src/share/vm/opto/type.hpp

changeset 435
a61af66fc99e
child 452
ff5961f4c095
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/opto/type.hpp	Sat Dec 01 00:00:00 2007 +0000
     1.3 @@ -0,0 +1,1124 @@
     1.4 +/*
     1.5 + * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    1.23 + * CA 95054 USA or visit www.sun.com if you need additional information or
    1.24 + * have any questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +// Portions of code courtesy of Clifford Click
    1.29 +
    1.30 +// Optimization - Graph Style
    1.31 +
    1.32 +
    1.33 +// This class defines a Type lattice.  The lattice is used in the constant
    1.34 +// propagation algorithms, and for some type-checking of the iloc code.
    1.35 +// Basic types include RSD's (lower bound, upper bound, stride for integers),
    1.36 +// float & double precision constants, sets of data-labels and code-labels.
    1.37 +// The complete lattice is described below.  Subtypes have no relationship to
    1.38 +// up or down in the lattice; that is entirely determined by the behavior of
    1.39 +// the MEET/JOIN functions.
    1.40 +
    1.41 +class Dict;
    1.42 +class Type;
    1.43 +class   TypeD;
    1.44 +class   TypeF;
    1.45 +class   TypeInt;
    1.46 +class   TypeLong;
    1.47 +class   TypeAry;
    1.48 +class   TypeTuple;
    1.49 +class   TypePtr;
    1.50 +class     TypeRawPtr;
    1.51 +class     TypeOopPtr;
    1.52 +class       TypeInstPtr;
    1.53 +class       TypeAryPtr;
    1.54 +class       TypeKlassPtr;
    1.55 +
    1.56 +//------------------------------Type-------------------------------------------
    1.57 +// Basic Type object, represents a set of primitive Values.
    1.58 +// Types are hash-cons'd into a private class dictionary, so only one of each
    1.59 +// different kind of Type exists.  Types are never modified after creation, so
    1.60 +// all their interesting fields are constant.
    1.61 +class Type {
    1.62 +public:
    1.63 +  enum TYPES {
    1.64 +    Bad=0,                      // Type check
    1.65 +    Control,                    // Control of code (not in lattice)
    1.66 +    Top,                        // Top of the lattice
    1.67 +    Int,                        // Integer range (lo-hi)
    1.68 +    Long,                       // Long integer range (lo-hi)
    1.69 +    Half,                       // Placeholder half of doubleword
    1.70 +
    1.71 +    Tuple,                      // Method signature or object layout
    1.72 +    Array,                      // Array types
    1.73 +
    1.74 +    AnyPtr,                     // Any old raw, klass, inst, or array pointer
    1.75 +    RawPtr,                     // Raw (non-oop) pointers
    1.76 +    OopPtr,                     // Any and all Java heap entities
    1.77 +    InstPtr,                    // Instance pointers (non-array objects)
    1.78 +    AryPtr,                     // Array pointers
    1.79 +    KlassPtr,                   // Klass pointers
    1.80 +    // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
    1.81 +
    1.82 +    Function,                   // Function signature
    1.83 +    Abio,                       // Abstract I/O
    1.84 +    Return_Address,             // Subroutine return address
    1.85 +    Memory,                     // Abstract store
    1.86 +    FloatTop,                   // No float value
    1.87 +    FloatCon,                   // Floating point constant
    1.88 +    FloatBot,                   // Any float value
    1.89 +    DoubleTop,                  // No double value
    1.90 +    DoubleCon,                  // Double precision constant
    1.91 +    DoubleBot,                  // Any double value
    1.92 +    Bottom,                     // Bottom of lattice
    1.93 +    lastype                     // Bogus ending type (not in lattice)
    1.94 +  };
    1.95 +
    1.96 +  // Signal values for offsets from a base pointer
    1.97 +  enum OFFSET_SIGNALS {
    1.98 +    OffsetTop = -2000000000,    // undefined offset
    1.99 +    OffsetBot = -2000000001     // any possible offset
   1.100 +  };
   1.101 +
   1.102 +  // Min and max WIDEN values.
   1.103 +  enum WIDEN {
   1.104 +    WidenMin = 0,
   1.105 +    WidenMax = 3
   1.106 +  };
   1.107 +
   1.108 +private:
   1.109 +  // Dictionary of types shared among compilations.
   1.110 +  static Dict* _shared_type_dict;
   1.111 +
   1.112 +  static int uhash( const Type *const t );
   1.113 +  // Structural equality check.  Assumes that cmp() has already compared
   1.114 +  // the _base types and thus knows it can cast 't' appropriately.
   1.115 +  virtual bool eq( const Type *t ) const;
   1.116 +
   1.117 +  // Top-level hash-table of types
   1.118 +  static Dict *type_dict() {
   1.119 +    return Compile::current()->type_dict();
   1.120 +  }
   1.121 +
   1.122 +  // DUAL operation: reflect around lattice centerline.  Used instead of
   1.123 +  // join to ensure my lattice is symmetric up and down.  Dual is computed
   1.124 +  // lazily, on demand, and cached in _dual.
   1.125 +  const Type *_dual;            // Cached dual value
   1.126 +  // Table for efficient dualing of base types
   1.127 +  static const TYPES dual_type[lastype];
   1.128 +
   1.129 +protected:
   1.130 +  // Each class of type is also identified by its base.
   1.131 +  const TYPES _base;            // Enum of Types type
   1.132 +
   1.133 +  Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
   1.134 +  // ~Type();                   // Use fast deallocation
   1.135 +  const Type *hashcons();       // Hash-cons the type
   1.136 +
   1.137 +public:
   1.138 +
   1.139 +  inline void* operator new( size_t x ) {
   1.140 +    Compile* compile = Compile::current();
   1.141 +    compile->set_type_last_size(x);
   1.142 +    void *temp = compile->type_arena()->Amalloc_D(x);
   1.143 +    compile->set_type_hwm(temp);
   1.144 +    return temp;
   1.145 +  }
   1.146 +  inline void operator delete( void* ptr ) {
   1.147 +    Compile* compile = Compile::current();
   1.148 +    compile->type_arena()->Afree(ptr,compile->type_last_size());
   1.149 +  }
   1.150 +
   1.151 +  // Initialize the type system for a particular compilation.
   1.152 +  static void Initialize(Compile* compile);
   1.153 +
   1.154 +  // Initialize the types shared by all compilations.
   1.155 +  static void Initialize_shared(Compile* compile);
   1.156 +
   1.157 +  TYPES base() const {
   1.158 +    assert(_base > Bad && _base < lastype, "sanity");
   1.159 +    return _base;
   1.160 +  }
   1.161 +
   1.162 +  // Create a new hash-consd type
   1.163 +  static const Type *make(enum TYPES);
   1.164 +  // Test for equivalence of types
   1.165 +  static int cmp( const Type *const t1, const Type *const t2 );
   1.166 +  // Test for higher or equal in lattice
   1.167 +  int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
   1.168 +
   1.169 +  // MEET operation; lower in lattice.
