src/share/vm/opto/library_call.cpp

changeset 435
a61af66fc99e
child 464
d5fc211aea19
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/opto/library_call.cpp	Sat Dec 01 00:00:00 2007 +0000
     1.3 @@ -0,0 +1,4921 @@
     1.4 +/*
     1.5 + * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    1.23 + * CA 95054 USA or visit www.sun.com if you need additional information or
    1.24 + * have any questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#include "incls/_precompiled.incl"
    1.29 +#include "incls/_library_call.cpp.incl"
    1.30 +
    1.31 +class LibraryIntrinsic : public InlineCallGenerator {
    1.32 +  // Extend the set of intrinsics known to the runtime:
    1.33 + public:
    1.34 + private:
    1.35 +  bool             _is_virtual;
    1.36 +  vmIntrinsics::ID _intrinsic_id;
    1.37 +
    1.38 + public:
    1.39 +  LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    1.40 +    : InlineCallGenerator(m),
    1.41 +      _is_virtual(is_virtual),
    1.42 +      _intrinsic_id(id)
    1.43 +  {
    1.44 +  }
    1.45 +  virtual bool is_intrinsic() const { return true; }
    1.46 +  virtual bool is_virtual()   const { return _is_virtual; }
    1.47 +  virtual JVMState* generate(JVMState* jvms);
    1.48 +  vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    1.49 +};
    1.50 +
    1.51 +
    1.52 +// Local helper class for LibraryIntrinsic:
    1.53 +class LibraryCallKit : public GraphKit {
    1.54 + private:
    1.55 +  LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    1.56 +
    1.57 + public:
    1.58 +  LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    1.59 +    : GraphKit(caller),
    1.60 +      _intrinsic(intrinsic)
    1.61 +  {
    1.62 +  }
    1.63 +
    1.64 +  ciMethod*         caller()    const    { return jvms()->method(); }
    1.65 +  int               bci()       const    { return jvms()->bci(); }
    1.66 +  LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    1.67 +  vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    1.68 +  ciMethod*         callee()    const    { return _intrinsic->method(); }
    1.69 +  ciSignature*      signature() const    { return callee()->signature(); }
    1.70 +  int               arg_size()  const    { return callee()->arg_size(); }
    1.71 +
    1.72 +  bool try_to_inline();
    1.73 +
    1.74 +  // Helper functions to inline natives
    1.75 +  void push_result(RegionNode* region, PhiNode* value);
    1.76 +  Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    1.77 +  Node* generate_slow_guard(Node* test, RegionNode* region);
    1.78 +  Node* generate_fair_guard(Node* test, RegionNode* region);
    1.79 +  Node* generate_negative_guard(Node* index, RegionNode* region,
    1.80 +                                // resulting CastII of index:
    1.81 +                                Node* *pos_index = NULL);
    1.82 +  Node* generate_nonpositive_guard(Node* index, bool never_negative,
    1.83 +                                   // resulting CastII of index:
    1.84 +                                   Node* *pos_index = NULL);
    1.85 +  Node* generate_limit_guard(Node* offset, Node* subseq_length,
    1.86 +                             Node* array_length,
    1.87 +                             RegionNode* region);
    1.88 +  Node* generate_current_thread(Node* &tls_output);
    1.89 +  address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
    1.90 +                              bool disjoint_bases, const char* &name);
    1.91 +  Node* load_mirror_from_klass(Node* klass);
    1.92 +  Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
    1.93 +                                      int nargs,
    1.94 +                                      RegionNode* region, int null_path,
    1.95 +                                      int offset);
    1.96 +  Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
    1.97 +                               RegionNode* region, int null_path) {
    1.98 +    int offset = java_lang_Class::klass_offset_in_bytes();
    1.99 +    return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   1.100 +                                         region, null_path,
   1.101 +                                         offset);
   1.102 +  }
   1.103 +  Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   1.104 +                                     int nargs,
   1.105 +                                     RegionNode* region, int null_path) {
   1.106 +    int offset = java_lang_Class::array_klass_offset_in_bytes();
   1.107 +    return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   1.108 +                                         region, null_path,
   1.109 +                                         offset);
   1.110 +  }
   1.111 +  Node* generate_access_flags_guard(Node* kls,
   1.112 +                                    int modifier_mask, int modifier_bits,
   1.113 +                                    RegionNode* region);
   1.114 +  Node* generate_interface_guard(Node* kls, RegionNode* region);
   1.115 +  Node* generate_array_guard(Node* kls, RegionNode* region) {
   1.116 +    return generate_array_guard_common(kls, region, false, false);
   1.117 +  }
   1.118 +  Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   1.119 +    return generate_array_guard_common(kls, region, false, true);
   1.120 +  }
   1.121 +  Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   1.122 +    return generate_array_guard_common(kls, region, true, false);
   1.123 +  }
   1.124 +  Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   1.125 +    return generate_array_guard_common(kls, region, true, true);
   1.126 +  }
   1.127 +  Node* generate_array_guard_common(Node* kls, RegionNode* region,
   1.128 +                                    bool obj_array, bool not_array);
   1.129 +  Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   1.130 +  CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   1.131 +                                     bool is_virtual = false, bool is_static = false);
   1.132 +  CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   1.133 +    return generate_method_call(method_id, false, true);
   1.134 +  }
   1.135 +  CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   1.136 +    return generate_method_call(method_id, true, false);
   1.137 +  }
   1.138 +
   1.139 +  bool inline_string_compareTo();
   1.140 +  bool inline_string_indexOf();
   1.141 +  Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   1.142 +  Node* pop_math_arg();
   1.143 +  bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   1.144 +  bool inline_math_native(vmIntrinsics::ID id);
   1.145 +  bool inline_trig(vmIntrinsics::ID id);
   1.146 +  bool inline_trans(vmIntrinsics::ID id);
   1.147 +  bool inline_abs(vmIntrinsics::ID id);
   1.148 +  bool inline_sqrt(vmIntrinsics::ID id);
   1.149 +  bool inline_pow(vmIntrinsics::ID id);
   1.150 +  bool inline_exp(vmIntrinsics::ID id);
   1.151 +  bool inline_min_max(vmIntrinsics::ID id);
   1.152 +  Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   1.153 +  // This returns Type::AnyPtr, RawPtr, or OopPtr.
   1.154 +  int classify_unsafe_addr(Node* &base, Node* &offset);
   1.155 +  Node* make_unsafe_address(Node* base, Node* offset);
   1.156 +  bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   1.157 +  bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   1.158 +  bool inline_unsafe_allocate();
   1.159 +  bool inline_unsafe_copyMemory();
   1.160 +  bool inline_native_currentThread();
   1.161 +  bool inline_native_time_funcs(bool isNano);
   1.162 +  bool inline_native_isInterrupted();
   1.163 +  bool inline_native_Class_query(vmIntrinsics::ID id);
   1.164 +  bool inline_native_subtype_check();
   1.165 +
   1.166 +  bool inline_native_newArray();
   1.167 +  bool inline_native_getLength();
   1.168 +  bool inline_array_copyOf(bool is_copyOfRange);
   1.169 +  bool inline_native_clone(bool is_virtual);
   1.170 +  bool inline_native_Reflection_getCallerClass();
   1.171 +  bool inline_native_AtomicLong_get();
   1.172 +  bool inline_native_AtomicLong_attemptUpdate();
   1.173 +  bool is_method_invoke_or_aux_frame(JVMState* jvms);
   1.174 +  // Helper function for inlining native object hash method
   1.175 +  bool inline_native_hashcode(bool is_virtual, bool is_static);
   1.176 +  bool inline_native_getClass();
   1.177 +
   1.178 +  // Helper functions for inlining arraycopy
   1.179 +  bool inline_arraycopy();
   1.180 +  void generate_arraycopy(const TypePtr* adr_type,
   1.181 +                          BasicType basic_elem_type,
   1.182 +                          Node* src,  Node* src_offset,
   1.183 +                          Node* dest, Node* dest_offset,
   1.184 +                          Node* copy_length,
   1.185 +                          int nargs,  // arguments on stack for debug info
   1.186 +                          bool disjoint_bases = false,
   1.187 +                          bool length_never_negative = false,
   1.188 +                          RegionNode* slow_region = NULL);
   1.189 +  AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   1.190 +                                                RegionNode* slow_region);
   1.191 +  void generate_clear_array(const TypePtr* adr_type,
   1.192 +                            Node* dest,
   1.193 +                            BasicType basic_elem_type,
   1.194 +                            Node* slice_off,
   1.195 +                            Node* slice_len,
   1.196 +                            Node* slice_end);
   1.197 +  bool generate_block_arraycopy(const TypePtr* adr_type,
   1.198 +                                BasicType basic_elem_type,
   1.199 +                                AllocateNode* alloc,
   1.200 +                                Node* src,  Node* src_offset,
   1.201 +                                Node* dest, Node* dest_offset,
   1.202 +                                Node* dest_size);
   1.203 +  void generate_slow_arraycopy(const TypePtr* adr_type,
   1.204 +                               Node* src,  Node* src_offset,
   1.205 +                               Node* dest, Node* dest_offset,
   1.206 +                               Node* copy_length,
   1.207 +                               int nargs);
   1.208 +  Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   1.209 +                                     Node* dest_elem_klass,
   1.210 +                                     Node* src,  Node* src_offset,
   1.211 +                                     Node* dest, Node* dest_offset,
   1.212 +                                     Node* copy_length, int nargs);
   1.213 +  Node* generate_generic_arraycopy(const TypePtr* adr_type,
   1.214 +                                   Node* src,  Node* src_offset,
   1.215 +                                   Node* dest, Node* dest_offset,
   1.216 +                                   Node* copy_length, int nargs);
   1.217 +  void generate_unchecked_arraycopy(const TypePtr* adr_type,
   1.218 +                                    BasicType basic_elem_type,
   1.219 +                                    bool disjoint_bases,
   1.220 +                                    Node* src,  Node* src_offset,
   1.221 +                                    Node* dest, Node* dest_offset,
   1.222 +                                    Node* copy_length);
   1.223 +  bool inline_unsafe_CAS(BasicType type);
   1.224 +  bool inline_unsafe_ordered_store(BasicType type);
   1.225 +  bool inline_fp_conversions(vmIntrinsics::ID id);
   1.226 +  bool inline_reverseBytes(vmIntrinsics::ID id);
   1.227 +};
   1.228 +
   1.229 +
   1.230 +//---------------------------make_vm_intrinsic----------------------------
   1.231 +CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   1.232 +  vmIntrinsics::ID id = m->intrinsic_id();
   1.233 +  assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   1.234 +
   1.235 +  if (DisableIntrinsic[0] != '\0'
   1.236 +      && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   1.237 +    // disabled by a user request on the command line:
   1.238 +    // example: -XX:DisableIntrinsic=_hashCode,_getClass
   1.239 +    return NULL;
   1.240 +  }
   1.241 +
   1.242 +  if (!m->is_loaded()) {
   1.243 +    // do not attempt to inline unloaded methods
   1.244 +    return NULL;
   1.245 +  }
   1.246 +
   1.247 +  // Only a few intrinsics implement a virtual dispatch.
   1.248 +  // They are expensive calls which are also frequently overridden.
   1.249 +  if (is_virtual) {
   1.250 +    switch (id) {
   1.251 +    case vmIntrinsics::_hashCode:
   1.252 +    case vmIntrinsics::_clone:
   1.253 +      // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   1.254 +      break;
   1.255 +    default:
   1.256 +      return NULL;
   1.257 +    }
   1.258 +  }
   1.259 +
   1.260 +  // -XX:-InlineNatives disables nearly all intrinsics:
   1.261 +  if (!InlineNatives) {
   1.262 +    switch (id) {
   1.263 +    case vmIntrinsics::_indexOf:
   1.264 +    case vmIntrinsics::_compareTo:
   1.265 +      break;  // InlineNatives does not control String.compareTo
   1.266 +    default:
   1.267 +      return NULL;
   1.268 +    }
   1.269 +  }
   1.270 +
   1.271 +  switch (id) {
   1.272 +  case vmIntrinsics::_compareTo:
   1.273 +    if (!SpecialStringCompareTo)  return NULL;
   1.274 +    break;
   1.275 +  case vmIntrinsics::_indexOf:
   1.276 +    if (!SpecialStringIndexOf)  return NULL;
   1.277 +    break;
   1.278 +  case vmIntrinsics::_arraycopy:
   1.279 +    if (!InlineArrayCopy)  return NULL;
   1.280 +    break;
   1.281 +  case vmIntrinsics::_copyMemory:
   1.282 +    if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   1.283 +    if (!InlineArrayCopy)  return NULL;
   1.284 +    break;
   1.285 +  case vmIntrinsics::_hashCode:
   1.286 +    if (!InlineObjectHash)  return NULL;
   1.287 +    break;
   1.288 +  case vmIntrinsics::_clone:
   1.289 +  case vmIntrinsics::_copyOf:
   1.290 +  case vmIntrinsics::_copyOfRange:
   1.291 +    if (!InlineObjectCopy)  return NULL;
   1.292 +    // These also use the arraycopy intrinsic mechanism:
   1.293 +    if (!InlineArrayCopy)  return NULL;
   1.294 +    break;
   1.295 +  case vmIntrinsics::_checkIndex:
   1.296 +    // We do not intrinsify this.  The optimizer does fine with it.
   1.297 +    return NULL;
   1.298 +
   1.299 +  case vmIntrinsics::_get_AtomicLong:
   1.300 +  case vmIntrinsics::_attemptUpdate:
   1.301 +    if (!InlineAtomicLong)  return NULL;
   1.302 +    break;
   1.303 +
   1.304 +  case vmIntrinsics::_Object_init:
   1.305 +  case vmIntrinsics::_invoke:
   1.306 +    // We do not intrinsify these; they are marked for other purposes.
   1.307 +    return NULL;
   1.308 +
   1.309 +  case vmIntrinsics::_getCallerClass:
   1.310 +    if (!UseNewReflection)  return NULL;
   1.311 +    if (!InlineReflectionGetCallerClass)  return NULL;
   1.312 +    if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   1.313 +    break;
   1.314 +
   1.315 + default:
   1.316 +    break;
   1.317 +  }
   1.318 +
   1.319 +  // -XX:-InlineClassNatives disables natives from the Class class.
   1.320 +  // The flag applies to all reflective calls, notably Array.newArray
   1.321 +  // (visible to Java programmers as Array.newInstance).
   1.322 +  if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   1.323 +      m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   1.324 +    if (!InlineClassNatives)  return NULL;
   1.325 +  }
   1.326 +
   1.327 +  // -XX:-InlineThreadNatives disables natives from the Thread class.
   1.328 +  if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   1.329 +    if (!InlineThreadNatives)  return NULL;
   1.330 +  }
   1.331 +
   1.332 +  // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   1.333 +  if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   1.334 +      m->holder()->name() == ciSymbol::java_lang_Float() ||
   1.335 +      m->holder()->name() == ciSymbol::java_lang_Double()) {
   1.336 +    if (!InlineMathNatives)  return NULL;
   1.337 +  }
   1.338 +
   1.339 +  // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   1.340 +  if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   1.341 +    if (!InlineUnsafeOps)  return NULL;
   1.342 +  }
   1.343 +
   1.344 +  return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   1.345 +}
   1.346 +
   1.347 +//----------------------register_library_intrinsics-----------------------
   1.348 +// Initialize this file's data structures, for each Compile instance.
   1.349 +void Compile::register_library_intrinsics() {
   1.350 +  // Nothing to do here.
   1.351 +}
   1.352 +
   1.353 +JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   1.354 +  LibraryCallKit kit(jvms, this);
   1.355 +  Compile* C = kit.C;
   1.356 +  int nodes = C->unique();
   1.357 +#ifndef PRODUCT
   1.358 +  if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   1.359 +    char buf[1000];
   1.360 +    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   1.361 +    tty->print_cr("Intrinsic %s", str);
   1.362 +  }
   1.363 +#endif
   1.364 +  if (kit.try_to_inline()) {
   1.365 +    if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   1.366 +      tty->print("Inlining intrinsic %s%s at bci:%d in",
   1.367 +                 vmIntrinsics::name_at(intrinsic_id()),
   1.368 +                 (is_virtual() ? " (virtual)" : ""), kit.bci());
   1.369 +      kit.caller()->print_short_name(tty);
   1.370 +      tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   1.371 +    }
   1.372 +    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   1.373 +    if (C->log()) {
   1.374 +      C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   1.375 +                     vmIntrinsics::name_at(intrinsic_id()),
   1.376 +                     (is_virtual() ? " virtual='1'" : ""),
   1.377 +                     C->unique() - nodes);
   1.378 +    }
   1.379 +    return kit.transfer_exceptions_into_jvms();
   1.380 +  }
   1.381 +
   1.382 +  if (PrintIntrinsics) {
   1.383 +    switch (intrinsic_id()) {
   1.384 +    case vmIntrinsics::_invoke:
   1.385 +    case vmIntrinsics::_Object_init:
   1.386 +      // We do not expect to inline these, so do not produce any noise about them.
