 CodeBuffer buffer("handler_blob", 1600 + pad, 512);
duke@435 3508 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3509 int frame_size_words;
duke@435 3510 OopMapSet *oop_maps = new OopMapSet();
duke@435 3511 OopMap* map = NULL;
duke@435 3512
duke@435 3513 int start = __ offset();
duke@435 3514
duke@435 3515 // If this causes a return before the processing, then do a "restore"
duke@435 3516 if (cause_return) {
duke@435 3517 __ restore();
duke@435 3518 } else {
duke@435 3519 // Make it look like we were called via the poll
duke@435 3520 // so that frame constructor always sees a valid return address
duke@435 3521 __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
duke@435 3522 __ sub(O7, frame::pc_return_offset, O7);
duke@435 3523 }
duke@435 3524
duke@435 3525 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
duke@435 3526
duke@435 3527 // setup last_Java_sp (blows G4)
duke@435 3528 __ set_last_Java_frame(SP, noreg);
duke@435 3529
duke@435 3530 // call into the runtime to handle illegal instructions exception
duke@435 3531 // Do not use call_VM_leaf, because we need to make a GC map at this call site.
duke@435 3532 __ mov(G2_thread, O0);
duke@435 3533 __ save_thread(L7_thread_cache);
duke@435 3534 __ call(call_ptr);
duke@435 3535 __ delayed()->nop();
duke@435 3536
duke@435 3537 // Set an oopmap for the call site.
duke@435 3538 // We need this not only for callee-saved registers, but also for volatile
duke@435 3539 // registers that the compiler might be keeping live across a safepoint.
duke@435 3540
duke@435 3541 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 3542
duke@435 3543 __ restore_thread(L7_thread_cache);
duke@435 3544 // clear last_Java_sp
duke@435 3545 __ reset_last_Java_frame();
duke@435 3546
duke@435 3547 // Check for exceptions
duke@435 3548 Label pending;
duke@435 3549
duke@435 3550 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
duke@435 3551 __ tst(O1);
duke@435 3552 __ brx(Assembler::notEqual, true, Assembler::pn, pending);
duke@435 3553 __ delayed()->nop();
duke@435 3554
duke@435 3555 RegisterSaver::restore_live_registers(masm);
duke@435 3556
duke@435 3557 // We are back the the original state on entry and ready to go.
duke@435 3558
duke@435 3559 __ retl();
duke@435 3560 __ delayed()->nop();
duke@435 3561
duke@435 3562 // Pending exception after the safepoint
duke@435 3563
duke@435 3564 __ bind(pending);
duke@435 3565
duke@435 3566 RegisterSaver::restore_live_registers(masm);
duke@435 3567
duke@435 3568 // We are back the the original state on entry.
duke@435 3569
duke@435 3570 // Tail-call forward_exception_entry, with the issuing PC in O7,
duke@435 3571 // so it looks like the original nmethod called forward_exception_entry.
duke@435 3572 __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
duke@435 3573 __ JMP(O0, 0);
duke@435 3574 __ delayed()->nop();
duke@435 3575
duke@435 3576 // -------------
duke@435 3577 // make sure all code is generated
duke@435 3578 masm->flush();
duke@435 3579
duke@435 3580 // return exception blob
duke@435 3581 return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
duke@435 3582 }
duke@435 3583
duke@435 3584 //
duke@435 3585 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
duke@435 3586 //
duke@435 3587 // Generate a stub that calls into vm to find out the proper destination
duke@435 3588 // of a java call. All the argument registers are live at this point
duke@435 3589 // but since this is generic code we don't know what they are and the caller
duke@435 3590 // must do any gc of the args.
duke@435 3591 //
duke@435 3592 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
duke@435 3593 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 3594
duke@435 3595 // allocate space for the code
duke@435 3596 ResourceMark rm;
duke@435 3597 // setup code generation tools
duke@435 3598 // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
duke@435 3599 // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
duke@435 3600 // even larger with TraceJumps
duke@435 3601 int pad = TraceJumps ? 512 : 0;
duke@435 3602 CodeBuffer buffer(name, 1600 + pad, 512);
duke@435 3603 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3604 int frame_size_words;
duke@435 3605 OopMapSet *oop_maps = new OopMapSet();
duke@435 3606 OopMap* map = NULL;
duke@435 3607
duke@435 3608 int start = __ offset();
duke@435 3609
duke@435 3610 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
duke@435 3611
duke@435 3612 int frame_complete = __ offset();
duke@435 3613
duke@435 3614 // setup last_Java_sp (blows G4)
duke@435 3615 __ set_last_Java_frame(SP, noreg);
duke@435 3616
duke@435 3617 // call into the runtime to handle illegal instructions exception
duke@435 3618 // Do not use call_VM_leaf, because we need to make a GC map at this call site.