   1.170 +  const Type *meet( const Type *t ) const;
   1.171 +  // WIDEN: 'widens' for Ints and other range types
   1.172 +  virtual const Type *widen( const Type *old ) const { return this; }
   1.173 +  // NARROW: complement for widen, used by pessimistic phases
   1.174 +  virtual const Type *narrow( const Type *old ) const { return this; }
   1.175 +
   1.176 +  // DUAL operation: reflect around lattice centerline.  Used instead of
   1.177 +  // join to ensure my lattice is symmetric up and down.
   1.178 +  const Type *dual() const { return _dual; }
   1.179 +
   1.180 +  // Compute meet dependent on base type
   1.181 +  virtual const Type *xmeet( const Type *t ) const;
   1.182 +  virtual const Type *xdual() const;    // Compute dual right now.
   1.183 +
   1.184 +  // JOIN operation; higher in lattice.  Done by finding the dual of the
   1.185 +  // meet of the dual of the 2 inputs.
   1.186 +  const Type *join( const Type *t ) const {
   1.187 +    return dual()->meet(t->dual())->dual(); }
   1.188 +
   1.189 +  // Modified version of JOIN adapted to the needs Node::Value.
   1.190 +  // Normalizes all empty values to TOP.  Does not kill _widen bits.
   1.191 +  // Currently, it also works around limitations involving interface types.
   1.192 +  virtual const Type *filter( const Type *kills ) const;
   1.193 +
   1.194 +  // Convenience access
   1.195 +  float getf() const;
   1.196 +  double getd() const;
   1.197 +
   1.198 +  const TypeInt    *is_int() const;
   1.199 +  const TypeInt    *isa_int() const;             // Returns NULL if not an Int
   1.200 +  const TypeLong   *is_long() const;
   1.201 +  const TypeLong   *isa_long() const;            // Returns NULL if not a Long
   1.202 +  const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
   1.203 +  const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
   1.204 +  const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
   1.205 +  const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
   1.206 +  const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
   1.207 +  const TypeAry    *is_ary() const;              // Array, NOT array pointer
   1.208 +  const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
   1.209 +  const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
   1.210 +  const TypeRawPtr *is_rawptr() const;           // NOT Java oop
   1.211 +  const TypeOopPtr *isa_oopptr() const;          // Returns NULL if not ptr type
   1.212 +  const TypeKlassPtr *isa_klassptr() const; // Returns NULL if not KlassPtr
   1.213 +  const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
   1.214 +  const TypeOopPtr  *is_oopptr() const;          // Java-style GC'd pointer
   1.215 +  const TypeInstPtr *isa_instptr() const;        // Returns NULL if not InstPtr
   1.216 +  const TypeInstPtr *is_instptr() const;         // Instance
   1.217 +  const TypeAryPtr *isa_aryptr() const;          // Returns NULL if not AryPtr
   1.218 +  const TypeAryPtr *is_aryptr() const;           // Array oop
   1.219 +  virtual bool      is_finite() const;           // Has a finite value
   1.220 +  virtual bool      is_nan()    const;           // Is not a number (NaN)
   1.221 +
   1.222 +  // Special test for register pressure heuristic
   1.223 +  bool is_floatingpoint() const;        // True if Float or Double base type
   1.224 +
   1.225 +  // Do you have memory, directly or through a tuple?
   1.226 +  bool has_memory( ) const;
   1.227 +
   1.228 +  // Are you a pointer type or not?
   1.229 +  bool isa_oop_ptr() const;
   1.230 +
   1.231 +  // TRUE if type is a singleton
   1.232 +  virtual bool singleton(void) const;
   1.233 +
   1.234 +  // TRUE if type is above the lattice centerline, and is therefore vacuous
   1.235 +  virtual bool empty(void) const;
   1.236 +
   1.237 +  // Return a hash for this type.  The hash function is public so ConNode
   1.238 +  // (constants) can hash on their constant, which is represented by a Type.
   1.239 +  virtual int hash() const;
   1.240 +
   1.241 +  // Map ideal registers (machine types) to ideal types
   1.242 +  static const Type *mreg2type[];
   1.243 +
   1.244 +  // Printing, statistics
   1.245 +  static const char * const msg[lastype]; // Printable strings
   1.246 +#ifndef PRODUCT
   1.247 +  void         dump_on(outputStream *st) const;
   1.248 +  void         dump() const {
   1.249 +    dump_on(tty);
   1.250 +  }
   1.251 +  virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   1.252 +  static  void dump_stats();
   1.253 +  static  void verify_lastype();          // Check that arrays match type enum
   1.254 +#endif
   1.255 +  void typerr(const Type *t) const; // Mixing types error
   1.256 +
   1.257 +  // Create basic type
   1.258 +  static const Type* get_const_basic_type(BasicType type) {
   1.259 +    assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
   1.260 +    return _const_basic_type[type];
   1.261 +  }
   1.262 +
   1.263 +  // Mapping to the array element's basic type.
   1.264 +  BasicType array_element_basic_type() const;
   1.265 +
   1.266 +  // Create standard type for a ciType:
   1.267 +  static const Type* get_const_type(ciType* type);
   1.268 +
   1.269 +  // Create standard zero value:
   1.270 +  static const Type* get_zero_type(BasicType type) {
   1.271 +    assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
   1.272 +    return _zero_type[type];
   1.273 +  }
   1.274 +
   1.275 +  // Report if this is a zero value (not top).
   1.276 +  bool is_zero_type() const {
   1.277 +    BasicType type = basic_type();
   1.278 +    if (type == T_VOID || type >= T_CONFLICT)
   1.279 +      return false;
   1.280 +    else
   1.281 +      return (this == _zero_type[type]);
   1.282 +  }
   1.283 +
   1.284 +  // Convenience common pre-built types.
   1.285 +  static const Type *ABIO;
   1.286 +  static const Type *BOTTOM;
   1.287 +  static const Type *CONTROL;
   1.288 +  static const Type *DOUBLE;
   1.289 +  static const Type *FLOAT;
   1.290 +  static const Type *HALF;
   1.291 +  static const Type *MEMORY;
   1.292 +  static const Type *MULTI;
   1.293 +  static const Type *RETURN_ADDRESS;
   1.294 +  static const Type *TOP;
   1.295 +
   1.296 +  // Mapping from compiler type to VM BasicType
   1.297 +  BasicType basic_type() const { return _basic_type[_base]; }
   1.298 +
   1.299 +  // Mapping from CI type system to compiler type:
   1.300 +  static const Type* get_typeflow_type(ciType* type);
   1.301 +
   1.302 +private:
   1.303 +  // support arrays
   1.304 +  static const BasicType _basic_type[];
   1.305 +  static const Type*        _zero_type[T_CONFLICT+1];
   1.306 +  static const Type* _const_basic_type[T_CONFLICT+1];
   1.307 +};
   1.308 +
   1.309 +//------------------------------TypeF------------------------------------------
   1.310 +// Class of Float-Constant Types.