   1.387 +      break;
   1.388 +    default:
   1.389 +      tty->print("Did not inline intrinsic %s%s at bci:%d in",
   1.390 +                 vmIntrinsics::name_at(intrinsic_id()),
   1.391 +                 (is_virtual() ? " (virtual)" : ""), kit.bci());
   1.392 +      kit.caller()->print_short_name(tty);
   1.393 +      tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   1.394 +    }
   1.395 +  }
   1.396 +  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   1.397 +  return NULL;
   1.398 +}
   1.399 +
   1.400 +bool LibraryCallKit::try_to_inline() {
   1.401 +  // Handle symbolic names for otherwise undistinguished boolean switches:
   1.402 +  const bool is_store       = true;
   1.403 +  const bool is_native_ptr  = true;
   1.404 +  const bool is_static      = true;
   1.405 +
   1.406 +  switch (intrinsic_id()) {
   1.407 +  case vmIntrinsics::_hashCode:
   1.408 +    return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   1.409 +  case vmIntrinsics::_identityHashCode:
   1.410 +    return inline_native_hashcode(/*!virtual*/ false, is_static);
   1.411 +  case vmIntrinsics::_getClass:
   1.412 +    return inline_native_getClass();
   1.413 +
   1.414 +  case vmIntrinsics::_dsin:
   1.415 +  case vmIntrinsics::_dcos:
   1.416 +  case vmIntrinsics::_dtan:
   1.417 +  case vmIntrinsics::_dabs:
   1.418 +  case vmIntrinsics::_datan2:
   1.419 +  case vmIntrinsics::_dsqrt:
   1.420 +  case vmIntrinsics::_dexp:
   1.421 +  case vmIntrinsics::_dlog:
   1.422 +  case vmIntrinsics::_dlog10:
   1.423 +  case vmIntrinsics::_dpow:
   1.424 +    return inline_math_native(intrinsic_id());
   1.425 +
   1.426 +  case vmIntrinsics::_min:
   1.427 +  case vmIntrinsics::_max:
   1.428 +    return inline_min_max(intrinsic_id());
   1.429 +
   1.430 +  case vmIntrinsics::_arraycopy:
   1.431 +    return inline_arraycopy();
   1.432 +
   1.433 +  case vmIntrinsics::_compareTo:
   1.434 +    return inline_string_compareTo();
   1.435 +  case vmIntrinsics::_indexOf:
   1.436 +    return inline_string_indexOf();
   1.437 +
   1.438 +  case vmIntrinsics::_getObject:
   1.439 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   1.440 +  case vmIntrinsics::_getBoolean:
   1.441 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   1.442 +  case vmIntrinsics::_getByte:
   1.443 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   1.444 +  case vmIntrinsics::_getShort:
   1.445 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   1.446 +  case vmIntrinsics::_getChar:
   1.447 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   1.448 +  case vmIntrinsics::_getInt:
   1.449 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   1.450 +  case vmIntrinsics::_getLong:
   1.451 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   1.452 +  case vmIntrinsics::_getFloat:
   1.453 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   1.454 +  case vmIntrinsics::_getDouble:
   1.455 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   1.456 +
   1.457 +  case vmIntrinsics::_putObject:
   1.458 +    return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   1.459 +  case vmIntrinsics::_putBoolean:
   1.460 +    return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   1.461 +  case vmIntrinsics::_putByte:
   1.462 +    return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   1.463 +  case vmIntrinsics::_putShort:
   1.464 +    return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   1.465 +  case vmIntrinsics::_putChar:
   1.466 +    return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   1.467 +  case vmIntrinsics::_putInt:
   1.468 +    return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   1.469 +  case vmIntrinsics::_putLong:
   1.470 +    return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   1.471 +  case vmIntrinsics::_putFloat:
   1.472 +    return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   1.473 +  case vmIntrinsics::_putDouble:
   1.474 +    return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   1.475 +
   1.476 +  case vmIntrinsics::_getByte_raw:
   1.477 +    return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   1.478 +  case vmIntrinsics::_getShort_raw:
   1.479 +    return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   1.480 +  case vmIntrinsics::_getChar_raw:
   1.481 +    return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   1.482 +  case vmIntrinsics::_getInt_raw:
   1.483 +    return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   1.484 +  case vmIntrinsics::_getLong_raw:
   1.485 +    return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   1.486 +  case vmIntrinsics::_getFloat_raw:
   1.487 +    return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   1.488 +  case vmIntrinsics::_getDouble_raw:
   1.489 +    return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   1.490 +  case vmIntrinsics::_getAddress_raw:
   1.491 +    return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   1.492 +
   1.493 +  case vmIntrinsics::_putByte_raw:
   1.494 +    return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   1.495 +  case vmIntrinsics::_putShort_raw:
   1.496 +    return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   1.497 +  case vmIntrinsics::_putChar_raw:
   1.498 +    return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   1.499 +  case vmIntrinsics::_putInt_raw:
   1.500 +    return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   1.501 +  case vmIntrinsics::_putLong_raw:
   1.502 +    return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   1.503 +  case vmIntrinsics::_putFloat_raw:
   1.504 +    return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   1.505 +  case vmIntrinsics::_putDouble_raw:
   1.506 +    return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   1.507 +  case vmIntrinsics::_putAddress_raw:
   1.508 +    return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   1.509 +
   1.510 +  case vmIntrinsics::_getObjectVolatile:
   1.511 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   1.512 +  case vmIntrinsics::_getBooleanVolatile:
   1.513 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   1.514 +  case vmIntrinsics::_getByteVolatile:
   1.515 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   1.516 +  case vmIntrinsics::_getShortVolatile:
   1.517 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   1.518 +  case vmIntrinsics::_getCharVolatile:
   1.519 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   1.520 +  case vmIntrinsics::_getIntVolatile:
   1.521 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   1.522 +  case vmIntrinsics::_getLongVolatile:
   1.523 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   1.524 +  case vmIntrinsics::_getFloatVolatile:
   1.525 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   1.526 +  case vmIntrinsics::_getDoubleVolatile:
   1.527 +    return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   1.528 +
   1.529 +  case vmIntrinsics::_putObjectVolatile:
   1.530 +    return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   1.531 +  case vmIntrinsics::_putBooleanVolatile:
   1.532 +    return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   1.533 +  case vmIntrinsics::_putByteVolatile:
   1.534 +    return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   1.535 +  case vmIntrinsics::_putShortVolatile:
   1.536 +    return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   1.537 +  case vmIntrinsics::_putCharVolatile:
   1.538 +    return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   1.539 +  case vmIntrinsics::_putIntVolatile:
   1.540 +    return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   1.541 +  case vmIntrinsics::_putLongVolatile:
   1.542 +    return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   1.543 +  case vmIntrinsics::_putFloatVolatile:
   1.544 +    return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   1.545 +  case vmIntrinsics::_putDoubleVolatile:
   1.546 +    return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   1.547 +
   1.548 +  case vmIntrinsics::_prefetchRead:
   1.549 +    return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   1.550 +  case vmIntrinsics::_prefetchWrite:
   1.551 +    return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   1.552 +  case vmIntrinsics::_prefetchReadStatic:
   1.553 +    return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   1.554 +  case vmIntrinsics::_prefetchWriteStatic:
   1.555 +    return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   1.556 +
   1.557 +  case vmIntrinsics::_compareAndSwapObject:
   1.558 +    return inline_unsafe_CAS(T_OBJECT);
   1.559 +  case vmIntrinsics::_compareAndSwapInt:
   1.560 +    return inline_unsafe_CAS(T_INT);
   1.561 +  case vmIntrinsics::_compareAndSwapLong:
   1.562 +    return inline_unsafe_CAS(T_LONG);
   1.563 +
   1.564 +  case vmIntrinsics::_putOrderedObject:
   1.565 +    return inline_unsafe_ordered_store(T_OBJECT);
   1.566 +  case vmIntrinsics::_putOrderedInt:
   1.567 +    return inline_unsafe_ordered_store(T_INT);
   1.568 +  case vmIntrinsics::_putOrderedLong:
   1.569 +    return inline_unsafe_ordered_store(T_LONG);
   1.570 +
   1.571 +  case vmIntrinsics::_currentThread:
   1.572 +    return inline_native_currentThread();
   1.573 +  case vmIntrinsics::_isInterrupted:
   1.574 +    return inline_native_isInterrupted();
   1.575 +
   1.576 +  case vmIntrinsics::_currentTimeMillis:
   1.577 +    return inline_native_time_funcs(false);
   1.578 +  case vmIntrinsics::_nanoTime:
   1.579 +    return inline_native_time_funcs(true);
   1.580 +  case vmIntrinsics::_allocateInstance:
   1.581 +    return inline_unsafe_allocate();
   1.582 +  case vmIntrinsics::_copyMemory:
   1.583 +    return inline_unsafe_copyMemory();
   1.584 +  case vmIntrinsics::_newArray:
   1.585 +    return inline_native_newArray();
   1.586 +  case vmIntrinsics::_getLength:
   1.587 +    return inline_native_getLength();
   1.588 +  case vmIntrinsics::_copyOf:
   1.589 +    return inline_array_copyOf(false);
   1.590 +  case vmIntrinsics::_copyOfRange:
   1.591 +    return inline_array_copyOf(true);
   1.592 +  case vmIntrinsics::_clone:
   1.593 +    return inline_native_clone(intrinsic()->is_virtual());
   1.594 +
   1.595 +  case vmIntrinsics::_isAssignableFrom:
   1.596 +    return inline_native_subtype_check();
   1.597 +
   1.598 +  case vmIntrinsics::_isInstance:
   1.599 +  case vmIntrinsics::_getModifiers:
   1.600 +  case vmIntrinsics::_isInterface:
   1.601 +  case vmIntrinsics::_isArray:
   1.602 +  case vmIntrinsics::_isPrimitive:
   1.603 +  case vmIntrinsics::_getSuperclass:
   1.604 +  case vmIntrinsics::_getComponentType:
   1.605 +  case vmIntrinsics::_getClassAccessFlags:
   1.606 +    return inline_native_Class_query(intrinsic_id());
   1.607 +
   1.608 +  case vmIntrinsics::_floatToRawIntBits:
   1.609 +  case vmIntrinsics::_floatToIntBits:
   1.610 +  case vmIntrinsics::_intBitsToFloat:
   1.611 +  case vmIntrinsics::_doubleToRawLongBits:
   1.612 +  case vmIntrinsics::_doubleToLongBits:
   1.613 +  case vmIntrinsics::_longBitsToDouble:
   1.614 +    return inline_fp_conversions(intrinsic_id());
   1.615 +
   1.616 +  case vmIntrinsics::_reverseBytes_i:
   1.617 +  case vmIntrinsics::_reverseBytes_l:
   1.618 +    return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   1.619 +
   1.620 +  case vmIntrinsics::_get_AtomicLong:
   1.621 +    return inline_native_AtomicLong_get();
   1.622 +  case vmIntrinsics::_attemptUpdate:
   1.623 +    return inline_native_AtomicLong_attemptUpdate();
   1.624 +
   1.625 +  case vmIntrinsics::_getCallerClass:
   1.626 +    return inline_native_Reflection_getCallerClass();
   1.627 +
   1.628 +  default:
   1.629 +    // If you get here, it may be that someone has added a new intrinsic
   1.630 +    // to the list in vmSymbols.hpp without implementing it here.
   1.631 +#ifndef PRODUCT
   1.632 +    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   1.633 +      tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   1.634 +                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   1.635 +    }
   1.636 +#endif
   1.637 +    return false;
   1.638 +  }
   1.639 +}
   1.640 +
   1.641 +//------------------------------push_result------------------------------
   1.642 +// Helper function for finishing intrinsics.
   1.643 +void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   1.644 +  record_for_igvn(region);
   1.645 +  set_control(_gvn.transform(region));
   1.646 +  BasicType value_type = value->type()->basic_type();
   1.647 +  push_node(value_type, _gvn.transform(value));
   1.648 +}
   1.649 +
   1.650 +//------------------------------generate_guard---------------------------
   1.651 +// Helper function for generating guarded fast-slow graph structures.
   1.652 +// The given 'test', if true, guards a slow path.  If the test fails
   1.653 +// then a fast path can be taken.  (We generally hope it fails.)
   1.654 +// In all cases, GraphKit::control() is updated to the fast path.
   1.655 +// The returned value represents the control for the slow path.
   1.656 +// The return value is never 'top'; it is either a valid control
   1.657 +// or NULL if it is obvious that the slow path can never be taken.
   1.658 +// Also, if region and the slow control are not NULL, the slow edge
   1.659 +// is appended to the region.
   1.660 +Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   1.661 +  if (stopped()) {
   1.662 +    // Already short circuited.
   1.663 +    return NULL;
   1.664 +  }
   1.665 +
   1.666 +  // Build an if node and its projections.
   1.667 +  // If test is true we take the slow path, which we assume is uncommon.
   1.668 +  if (_gvn.type(test) == TypeInt::ZERO) {
   1.669 +    // The slow branch is never taken.  No need to build this guard.
   1.670 +    return NULL;
   1.671 +  }
   1.672 +
   1.673 +  IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   1.674 +
   1.675 +  Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   1.676 +  if (if_slow == top()) {
   1.677 +    // The slow branch is never taken.  No need to build this guard.
   1.678 +    return NULL;
   1.679 +  }
   1.680 +
   1.681 +  if (region != NULL)
   1.682 +    region->add_req(if_slow);
   1.683 +
   1.684 +  Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   1.685 +  set_control(if_fast);
   1.686 +
   1.687 +  return if_slow;
   1.688 +}
   1.689 +
   1.690 +inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   1.691 +  return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   1.692 +}
   1.693 +inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   1.694 +  return generate_guard(test, region, PROB_FAIR);
   1.695 +}
   1.696 +
   1.697 +inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   1.698 +                                                     Node* *pos_index) {
   1.699 +  if (stopped())
   1.700 +    return NULL;                // already stopped
   1.701 +  if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   1.702 +    return NULL;                // index is already adequately typed
   1.703 +  Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   1.704 +  Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   1.705 +  Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   1.706 +  if (is_neg != NULL && pos_index != NULL) {
   1.707 +    // Emulate effect of Parse::adjust_map_after_if.
   1.708 +    Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
   1.709 +    ccast->set_req(0, control());
   1.710 +    (*pos_index) = _gvn.transform(ccast);
   1.711 +  }
   1.712 +  return is_neg;
   1.713 +}
   1.714 +
   1.715 +inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   1.716 +                                                        Node* *pos_index) {
   1.717 +  if (stopped())
   1.718 +    return NULL;                // already stopped
   1.719 +  if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   1.720 +    return NULL;                // index is already adequately typed
   1.721 +  Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   1.722 +  BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   1.723 +  Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
   1.724 +  Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   1.725 +  if (is_notp != NULL && pos_index != NULL) {
   1.726 +    // Emulate effect of Parse::adjust_map_after_if.
   1.727 +    Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
   1.728 +    ccast->set_req(0, control());
   1.729 +    (*pos_index) = _gvn.transform(ccast);
   1.730 +  }
   1.731 +  return is_notp;
   1.732 +}
   1.733 +
   1.734 +// Make sure that 'position' is a valid limit index, in [0..length].
   1.735 +// There are two equivalent plans for checking this:
   1.736 +//   A. (offset + copyLength)  unsigned<=  arrayLength
   1.737 +//   B. offset  <=  (arrayLength - copyLength)
   1.738 +// We require that all of the values above, except for the sum and
   1.739 +// difference, are already known to be non-negative.
   1.740 +// Plan A is robust in the face of overflow, if offset and copyLength
   1.741 +// are both hugely positive.
   1.742 +//
   1.743 +// Plan B is less direct and intuitive, but it does not overflow at
   1.744 +// all, since the difference of two non-negatives is always
   1.745 +// representable.  Whenever Java methods must perform the equivalent
   1.746 +// check they generally use Plan B instead of Plan A.
   1.747 +// For the moment we use Plan A.