duke@435 3619 __ mov(G2_thread, O0);
duke@435 3620 __ save_thread(L7_thread_cache);
duke@435 3621 __ call(destination, relocInfo::runtime_call_type);
duke@435 3622 __ delayed()->nop();
duke@435 3623
duke@435 3624 // O0 contains the address we are going to jump to assuming no exception got installed
duke@435 3625
duke@435 3626 // Set an oopmap for the call site.
duke@435 3627 // We need this not only for callee-saved registers, but also for volatile
duke@435 3628 // registers that the compiler might be keeping live across a safepoint.
duke@435 3629
duke@435 3630 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 3631
duke@435 3632 __ restore_thread(L7_thread_cache);
duke@435 3633 // clear last_Java_sp
duke@435 3634 __ reset_last_Java_frame();
duke@435 3635
duke@435 3636 // Check for exceptions
duke@435 3637 Label pending;
duke@435 3638
duke@435 3639 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
duke@435 3640 __ tst(O1);
duke@435 3641 __ brx(Assembler::notEqual, true, Assembler::pn, pending);
duke@435 3642 __ delayed()->nop();
duke@435 3643
duke@435 3644 // get the returned methodOop
duke@435 3645
duke@435 3646 __ get_vm_result(G5_method);
duke@435 3647 __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
duke@435 3648
duke@435 3649 // O0 is where we want to jump, overwrite G3 which is saved and scratch
duke@435 3650
duke@435 3651 __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
duke@435 3652
duke@435 3653 RegisterSaver::restore_live_registers(masm);
duke@435 3654
duke@435 3655 // We are back the the original state on entry and ready to go.
duke@435 3656
duke@435 3657 __ JMP(G3, 0);
duke@435 3658 __ delayed()->nop();
duke@435 3659
duke@435 3660 // Pending exception after the safepoint
duke@435 3661
duke@435 3662 __ bind(pending);
duke@435 3663
duke@435 3664 RegisterSaver::restore_live_registers(masm);
duke@435 3665
duke@435 3666 // We are back the the original state on entry.
duke@435 3667
duke@435 3668 // Tail-call forward_exception_entry, with the issuing PC in O7,
duke@435 3669 // so it looks like the original nmethod called forward_exception_entry.
duke@435 3670 __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
duke@435 3671 __ JMP(O0, 0);
duke@435 3672 __ delayed()->nop();
duke@435 3673
duke@435 3674 // -------------
duke@435 3675 // make sure all code is generated
duke@435 3676 masm->flush();
duke@435 3677
duke@435 3678 // return the blob
duke@435 3679 // frame_size_words or bytes??
duke@435 3680 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
duke@435 3681 }
duke@435 3682
duke@435 3683 void SharedRuntime::generate_stubs() {
duke@435 3684
duke@435 3685 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
duke@435 3686 "wrong_method_stub");
duke@435 3687
duke@435 3688 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
duke@435 3689 "ic_miss_stub");
duke@435 3690
duke@435 3691 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
duke@435 3692 "resolve_opt_virtual_call");
duke@435 3693
duke@435 3694 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
duke@435 3695 "resolve_virtual_call");
duke@435 3696
duke@435 3697 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
duke@435 3698 "resolve_static_call");
duke@435 3699
duke@435 3700 _polling_page_safepoint_handler_blob =
duke@435 3701 generate_handler_blob(CAST_FROM_FN_PTR(address,
duke@435 3702 SafepointSynchronize::handle_polling_page_exception), false);
duke@435 3703
duke@435 3704 _polling_page_return_handler_blob =
duke@435 3705 generate_handler_blob(CAST_FROM_FN_PTR(address,
duke@435 3706 SafepointSynchronize::handle_polling_page_exception), true);
duke@435 3707
duke@435 3708 generate_deopt_blob();
duke@435 3709
duke@435 3710 #ifdef COMPILER2
duke@435 3711 generate_uncommon_trap_blob();
duke@435 3712 #endif // COMPILER2
duke@435 3713 }

mercurial