   1.311 +class TypeF : public Type {
   1.312 +  TypeF( float f ) : Type(FloatCon), _f(f) {};
   1.313 +public:
   1.314 +  virtual bool eq( const Type *t ) const;
   1.315 +  virtual int  hash() const;             // Type specific hashing
   1.316 +  virtual bool singleton(void) const;    // TRUE if type is a singleton
   1.317 +  virtual bool empty(void) const;        // TRUE if type is vacuous
   1.318 +public:
   1.319 +  const float _f;               // Float constant
   1.320 +
   1.321 +  static const TypeF *make(float f);
   1.322 +
   1.323 +  virtual bool        is_finite() const;  // Has a finite value
   1.324 +  virtual bool        is_nan()    const;  // Is not a number (NaN)
   1.325 +
   1.326 +  virtual const Type *xmeet( const Type *t ) const;
   1.327 +  virtual const Type *xdual() const;    // Compute dual right now.
   1.328 +  // Convenience common pre-built types.
   1.329 +  static const TypeF *ZERO; // positive zero only
   1.330 +  static const TypeF *ONE;
   1.331 +#ifndef PRODUCT
   1.332 +  virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   1.333 +#endif
   1.334 +};
   1.335 +
   1.336 +//------------------------------TypeD------------------------------------------
   1.337 +// Class of Double-Constant Types.
   1.338 +class TypeD : public Type {
   1.339 +  TypeD( double d ) : Type(DoubleCon), _d(d) {};
   1.340 +public:
   1.341 +  virtual bool eq( const Type *t ) const;
   1.342 +  virtual int  hash() const;             // Type specific hashing
   1.343 +  virtual bool singleton(void) const;    // TRUE if type is a singleton
   1.344 +  virtual bool empty(void) const;        // TRUE if type is vacuous
   1.345 +public:
   1.346 +  const double _d;              // Double constant
   1.347 +
   1.348 +  static const TypeD *make(double d);
   1.349 +
   1.350 +  virtual bool        is_finite() const;  // Has a finite value
   1.351 +  virtual bool        is_nan()    const;  // Is not a number (NaN)
   1.352 +
   1.353 +  virtual const Type *xmeet( const Type *t ) const;
   1.354 +  virtual const Type *xdual() const;    // Compute dual right now.
   1.355 +  // Convenience common pre-built types.
   1.356 +  static const TypeD *ZERO; // positive zero only
   1.357 +  static const TypeD *ONE;
   1.358 +#ifndef PRODUCT
   1.359 +  virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   1.360 +#endif
   1.361 +};
   1.362 +
   1.363 +//------------------------------TypeInt----------------------------------------
   1.364 +// Class of integer ranges, the set of integers between a lower bound and an
   1.365 +// upper bound, inclusive.
   1.366 +class TypeInt : public Type {
   1.367 +  TypeInt( jint lo, jint hi, int w );
   1.368 +public:
   1.369 +  virtual bool eq( const Type *t ) const;
   1.370 +  virtual int  hash() const;             // Type specific hashing
   1.371 +  virtual bool singleton(void) const;    // TRUE if type is a singleton
   1.372 +  virtual bool empty(void) const;        // TRUE if type is vacuous
   1.373 +public:
   1.374 +  const jint _lo, _hi;          // Lower bound, upper bound
   1.375 +  const short _widen;           // Limit on times we widen this sucker
   1.376 +
   1.377 +  static const TypeInt *make(jint lo);
   1.378 +  // must always specify w
   1.379 +  static const TypeInt *make(jint lo, jint hi, int w);
   1.380 +
   1.381 +  // Check for single integer
   1.382 +  int is_con() const { return _lo==_hi; }
   1.383 +  bool is_con(int i) const { return is_con() && _lo == i; }
   1.384 +  jint get_con() const { assert( is_con(), "" );  return _lo; }
   1.385 +
   1.386 +  virtual bool        is_finite() const;  // Has a finite value
   1.387 +
   1.388 +  virtual const Type *xmeet( const Type *t ) const;
   1.389 +  virtual const Type *xdual() const;    // Compute dual right now.
   1.390 +  virtual const Type *widen( const Type *t ) const;
   1.391 +  virtual const Type *narrow( const Type *t ) const;
   1.392 +  // Do not kill _widen bits.
   1.393 +  virtual const Type *filter( const Type *kills ) const;
   1.394 +  // Convenience common pre-built types.
   1.395 +  static const TypeInt *MINUS_1;
   1.396 +  static const TypeInt *ZERO;
   1.397 +  static const TypeInt *ONE;
   1.398 +  static const TypeInt *BOOL;
   1.399 +  static const TypeInt *CC;
   1.400 +  static const TypeInt *CC_LT;  // [-1]  == MINUS_1
   1.401 +  static const TypeInt *CC_GT;  // [1]   == ONE
   1.402 +  static const TypeInt *CC_EQ;  // [0]   == ZERO
   1.403 +  static const TypeInt *CC_LE;  // [-1,0]
   1.404 +  static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
   1.405 +  static const TypeInt *BYTE;
   1.406 +  static const TypeInt *CHAR;
   1.407 +  static const TypeInt *SHORT;
   1.408 +  static const TypeInt *POS;
   1.409 +  static const TypeInt *POS1;
   1.410 +  static const TypeInt *INT;
   1.411 +  static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
   1.412 +#ifndef PRODUCT
   1.413 +  virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   1.414 +#endif
   1.415 +};
   1.416 +
   1.417 +
   1.418 +//------------------------------TypeLong---------------------------------------
   1.419 +// Class of long integer ranges, the set of integers between a lower bound and
   1.420 +// an upper bound, inclusive.