   1.748 +inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   1.749 +                                                  Node* subseq_length,
   1.750 +                                                  Node* array_length,
   1.751 +                                                  RegionNode* region) {
   1.752 +  if (stopped())
   1.753 +    return NULL;                // already stopped
   1.754 +  bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   1.755 +  if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
   1.756 +    return NULL;                // common case of whole-array copy
   1.757 +  Node* last = subseq_length;
   1.758 +  if (!zero_offset)             // last += offset
   1.759 +    last = _gvn.transform( new (C, 3) AddINode(last, offset));
   1.760 +  Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
   1.761 +  Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   1.762 +  Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   1.763 +  return is_over;
   1.764 +}
   1.765 +
   1.766 +
   1.767 +//--------------------------generate_current_thread--------------------
   1.768 +Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   1.769 +  ciKlass*    thread_klass = env()->Thread_klass();
   1.770 +  const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   1.771 +  Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
   1.772 +  Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   1.773 +  Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   1.774 +  tls_output = thread;
   1.775 +  return threadObj;
   1.776 +}
   1.777 +
   1.778 +
   1.779 +//------------------------------inline_string_compareTo------------------------
   1.780 +bool LibraryCallKit::inline_string_compareTo() {
   1.781 +
   1.782 +  const int value_offset = java_lang_String::value_offset_in_bytes();
   1.783 +  const int count_offset = java_lang_String::count_offset_in_bytes();
   1.784 +  const int offset_offset = java_lang_String::offset_offset_in_bytes();
   1.785 +
   1.786 +  _sp += 2;
   1.787 +  Node *argument = pop();  // pop non-receiver first:  it was pushed second
   1.788 +  Node *receiver = pop();
   1.789 +
   1.790 +  // Null check on self without removing any arguments.  The argument
   1.791 +  // null check technically happens in the wrong place, which can lead to
   1.792 +  // invalid stack traces when string compare is inlined into a method
   1.793 +  // which handles NullPointerExceptions.
   1.794 +  _sp += 2;
   1.795 +  receiver = do_null_check(receiver, T_OBJECT);
   1.796 +  argument = do_null_check(argument, T_OBJECT);
   1.797 +  _sp -= 2;
   1.798 +  if (stopped()) {
   1.799 +    return true;
   1.800 +  }
   1.801 +
   1.802 +  ciInstanceKlass* klass = env()->String_klass();
   1.803 +  const TypeInstPtr* string_type =
   1.804 +    TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
   1.805 +
   1.806 +  Node* compare =
   1.807 +    _gvn.transform(new (C, 7) StrCompNode(
   1.808 +                        control(),
   1.809 +                        memory(TypeAryPtr::CHARS),
   1.810 +                        memory(string_type->add_offset(value_offset)),
   1.811 +                        memory(string_type->add_offset(count_offset)),
   1.812 +                        memory(string_type->add_offset(offset_offset)),
   1.813 +                        receiver,
   1.814 +                        argument));
   1.815 +  push(compare);
   1.816 +  return true;
   1.817 +}
   1.818 +
   1.819 +// Java version of String.indexOf(constant string)
   1.820 +// class StringDecl {
   1.821 +//   StringDecl(char[] ca) {
   1.822 +//     offset = 0;
   1.823 +//     count = ca.length;
   1.824 +//     value = ca;
   1.825 +//   }
   1.826 +//   int offset;
   1.827 +//   int count;
   1.828 +//   char[] value;
   1.829 +// }
   1.830 +//
   1.831 +// static int string_indexOf_J(StringDecl string_object, char[] target_object,
   1.832 +//                             int targetOffset, int cache_i, int md2) {
   1.833 +//   int cache = cache_i;
   1.834 +//   int sourceOffset = string_object.offset;
   1.835 +//   int sourceCount = string_object.count;
   1.836 +//   int targetCount = target_object.length;
   1.837 +//
   1.838 +//   int targetCountLess1 = targetCount - 1;
   1.839 +//   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
   1.840 +//
   1.841 +//   char[] source = string_object.value;
   1.842 +//   char[] target = target_object;
   1.843 +//   int lastChar = target[targetCountLess1];
   1.844 +//
   1.845 +//  outer_loop:
   1.846 +//   for (int i = sourceOffset; i < sourceEnd; ) {
   1.847 +//     int src = source[i + targetCountLess1];
   1.848 +//     if (src == lastChar) {
   1.849 +//       // With random strings and a 4-character alphabet,
   1.850 +//       // reverse matching at this point sets up 0.8% fewer
   1.851 +//       // frames, but (paradoxically) makes 0.3% more probes.
   1.852 +//       // Since those probes are nearer the lastChar probe,
   1.853 +//       // there is may be a net D$ win with reverse matching.
   1.854 +//       // But, reversing loop inhibits unroll of inner loop
   1.855 +//       // for unknown reason.  So, does running outer loop from
   1.856 +//       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
   1.857 +//       for (int j = 0; j < targetCountLess1; j++) {
   1.858 +//         if (target[targetOffset + j] != source[i+j]) {
   1.859 +//           if ((cache & (1 << source[i+j])) == 0) {
   1.860 +//             if (md2 < j+1) {
   1.861 +//               i += j+1;
   1.862 +//               continue outer_loop;
   1.863 +//             }
   1.864 +//           }
   1.865 +//           i += md2;
   1.866 +//           continue outer_loop;
   1.867 +//         }
   1.868 +//       }
   1.869 +//       return i - sourceOffset;
   1.870 +//     }
   1.871 +//     if ((cache & (1 << src)) == 0) {
   1.872 +//       i += targetCountLess1;
   1.873 +//     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
   1.874 +//     i++;
   1.875 +//   }
   1.876 +//   return -1;
   1.877 +// }
   1.878 +
   1.879 +//------------------------------string_indexOf------------------------
   1.880 +Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
   1.881 +                                     jint cache_i, jint md2_i) {
   1.882 +
   1.883 +  Node* no_ctrl  = NULL;
   1.884 +  float likely   = PROB_LIKELY(0.9);
   1.885 +  float unlikely = PROB_UNLIKELY(0.9);
   1.886 +
   1.887 +  const int value_offset  = java_lang_String::value_offset_in_bytes();
   1.888 +  const int count_offset  = java_lang_String::count_offset_in_bytes();
   1.889 +  const int offset_offset = java_lang_String::offset_offset_in_bytes();
   1.890 +
   1.891 +  ciInstanceKlass* klass = env()->String_klass();
   1.892 +  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
   1.893 +  const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
   1.894 +
   1.895 +  Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
   1.896 +  Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   1.897 +  Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
   1.898 +  Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   1.899 +  Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
   1.900 +  Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
   1.901 +
   1.902 +  Node* target = _gvn.transform(ConPNode::make(C, target_array));
   1.903 +  jint target_length = target_array->length();
   1.904 +  const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
   1.905 +  const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
   1.906 +
   1.907 +  IdealKit kit(gvn(), control(), merged_memory());
   1.908 +#define __ kit.
   1.909 +  Node* zero             = __ ConI(0);
   1.910 +  Node* one              = __ ConI(1);
   1.911 +  Node* cache            = __ ConI(cache_i);
   1.912 +  Node* md2              = __ ConI(md2_i);
   1.913 +  Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
   1.914 +  Node* targetCount      = __ ConI(target_length);
   1.915 +  Node* targetCountLess1 = __ ConI(target_length - 1);
   1.916 +  Node* targetOffset     = __ ConI(targetOffset_i);
   1.917 +  Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
   1.918 +
   1.919 +  IdealVariable rtn(kit), i(kit), j(kit); __ declares_done();
   1.920 +  Node* outer_loop = __ make_label(2 /* goto */);
   1.921 +  Node* return_    = __ make_label(1);
   1.922 +
   1.923 +  __ set(rtn,__ ConI(-1));
   1.924 +  __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
   1.925 +       Node* i2  = __ AddI(__ value(i), targetCountLess1);
   1.926 +       // pin to prohibit loading of "next iteration" value which may SEGV (rare)
   1.927 +       Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
   1.928 +       __ if_then(src, BoolTest::eq, lastChar, unlikely); {
   1.929 +         __ loop(j, zero, BoolTest::lt, targetCountLess1); {
   1.930 +              Node* tpj = __ AddI(targetOffset, __ value(j));
   1.931 +              Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
   1.932 +              Node* ipj  = __ AddI(__ value(i), __ value(j));
   1.933 +              Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
   1.934 +              __ if_then(targ, BoolTest::ne, src2); {
   1.935 +                __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
   1.936 +                  __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
   1.937 +                    __ increment(i, __ AddI(__ value(j), one));
   1.938 +                    __ goto_(outer_loop);
   1.939 +                  } __ end_if(); __ dead(j);
   1.940 +                }__ end_if(); __ dead(j);
   1.941 +                __ increment(i, md2);
   1.942 +                __ goto_(outer_loop);
   1.943 +              }__ end_if();
   1.944 +              __ increment(j, one);
   1.945 +         }__ end_loop(); __ dead(j);
   1.946 +         __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
   1.947 +         __ goto_(return_);
   1.948 +       }__ end_if();
   1.949 +       __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
   1.950 +         __ increment(i, targetCountLess1);
   1.951 +       }__ end_if();
   1.952 +       __ increment(i, one);
   1.953 +       __ bind(outer_loop);
   1.954 +  }__ end_loop(); __ dead(i);
   1.955 +  __ bind(return_);
   1.956 +  __ drain_delay_transform();
   1.957 +
   1.958 +  set_control(__ ctrl());
   1.959 +  Node* result = __ value(rtn);
   1.960 +#undef __
   1.961 +  C->set_has_loops(true);
   1.962 +  return result;
   1.963 +}
   1.964 +
   1.965 +
   1.966 +//------------------------------inline_string_indexOf------------------------
   1.967 +bool LibraryCallKit::inline_string_indexOf() {
   1.968 +
   1.969 +  _sp += 2;
   1.970 +  Node *argument = pop();  // pop non-receiver first:  it was pushed second
   1.971 +  Node *receiver = pop();
   1.972 +
   1.973 +  // don't intrinsify is argument isn't a constant string.
   1.974 +  if (!argument->is_Con()) {
   1.975 +    return false;
   1.976 +  }
   1.977 +  const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
   1.978 +  if (str_type == NULL) {
   1.979 +    return false;
   1.980 +  }
   1.981 +  ciInstanceKlass* klass = env()->String_klass();
   1.982 +  ciObject* str_const = str_type->const_oop();
   1.983 +  if (str_const == NULL || str_const->klass() != klass) {
   1.984 +    return false;
   1.985 +  }
   1.986 +  ciInstance* str = str_const->as_instance();
   1.987 +  assert(str != NULL, "must be instance");
   1.988 +
   1.989 +  const int value_offset  = java_lang_String::value_offset_in_bytes();
   1.990 +  const int count_offset  = java_lang_String::count_offset_in_bytes();
   1.991 +  const int offset_offset = java_lang_String::offset_offset_in_bytes();
   1.992 +
   1.993 +  ciObject* v = str->field_value_by_offset(value_offset).as_object();
   1.994 +  int       o = str->field_value_by_offset(offset_offset).as_int();
   1.995 +  int       c = str->field_value_by_offset(count_offset).as_int();
   1.996 +  ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
   1.997 +
   1.998 +  // constant strings have no offset and count == length which
   1.999 +  // simplifies the resulting code somewhat so lets optimize for that.
  1.1000 +  if (o != 0 || c != pat->length()) {
  1.1001 +    return false;
  1.1002 +  }
  1.1003 +
  1.1004 +  // Null check on self without removing any arguments.  The argument
  1.1005 +  // null check technically happens in the wrong place, which can lead to
  1.1006 +  // invalid stack traces when string compare is inlined into a method
  1.1007 +  // which handles NullPointerExceptions.
  1.1008 +  _sp += 2;
  1.1009 +  receiver = do_null_check(receiver, T_OBJECT);
  1.1010 +  // No null check on the argument is needed since it's a constant String oop.
  1.1011 +  _sp -= 2;
  1.1012 +  if (stopped()) {
  1.1013 +    return true;
  1.1014 +  }
  1.1015 +
  1.1016 +  // The null string as a pattern always returns 0 (match at beginning of string)
  1.1017 +  if (c == 0) {
  1.1018 +    push(intcon(0));
  1.1019 +    return true;
  1.1020 +  }
  1.1021 +
  1.1022 +  jchar lastChar = pat->char_at(o + (c - 1));
  1.1023 +  int cache = 0;
  1.1024 +  int i;
  1.1025 +  for (i = 0; i < c - 1; i++) {
  1.1026 +    assert(i < pat->length(), "out of range");
  1.1027 +    cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1.1028 +  }
  1.1029 +
  1.1030 +  int md2 = c;
  1.1031 +  for (i = 0; i < c - 1; i++) {
  1.1032 +    assert(i < pat->length(), "out of range");
  1.1033 +    if (pat->char_at(o + i) == lastChar) {
  1.1034 +      md2 = (c - 1) - i;
  1.1035 +    }
  1.1036 +  }
  1.1037 +
  1.1038 +  Node* result = string_indexOf(receiver, pat, o, cache, md2);
  1.1039 +  push(result);
  1.1040 +  return true;
  1.1041 +}
  1.1042 +
  1.1043 +//--------------------------pop_math_arg--------------------------------
  1.1044 +// Pop a double argument to a math function from the stack
  1.1045 +// rounding it if necessary.
  1.1046 +Node * LibraryCallKit::pop_math_arg() {
  1.1047 +  Node *arg = pop_pair();
  1.1048 +  if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1.1049 +    arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  1.1050 +  return arg;
  1.1051 +}
  1.1052 +
  1.1053 +//------------------------------inline_trig----------------------------------
  1.1054 +// Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1.1055 +// argument reduction which will turn into a fast/slow diamond.
  1.1056 +bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1.1057 +  _sp += arg_size();            // restore stack pointer
  1.1058 +  Node* arg = pop_math_arg();
  1.1059 +  Node* trig = NULL;
  1.1060 +
  1.1061 +  switch (id) {
  1.1062 +  case vmIntrinsics::_dsin:
  1.1063 +    trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
  1.1064 +    break;
  1.1065 +  case vmIntrinsics::_dcos:
  1.1066 +    trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
  1.1067 +    break;
  1.1068 +  case vmIntrinsics::_dtan:
  1.1069 +    trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
  1.1070 +    break;
  1.1071 +  default:
  1.1072 +    assert(false, "bad intrinsic was passed in");
  1.1073 +    return false;
  1.1074 +  }
  1.1075 +
  1.1076 +  // Rounding required?  Check for argument reduction!
  1.1077 +  if( Matcher::strict_fp_requires_explicit_rounding ) {
  1.1078 +
  1.1079 +    static const double     pi_4 =  0.7853981633974483;
  1.1080 +    static const double neg_pi_4 = -0.7853981633974483;
  1.1081 +    // pi/2 in 80-bit extended precision
  1.1082 +    // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1.1083 +    // -pi/2 in 80-bit extended precision
  1.1084 +    // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1.1085 +    // Cutoff value for using this argument reduction technique
  1.1086 +    //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1.1087 +    //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1.1088 +
  1.1089 +    // Pseudocode for sin:
  1.1090 +    // if (x <= Math.PI / 4.0) {
  1.1091 +    //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1.1092 +    //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1.1093 +    // } else {
  1.1094 +    //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1.1095 +    // }
  1.1096 +    // return StrictMath.sin(x);
  1.1097 +
  1.1098 +    // Pseudocode for cos:
  1.1099 +    // if (x <= Math.PI / 4.0) {
  1.1100 +    //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1.1101 +    //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1.1102 +    // } else {
  1.1103 +    //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1.1104 +    // }
  1.1105 +    // return StrictMath.cos(x);
  1.1106 +
  1.1107 +    // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1.1108 +    // requires a special machine instruction to load it.  Instead we'll try
  1.1109 +    // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1.1110 +    // probably do the math inside the SIN encoding.
  1.1111 +
  1.1112 +    // Make the merge point
  1.1113 +    RegionNode *r = new (C, 3) RegionNode(3);
  1.1114 +    Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
  1.1115 +
  1.1116 +    // Flatten arg so we need only 1 test
  1.1117 +    Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
  1.1118 +    // Node for PI/4 constant
  1.1119 +    Node *pi4 = makecon(TypeD::make(pi_4));
  1.1120 +    // Check PI/4 : abs(arg)
  1.1121 +    Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
  1.1122 +    // Check: If PI/4 < abs(arg) then go slow
  1.1123 +    Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
  1.1124 +    // Branch either way
  1.1125 +    IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1.1126 +    set_control(opt_iff(r,iff));
  1.1127 +
  1.1128 +    // Set fast path result
  1.1129 +    phi->init_req(2,trig);
  1.1130 +
  1.1131 +    // Slow path - non-blocking leaf call
  1.1132 +    Node* call = NULL;
  1.1133 +    switch (id) {
  1.1134 +    case vmIntrinsics::_dsin:
  1.1135 +      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1.1136 +                               CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1.1137 +                               "Sin", NULL, arg, top());
  1.1138 +      break;
  1.1139 +    case vmIntrinsics::_dcos:
  1.1140 +      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1.1141 +                               CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1.1142 +                               "Cos", NULL, arg, top());
  1.1143 +      break;
  1.1144 +    case vmIntrinsics::_dtan:
  1.1145 +      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1.1146 +                               CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1.1147 +                               "Tan", NULL, arg, top());
  1.1148 +      break;
  1.1149 +    }
  1.1150 +    assert(control()->in(0) == call, "");
  1.1151 +    Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
  1.1152 +    r->init_req(1,control());
  1.1153 +    phi->init_req(1,slow_result);
  1.1154 +
  1.1155 +    // Post-merge
  1.1156 +    set_control(_gvn.transform(r));
  1.1157 +    record_for_igvn(r);
  1.1158 +    trig = _gvn.transform(phi);
  1.1159 +
  1.1160 +    C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.1161 +  }
  1.1162 +  // Push result back on JVM stack
  1.1163 +  push_pair(trig);
  1.1164 +  return true;
  1.1165 +}
  1.1166 +
  1.1167 +//------------------------------inline_sqrt-------------------------------------
  1.1168 +// Inline square root instruction, if possible.
  1.1169 +bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1.1170 +  assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1.1171 +  _sp += arg_size();        // restore stack pointer
  1.1172 +  push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  1.1173 +  return true;
  1.1174 +}
  1.1175 +
  1.1176 +//------------------------------inline_abs-------------------------------------
  1.1177 +// Inline absolute value instruction, if possible.
  1.1178 +bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1.1179 +  assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1.1180 +  _sp += arg_size();        // restore stack pointer
  1.1181 +  push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  1.1182 +  return true;
  1.1183 +}
  1.1184 +
  1.1185 +//------------------------------inline_exp-------------------------------------
  1.1186 +// Inline exp instructions, if possible.  The Intel hardware only misses
  1.1187 +// really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1.1188 +bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1.1189 +  assert(id == vmIntrinsics::_dexp, "Not exp");
  1.1190 +
  1.1191 +  // If this inlining ever returned NaN in the past, we do not intrinsify it
  1.1192 +  // every again.  NaN results requires StrictMath.exp handling.
  1.1193 +  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1.1194 +
  1.1195 +  // Do not intrinsify on older platforms which lack cmove.
  1.1196 +  if (ConditionalMoveLimit == 0)  return false;
  1.1197 +
  1.1198 +  _sp += arg_size();        // restore stack pointer
  1.1199 +  Node *x = pop_math_arg();
  1.1200 +  Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
  1.1201 +
  1.1202 +  //-------------------
  1.1203 +  //result=(result.isNaN())? StrictMath::exp():result;
  1.1204 +  // Check: If isNaN() by checking result!=result? then go to Strict Math
  1.1205 +  Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1.1206 +  // Build the boolean node
  1.1207 +  Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1.1208 +
  1.1209 +  { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1.1210 +    // End the current control-flow path
  1.1211 +    push_pair(x);
  1.1212 +    // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
  1.1213 +    // to handle.  Recompile without intrinsifying Math.exp
  1.1214 +    uncommon_trap(Deoptimization::Reason_intrinsic,
  1.1215 +                  Deoptimization::Action_make_not_entrant);
  1.1216 +  }
  1.1217 +
  1.1218 +  C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.1219 +
  1.1220 +  push_pair(result);
  1.1221 +
  1.1222 +  return true;
  1.1223 +}
  1.1224 +
  1.1225 +//------------------------------inline_pow-------------------------------------
  1.1226 +// Inline power instructions, if possible.
  1.1227 +bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1.1228 +  assert(id == vmIntrinsics::_dpow, "Not pow");
  1.1229 +
  1.1230 +  // If this inlining ever returned NaN in the past, we do not intrinsify it
  1.1231 +  // every again.  NaN results requires StrictMath.pow handling.
  1.1232 +  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1.1233 +
  1.1234 +  // Do not intrinsify on older platforms which lack cmove.
  1.1235 +  if (ConditionalMoveLimit == 0)  return false;
  1.1236 +
  1.1237 +  // Pseudocode for pow
  1.1238 +  // if (x <= 0.0) {
  1.1239 +  //   if ((double)((int)y)==y) { // if y is int
  1.1240 +  //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
  1.1241 +  //   } else {
  1.1242 +  //     result = NaN;
  1.1243 +  //   }
  1.1244 +  // } else {
  1.1245 +  //   result = DPow(x,y);
  1.1246 +  // }
  1.1247 +  // if (result != result)?  {
  1.1248 +  //   ucommon_trap();
  1.1249 +  // }
  1.1250 +  // return result;
  1.1251 +
  1.1252 +  _sp += arg_size();        // restore stack pointer
  1.1253 +  Node* y = pop_math_arg();
  1.1254 +  Node* x = pop_math_arg();
  1.1255 +
  1.1256 +  Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1.1257 +
  1.1258 +  // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
  1.1259 +  // inside of something) then skip the fancy tests and just check for
  1.1260 +  // NaN result.
  1.1261 +  Node *result = NULL;
  1.1262 +  if( jvms()->depth() >= 1 ) {
  1.1263 +    result = fast_result;
  1.1264 +  } else {
  1.1265 +
  1.1266 +    // Set the merge point for If node with condition of (x <= 0.0)
  1.1267 +    // There are four possible paths to region node and phi node
  1.1268 +    RegionNode *r = new (C, 4) RegionNode(4);
  1.1269 +    Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
  1.1270 +
  1.1271 +    // Build the first if node: if (x <= 0.0)
  1.1272 +    // Node for 0 constant
  1.1273 +    Node *zeronode = makecon(TypeD::ZERO);
  1.1274 +    // Check x:0
  1.1275 +    Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
  1.1276 +    // Check: If (x<=0) then go complex path
  1.1277 +    Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
  1.1278 +    // Branch either way
  1.1279 +    IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1.1280 +    Node *opt_test = _gvn.transform(if1);
  1.1281 +    //assert( opt_test->is_If(), "Expect an IfNode");
  1.1282 +    IfNode *opt_if1 = (IfNode*)opt_test;
  1.1283 +    // Fast path taken; set region slot 3
  1.1284 +    Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
  1.1285 +    r->init_req(3,fast_taken); // Capture fast-control
  1.1286 +
  1.1287 +    // Fast path not-taken, i.e. slow path
  1.1288 +    Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
  1.1289 +
  1.1290 +    // Set fast path result
  1.1291 +    Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
  1.1292 +    phi->init_req(3, fast_result);
  1.1293 +
  1.1294 +    // Complex path
  1.1295 +    // Build the second if node (if y is int)
  1.1296 +    // Node for (int)y
  1.1297 +    Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
  1.1298 +    // Node for (double)((int) y)
  1.1299 +    Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
  1.1300 +    // Check (double)((int) y) : y
  1.1301 +    Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
  1.1302 +    // Check if (y isn't int) then go to slow path
  1.1303 +
  1.1304 +    Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
  1.1305 +    // Branch eith way
  1.1306 +    IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1.1307 +    Node *slow_path = opt_iff(r,if2); // Set region path 2
  1.1308 +
  1.1309 +    // Calculate DPow(abs(x), y)*(1 & (int)y)
  1.1310 +    // Node for constant 1
  1.1311 +    Node *conone = intcon(1);
  1.1312 +    // 1& (int)y
  1.1313 +    Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
  1.1314 +    // zero node
  1.1315 +    Node *conzero = intcon(0);
  1.1316 +    // Check (1&(int)y)==0?
  1.1317 +    Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
  1.1318 +    // Check if (1&(int)y)!=0?, if so the result is negative
  1.1319 +    Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
  1.1320 +    // abs(x)
  1.1321 +    Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
  1.1322 +    // abs(x)^y
  1.1323 +    Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
  1.1324 +    // -abs(x)^y
  1.1325 +    Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
  1.1326 +    // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1.1327 +    Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1.1328 +    // Set complex path fast result
  1.1329 +    phi->init_req(2, signresult);
  1.1330 +
  1.1331 +    static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1.1332 +    Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1.1333 +    r->init_req(1,slow_path);
  1.1334 +    phi->init_req(1,slow_result);
  1.1335 +
  1.1336 +    // Post merge
  1.1337 +    set_control(_gvn.transform(r));
  1.1338 +    record_for_igvn(r);
  1.1339 +    result=_gvn.transform(phi);
  1.1340 +  }
  1.1341 +
  1.1342 +  //-------------------
  1.1343 +  //result=(result.isNaN())? uncommon_trap():result;
  1.1344 +  // Check: If isNaN() by checking result!=result? then go to Strict Math
  1.1345 +  Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1.1346 +  // Build the boolean node
  1.1347 +  Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1.1348 +
  1.1349 +  { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1.1350 +    // End the current control-flow path
  1.1351 +    push_pair(x);
  1.1352 +    push_pair(y);
  1.1353 +    // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
  1.1354 +    // to handle.  Recompile without intrinsifying Math.pow.
  1.1355 +    uncommon_trap(Deoptimization::Reason_intrinsic,
  1.1356 +                  Deoptimization::Action_make_not_entrant);
  1.1357 +  }
  1.1358 +
  1.1359 +  C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.1360 +
  1.1361 +  push_pair(result);
  1.1362 +
  1.1363 +  return true;
  1.1364 +}
  1.1365 +
  1.1366 +//------------------------------inline_trans-------------------------------------
  1.1367 +// Inline transcendental instructions, if possible.  The Intel hardware gets
  1.1368 +// these right, no funny corner cases missed.
  1.1369 +bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1.1370 +  _sp += arg_size();        // restore stack pointer
  1.1371 +  Node* arg = pop_math_arg();
  1.1372 +  Node* trans = NULL;
  1.1373 +
  1.1374 +  switch (id) {
  1.1375 +  case vmIntrinsics::_dlog:
  1.1376 +    trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
  1.1377 +    break;
  1.1378 +  case vmIntrinsics::_dlog10:
  1.1379 +    trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
  1.1380 +    break;
  1.1381 +  default:
  1.1382 +    assert(false, "bad intrinsic was passed in");
  1.1383 +    return false;
  1.1384 +  }
  1.1385 +
  1.1386 +  // Push result back on JVM stack
  1.1387 +  push_pair(trans);
  1.1388 +  return true;
  1.1389 +}
  1.1390 +
  1.1391 +//------------------------------runtime_math-----------------------------
  1.1392 +bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1.1393 +  Node* a = NULL;
  1.1394 +  Node* b = NULL;
  1.1395 +
  1.1396 +  assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1.1397 +         "must be (DD)D or (D)D type");
  1.1398 +
  1.1399 +  // Inputs
  1.1400 +  _sp += arg_size();        // restore stack pointer
  1.1401 +  if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1.1402 +    b = pop_math_arg();
  1.1403 +  }
  1.1404 +  a = pop_math_arg();
  1.1405 +
  1.1406 +  const TypePtr* no_memory_effects = NULL;
  1.1407 +  Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1.1408 +                                 no_memory_effects,
  1.1409 +                                 a, top(), b, b ? top() : NULL);
  1.1410 +  Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
  1.1411 +#ifdef ASSERT
  1.1412 +  Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  1.1413 +  assert(value_top == top(), "second value must be top");
  1.1414 +#endif
  1.1415 +
  1.1416 +  push_pair(value);
  1.1417 +  return true;
  1.1418 +}
  1.1419 +
  1.1420 +//------------------------------inline_math_native-----------------------------
  1.1421 +bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1.1422 +  switch (id) {
  1.1423 +    // These intrinsics are not properly supported on all hardware
  1.1424 +  case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1.1425 +    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1.1426 +  case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1.1427 +    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1.1428 +  case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1.1429 +    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1.1430 +
  1.1431 +  case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1.1432 +    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1.1433 +  case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1.1434 +    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1.1435 +
  1.1436 +    // These intrinsics are supported on all hardware
  1.1437 +  case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1.1438 +  case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1.1439 +
  1.1440 +    // These intrinsics don't work on X86.  The ad implementation doesn't
  1.1441 +    // handle NaN's properly.  Instead of returning infinity, the ad
  1.1442 +    // implementation returns a NaN on overflow. See bug: 6304089
  1.1443 +    // Once the ad implementations are fixed, change the code below
  1.1444 +    // to match the intrinsics above
  1.1445 +
  1.1446 +  case vmIntrinsics::_dexp:  return
  1.1447 +    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1.1448 +  case vmIntrinsics::_dpow:  return
  1.1449 +    runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1.1450 +
  1.1451 +   // These intrinsics are not yet correctly implemented
  1.1452 +  case vmIntrinsics::_datan2:
  1.1453 +    return false;
  1.1454 +
  1.1455 +  default:
  1.1456 +    ShouldNotReachHere();
  1.1457 +    return false;
  1.1458 +  }
  1.1459 +}
  1.1460 +
  1.1461 +static bool is_simple_name(Node* n) {
  1.1462 +  return (n->req() == 1         // constant
  1.1463 +          || (n->is_Type() && n->as_Type()->type()->singleton())
  1.1464 +          || n->is_Proj()       // parameter or return value
  1.1465 +          || n->is_Phi()        // local of some sort
  1.1466 +          );
  1.1467 +}
  1.1468 +
  1.1469 +//----------------------------inline_min_max-----------------------------------
  1.1470 +bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1.1471 +  push(generate_min_max(id, argument(0), argument(1)));
  1.1472 +
  1.1473 +  return true;
  1.1474 +}
  1.1475 +
  1.1476 +Node*
  1.1477 +LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1.1478 +  // These are the candidate return value:
  1.1479 +  Node* xvalue = x0;
  1.1480 +  Node* yvalue = y0;
  1.1481 +
  1.1482 +  if (xvalue == yvalue) {
  1.1483 +    return xvalue;
  1.1484 +  }
  1.1485 +
  1.1486 +  bool want_max = (id == vmIntrinsics::_max);
  1.1487 +
  1.1488 +  const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1.1489 +  const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1.1490 +  if (txvalue == NULL || tyvalue == NULL)  return top();
  1.1491 +  // This is not really necessary, but it is consistent with a
  1.1492 +  // hypothetical MaxINode::Value method:
  1.1493 +  int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1.1494 +
  1.1495 +  // %%% This folding logic should (ideally) be in a different place.
  1.1496 +  // Some should be inside IfNode, and there to be a more reliable
  1.1497 +  // transformation of ?: style patterns into cmoves.  We also want
  1.1498 +  // more powerful optimizations around cmove and min/max.
  1.1499 +
  1.1500 +  // Try to find a dominating comparison of these guys.
  1.1501 +  // It can simplify the index computation for Arrays.copyOf
  1.1502 +  // and similar uses of System.arraycopy.
  1.1503 +  // First, compute the normalized version of CmpI(x, y).
  1.1504 +  int   cmp_op = Op_CmpI;
  1.1505 +  Node* xkey = xvalue;
  1.1506 +  Node* ykey = yvalue;
  1.1507 +  Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  1.1508 +  if (ideal_cmpxy->is_Cmp()) {
  1.1509 +    // E.g., if we have CmpI(length - offset, count),
  1.1510 +    // it might idealize to CmpI(length, count + offset)
  1.1511 +    cmp_op = ideal_cmpxy->Opcode();
  1.1512 +    xkey = ideal_cmpxy->in(1);
  1.1513 +    ykey = ideal_cmpxy->in(2);
  1.1514 +  }
  1.1515 +
  1.1516 +  // Start by locating any relevant comparisons.
  1.1517 +  Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1.1518 +  Node* cmpxy = NULL;
  1.1519 +  Node* cmpyx = NULL;
  1.1520 +  for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1.1521 +    Node* cmp = start_from->fast_out(k);
  1.1522 +    if (cmp->outcnt() > 0 &&            // must have prior uses
  1.1523 +        cmp->in(0) == NULL &&           // must be context-independent
  1.1524 +        cmp->Opcode() == cmp_op) {      // right kind of compare
  1.1525 +      if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1.1526 +      if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1.1527 +    }
  1.1528 +  }
  1.1529 +
  1.1530 +  const int NCMPS = 2;
  1.1531 +  Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1.1532 +  int cmpn;
  1.1533 +  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1.1534 +    if (cmps[cmpn] != NULL)  break;     // find a result
  1.1535 +  }
  1.1536 +  if (cmpn < NCMPS) {
  1.1537 +    // Look for a dominating test that tells us the min and max.
  1.1538 +    int depth = 0;                // Limit search depth for speed
  1.1539 +    Node* dom = control();
  1.1540 +    for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1.1541 +      if (++depth >= 100)  break;
  1.1542 +      Node* ifproj = dom;
  1.1543 +      if (!ifproj->is_Proj())  continue;
  1.1544 +      Node* iff = ifproj->in(0);
  1.1545 +      if (!iff->is_If())  continue;
  1.1546 +      Node* bol = iff->in(1);
  1.1547 +      if (!bol->is_Bool())  continue;
  1.1548 +      Node* cmp = bol->in(1);
  1.1549 +      if (cmp == NULL)  continue;
  1.1550 +      for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1.1551 +        if (cmps[cmpn] == cmp)  break;
  1.1552 +      if (cmpn == NCMPS)  continue;
  1.1553 +      BoolTest::mask btest = bol->as_Bool()->_test._test;
  1.1554 +      if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1.1555 +      if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1.1556 +      // At this point, we know that 'x btest y' is true.
  1.1557 +      switch (btest) {
  1.1558 +      case BoolTest::eq:
  1.1559 +        // They are proven equal, so we can collapse the min/max.
  1.1560 +        // Either value is the answer.  Choose the simpler.