   1.421 +class TypeLong : public Type {
   1.422 +  TypeLong( jlong lo, jlong hi, int w );
   1.423 +public:
   1.424 +  virtual bool eq( const Type *t ) const;
   1.425 +  virtual int  hash() const;             // Type specific hashing
   1.426 +  virtual bool singleton(void) const;    // TRUE if type is a singleton
   1.427 +  virtual bool empty(void) const;        // TRUE if type is vacuous
   1.428 +public:
   1.429 +  const jlong _lo, _hi;         // Lower bound, upper bound
   1.430 +  const short _widen;           // Limit on times we widen this sucker
   1.431 +
   1.432 +  static const TypeLong *make(jlong lo);
   1.433 +  // must always specify w
   1.434 +  static const TypeLong *make(jlong lo, jlong hi, int w);
   1.435 +
   1.436 +  // Check for single integer
   1.437 +  int is_con() const { return _lo==_hi; }
   1.438 +  jlong get_con() const { assert( is_con(), "" ); return _lo; }
   1.439 +
   1.440 +  virtual bool        is_finite() const;  // Has a finite value
   1.441 +
   1.442 +  virtual const Type *xmeet( const Type *t ) const;
   1.443 +  virtual const Type *xdual() const;    // Compute dual right now.
   1.444 +  virtual const Type *widen( const Type *t ) const;
   1.445 +  virtual const Type *narrow( const Type *t ) const;
   1.446 +  // Do not kill _widen bits.
   1.447 +  virtual const Type *filter( const Type *kills ) const;
   1.448 +  // Convenience common pre-built types.
   1.449 +  static const TypeLong *MINUS_1;
   1.450 +  static const TypeLong *ZERO;
   1.451 +  static const TypeLong *ONE;
   1.452 +  static const TypeLong *POS;
   1.453 +  static const TypeLong *LONG;
   1.454 +  static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
   1.455 +  static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
   1.456 +#ifndef PRODUCT
   1.457 +  virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
   1.458 +#endif
   1.459 +};
   1.460 +
   1.461 +//------------------------------TypeTuple--------------------------------------
   1.462 +// Class of Tuple Types, essentially type collections for function signatures
   1.463 +// and class layouts.  It happens to also be a fast cache for the HotSpot
   1.464 +// signature types.
   1.465 +class TypeTuple : public Type {
   1.466 +  TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
   1.467 +public:
   1.468 +  virtual bool eq( const Type *t ) const;
   1.469 +  virtual int  hash() const;             // Type specific hashing
   1.470 +  virtual bool singleton(void) const;    // TRUE if type is a singleton
   1.471 +  virtual bool empty(void) const;        // TRUE if type is vacuous
   1.472 +
   1.473 +public:
   1.474 +  const uint          _cnt;              // Count of fields
   1.475 +  const Type ** const _fields;           // Array of field types
   1.476 +
   1.477 +  // Accessors:
   1.478 +  uint cnt() const { return _cnt; }
   1.479 +  const Type* field_at(uint i) const {
   1.480 +    assert(i < _cnt, "oob");
   1.481 +    return _fields[i];
   1.482 +  }
   1.483 +  void set_field_at(uint i, const Type* t) {
   1.484 +    assert(i < _cnt, "oob");
   1.485 +    _fields[i] = t;
   1.486 +  }
   1.487 +
   1.488 +  static const TypeTuple *make( uint cnt, const Type **fields );
   1.489 +  static const TypeTuple *make_range(ciSignature *sig);
   1.490 +  static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
   1.491 +
   1.492 +  // Subroutine call type with space allocated for argument types
   1.493 +  static const Type **fields( uint arg_cnt );
   1.494 +
   1.495 +  virtual const Type *xmeet( const Type *t ) const;
   1.496 +  virtual const Type *xdual() const;    // Compute dual right now.
   1.497 +  // Convenience common pre-built types.
   1.498 +  static const TypeTuple *IFBOTH;
   1.499 +  static const TypeTuple *IFFALSE;
   1.500 +  static const TypeTuple *IFTRUE;
   1.501 +  static const TypeTuple *IFNEITHER;
   1.502 +  static const TypeTuple *LOOPBODY;
   1.503 +  static const TypeTuple *MEMBAR;
   1.504 +  static const TypeTuple *STORECONDITIONAL;
   1.505 +  static const TypeTuple *START_I2C;
   1.506 +  static const TypeTuple *INT_PAIR;
   1.507 +  static const TypeTuple *LONG_PAIR;
   1.508 +#ifndef PRODUCT
   1.509 +  virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   1.510 +#endif
   1.511 +};
   1.512 +
   1.513 +//------------------------------TypeAry----------------------------------------
   1.514 +// Class of Array Types
   1.515 +class TypeAry : public Type {
   1.516 +  TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
   1.517 +    _elem(elem), _size(size) {}
   1.518 +public:
   1.519 +  virtual bool eq( const Type *t ) const;
   1.520 +  virtual int  hash() const;             // Type specific hashing
   1.521 +  virtual bool singleton(void) const;    // TRUE if type is a singleton
   1.522 +  virtual bool empty(void) const;        // TRUE if type is vacuous
   1.523 +
   1.524 +private:
   1.525 +  const Type *_elem;            // Element type of array
   1.526 +  const TypeInt *_size;         // Elements in array
   1.527 +  friend class TypeAryPtr;
   1.528 +
   1.529 +public:
   1.530 +  static const TypeAry *make(  const Type *elem, const TypeInt *size);
   1.531 +
   1.532 +  virtual const Type *xmeet( const Type *t ) const;
   1.533 +  virtual const Type *xdual() const;    // Compute dual right now.
   1.534 +  bool ary_must_be_exact() const;  // true if arrays of such are never generic
   1.535 +#ifndef PRODUCT
   1.536 +  virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   1.537 +#endif
   1.538 +};
   1.539 +
   1.540 +//------------------------------TypePtr----------------------------------------
   1.541 +// Class of machine Pointer Types: raw data, instances or arrays.
   1.542 +// If the _base enum is AnyPtr, then this refers to all of the above.
   1.543 +// Otherwise the _base will indicate which subset of pointers is affected,
   1.544 +// and the class will be inherited from.
   1.545 +class TypePtr : public Type {
   1.546 +public:
   1.547 +  enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
   1.548 +protected:
   1.549 +  TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
   1.550 +  virtual bool eq( const Type *t ) const;
   1.551 +  virtual int  hash() const;             // Type specific hashing
   1.552 +  static const PTR ptr_meet[lastPTR][lastPTR];
   1.553 +  static const PTR ptr_dual[lastPTR];
   1.554 +  static const char * const ptr_msg[lastPTR];
   1.555 +
   1.556 +public:
   1.557 +  const int _offset;            // Offset into oop, with TOP & BOT
   1.558 +  const PTR _ptr;               // Pointer equivalence class
   1.559 +
   1.560 +  const int offset() const { return _offset; }
   1.561 +  const PTR ptr()    const { return _ptr; }
   1.562 +
   1.563 +  static const TypePtr *make( TYPES t, PTR ptr, int offset );
   1.564 +
   1.565 +  // Return a 'ptr' version of this type
   1.566 +  virtual const Type *cast_to_ptr_type(PTR ptr) const;
   1.567 +
   1.568 +  virtual intptr_t get_con() const;
   1.569 +
   1.570 +  virtual const TypePtr *add_offset( int offset ) const;
   1.571 +
   1.572 +  virtual bool singleton(void) const;    // TRUE if type is a singleton
   1.573 +  virtual bool empty(void) const;        // TRUE if type is vacuous
   1.574 +  virtual const Type *xmeet( const Type *t ) const;
   1.575 +  int meet_offset( int offset ) const;
   1.576 +  int dual_offset( ) const;
   1.577 +  virtual const Type *xdual() const;    // Compute dual right now.
   1.578 +
   1.579 +  // meet, dual and join over pointer equivalence sets
   1.580 +  PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
   1.581 +  PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
   1.582 +
   1.583 +  // This is textually confusing unless one recalls that
   1.584 +  // join(t) == dual()->meet(t->dual())->dual().
   1.585 +  PTR join_ptr( const PTR in_ptr ) const {
   1.586 +    return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
   1.587 +  }
   1.588 +
   1.589 +  // Tests for relation to centerline of type lattice:
   1.590 +  static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
   1.591 +  static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
   1.592 +  // Convenience common pre-built types.
   1.593 +  static const TypePtr *NULL_PTR;
   1.594 +  static const TypePtr *NOTNULL;
   1.595 +  static const TypePtr *BOTTOM;
   1.596 +#ifndef PRODUCT
   1.597 +  virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   1.598 +#endif
   1.599 +};
   1.600 +
   1.601 +//------------------------------TypeRawPtr-------------------------------------
   1.602 +// Class of raw pointers, pointers to things other than Oops.  Examples
   1.603 +// include the stack pointer, top of heap, card-marking area, handles, etc.
   1.604 +class TypeRawPtr : public TypePtr {
   1.605 +protected:
   1.606 +  TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
   1.607 +public:
   1.608 +  virtual bool eq( const Type *t ) const;
   1.609 +  virtual int  hash() const;     // Type specific hashing
   1.610 +
   1.611 +  const address _bits;          // Constant value, if applicable
   1.612 +
   1.613 +  static const TypeRawPtr *make( PTR ptr );
   1.614 +  static const TypeRawPtr *make( address bits );
   1.615 +
   1.616 +  // Return a 'ptr' version of this type
   1.617 +  virtual const Type *cast_to_ptr_type(PTR ptr) const;
   1.618 +
   1.619 +  virtual intptr_t get_con() const;
   1.620 +
   1.621 +  virtual const TypePtr *add_offset( int offset ) const;
   1.622 +
   1.623 +  virtual const Type *xmeet( const Type *t ) const;
   1.624 +  virtual const Type *xdual() const;    // Compute dual right now.
   1.625 +  // Convenience common pre-built types.
   1.626 +  static const TypeRawPtr *BOTTOM;
   1.627 +  static const TypeRawPtr *NOTNULL;
   1.628 +#ifndef PRODUCT
   1.629 +  virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   1.630 +#endif
   1.631 +};
   1.632 +
   1.633 +//------------------------------TypeOopPtr-------------------------------------
   1.634 +// Some kind of oop (Java pointer), either klass or instance or array.
   1.635 +class TypeOopPtr : public TypePtr {
   1.636 +protected:
   1.637 +  TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id ) : TypePtr(t, ptr, offset), _const_oop(o), _klass(k), _klass_is_exact(xk), _instance_id(instance_id) { }
   1.638 +public:
   1.639 +  virtual bool eq( const Type *t ) const;
   1.640 +  virtual int  hash() const;             // Type specific hashing
   1.641 +  virtual bool singleton(void) const;    // TRUE if type is a singleton
   1.642 +  enum {
   1.643 +   UNKNOWN_INSTANCE = 0
   1.644 +  };
   1.645 +protected:
   1.646 +
   1.647 +  int xadd_offset( int offset ) const;
   1.648 +  // Oop is NULL, unless this is a constant oop.
   1.649 +  ciObject*     _const_oop;   // Constant oop
   1.650 +  // If _klass is NULL, then so is _sig.  This is an unloaded klass.
   1.651 +  ciKlass*      _klass;       // Klass object
   1.652 +  // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
   1.653 +  bool          _klass_is_exact;
   1.654 +
   1.655 +  int          _instance_id;   // if not UNKNOWN_INSTANCE, indicates that this is a particular instance
   1.656 +                               // of this type which is distinct.  This is the  the node index of the
   1.657 +                               // node creating this instance
   1.658 +
   1.659 +  static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
   1.660 +
   1.661 +  int dual_instance()      const { return -_instance_id; }
   1.662 +  int meet_instance(int uid) const;
   1.663 +
   1.664 +public:
   1.665 +  // Creates a type given a klass. Correctly handles multi-dimensional arrays
   1.666 +  // Respects UseUniqueSubclasses.
   1.667 +  // If the klass is final, the resulting type will be exact.
   1.668 +  static const TypeOopPtr* make_from_klass(ciKlass* klass) {
   1.669 +    return make_from_klass_common(klass, true, false);
   1.670 +  }
   1.671 +  // Same as before, but will produce an exact type, even if
   1.672 +  // the klass is not final, as long as it has exactly one implementation.
   1.673 +  static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
   1.674 +    return make_from_klass_common(klass, true, true);
   1.675 +  }
   1.676 +  // Same as before, but does not respects UseUniqueSubclasses.
   1.677 +  // Use this only for creating array element types.
   1.678 +  static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
   1.679 +    return make_from_klass_common(klass, false, false);
   1.680 +  }
   1.681 +  // Creates a singleton type given an object.
   1.682 +  static const TypeOopPtr* make_from_constant(ciObject* o);
   1.683 +
   1.684 +  // Make a generic (unclassed) pointer to an oop.
   1.685 +  static const TypeOopPtr* make(PTR ptr, int offset);
   1.686 +
   1.687 +  ciObject* const_oop()    const { return _const_oop; }
   1.688 +  virtual ciKlass* klass() const { return _klass;     }
   1.689 +  bool klass_is_exact()    const { return _klass_is_exact; }
   1.690 +  bool is_instance()       const { return _instance_id != UNKNOWN_INSTANCE; }
   1.691 +  uint instance_id()       const { return _instance_id; }
   1.692 +
   1.693 +  virtual intptr_t get_con() const;
   1.694 +
   1.695 +  virtual const Type *cast_to_ptr_type(PTR ptr) const;
   1.696 +
   1.697 +  virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   1.698 +
   1.699 +  virtual const TypeOopPtr *cast_to_instance(int instance_id) const;
   1.700 +
   1.701 +  // corresponding pointer to klass, for a given instance
   1.702 +  const TypeKlassPtr* as_klass_type() const;
   1.703 +
   1.704 +  virtual const TypePtr *add_offset( int offset ) const;
   1.705 +
   1.706 +  virtual const Type *xmeet( const Type *t ) const;
   1.707 +  virtual const Type *xdual() const;    // Compute dual right now.