  1.1561 +        if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1.1562 +          return yvalue;
  1.1563 +        return xvalue;
  1.1564 +      case BoolTest::lt:          // x < y
  1.1565 +      case BoolTest::le:          // x <= y
  1.1566 +        return (want_max ? yvalue : xvalue);
  1.1567 +      case BoolTest::gt:          // x > y
  1.1568 +      case BoolTest::ge:          // x >= y
  1.1569 +        return (want_max ? xvalue : yvalue);
  1.1570 +      }
  1.1571 +    }
  1.1572 +  }
  1.1573 +
  1.1574 +  // We failed to find a dominating test.
  1.1575 +  // Let's pick a test that might GVN with prior tests.
  1.1576 +  Node*          best_bol   = NULL;
  1.1577 +  BoolTest::mask best_btest = BoolTest::illegal;
  1.1578 +  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1.1579 +    Node* cmp = cmps[cmpn];
  1.1580 +    if (cmp == NULL)  continue;
  1.1581 +    for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1.1582 +      Node* bol = cmp->fast_out(j);
  1.1583 +      if (!bol->is_Bool())  continue;
  1.1584 +      BoolTest::mask btest = bol->as_Bool()->_test._test;
  1.1585 +      if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1.1586 +      if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1.1587 +      if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1.1588 +        best_bol   = bol->as_Bool();
  1.1589 +        best_btest = btest;
  1.1590 +      }
  1.1591 +    }
  1.1592 +  }
  1.1593 +
  1.1594 +  Node* answer_if_true  = NULL;
  1.1595 +  Node* answer_if_false = NULL;
  1.1596 +  switch (best_btest) {
  1.1597 +  default:
  1.1598 +    if (cmpxy == NULL)
  1.1599 +      cmpxy = ideal_cmpxy;
  1.1600 +    best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
  1.1601 +    // and fall through:
  1.1602 +  case BoolTest::lt:          // x < y
  1.1603 +  case BoolTest::le:          // x <= y
  1.1604 +    answer_if_true  = (want_max ? yvalue : xvalue);
  1.1605 +    answer_if_false = (want_max ? xvalue : yvalue);
  1.1606 +    break;
  1.1607 +  case BoolTest::gt:          // x > y
  1.1608 +  case BoolTest::ge:          // x >= y
  1.1609 +    answer_if_true  = (want_max ? xvalue : yvalue);
  1.1610 +    answer_if_false = (want_max ? yvalue : xvalue);
  1.1611 +    break;
  1.1612 +  }
  1.1613 +
  1.1614 +  jint hi, lo;
  1.1615 +  if (want_max) {
  1.1616 +    // We can sharpen the minimum.
  1.1617 +    hi = MAX2(txvalue->_hi, tyvalue->_hi);
  1.1618 +    lo = MAX2(txvalue->_lo, tyvalue->_lo);
  1.1619 +  } else {
  1.1620 +    // We can sharpen the maximum.
  1.1621 +    hi = MIN2(txvalue->_hi, tyvalue->_hi);
  1.1622 +    lo = MIN2(txvalue->_lo, tyvalue->_lo);
  1.1623 +  }
  1.1624 +
  1.1625 +  // Use a flow-free graph structure, to avoid creating excess control edges
  1.1626 +  // which could hinder other optimizations.
  1.1627 +  // Since Math.min/max is often used with arraycopy, we want
  1.1628 +  // tightly_coupled_allocation to be able to see beyond min/max expressions.
  1.1629 +  Node* cmov = CMoveNode::make(C, NULL, best_bol,
  1.1630 +                               answer_if_false, answer_if_true,
  1.1631 +                               TypeInt::make(lo, hi, widen));
  1.1632 +
  1.1633 +  return _gvn.transform(cmov);
  1.1634 +
  1.1635 +  /*
  1.1636 +  // This is not as desirable as it may seem, since Min and Max
  1.1637 +  // nodes do not have a full set of optimizations.
  1.1638 +  // And they would interfere, anyway, with 'if' optimizations
  1.1639 +  // and with CMoveI canonical forms.
  1.1640 +  switch (id) {
  1.1641 +  case vmIntrinsics::_min:
  1.1642 +    result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  1.1643 +  case vmIntrinsics::_max:
  1.1644 +    result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  1.1645 +  default:
  1.1646 +    ShouldNotReachHere();
  1.1647 +  }
  1.1648 +  */
  1.1649 +}
  1.1650 +
  1.1651 +inline int
  1.1652 +LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  1.1653 +  const TypePtr* base_type = TypePtr::NULL_PTR;
  1.1654 +  if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  1.1655 +  if (base_type == NULL) {
  1.1656 +    // Unknown type.
  1.1657 +    return Type::AnyPtr;
  1.1658 +  } else if (base_type == TypePtr::NULL_PTR) {
  1.1659 +    // Since this is a NULL+long form, we have to switch to a rawptr.
  1.1660 +    base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
  1.1661 +    offset = MakeConX(0);
  1.1662 +    return Type::RawPtr;
  1.1663 +  } else if (base_type->base() == Type::RawPtr) {
  1.1664 +    return Type::RawPtr;
  1.1665 +  } else if (base_type->isa_oopptr()) {
  1.1666 +    // Base is never null => always a heap address.
  1.1667 +    if (base_type->ptr() == TypePtr::NotNull) {
  1.1668 +      return Type::OopPtr;
  1.1669 +    }
  1.1670 +    // Offset is small => always a heap address.
  1.1671 +    const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  1.1672 +    if (offset_type != NULL &&
  1.1673 +        base_type->offset() == 0 &&     // (should always be?)
  1.1674 +        offset_type->_lo >= 0 &&
  1.1675 +        !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  1.1676 +      return Type::OopPtr;
  1.1677 +    }
  1.1678 +    // Otherwise, it might either be oop+off or NULL+addr.
  1.1679 +    return Type::AnyPtr;
  1.1680 +  } else {
  1.1681 +    // No information:
  1.1682 +    return Type::AnyPtr;
  1.1683 +  }
  1.1684 +}
  1.1685 +
  1.1686 +inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  1.1687 +  int kind = classify_unsafe_addr(base, offset);
  1.1688 +  if (kind == Type::RawPtr) {
  1.1689 +    return basic_plus_adr(top(), base, offset);
  1.1690 +  } else {
  1.1691 +    return basic_plus_adr(base, offset);
  1.1692 +  }
  1.1693 +}
  1.1694 +
  1.1695 +//----------------------------inline_reverseBytes_int/long-------------------
  1.1696 +// inline Int.reverseBytes(int)
  1.1697 +// inline Long.reverseByes(long)
  1.1698 +bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  1.1699 +  assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes");
  1.1700 +  if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
  1.1701 +  if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
  1.1702 +  _sp += arg_size();        // restore stack pointer
  1.1703 +  switch (id) {
  1.1704 +  case vmIntrinsics::_reverseBytes_i:
  1.1705 +    push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
  1.1706 +    break;
  1.1707 +  case vmIntrinsics::_reverseBytes_l:
  1.1708 +    push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
  1.1709 +    break;
  1.1710 +  default:
  1.1711 +    ;
  1.1712 +  }
  1.1713 +  return true;
  1.1714 +}
  1.1715 +
  1.1716 +//----------------------------inline_unsafe_access----------------------------
  1.1717 +
  1.1718 +const static BasicType T_ADDRESS_HOLDER = T_LONG;
  1.1719 +
  1.1720 +// Interpret Unsafe.fieldOffset cookies correctly:
  1.1721 +extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  1.1722 +
  1.1723 +bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  1.1724 +  if (callee()->is_static())  return false;  // caller must have the capability!
  1.1725 +
  1.1726 +#ifndef PRODUCT
  1.1727 +  {
  1.1728 +    ResourceMark rm;
  1.1729 +    // Check the signatures.
  1.1730 +    ciSignature* sig = signature();
  1.1731 +#ifdef ASSERT
  1.1732 +    if (!is_store) {
  1.1733 +      // Object getObject(Object base, int/long offset), etc.
  1.1734 +      BasicType rtype = sig->return_type()->basic_type();
  1.1735 +      if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  1.1736 +          rtype = T_ADDRESS;  // it is really a C void*
  1.1737 +      assert(rtype == type, "getter must return the expected value");
  1.1738 +      if (!is_native_ptr) {
  1.1739 +        assert(sig->count() == 2, "oop getter has 2 arguments");
  1.1740 +        assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  1.1741 +        assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  1.1742 +      } else {
  1.1743 +        assert(sig->count() == 1, "native getter has 1 argument");
  1.1744 +        assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  1.1745 +      }
  1.1746 +    } else {
  1.1747 +      // void putObject(Object base, int/long offset, Object x), etc.
  1.1748 +      assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  1.1749 +      if (!is_native_ptr) {
  1.1750 +        assert(sig->count() == 3, "oop putter has 3 arguments");
  1.1751 +        assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  1.1752 +        assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  1.1753 +      } else {
  1.1754 +        assert(sig->count() == 2, "native putter has 2 arguments");
  1.1755 +        assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  1.1756 +      }
  1.1757 +      BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  1.1758 +      if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  1.1759 +        vtype = T_ADDRESS;  // it is really a C void*
  1.1760 +      assert(vtype == type, "putter must accept the expected value");
  1.1761 +    }
  1.1762 +#endif // ASSERT
  1.1763 + }
  1.1764 +#endif //PRODUCT
  1.1765 +
  1.1766 +  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  1.1767 +
  1.1768 +  int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  1.1769 +
  1.1770 +  // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  1.1771 +  int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  1.1772 +
  1.1773 +  debug_only(int saved_sp = _sp);
  1.1774 +  _sp += nargs;
  1.1775 +
  1.1776 +  Node* val;
  1.1777 +  debug_only(val = (Node*)(uintptr_t)-1);
  1.1778 +
  1.1779 +
  1.1780 +  if (is_store) {
  1.1781 +    // Get the value being stored.  (Pop it first; it was pushed last.)
  1.1782 +    switch (type) {
  1.1783 +    case T_DOUBLE:
  1.1784 +    case T_LONG:
  1.1785 +    case T_ADDRESS:
  1.1786 +      val = pop_pair();
  1.1787 +      break;
  1.1788 +    default:
  1.1789 +      val = pop();
  1.1790 +    }
  1.1791 +  }
  1.1792 +
  1.1793 +  // Build address expression.  See the code in inline_unsafe_prefetch.
  1.1794 +  Node *adr;
  1.1795 +  Node *heap_base_oop = top();
  1.1796 +  if (!is_native_ptr) {
  1.1797 +    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  1.1798 +    Node* offset = pop_pair();
  1.1799 +    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  1.1800 +    Node* base   = pop();
  1.1801 +    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  1.1802 +    // to be plain byte offsets, which are also the same as those accepted
  1.1803 +    // by oopDesc::field_base.
  1.1804 +    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  1.1805 +           "fieldOffset must be byte-scaled");
  1.1806 +    // 32-bit machines ignore the high half!
  1.1807 +    offset = ConvL2X(offset);
  1.1808 +    adr = make_unsafe_address(base, offset);
  1.1809 +    heap_base_oop = base;
  1.1810 +  } else {
  1.1811 +    Node* ptr = pop_pair();
  1.1812 +    // Adjust Java long to machine word:
  1.1813 +    ptr = ConvL2X(ptr);
  1.1814 +    adr = make_unsafe_address(NULL, ptr);
  1.1815 +  }
  1.1816 +
  1.1817 +  // Pop receiver last:  it was pushed first.
  1.1818 +  Node *receiver = pop();
  1.1819 +
  1.1820 +  assert(saved_sp == _sp, "must have correct argument count");
  1.1821 +
  1.1822 +  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  1.1823 +
  1.1824 +  // First guess at the value type.
  1.1825 +  const Type *value_type = Type::get_const_basic_type(type);
  1.1826 +
  1.1827 +  // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  1.1828 +  // there was not enough information to nail it down.
  1.1829 +  Compile::AliasType* alias_type = C->alias_type(adr_type);
  1.1830 +  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  1.1831 +
  1.1832 +  // We will need memory barriers unless we can determine a unique
  1.1833 +  // alias category for this reference.  (Note:  If for some reason
  1.1834 +  // the barriers get omitted and the unsafe reference begins to "pollute"
  1.1835 +  // the alias analysis of the rest of the graph, either Compile::can_alias
  1.1836 +  // or Compile::must_alias will throw a diagnostic assert.)
  1.1837 +  bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  1.1838 +
  1.1839 +  if (!is_store && type == T_OBJECT) {
  1.1840 +    // Attempt to infer a sharper value type from the offset and base type.
  1.1841 +    ciKlass* sharpened_klass = NULL;
  1.1842 +
  1.1843 +    // See if it is an instance field, with an object type.
  1.1844 +    if (alias_type->field() != NULL) {
  1.1845 +      assert(!is_native_ptr, "native pointer op cannot use a java address");
  1.1846 +      if (alias_type->field()->type()->is_klass()) {
  1.1847 +        sharpened_klass = alias_type->field()->type()->as_klass();
  1.1848 +      }
  1.1849 +    }
  1.1850 +
  1.1851 +    // See if it is a narrow oop array.
  1.1852 +    if (adr_type->isa_aryptr()) {
  1.1853 +      if (adr_type->offset() >= objArrayOopDesc::header_size() * wordSize) {
  1.1854 +        const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  1.1855 +        if (elem_type != NULL) {
  1.1856 +          sharpened_klass = elem_type->klass();
  1.1857 +        }
  1.1858 +      }
  1.1859 +    }
  1.1860 +
  1.1861 +    if (sharpened_klass != NULL) {
  1.1862 +      const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  1.1863 +
  1.1864 +      // Sharpen the value type.
  1.1865 +      value_type = tjp;
  1.1866 +
  1.1867 +#ifndef PRODUCT
  1.1868 +      if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  1.1869 +        tty->print("  from base type:  ");   adr_type->dump();
  1.1870 +        tty->print("  sharpened value: "); value_type->dump();
  1.1871 +      }
  1.1872 +#endif
  1.1873 +    }
  1.1874 +  }
  1.1875 +
  1.1876 +  // Null check on self without removing any arguments.  The argument
  1.1877 +  // null check technically happens in the wrong place, which can lead to
  1.1878 +  // invalid stack traces when the primitive is inlined into a method
  1.1879 +  // which handles NullPointerExceptions.
  1.1880 +  _sp += nargs;
  1.1881 +  do_null_check(receiver, T_OBJECT);
  1.1882 +  _sp -= nargs;
  1.1883 +  if (stopped()) {
  1.1884 +    return true;
  1.1885 +  }
  1.1886 +  // Heap pointers get a null-check from the interpreter,
  1.1887 +  // as a courtesy.  However, this is not guaranteed by Unsafe,
  1.1888 +  // and it is not possible to fully distinguish unintended nulls
  1.1889 +  // from intended ones in this API.
  1.1890 +
  1.1891 +  if (is_volatile) {
  1.1892 +    // We need to emit leading and trailing CPU membars (see below) in
  1.1893 +    // addition to memory membars when is_volatile. This is a little
  1.1894 +    // too strong, but avoids the need to insert per-alias-type
  1.1895 +    // volatile membars (for stores; compare Parse::do_put_xxx), which
  1.1896 +    // we cannot do effctively here because we probably only have a
  1.1897 +    // rough approximation of type.
  1.1898 +    need_mem_bar = true;
  1.1899 +    // For Stores, place a memory ordering barrier now.
  1.1900 +    if (is_store)
  1.1901 +      insert_mem_bar(Op_MemBarRelease);
  1.1902 +  }
  1.1903 +
  1.1904 +  // Memory barrier to prevent normal and 'unsafe' accesses from
  1.1905 +  // bypassing each other.  Happens after null checks, so the
  1.1906 +  // exception paths do not take memory state from the memory barrier,
  1.1907 +  // so there's no problems making a strong assert about mixing users
  1.1908 +  // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  1.1909 +  // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  1.1910 +  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  1.1911 +
  1.1912 +  if (!is_store) {
  1.1913 +    Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  1.1914 +    // load value and push onto stack
  1.1915 +    switch (type) {
  1.1916 +    case T_BOOLEAN:
  1.1917 +    case T_CHAR:
  1.1918 +    case T_BYTE:
  1.1919 +    case T_SHORT:
  1.1920 +    case T_INT:
  1.1921 +    case T_FLOAT:
  1.1922 +    case T_OBJECT:
  1.1923 +      push( p );
  1.1924 +      break;
  1.1925 +    case T_ADDRESS:
  1.1926 +      // Cast to an int type.
  1.1927 +      p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
  1.1928 +      p = ConvX2L(p);
  1.1929 +      push_pair(p);
  1.1930 +      break;
  1.1931 +    case T_DOUBLE:
  1.1932 +    case T_LONG:
  1.1933 +      push_pair( p );
  1.1934 +      break;
  1.1935 +    default: ShouldNotReachHere();
  1.1936 +    }
  1.1937 +  } else {
  1.1938 +    // place effect of store into memory
  1.1939 +    switch (type) {
  1.1940 +    case T_DOUBLE:
  1.1941 +      val = dstore_rounding(val);
  1.1942 +      break;
  1.1943 +    case T_ADDRESS:
  1.1944 +      // Repackage the long as a pointer.