   1.708 +
   1.709 +  // Do not allow interface-vs.-noninterface joins to collapse to top.
   1.710 +  virtual const Type *filter( const Type *kills ) const;
   1.711 +
   1.712 +  // Convenience common pre-built type.
   1.713 +  static const TypeOopPtr *BOTTOM;
   1.714 +#ifndef PRODUCT
   1.715 +  virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   1.716 +#endif
   1.717 +};
   1.718 +
   1.719 +//------------------------------TypeInstPtr------------------------------------
   1.720 +// Class of Java object pointers, pointing either to non-array Java instances
   1.721 +// or to a klassOop (including array klasses).
   1.722 +class TypeInstPtr : public TypeOopPtr {
   1.723 +  TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   1.724 +  virtual bool eq( const Type *t ) const;
   1.725 +  virtual int  hash() const;             // Type specific hashing
   1.726 +
   1.727 +  ciSymbol*  _name;        // class name
   1.728 +
   1.729 + public:
   1.730 +  ciSymbol* name()         const { return _name; }
   1.731 +
   1.732 +  bool  is_loaded() const { return _klass->is_loaded(); }
   1.733 +
   1.734 +  // Make a pointer to a constant oop.
   1.735 +  static const TypeInstPtr *make(ciObject* o) {
   1.736 +    return make(TypePtr::Constant, o->klass(), true, o, 0);
   1.737 +  }
   1.738 +
   1.739 +  // Make a pointer to a constant oop with offset.
   1.740 +  static const TypeInstPtr *make(ciObject* o, int offset) {
   1.741 +    return make(TypePtr::Constant, o->klass(), true, o, offset);
   1.742 +  }
   1.743 +
   1.744 +  // Make a pointer to some value of type klass.
   1.745 +  static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
   1.746 +    return make(ptr, klass, false, NULL, 0);
   1.747 +  }
   1.748 +
   1.749 +  // Make a pointer to some non-polymorphic value of exactly type klass.
   1.750 +  static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
   1.751 +    return make(ptr, klass, true, NULL, 0);
   1.752 +  }
   1.753 +
   1.754 +  // Make a pointer to some value of type klass with offset.
   1.755 +  static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
   1.756 +    return make(ptr, klass, false, NULL, offset);
   1.757 +  }
   1.758 +
   1.759 +  // Make a pointer to an oop.
   1.760 +  static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = 0 );
   1.761 +
   1.762 +  // If this is a java.lang.Class constant, return the type for it or NULL.
   1.763 +  // Pass to Type::get_const_type to turn it to a type, which will usually
   1.764 +  // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
   1.765 +  ciType* java_mirror_type() const;
   1.766 +
   1.767 +  virtual const Type *cast_to_ptr_type(PTR ptr) const;
   1.768 +
   1.769 +  virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   1.770 +
   1.771 +  virtual const TypeOopPtr *cast_to_instance(int instance_id) const;
   1.772 +
   1.773 +  virtual const TypePtr *add_offset( int offset ) const;
   1.774 +
   1.775 +  virtual const Type *xmeet( const Type *t ) const;
   1.776 +  virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
   1.777 +  virtual const Type *xdual() const;    // Compute dual right now.
   1.778 +
   1.779 +  // Convenience common pre-built types.
   1.780 +  static const TypeInstPtr *NOTNULL;
   1.781 +  static const TypeInstPtr *BOTTOM;
   1.782 +  static const TypeInstPtr *MIRROR;
   1.783 +  static const TypeInstPtr *MARK;
   1.784 +  static const TypeInstPtr *KLASS;
   1.785 +#ifndef PRODUCT
   1.786 +  virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   1.787 +#endif
   1.788 +};
   1.789 +
   1.790 +//------------------------------TypeAryPtr-------------------------------------
   1.791 +// Class of Java array pointers
   1.792 +class TypeAryPtr : public TypeOopPtr {
   1.793 +  TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {};
   1.794 +  virtual bool eq( const Type *t ) const;
   1.795 +  virtual int hash() const;     // Type specific hashing
   1.796 +  const TypeAry *_ary;          // Array we point into
   1.797 +
   1.798 +public:
   1.799 +  // Accessors
   1.800 +  ciKlass* klass() const;
   1.801 +  const TypeAry* ary() const  { return _ary; }
   1.802 +  const Type*    elem() const { return _ary->_elem; }
   1.803 +  const TypeInt* size() const { return _ary->_size; }
   1.804 +
   1.805 +  static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = 0);
   1.806 +  // Constant pointer to array
   1.807 +  static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = 0);
   1.808 +
   1.809 +  // Convenience
   1.810 +  static const TypeAryPtr *make(ciObject* o);
   1.811 +
   1.812 +  // Return a 'ptr' version of this type
   1.813 +  virtual const Type *cast_to_ptr_type(PTR ptr) const;
   1.814 +
   1.815 +  virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   1.816 +
   1.817 +  virtual const TypeOopPtr *cast_to_instance(int instance_id) const;
   1.818 +
   1.819 +  virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
   1.820 +
   1.821 +  virtual bool empty(void) const;        // TRUE if type is vacuous
   1.822 +  virtual const TypePtr *add_offset( int offset ) const;
   1.823 +
   1.824 +  virtual const Type *xmeet( const Type *t ) const;
   1.825 +  virtual const Type *xdual() const;    // Compute dual right now.
   1.826 +
   1.827 +  // Convenience common pre-built types.