  1.1945 +      val = ConvL2X(val);
  1.1946 +      val = _gvn.transform( new (C, 2) CastX2PNode(val) );
  1.1947 +      break;
  1.1948 +    }
  1.1949 +
  1.1950 +    if (type != T_OBJECT ) {
  1.1951 +      (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  1.1952 +    } else {
  1.1953 +      // Possibly an oop being stored to Java heap or native memory
  1.1954 +      if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  1.1955 +        // oop to Java heap.
  1.1956 +        (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
  1.1957 +      } else {
  1.1958 +
  1.1959 +        // We can't tell at compile time if we are storing in the Java heap or outside
  1.1960 +        // of it. So we need to emit code to conditionally do the proper type of
  1.1961 +        // store.
  1.1962 +
  1.1963 +        IdealKit kit(gvn(), control(),  merged_memory());
  1.1964 +        kit.declares_done();
  1.1965 +        // QQQ who knows what probability is here??
  1.1966 +        kit.if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  1.1967 +          (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
  1.1968 +        } kit.else_(); {
  1.1969 +          (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  1.1970 +        } kit.end_if();
  1.1971 +      }
  1.1972 +    }
  1.1973 +  }
  1.1974 +
  1.1975 +  if (is_volatile) {
  1.1976 +    if (!is_store)
  1.1977 +      insert_mem_bar(Op_MemBarAcquire);
  1.1978 +    else
  1.1979 +      insert_mem_bar(Op_MemBarVolatile);
  1.1980 +  }
  1.1981 +
  1.1982 +  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  1.1983 +
  1.1984 +  return true;
  1.1985 +}
  1.1986 +
  1.1987 +//----------------------------inline_unsafe_prefetch----------------------------
  1.1988 +
  1.1989 +bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  1.1990 +#ifndef PRODUCT
  1.1991 +  {
  1.1992 +    ResourceMark rm;
  1.1993 +    // Check the signatures.
  1.1994 +    ciSignature* sig = signature();
  1.1995 +#ifdef ASSERT
  1.1996 +    // Object getObject(Object base, int/long offset), etc.
  1.1997 +    BasicType rtype = sig->return_type()->basic_type();
  1.1998 +    if (!is_native_ptr) {
  1.1999 +      assert(sig->count() == 2, "oop prefetch has 2 arguments");
  1.2000 +      assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  1.2001 +      assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  1.2002 +    } else {
  1.2003 +      assert(sig->count() == 1, "native prefetch has 1 argument");
  1.2004 +      assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  1.2005 +    }
  1.2006 +#endif // ASSERT
  1.2007 +  }
  1.2008 +#endif // !PRODUCT
  1.2009 +
  1.2010 +  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  1.2011 +
  1.2012 +  // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  1.2013 +  int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  1.2014 +
  1.2015 +  debug_only(int saved_sp = _sp);
  1.2016 +  _sp += nargs;
  1.2017 +
  1.2018 +  // Build address expression.  See the code in inline_unsafe_access.
  1.2019 +  Node *adr;
  1.2020 +  if (!is_native_ptr) {
  1.2021 +    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  1.2022 +    Node* offset = pop_pair();
  1.2023 +    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  1.2024 +    Node* base   = pop();
  1.2025 +    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  1.2026 +    // to be plain byte offsets, which are also the same as those accepted
  1.2027 +    // by oopDesc::field_base.
  1.2028 +    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  1.2029 +           "fieldOffset must be byte-scaled");
  1.2030 +    // 32-bit machines ignore the high half!
  1.2031 +    offset = ConvL2X(offset);
  1.2032 +    adr = make_unsafe_address(base, offset);
  1.2033 +  } else {
  1.2034 +    Node* ptr = pop_pair();
  1.2035 +    // Adjust Java long to machine word:
  1.2036 +    ptr = ConvL2X(ptr);
  1.2037 +    adr = make_unsafe_address(NULL, ptr);
  1.2038 +  }
  1.2039 +
  1.2040 +  if (is_static) {
  1.2041 +    assert(saved_sp == _sp, "must have correct argument count");
  1.2042 +  } else {
  1.2043 +    // Pop receiver last:  it was pushed first.
  1.2044 +    Node *receiver = pop();
  1.2045 +    assert(saved_sp == _sp, "must have correct argument count");
  1.2046 +
  1.2047 +    // Null check on self without removing any arguments.  The argument
  1.2048 +    // null check technically happens in the wrong place, which can lead to
  1.2049 +    // invalid stack traces when the primitive is inlined into a method
  1.2050 +    // which handles NullPointerExceptions.
  1.2051 +    _sp += nargs;
  1.2052 +    do_null_check(receiver, T_OBJECT);
  1.2053 +    _sp -= nargs;
  1.2054 +    if (stopped()) {
  1.2055 +      return true;
  1.2056 +    }
  1.2057 +  }
  1.2058 +
  1.2059 +  // Generate the read or write prefetch
  1.2060 +  Node *prefetch;
  1.2061 +  if (is_store) {
  1.2062 +    prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  1.2063 +  } else {
  1.2064 +    prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  1.2065 +  }
  1.2066 +  prefetch->init_req(0, control());
  1.2067 +  set_i_o(_gvn.transform(prefetch));
  1.2068 +
  1.2069 +  return true;
  1.2070 +}
  1.2071 +
  1.2072 +//----------------------------inline_unsafe_CAS----------------------------
  1.2073 +
  1.2074 +bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  1.2075 +  // This basic scheme here is the same as inline_unsafe_access, but
  1.2076 +  // differs in enough details that combining them would make the code
  1.2077 +  // overly confusing.  (This is a true fact! I originally combined
  1.2078 +  // them, but even I was confused by it!) As much code/comments as
  1.2079 +  // possible are retained from inline_unsafe_access though to make
  1.2080 +  // the correspondances clearer. - dl
  1.2081 +
  1.2082 +  if (callee()->is_static())  return false;  // caller must have the capability!
  1.2083 +
  1.2084 +#ifndef PRODUCT
  1.2085 +  {
  1.2086 +    ResourceMark rm;
  1.2087 +    // Check the signatures.
  1.2088 +    ciSignature* sig = signature();
  1.2089 +#ifdef ASSERT
  1.2090 +    BasicType rtype = sig->return_type()->basic_type();
  1.2091 +    assert(rtype == T_BOOLEAN, "CAS must return boolean");
  1.2092 +    assert(sig->count() == 4, "CAS has 4 arguments");
  1.2093 +    assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  1.2094 +    assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  1.2095 +#endif // ASSERT
  1.2096 +  }
  1.2097 +#endif //PRODUCT
  1.2098 +
  1.2099 +  // number of stack slots per value argument (1 or 2)
  1.2100 +  int type_words = type2size[type];
  1.2101 +
  1.2102 +  // Cannot inline wide CAS on machines that don't support it natively
  1.2103 +  if (type2aelembytes[type] > BytesPerInt && !VM_Version::supports_cx8())
  1.2104 +    return false;
  1.2105 +
  1.2106 +  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  1.2107 +
  1.2108 +  // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  1.2109 +  int nargs = 1 + 1 + 2  + type_words + type_words;
  1.2110 +
  1.2111 +  // pop arguments: newval, oldval, offset, base, and receiver
  1.2112 +  debug_only(int saved_sp = _sp);
  1.2113 +  _sp += nargs;
  1.2114 +  Node* newval   = (type_words == 1) ? pop() : pop_pair();
  1.2115 +  Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  1.2116 +  Node *offset   = pop_pair();
  1.2117 +  Node *base     = pop();
  1.2118 +  Node *receiver = pop();
  1.2119 +  assert(saved_sp == _sp, "must have correct argument count");
  1.2120 +
  1.2121 +  //  Null check receiver.
  1.2122 +  _sp += nargs;
  1.2123 +  do_null_check(receiver, T_OBJECT);
  1.2124 +  _sp -= nargs;
  1.2125 +  if (stopped()) {
  1.2126 +    return true;
  1.2127 +  }
  1.2128 +
  1.2129 +  // Build field offset expression.
  1.2130 +  // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  1.2131 +  // to be plain byte offsets, which are also the same as those accepted
  1.2132 +  // by oopDesc::field_base.
  1.2133 +  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  1.2134 +  // 32-bit machines ignore the high half of long offsets
  1.2135 +  offset = ConvL2X(offset);
  1.2136 +  Node* adr = make_unsafe_address(base, offset);
  1.2137 +  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  1.2138 +
  1.2139 +  // (Unlike inline_unsafe_access, there seems no point in trying
  1.2140 +  // to refine types. Just use the coarse types here.
  1.2141 +  const Type *value_type = Type::get_const_basic_type(type);
  1.2142 +  Compile::AliasType* alias_type = C->alias_type(adr_type);
  1.2143 +  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  1.2144 +  int alias_idx = C->get_alias_index(adr_type);
  1.2145 +
  1.2146 +  // Memory-model-wise, a CAS acts like a little synchronized block,
  1.2147 +  // so needs barriers on each side.  These don't't translate into
  1.2148 +  // actual barriers on most machines, but we still need rest of
  1.2149 +  // compiler to respect ordering.
  1.2150 +
  1.2151 +  insert_mem_bar(Op_MemBarRelease);
  1.2152 +  insert_mem_bar(Op_MemBarCPUOrder);
  1.2153 +
  1.2154 +  // 4984716: MemBars must be inserted before this
  1.2155 +  //          memory node in order to avoid a false
  1.2156 +  //          dependency which will confuse the scheduler.
  1.2157 +  Node *mem = memory(alias_idx);
  1.2158 +
  1.2159 +  // For now, we handle only those cases that actually exist: ints,
  1.2160 +  // longs, and Object. Adding others should be straightforward.
  1.2161 +  Node* cas;
  1.2162 +  switch(type) {
  1.2163 +  case T_INT:
  1.2164 +    cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  1.2165 +    break;
  1.2166 +  case T_LONG:
  1.2167 +    cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  1.2168 +    break;
  1.2169 +  case T_OBJECT:
  1.2170 +    // reference stores need a store barrier.
  1.2171 +    // (They don't if CAS fails, but it isn't worth checking.)
  1.2172 +    pre_barrier(control(), base, adr, alias_idx, newval, value_type, T_OBJECT);
  1.2173 +    cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  1.2174 +    post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
  1.2175 +    break;
  1.2176 +  default:
  1.2177 +    ShouldNotReachHere();
  1.2178 +    break;
  1.2179 +  }
  1.2180 +
  1.2181 +  // SCMemProjNodes represent the memory state of CAS. Their main
  1.2182 +  // role is to prevent CAS nodes from being optimized away when their
  1.2183 +  // results aren't used.
  1.2184 +  Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  1.2185 +  set_memory(proj, alias_idx);
  1.2186 +
  1.2187 +  // Add the trailing membar surrounding the access
  1.2188 +  insert_mem_bar(Op_MemBarCPUOrder);
  1.2189 +  insert_mem_bar(Op_MemBarAcquire);
  1.2190 +
  1.2191 +  push(cas);
  1.2192 +  return true;
  1.2193 +}
  1.2194 +
  1.2195 +bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  1.2196 +  // This is another variant of inline_unsafe_access, differing in
  1.2197 +  // that it always issues store-store ("release") barrier and ensures
  1.2198 +  // store-atomicity (which only matters for "long").
  1.2199 +
  1.2200 +  if (callee()->is_static())  return false;  // caller must have the capability!
  1.2201 +
  1.2202 +#ifndef PRODUCT
  1.2203 +  {
  1.2204 +    ResourceMark rm;
  1.2205 +    // Check the signatures.
  1.2206 +    ciSignature* sig = signature();
  1.2207 +#ifdef ASSERT
  1.2208 +    BasicType rtype = sig->return_type()->basic_type();
  1.2209 +    assert(rtype == T_VOID, "must return void");
  1.2210 +    assert(sig->count() == 3, "has 3 arguments");
  1.2211 +    assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  1.2212 +    assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  1.2213 +#endif // ASSERT
  1.2214 +  }
  1.2215 +#endif //PRODUCT
  1.2216 +
  1.2217 +  // number of stack slots per value argument (1 or 2)
  1.2218 +  int type_words = type2size[type];
  1.2219 +
  1.2220 +  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  1.2221 +
  1.2222 +  // Argument words:  "this" plus oop plus offset plus value;
  1.2223 +  int nargs = 1 + 1 + 2 + type_words;
  1.2224 +
  1.2225 +  // pop arguments: val, offset, base, and receiver
  1.2226 +  debug_only(int saved_sp = _sp);
  1.2227 +  _sp += nargs;
  1.2228 +  Node* val      = (type_words == 1) ? pop() : pop_pair();
  1.2229 +  Node *offset   = pop_pair();
  1.2230 +  Node *base     = pop();
  1.2231 +  Node *receiver = pop();
  1.2232 +  assert(saved_sp == _sp, "must have correct argument count");
  1.2233 +
  1.2234 +  //  Null check receiver.
  1.2235 +  _sp += nargs;
  1.2236 +  do_null_check(receiver, T_OBJECT);
  1.2237 +  _sp -= nargs;
  1.2238 +  if (stopped()) {
  1.2239 +    return true;
  1.2240 +  }
  1.2241 +
  1.2242 +  // Build field offset expression.
  1.2243 +  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  1.2244 +  // 32-bit machines ignore the high half of long offsets
  1.2245 +  offset = ConvL2X(offset);
  1.2246 +  Node* adr = make_unsafe_address(base, offset);
  1.2247 +  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  1.2248 +  const Type *value_type = Type::get_const_basic_type(type);
  1.2249 +  Compile::AliasType* alias_type = C->alias_type(adr_type);
  1.2250 +
  1.2251 +  insert_mem_bar(Op_MemBarRelease);
  1.2252 +  insert_mem_bar(Op_MemBarCPUOrder);
  1.2253 +  // Ensure that the store is atomic for longs:
  1.2254 +  bool require_atomic_access = true;
  1.2255 +  Node* store;
  1.2256 +  if (type == T_OBJECT) // reference stores need a store barrier.
  1.2257 +    store = store_oop_to_unknown(control(), base, adr, adr_type, val, value_type, type);
  1.2258 +  else {
  1.2259 +    store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  1.2260 +  }
  1.2261 +  insert_mem_bar(Op_MemBarCPUOrder);
  1.2262 +  return true;
  1.2263 +}
  1.2264 +
  1.2265 +bool LibraryCallKit::inline_unsafe_allocate() {
  1.2266 +  if (callee()->is_static())  return false;  // caller must have the capability!
  1.2267 +  int nargs = 1 + 1;
  1.2268 +  assert(signature()->size() == nargs-1, "alloc has 1 argument");
  1.2269 +  null_check_receiver(callee());  // check then ignore argument(0)
  1.2270 +  _sp += nargs;  // set original stack for use by uncommon_trap
  1.2271 +  Node* cls = do_null_check(argument(1), T_OBJECT);
  1.2272 +  _sp -= nargs;
  1.2273 +  if (stopped())  return true;
  1.2274 +
  1.2275 +  Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  1.2276 +  _sp += nargs;  // set original stack for use by uncommon_trap
  1.2277 +  kls = do_null_check(kls, T_OBJECT);
  1.2278 +  _sp -= nargs;
  1.2279 +  if (stopped())  return true;  // argument was like int.class
  1.2280 +
  1.2281 +  // Note:  The argument might still be an illegal value like
  1.2282 +  // Serializable.class or Object[].class.   The runtime will handle it.
  1.2283 +  // But we must make an explicit check for initialization.
  1.2284 +  Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
  1.2285 +  Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
  1.2286 +  Node* bits = intcon(instanceKlass::fully_initialized);
  1.2287 +  Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  1.2288 +  // The 'test' is non-zero if we need to take a slow path.
  1.2289 +
  1.2290 +  Node* obj = new_instance(kls, test);
  1.2291 +  push(obj);
  1.2292 +
  1.2293 +  return true;
  1.2294 +}
  1.2295 +
  1.2296 +//------------------------inline_native_time_funcs--------------
  1.2297 +// inline code for System.currentTimeMillis() and System.nanoTime()
  1.2298 +// these have the same type and signature
  1.2299 +bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
  1.2300 +  address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
  1.2301 +                              CAST_FROM_FN_PTR(address, os::javaTimeMillis);
  1.2302 +  const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
  1.2303 +  const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
  1.2304 +  const TypePtr* no_memory_effects = NULL;
  1.2305 +  Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  1.2306 +  Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
  1.2307 +#ifdef ASSERT
  1.2308 +  Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  1.2309 +  assert(value_top == top(), "second value must be top");
  1.2310 +#endif
  1.2311 +  push_pair(value);
  1.2312 +  return true;
  1.2313 +}
  1.2314 +
  1.2315 +//------------------------inline_native_currentThread------------------
  1.2316 +bool LibraryCallKit::inline_native_currentThread() {
  1.2317 +  Node* junk = NULL;
  1.2318 +  push(generate_current_thread(junk));
  1.2319 +  return true;
  1.2320 +}
  1.2321 +
  1.2322 +//------------------------inline_native_isInterrupted------------------
  1.2323 +bool LibraryCallKit::inline_native_isInterrupted() {
  1.2324 +  const int nargs = 1+1;  // receiver + boolean
  1.2325 +  assert(nargs == arg_size(), "sanity");
  1.2326 +  // Add a fast path to t.isInterrupted(clear_int):
  1.2327 +  //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  1.2328 +  //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  1.2329 +  // So, in the common case that the interrupt bit is false,
  1.2330 +  // we avoid making a call into the VM.  Even if the interrupt bit
  1.2331 +  // is true, if the clear_int argument is false, we avoid the VM call.
  1.2332 +  // However, if the receiver is not currentThread, we must call the VM,
  1.2333 +  // because there must be some locking done around the operation.
  1.2334 +
  1.2335 +  // We only go to the fast case code if we pass two guards.
  1.2336 +  // Paths which do not pass are accumulated in the slow_region.
  1.2337 +  RegionNode* slow_region = new (C, 1) RegionNode(1);
  1.2338 +  record_for_igvn(slow_region);
  1.2339 +  RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  1.2340 +  PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  1.2341 +  enum { no_int_result_path   = 1,
  1.2342 +         no_clear_result_path = 2,
  1.2343 +         slow_result_path     = 3
  1.2344 +  };
  1.2345 +
  1.2346 +  // (a) Receiving thread must be the current thread.
  1.2347 +  Node* rec_thr = argument(0);
  1.2348 +  Node* tls_ptr = NULL;
  1.2349 +  Node* cur_thr = generate_current_thread(tls_ptr);
  1.2350 +  Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  1.2351 +  Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
  1.2352 +
  1.2353 +  bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  1.2354 +  if (!known_current_thread)
  1.2355 +    generate_slow_guard(bol_thr, slow_region);
  1.2356 +
  1.2357 +  // (b) Interrupt bit on TLS must be false.
  1.2358 +  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  1.2359 +  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  1.2360 +  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  1.2361 +  Node* int_bit = make_load(NULL, p, TypeInt::BOOL, T_INT);
  1.2362 +  Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  1.2363 +  Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
  1.2364 +
  1.2365 +  IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  1.2366 +
  1.2367 +  // First fast path:  if (!TLS._interrupted) return false;
  1.2368 +  Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  1.2369 +  result_rgn->init_req(no_int_result_path, false_bit);
  1.2370 +  result_val->init_req(no_int_result_path, intcon(0));
  1.2371 +
  1.2372 +  // drop through to next case
  1.2373 +  set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
  1.2374 +
  1.2375 +  // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  1.2376 +  Node* clr_arg = argument(1);
  1.2377 +  Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  1.2378 +  Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  1.2379 +  IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  1.2380 +
  1.2381 +  // Second fast path:  ... else if (!clear_int) return true;
  1.2382 +  Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  1.2383 +  result_rgn->init_req(no_clear_result_path, false_arg);
  1.2384 +  result_val->init_req(no_clear_result_path, intcon(1));
  1.2385 +
  1.2386 +  // drop through to next case
  1.2387 +  set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
  1.2388 +
  1.2389 +  // (d) Otherwise, go to the slow path.
  1.2390 +  slow_region->add_req(control());
  1.2391 +  set_control( _gvn.transform(slow_region) );
  1.2392 +
  1.2393 +  if (stopped()) {
  1.2394 +    // There is no slow path.
  1.2395 +    result_rgn->init_req(slow_result_path, top());
  1.2396 +    result_val->init_req(slow_result_path, top());
  1.2397 +  } else {
  1.2398 +    // non-virtual because it is a private non-static
  1.2399 +    CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  1.2400 +
  1.2401 +    Node* slow_val = set_results_for_java_call(slow_call);
  1.2402 +    // this->control() comes from set_results_for_java_call
  1.2403 +
  1.2404 +    // If we know that the result of the slow call will be true, tell the optimizer!
  1.2405 +    if (known_current_thread)  slow_val = intcon(1);
  1.2406 +
  1.2407 +    Node* fast_io  = slow_call->in(TypeFunc::I_O);
  1.2408 +    Node* fast_mem = slow_call->in(TypeFunc::Memory);
  1.2409 +    // These two phis are pre-filled with copies of of the fast IO and Memory
  1.2410 +    Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  1.2411 +    Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  1.2412 +
  1.2413 +    result_rgn->init_req(slow_result_path, control());
  1.2414 +    io_phi    ->init_req(slow_result_path, i_o());
  1.2415 +    mem_phi   ->init_req(slow_result_path, reset_memory());
  1.2416 +    result_val->init_req(slow_result_path, slow_val);
  1.2417 +
  1.2418 +    set_all_memory( _gvn.transform(mem_phi) );
  1.2419 +    set_i_o(        _gvn.transform(io_phi) );
  1.2420 +  }
  1.2421 +
  1.2422 +  push_result(result_rgn, result_val);
  1.2423 +  C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.2424 +
  1.2425 +  return true;
  1.2426 +}
  1.2427 +
  1.2428 +//---------------------------load_mirror_from_klass----------------------------
  1.2429 +// Given a klass oop, load its java mirror (a java.lang.Class oop).
  1.2430 +Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  1.2431 +  Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
  1.2432 +  return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  1.2433 +}
  1.2434 +
  1.2435 +//-----------------------load_klass_from_mirror_common-------------------------
  1.2436 +// Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  1.2437 +// Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  1.2438 +// and branch to the given path on the region.
  1.2439 +// If never_see_null, take an uncommon trap on null, so we can optimistically
  1.2440 +// compile for the non-null case.
  1.2441 +// If the region is NULL, force never_see_null = true.
  1.2442 +Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  1.2443 +                                                    bool never_see_null,
  1.2444 +                                                    int nargs,
  1.2445 +                                                    RegionNode* region,
  1.2446 +                                                    int null_path,
  1.2447 +                                                    int offset) {
  1.2448 +  if (region == NULL)  never_see_null = true;
  1.2449 +  Node* p = basic_plus_adr(mirror, offset);
  1.2450 +  const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  1.2451 +  Node* kls = _gvn.transform(new (C, 3) LoadKlassNode(0, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
  1.2452 +  _sp += nargs; // any deopt will start just before call to enclosing method
  1.2453 +  Node* null_ctl = top();
  1.2454 +  kls = null_check_oop(kls, &null_ctl, never_see_null);
  1.2455 +  if (region != NULL) {
  1.2456 +    // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  1.2457 +    region->init_req(null_path, null_ctl);
  1.2458 +  } else {
  1.2459 +    assert(null_ctl == top(), "no loose ends");
  1.2460 +  }
  1.2461 +  _sp -= nargs;
  1.2462 +  return kls;
  1.2463 +}
  1.2464 +
  1.2465 +//--------------------(inline_native_Class_query helpers)---------------------
  1.2466 +// Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  1.2467 +// Fall through if (mods & mask) == bits, take the guard otherwise.
  1.2468 +Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  1.2469 +  // Branch around if the given klass has the given modifier bit set.
  1.2470 +  // Like generate_guard, adds a new path onto the region.
  1.2471 +  Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  1.2472 +  Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  1.2473 +  Node* mask = intcon(modifier_mask);
  1.2474 +  Node* bits = intcon(modifier_bits);
  1.2475 +  Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  1.2476 +  Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  1.2477 +  Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  1.2478 +  return generate_fair_guard(bol, region);
  1.2479 +}
  1.2480 +Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  1.2481 +  return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  1.2482 +}
  1.2483 +
  1.2484 +//-------------------------inline_native_Class_query-------------------
  1.2485 +bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  1.2486 +  int nargs = 1+0;  // just the Class mirror, in most cases
  1.2487 +  const Type* return_type = TypeInt::BOOL;
  1.2488 +  Node* prim_return_value = top();  // what happens if it's a primitive class?
  1.2489 +  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  1.2490 +  bool expect_prim = false;     // most of these guys expect to work on refs
  1.2491 +
  1.2492 +  enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  1.2493 +
  1.2494 +  switch (id) {
  1.2495 +  case vmIntrinsics::_isInstance:
  1.2496 +    nargs = 1+1;  // the Class mirror, plus the object getting queried about
  1.2497 +    // nothing is an instance of a primitive type
  1.2498 +    prim_return_value = intcon(0);
  1.2499 +    break;
  1.2500 +  case vmIntrinsics::_getModifiers:
  1.2501 +    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  1.2502 +    assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  1.2503 +    return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  1.2504 +    break;
  1.2505 +  case vmIntrinsics::_isInterface:
  1.2506 +    prim_return_value = intcon(0);
  1.2507 +    break;
  1.2508 +  case vmIntrinsics::_isArray:
  1.2509 +    prim_return_value = intcon(0);
  1.2510 +    expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  1.2511 +    break;
  1.2512 +  case vmIntrinsics::_isPrimitive:
  1.2513 +    prim_return_value = intcon(1);
  1.2514 +    expect_prim = true;  // obviously
  1.2515 +    break;
  1.2516 +  case vmIntrinsics::_getSuperclass:
  1.2517 +    prim_return_value = null();
  1.2518 +    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  1.2519 +    break;
  1.2520 +  case vmIntrinsics::_getComponentType:
  1.2521 +    prim_return_value = null();
  1.2522 +    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  1.2523 +    break;
  1.2524 +  case vmIntrinsics::_getClassAccessFlags:
  1.2525 +    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  1.2526 +    return_type = TypeInt::INT;  // not bool!  6297094
  1.2527 +    break;
  1.2528 +  default:
  1.2529 +    ShouldNotReachHere();
  1.2530 +  }
  1.2531 +
  1.2532 +  Node* mirror =                      argument(0);
  1.2533 +  Node* obj    = (nargs <= 1)? top(): argument(1);
  1.2534 +
  1.2535 +  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  1.2536 +  if (mirror_con == NULL)  return false;  // cannot happen?
  1.2537 +
  1.2538 +#ifndef PRODUCT
  1.2539 +  if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  1.2540 +    ciType* k = mirror_con->java_mirror_type();
  1.2541 +    if (k) {
  1.2542 +      tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  1.2543 +      k->print_name();
  1.2544 +      tty->cr();
  1.2545 +    }
  1.2546 +  }
  1.2547 +#endif
  1.2548 +
  1.2549 +  // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  1.2550 +  RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  1.2551 +  record_for_igvn(region);
  1.2552 +  PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
  1.2553 +
  1.2554 +  // The mirror will never be null of Reflection.getClassAccessFlags, however
  1.2555 +  // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  1.2556 +  // if it is. See bug 4774291.
  1.2557 +
  1.2558 +  // For Reflection.getClassAccessFlags(), the null check occurs in
  1.2559 +  // the wrong place; see inline_unsafe_access(), above, for a similar
  1.2560 +  // situation.
  1.2561 +  _sp += nargs;  // set original stack for use by uncommon_trap
  1.2562 +  mirror = do_null_check(mirror, T_OBJECT);
  1.2563 +  _sp -= nargs;
  1.2564 +  // If mirror or obj is dead, only null-path is taken.
  1.2565 +  if (stopped())  return true;
  1.2566 +
  1.2567 +  if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  1.2568 +
  1.2569 +  // Now load the mirror's klass metaobject, and null-check it.
  1.2570 +  // Side-effects region with the control path if the klass is null.
  1.2571 +  Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  1.2572 +                                     region, _prim_path);
  1.2573 +  // If kls is null, we have a primitive mirror.
  1.2574 +  phi->init_req(_prim_path, prim_return_value);
  1.2575 +  if (stopped()) { push_result(region, phi); return true; }
  1.2576 +
  1.2577 +  Node* p;  // handy temp
  1.2578 +  Node* null_ctl;
  1.2579 +
  1.2580 +  // Now that we have the non-null klass, we can perform the real query.
  1.2581 +  // For constant classes, the query will constant-fold in LoadNode::Value.
  1.2582 +  Node* query_value = top();
  1.2583 +  switch (id) {
  1.2584 +  case vmIntrinsics::_isInstance:
  1.2585 +    // nothing is an instance of a primitive type
  1.2586 +    query_value = gen_instanceof(obj, kls);
  1.2587 +    break;
  1.2588 +
  1.2589 +  case vmIntrinsics::_getModifiers:
  1.2590 +    p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
  1.2591 +    query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  1.2592 +    break;
  1.2593 +
  1.2594 +  case vmIntrinsics::_isInterface:
  1.2595 +    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  1.2596 +    if (generate_interface_guard(kls, region) != NULL)
  1.2597 +      // A guard was added.  If the guard is taken, it was an interface.
  1.2598 +      phi->add_req(intcon(1));
  1.2599 +    // If we fall through, it's a plain class.
  1.2600 +    query_value = intcon(0);
  1.2601 +    break;
  1.2602 +
  1.2603 +  case vmIntrinsics::_isArray:
  1.2604 +    // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  1.2605 +    if (generate_array_guard(kls, region) != NULL)
  1.2606 +      // A guard was added.  If the guard is taken, it was an array.
  1.2607 +      phi->add_req(intcon(1));
  1.2608 +    // If we fall through, it's a plain class.
  1.2609 +    query_value = intcon(0);
  1.2610 +    break;
  1.2611 +
  1.2612 +  case vmIntrinsics::_isPrimitive:
  1.2613 +    query_value = intcon(0); // "normal" path produces false
  1.2614 +    break;
  1.2615 +
  1.2616 +  case vmIntrinsics::_getSuperclass:
  1.2617 +    // The rules here are somewhat unfortunate, but we can still do better
  1.2618 +    // with random logic than with a JNI call.
  1.2619 +    // Interfaces store null or Object as _super, but must report null.
  1.2620 +    // Arrays store an intermediate super as _super, but must report Object.
  1.2621 +    // Other types can report the actual _super.
  1.2622 +    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  1.2623 +    if (generate_interface_guard(kls, region) != NULL)
  1.2624 +      // A guard was added.  If the guard is taken, it was an interface.
  1.2625 +      phi->add_req(null());
  1.2626 +    if (generate_array_guard(kls, region) != NULL)
  1.2627 +      // A guard was added.  If the guard is taken, it was an array.
  1.2628 +      phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  1.2629 +    // If we fall through, it's a plain class.  Get its _super.
  1.2630 +    p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
  1.2631 +    kls = _gvn.transform(new (C, 3) LoadKlassNode(0, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
  1.2632 +    null_ctl = top();
  1.2633 +    kls = null_check_oop(kls, &null_ctl);
  1.2634 +    if (null_ctl != top()) {
  1.2635 +      // If the guard is taken, Object.superClass is null (both klass and mirror).
  1.2636 +      region->add_req(null_ctl);
  1.2637 +      phi   ->add_req(null());
  1.2638 +    }
  1.2639 +    if (!stopped()) {
  1.2640 +      query_value = load_mirror_from_klass(kls);
  1.2641 +    }
  1.2642 +    break;
  1.2643 +
  1.2644 +  case vmIntrinsics::_getComponentType:
  1.2645 +    if (generate_array_guard(kls, region) != NULL) {
  1.2646 +      // Be sure to pin the oop load to the guard edge just created:
  1.2647 +      Node* is_array_ctrl = region->in(region->req()-1);
  1.2648 +      Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
  1.2649 +      Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  1.2650 +      phi->add_req(cmo);
  1.2651 +    }
  1.2652 +    query_value = null();  // non-array case is null
  1.2653 +    break;
  1.2654 +
  1.2655 +  case vmIntrinsics::_getClassAccessFlags:
  1.2656 +    p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  1.2657 +    query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  1.2658 +    break;
  1.2659 +
  1.2660 +  default:
  1.2661 +    ShouldNotReachHere();
  1.2662 +  }
  1.2663 +
  1.2664 +  // Fall-through is the normal case of a query to a real class.
  1.2665 +  phi->init_req(1, query_value);
  1.2666 +  region->init_req(1, control());
  1.2667 +
  1.2668 +  push_result(region, phi);
  1.2669 +  C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.2670 +
  1.2671 +  return true;
  1.2672 +}
  1.2673 +
  1.2674 +//--------------------------inline_native_subtype_check------------------------
  1.2675 +// This intrinsic takes the JNI calls out of the heart of
  1.2676 +// UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  1.2677 +bool LibraryCallKit::inline_native_subtype_check() {
  1.2678 +  int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  1.2679 +
  1.2680 +  // Pull both arguments off the stack.