   1.828 +  static const TypeAryPtr *RANGE;
   1.829 +  static const TypeAryPtr *OOPS;
   1.830 +  static const TypeAryPtr *BYTES;
   1.831 +  static const TypeAryPtr *SHORTS;
   1.832 +  static const TypeAryPtr *CHARS;
   1.833 +  static const TypeAryPtr *INTS;
   1.834 +  static const TypeAryPtr *LONGS;
   1.835 +  static const TypeAryPtr *FLOATS;
   1.836 +  static const TypeAryPtr *DOUBLES;
   1.837 +  // selects one of the above:
   1.838 +  static const TypeAryPtr *get_array_body_type(BasicType elem) {
   1.839 +    assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
   1.840 +    return _array_body_type[elem];
   1.841 +  }
   1.842 +  static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
   1.843 +  // sharpen the type of an int which is used as an array size
   1.844 +  static const TypeInt* narrow_size_type(const TypeInt* size, BasicType elem);
   1.845 +#ifndef PRODUCT
   1.846 +  virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   1.847 +#endif
   1.848 +};
   1.849 +
   1.850 +//------------------------------TypeKlassPtr-----------------------------------
   1.851 +// Class of Java Klass pointers
   1.852 +class TypeKlassPtr : public TypeOopPtr {
   1.853 +  TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
   1.854 +
   1.855 +  virtual bool eq( const Type *t ) const;
   1.856 +  virtual int hash() const;             // Type specific hashing
   1.857 +
   1.858 +public:
   1.859 +  ciSymbol* name()  const { return _klass->name(); }
   1.860 +
   1.861 +  // ptr to klass 'k'
   1.862 +  static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
   1.863 +  // ptr to klass 'k' with offset
   1.864 +  static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
   1.865 +  // ptr to klass 'k' or sub-klass
   1.866 +  static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
   1.867 +
   1.868 +  virtual const Type *cast_to_ptr_type(PTR ptr) const;
   1.869 +
   1.870 +  virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   1.871 +
   1.872 +  // corresponding pointer to instance, for a given class
   1.873 +  const TypeOopPtr* as_instance_type() const;
   1.874 +
   1.875 +  virtual const TypePtr *add_offset( int offset ) const;
   1.876 +  virtual const Type    *xmeet( const Type *t ) const;
   1.877 +  virtual const Type    *xdual() const;      // Compute dual right now.
   1.878 +
   1.879 +  // Convenience common pre-built types.
   1.880 +  static const TypeKlassPtr* OBJECT; // Not-null object klass or below
   1.881 +  static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
   1.882 +#ifndef PRODUCT
   1.883 +  virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   1.884 +#endif
   1.885 +};
   1.886 +
   1.887 +//------------------------------TypeFunc---------------------------------------
   1.888 +// Class of Array Types
   1.889 +class TypeFunc : public Type {
   1.890 +  TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
   1.891 +  virtual bool eq( const Type *t ) const;
   1.892 +  virtual int  hash() const;             // Type specific hashing
   1.893 +  virtual bool singleton(void) const;    // TRUE if type is a singleton
   1.894 +  virtual bool empty(void) const;        // TRUE if type is vacuous
   1.895 +public:
   1.896 +  // Constants are shared among ADLC and VM
   1.897 +  enum { Control    = AdlcVMDeps::Control,
   1.898 +         I_O        = AdlcVMDeps::I_O,
   1.899 +         Memory     = AdlcVMDeps::Memory,
   1.900 +         FramePtr   = AdlcVMDeps::FramePtr,
   1.901 +         ReturnAdr  = AdlcVMDeps::ReturnAdr,
   1.902 +         Parms      = AdlcVMDeps::Parms
   1.903 +  };
   1.904 +
   1.905 +  const TypeTuple* const _domain;     // Domain of inputs
   1.906 +  const TypeTuple* const _range;      // Range of results
   1.907 +
   1.908 +  // Accessors:
   1.909 +  const TypeTuple* domain() const { return _domain; }
   1.910 +  const TypeTuple* range()  const { return _range; }
   1.911 +
   1.912 +  static const TypeFunc *make(ciMethod* method);
   1.913 +  static const TypeFunc *make(ciSignature signature, const Type* extra);
   1.914 +  static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
   1.915 +
   1.916 +  virtual const Type *xmeet( const Type *t ) const;
   1.917 +  virtual const Type *xdual() const;    // Compute dual right now.
   1.918 +
   1.919 +  BasicType return_type() const;
   1.920 +
   1.921 +#ifndef PRODUCT
   1.922 +  virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   1.923 +  void print_flattened() const; // Print a 'flattened' signature
   1.924 +#endif
   1.925 +  // Convenience common pre-built types.
   1.926 +};
   1.927 +
   1.928 +//------------------------------accessors--------------------------------------
   1.929 +inline float Type::getf() const {
   1.930 +  assert( _base == FloatCon, "Not a FloatCon" );
   1.931 +  return ((TypeF*)this)->_f;
   1.932 +}
   1.933 +
   1.934 +inline double Type::getd() const {
   1.935 +  assert( _base == DoubleCon, "Not a DoubleCon" );
   1.936 +  return ((TypeD*)this)->_d;
   1.937 +}
   1.938 +
   1.939 +inline const TypeF *Type::is_float_constant() const {
   1.940 +  assert( _base == FloatCon, "Not a Float" );
   1.941 +  return (TypeF*)this;
   1.942 +}
   1.943 +
   1.944 +inline const TypeF *Type::isa_float_constant() const {
   1.945 +  return ( _base == FloatCon ? (TypeF*)this : NULL);
   1.946 +}
   1.947 +
   1.948 +inline const TypeD *Type::is_double_constant() const {
   1.949 +  assert( _base == DoubleCon, "Not a Double" );
   1.950 +  return (TypeD*)this;
   1.951 +}
   1.952 +
   1.953 +inline const TypeD *Type::isa_double_constant() const {
   1.954 +  return ( _base == DoubleCon ? (TypeD*)this : NULL);
   1.955 +}
   1.956 +
   1.957 +inline const TypeInt *Type::is_int() const {
   1.958 +  assert( _base == Int, "Not an Int" );
   1.959 +  return (TypeInt*)this;
   1.960 +}
   1.961 +
   1.962 +inline const TypeInt *Type::isa_int() const {
   1.963 +  return ( _base == Int ? (TypeInt*)this : NULL);
   1.964 +}
   1.965 +
   1.966 +inline const TypeLong *Type::is_long() const {
   1.967 +  assert( _base == Long, "Not a Long" );
   1.968 +  return (TypeLong*)this;
   1.969 +}
   1.970 +
   1.971 +inline const TypeLong *Type::isa_long() const {
   1.972 +  return ( _base == Long ? (TypeLong*)this : NULL);
   1.973 +}
   1.974 +
   1.975 +inline const TypeTuple *Type::is_tuple() const {
   1.976 +  assert( _base == Tuple, "Not a Tuple" );
   1.977 +  return (TypeTuple*)this;
   1.978 +}
   1.979 +
   1.980 +inline const TypeAry *Type::is_ary() const {
   1.981 +  assert( _base == Array , "Not an Array" );
   1.982 +  return (TypeAry*)this;
   1.983 +}
   1.984 +
   1.985 +inline const TypePtr *Type::is_ptr() const {
   1.986 +  // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
   1.987 +  assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
   1.988 +  return (TypePtr*)this;
   1.989 +}
   1.990 +
   1.991 +inline const TypePtr *Type::isa_ptr() const {
   1.992 +  // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
   1.993 +  return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
   1.994 +}
   1.995 +
   1.996 +inline const TypeOopPtr *Type::is_oopptr() const {
   1.997 +  // OopPtr is the first and KlassPtr the last, with no non-oops between.
   1.998 +  assert(_base >= OopPtr && _base <= KlassPtr, "Not a Java pointer" ) ;
   1.999 +  return (TypeOopPtr*)this;
  1.1000 +}
  1.1001 +
  1.1002 +inline const TypeOopPtr *Type::isa_oopptr() const {
  1.1003 +  // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1.1004 +  return (_base >= OopPtr && _base <= KlassPtr) ? (TypeOopPtr*)this : NULL;
  1.1005 +}
  1.1006 +
  1.1007 +inline const TypeRawPtr *Type::is_rawptr() const {
  1.1008 +  assert( _base == RawPtr, "Not a raw pointer" );
  1.1009 +  return (TypeRawPtr*)this;
  1.1010 +}
  1.1011 +
  1.1012 +inline const TypeInstPtr *Type::isa_instptr() const {
  1.1013 +  return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
  1.1014 +}
  1.1015 +
  1.1016 +inline const TypeInstPtr *Type::is_instptr() const {
  1.1017 +  assert( _base == InstPtr, "Not an object pointer" );
  1.1018 +  return (TypeInstPtr*)this;
  1.1019 +}
  1.1020 +
  1.1021 +inline const TypeAryPtr *Type::isa_aryptr() const {
  1.1022 +  return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
  1.1023 +}
  1.1024 +
  1.1025 +inline const TypeAryPtr *Type::is_aryptr() const {
  1.1026 +  assert( _base == AryPtr, "Not an array pointer" );
  1.1027 +  return (TypeAryPtr*)this;
  1.1028 +}
  1.1029 +
  1.1030 +inline const TypeKlassPtr *Type::isa_klassptr() const {
  1.1031 +  return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
  1.1032 +}
  1.1033 +
  1.1034 +inline const TypeKlassPtr *Type::is_klassptr() const {
  1.1035 +  assert( _base == KlassPtr, "Not a klass pointer" );
  1.1036 +  return (TypeKlassPtr*)this;
  1.1037 +}
  1.1038 +
  1.1039 +inline bool Type::is_floatingpoint() const {
  1.1040 +  if( (_base == FloatCon)  || (_base == FloatBot) ||
  1.1041 +      (_base == DoubleCon) || (_base == DoubleBot) )
  1.1042 +    return true;
  1.1043 +  return false;
  1.1044 +}
  1.1045 +
  1.1046 +
  1.1047 +// ===============================================================
  1.1048 +// Things that need to be 64-bits in the 64-bit build but
  1.1049 +// 32-bits in the 32-bit build.  Done this way to get full
  1.1050 +// optimization AND strong typing.
  1.1051 +#ifdef _LP64
  1.1052 +
  1.1053 +// For type queries and asserts
  1.1054 +#define is_intptr_t  is_long
  1.1055 +#define isa_intptr_t isa_long
  1.1056 +#define find_intptr_t_type find_long_type
  1.1057 +#define find_intptr_t_con  find_long_con
  1.1058 +#define TypeX        TypeLong
  1.1059 +#define Type_X       Type::Long
  1.1060 +#define TypeX_X      TypeLong::LONG
  1.1061 +#define TypeX_ZERO   TypeLong::ZERO
  1.1062 +// For 'ideal_reg' machine registers
  1.1063 +#define Op_RegX      Op_RegL
  1.1064 +// For phase->intcon variants
  1.1065 +#define MakeConX     longcon
  1.1066 +#define ConXNode     ConLNode
  1.1067 +// For array index arithmetic
  1.1068 +#define MulXNode     MulLNode
  1.1069 +#define AndXNode     AndLNode
  1.1070 +#define OrXNode      OrLNode
  1.1071 +#define CmpXNode     CmpLNode
  1.1072 +#define SubXNode     SubLNode
  1.1073 +#define LShiftXNode  LShiftLNode
  1.1074 +// For object size computation:
  1.1075 +#define AddXNode     AddLNode
  1.1076 +// For card marks and hashcodes
  1.1077 +#define URShiftXNode URShiftLNode
  1.1078 +// Opcodes
  1.1079 +#define Op_LShiftX   Op_LShiftL
  1.1080 +#define Op_AndX      Op_AndL
  1.1081 +#define Op_AddX      Op_AddL
  1.1082 +#define Op_SubX      Op_SubL
  1.1083 +// conversions
  1.1084 +#define ConvI2X(x)   ConvI2L(x)
  1.1085 +#define ConvL2X(x)   (x)
  1.1086 +#define ConvX2I(x)   ConvL2I(x)
  1.1087 +#define ConvX2L(x)   (x)
  1.1088 +
  1.1089 +#else
  1.1090 +
  1.1091 +// For type queries and asserts
  1.1092 +#define is_intptr_t  is_int
  1.1093 +#define isa_intptr_t isa_int
  1.1094 +#define find_intptr_t_type find_int_type
  1.1095 +#define find_intptr_t_con  find_int_con
  1.1096 +#define TypeX        TypeInt
  1.1097 +#define Type_X       Type::Int
  1.1098 +#define TypeX_X      TypeInt::INT
  1.1099 +#define TypeX_ZERO   TypeInt::ZERO
  1.1100 +// For 'ideal_reg' machine registers
  1.1101 +#define Op_RegX      Op_RegI
  1.1102 +// For phase->intcon variants
  1.1103 +#define MakeConX     intcon
  1.1104 +#define ConXNode     ConINode
  1.1105 +// For array index arithmetic
  1.1106 +#define MulXNode     MulINode
  1.1107 +#define AndXNode     AndINode
  1.1108 +#define OrXNode      OrINode
  1.1109 +#define CmpXNode     CmpINode
  1.1110 +#define SubXNode     SubINode
  1.1111 +#define LShiftXNode  LShiftINode
  1.1112 +// For object size computation:
  1.1113 +#define AddXNode     AddINode
  1.1114 +// For card marks and hashcodes
  1.1115 +#define URShiftXNode URShiftINode
  1.1116 +// Opcodes
  1.1117 +#define Op_LShiftX   Op_LShiftI
  1.1118 +#define Op_AndX      Op_AndI
  1.1119 +#define Op_AddX      Op_AddI
  1.1120 +#define Op_SubX      Op_SubI
  1.1121 +// conversions
  1.1122 +#define ConvI2X(x)   (x)
  1.1123 +#define ConvL2X(x)   ConvL2I(x)
  1.1124 +#define ConvX2I(x)   (x)
  1.1125 +#define ConvX2L(x)   ConvI2L(x)
  1.1126 +
  1.1127 +#endif

mercurial