  1.2681 +  Node* args[2];                // two java.lang.Class mirrors: superc, subc
  1.2682 +  args[0] = argument(0);
  1.2683 +  args[1] = argument(1);
  1.2684 +  Node* klasses[2];             // corresponding Klasses: superk, subk
  1.2685 +  klasses[0] = klasses[1] = top();
  1.2686 +
  1.2687 +  enum {
  1.2688 +    // A full decision tree on {superc is prim, subc is prim}:
  1.2689 +    _prim_0_path = 1,           // {P,N} => false
  1.2690 +                                // {P,P} & superc!=subc => false
  1.2691 +    _prim_same_path,            // {P,P} & superc==subc => true
  1.2692 +    _prim_1_path,               // {N,P} => false
  1.2693 +    _ref_subtype_path,          // {N,N} & subtype check wins => true
  1.2694 +    _both_ref_path,             // {N,N} & subtype check loses => false
  1.2695 +    PATH_LIMIT
  1.2696 +  };
  1.2697 +
  1.2698 +  RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  1.2699 +  Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  1.2700 +  record_for_igvn(region);
  1.2701 +
  1.2702 +  const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  1.2703 +  const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  1.2704 +  int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  1.2705 +
  1.2706 +  // First null-check both mirrors and load each mirror's klass metaobject.
  1.2707 +  int which_arg;
  1.2708 +  for (which_arg = 0; which_arg <= 1; which_arg++) {
  1.2709 +    Node* arg = args[which_arg];
  1.2710 +    _sp += nargs;  // set original stack for use by uncommon_trap
  1.2711 +    arg = do_null_check(arg, T_OBJECT);
  1.2712 +    _sp -= nargs;
  1.2713 +    if (stopped())  break;
  1.2714 +    args[which_arg] = _gvn.transform(arg);
  1.2715 +
  1.2716 +    Node* p = basic_plus_adr(arg, class_klass_offset);
  1.2717 +    Node* kls = new (C, 3) LoadKlassNode(0, immutable_memory(), p, adr_type, kls_type);
  1.2718 +    klasses[which_arg] = _gvn.transform(kls);
  1.2719 +  }
  1.2720 +
  1.2721 +  // Having loaded both klasses, test each for null.
  1.2722 +  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  1.2723 +  for (which_arg = 0; which_arg <= 1; which_arg++) {
  1.2724 +    Node* kls = klasses[which_arg];
  1.2725 +    Node* null_ctl = top();
  1.2726 +    _sp += nargs;  // set original stack for use by uncommon_trap
  1.2727 +    kls = null_check_oop(kls, &null_ctl, never_see_null);
  1.2728 +    _sp -= nargs;
  1.2729 +    int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  1.2730 +    region->init_req(prim_path, null_ctl);
  1.2731 +    if (stopped())  break;
  1.2732 +    klasses[which_arg] = kls;
  1.2733 +  }
  1.2734 +
  1.2735 +  if (!stopped()) {
  1.2736 +    // now we have two reference types, in klasses[0..1]
  1.2737 +    Node* subk   = klasses[1];  // the argument to isAssignableFrom
  1.2738 +    Node* superk = klasses[0];  // the receiver
  1.2739 +    region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  1.2740 +    // now we have a successful reference subtype check
  1.2741 +    region->set_req(_ref_subtype_path, control());
  1.2742 +  }
  1.2743 +
  1.2744 +  // If both operands are primitive (both klasses null), then
  1.2745 +  // we must return true when they are identical primitives.
  1.2746 +  // It is convenient to test this after the first null klass check.
  1.2747 +  set_control(region->in(_prim_0_path)); // go back to first null check
  1.2748 +  if (!stopped()) {
  1.2749 +    // Since superc is primitive, make a guard for the superc==subc case.
  1.2750 +    Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
  1.2751 +    Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
  1.2752 +    generate_guard(bol_eq, region, PROB_FAIR);
  1.2753 +    if (region->req() == PATH_LIMIT+1) {
  1.2754 +      // A guard was added.  If the added guard is taken, superc==subc.
  1.2755 +      region->swap_edges(PATH_LIMIT, _prim_same_path);
  1.2756 +      region->del_req(PATH_LIMIT);
  1.2757 +    }
  1.2758 +    region->set_req(_prim_0_path, control()); // Not equal after all.
  1.2759 +  }
  1.2760 +
  1.2761 +  // these are the only paths that produce 'true':
  1.2762 +  phi->set_req(_prim_same_path,   intcon(1));
  1.2763 +  phi->set_req(_ref_subtype_path, intcon(1));
  1.2764 +
  1.2765 +  // pull together the cases:
  1.2766 +  assert(region->req() == PATH_LIMIT, "sane region");
  1.2767 +  for (uint i = 1; i < region->req(); i++) {
  1.2768 +    Node* ctl = region->in(i);
  1.2769 +    if (ctl == NULL || ctl == top()) {
  1.2770 +      region->set_req(i, top());
  1.2771 +      phi   ->set_req(i, top());
  1.2772 +    } else if (phi->in(i) == NULL) {
  1.2773 +      phi->set_req(i, intcon(0)); // all other paths produce 'false'
  1.2774 +    }
  1.2775 +  }
  1.2776 +
  1.2777 +  set_control(_gvn.transform(region));
  1.2778 +  push(_gvn.transform(phi));
  1.2779 +
  1.2780 +  return true;
  1.2781 +}
  1.2782 +
  1.2783 +//---------------------generate_array_guard_common------------------------
  1.2784 +Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  1.2785 +                                                  bool obj_array, bool not_array) {
  1.2786 +  // If obj_array/non_array==false/false:
  1.2787 +  // Branch around if the given klass is in fact an array (either obj or prim).
  1.2788 +  // If obj_array/non_array==false/true:
  1.2789 +  // Branch around if the given klass is not an array klass of any kind.
  1.2790 +  // If obj_array/non_array==true/true:
  1.2791 +  // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  1.2792 +  // If obj_array/non_array==true/false:
  1.2793 +  // Branch around if the kls is an oop array (Object[] or subtype)
  1.2794 +  //
  1.2795 +  // Like generate_guard, adds a new path onto the region.
  1.2796 +  jint  layout_con = 0;
  1.2797 +  Node* layout_val = get_layout_helper(kls, layout_con);
  1.2798 +  if (layout_val == NULL) {
  1.2799 +    bool query = (obj_array
  1.2800 +                  ? Klass::layout_helper_is_objArray(layout_con)
  1.2801 +                  : Klass::layout_helper_is_javaArray(layout_con));
  1.2802 +    if (query == not_array) {
  1.2803 +      return NULL;                       // never a branch
  1.2804 +    } else {                             // always a branch
  1.2805 +      Node* always_branch = control();
  1.2806 +      if (region != NULL)
  1.2807 +        region->add_req(always_branch);
  1.2808 +      set_control(top());
  1.2809 +      return always_branch;
  1.2810 +    }
  1.2811 +  }
  1.2812 +  // Now test the correct condition.
  1.2813 +  jint  nval = (obj_array
  1.2814 +                ? ((jint)Klass::_lh_array_tag_type_value
  1.2815 +                   <<    Klass::_lh_array_tag_shift)
  1.2816 +                : Klass::_lh_neutral_value);
  1.2817 +  Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  1.2818 +  BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  1.2819 +  // invert the test if we are looking for a non-array
  1.2820 +  if (not_array)  btest = BoolTest(btest).negate();
  1.2821 +  Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  1.2822 +  return generate_fair_guard(bol, region);
  1.2823 +}
  1.2824 +
  1.2825 +
  1.2826 +//-----------------------inline_native_newArray--------------------------
  1.2827 +bool LibraryCallKit::inline_native_newArray() {
  1.2828 +  int nargs = 2;
  1.2829 +  Node* mirror    = argument(0);
  1.2830 +  Node* count_val = argument(1);
  1.2831 +
  1.2832 +  _sp += nargs;  // set original stack for use by uncommon_trap
  1.2833 +  mirror = do_null_check(mirror, T_OBJECT);
  1.2834 +  _sp -= nargs;
  1.2835 +
  1.2836 +  enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  1.2837 +  RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  1.2838 +  PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  1.2839 +                                                      TypeInstPtr::NOTNULL);
  1.2840 +  PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  1.2841 +  PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  1.2842 +                                                      TypePtr::BOTTOM);
  1.2843 +
  1.2844 +  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  1.2845 +  Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  1.2846 +                                                  nargs,
  1.2847 +                                                  result_reg, _slow_path);
  1.2848 +  Node* normal_ctl   = control();
  1.2849 +  Node* no_array_ctl = result_reg->in(_slow_path);
  1.2850 +
  1.2851 +  // Generate code for the slow case.  We make a call to newArray().
  1.2852 +  set_control(no_array_ctl);
  1.2853 +  if (!stopped()) {
  1.2854 +    // Either the input type is void.class, or else the
  1.2855 +    // array klass has not yet been cached.  Either the
  1.2856 +    // ensuing call will throw an exception, or else it
  1.2857 +    // will cache the array klass for next time.
  1.2858 +    PreserveJVMState pjvms(this);
  1.2859 +    CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  1.2860 +    Node* slow_result = set_results_for_java_call(slow_call);
  1.2861 +    // this->control() comes from set_results_for_java_call
  1.2862 +    result_reg->set_req(_slow_path, control());
  1.2863 +    result_val->set_req(_slow_path, slow_result);
  1.2864 +    result_io ->set_req(_slow_path, i_o());
  1.2865 +    result_mem->set_req(_slow_path, reset_memory());
  1.2866 +  }
  1.2867 +
  1.2868 +  set_control(normal_ctl);
  1.2869 +  if (!stopped()) {
  1.2870 +    // Normal case:  The array type has been cached in the java.lang.Class.
  1.2871 +    // The following call works fine even if the array type is polymorphic.
  1.2872 +    // It could be a dynamic mix of int[], boolean[], Object[], etc.
  1.2873 +    _sp += nargs;  // set original stack for use by uncommon_trap
  1.2874 +    Node* obj = new_array(klass_node, count_val);
  1.2875 +    _sp -= nargs;
  1.2876 +    result_reg->init_req(_normal_path, control());
  1.2877 +    result_val->init_req(_normal_path, obj);
  1.2878 +    result_io ->init_req(_normal_path, i_o());
  1.2879 +    result_mem->init_req(_normal_path, reset_memory());
  1.2880 +  }
  1.2881 +
  1.2882 +  // Return the combined state.
  1.2883 +  set_i_o(        _gvn.transform(result_io)  );
  1.2884 +  set_all_memory( _gvn.transform(result_mem) );
  1.2885 +  push_result(result_reg, result_val);
  1.2886 +  C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.2887 +
  1.2888 +  return true;
  1.2889 +}
  1.2890 +
  1.2891 +//----------------------inline_native_getLength--------------------------
  1.2892 +bool LibraryCallKit::inline_native_getLength() {
  1.2893 +  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1.2894 +
  1.2895 +  int nargs = 1;
  1.2896 +  Node* array = argument(0);
  1.2897 +
  1.2898 +  _sp += nargs;  // set original stack for use by uncommon_trap
  1.2899 +  array = do_null_check(array, T_OBJECT);
  1.2900 +  _sp -= nargs;
  1.2901 +
  1.2902 +  // If array is dead, only null-path is taken.
  1.2903 +  if (stopped())  return true;
  1.2904 +
  1.2905 +  // Deoptimize if it is a non-array.
  1.2906 +  Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  1.2907 +
  1.2908 +  if (non_array != NULL) {
  1.2909 +    PreserveJVMState pjvms(this);
  1.2910 +    set_control(non_array);
  1.2911 +    _sp += nargs;  // push the arguments back on the stack
  1.2912 +    uncommon_trap(Deoptimization::Reason_intrinsic,
  1.2913 +                  Deoptimization::Action_maybe_recompile);
  1.2914 +  }
  1.2915 +
  1.2916 +  // If control is dead, only non-array-path is taken.
  1.2917 +  if (stopped())  return true;
  1.2918 +
  1.2919 +  // The works fine even if the array type is polymorphic.
  1.2920 +  // It could be a dynamic mix of int[], boolean[], Object[], etc.
  1.2921 +  push( load_array_length(array) );
  1.2922 +
  1.2923 +  C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.2924 +
  1.2925 +  return true;
  1.2926 +}
  1.2927 +
  1.2928 +//------------------------inline_array_copyOf----------------------------
  1.2929 +bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  1.2930 +  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1.2931 +
  1.2932 +  // Restore the stack and pop off the arguments.
  1.2933 +  int nargs = 3 + (is_copyOfRange? 1: 0);
  1.2934 +  Node* original          = argument(0);
  1.2935 +  Node* start             = is_copyOfRange? argument(1): intcon(0);
  1.2936 +  Node* end               = is_copyOfRange? argument(2): argument(1);
  1.2937 +  Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  1.2938 +
  1.2939 +  _sp += nargs;  // set original stack for use by uncommon_trap
  1.2940 +  array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  1.2941 +  original          = do_null_check(original, T_OBJECT);
  1.2942 +  _sp -= nargs;
  1.2943 +
  1.2944 +  // Check if a null path was taken unconditionally.
  1.2945 +  if (stopped())  return true;
  1.2946 +
  1.2947 +  Node* orig_length = load_array_length(original);
  1.2948 +
  1.2949 +  Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nargs,
  1.2950 +                                            NULL, 0);
  1.2951 +  _sp += nargs;  // set original stack for use by uncommon_trap
  1.2952 +  klass_node = do_null_check(klass_node, T_OBJECT);
  1.2953 +  _sp -= nargs;
  1.2954 +
  1.2955 +  RegionNode* bailout = new (C, 1) RegionNode(1);
  1.2956 +  record_for_igvn(bailout);
  1.2957 +
  1.2958 +  // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  1.2959 +  // Bail out if that is so.
  1.2960 +  Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  1.2961 +  if (not_objArray != NULL) {
  1.2962 +    // Improve the klass node's type from the new optimistic assumption:
  1.2963 +    ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  1.2964 +    const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1.2965 +    Node* cast = new (C, 2) CastPPNode(klass_node, akls);
  1.2966 +    cast->init_req(0, control());
  1.2967 +    klass_node = _gvn.transform(cast);
  1.2968 +  }
  1.2969 +
  1.2970 +  // Bail out if either start or end is negative.
  1.2971 +  generate_negative_guard(start, bailout, &start);
  1.2972 +  generate_negative_guard(end,   bailout, &end);
  1.2973 +
  1.2974 +  Node* length = end;
  1.2975 +  if (_gvn.type(start) != TypeInt::ZERO) {
  1.2976 +    length = _gvn.transform( new (C, 3) SubINode(end, start) );
  1.2977 +  }
  1.2978 +
  1.2979 +  // Bail out if length is negative.
  1.2980 +  // ...Not needed, since the new_array will throw the right exception.
  1.2981 +  //generate_negative_guard(length, bailout, &length);
  1.2982 +
  1.2983 +  if (bailout->req() > 1) {
  1.2984 +    PreserveJVMState pjvms(this);
  1.2985 +    set_control( _gvn.transform(bailout) );
  1.2986 +    _sp += nargs;  // push the arguments back on the stack
  1.2987 +    uncommon_trap(Deoptimization::Reason_intrinsic,
  1.2988 +                  Deoptimization::Action_maybe_recompile);
  1.2989 +  }
  1.2990 +
  1.2991 +  if (!stopped()) {
  1.2992 +    // How many elements will we copy from the original?
  1.2993 +    // The answer is MinI(orig_length - start, length).
  1.2994 +    Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
  1.2995 +    Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  1.2996 +
  1.2997 +    _sp += nargs;  // set original stack for use by uncommon_trap
  1.2998 +    Node* newcopy = new_array(klass_node, length);
  1.2999 +    _sp -= nargs;
  1.3000 +
  1.3001 +    // Generate a direct call to the right arraycopy function(s).
  1.3002 +    // We know the copy is disjoint but we might not know if the
  1.3003 +    // oop stores need checking.
  1.3004 +    // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  1.3005 +    // This will fail a store-check if x contains any non-nulls.
  1.3006 +    bool disjoint_bases = true;
  1.3007 +    bool length_never_negative = true;
  1.3008 +    generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  1.3009 +                       original, start, newcopy, intcon(0), moved,
  1.3010 +                       nargs, disjoint_bases, length_never_negative);
  1.3011 +
  1.3012 +    push(newcopy);
  1.3013 +  }
  1.3014 +
  1.3015 +  C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.3016 +
  1.3017 +  return true;
  1.3018 +}
  1.3019 +
  1.3020 +
  1.3021 +//----------------------generate_virtual_guard---------------------------
  1.3022 +// Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  1.3023 +Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  1.3024 +                                             RegionNode* slow_region) {
  1.3025 +  ciMethod* method = callee();
  1.3026 +  int vtable_index = method->vtable_index();
  1.3027 +  // Get the methodOop out of the appropriate vtable entry.
  1.3028 +  int entry_offset  = (instanceKlass::vtable_start_offset() +
  1.3029 +                     vtable_index*vtableEntry::size()) * wordSize +
  1.3030 +                     vtableEntry::method_offset_in_bytes();
  1.3031 +  Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  1.3032 +  Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
  1.3033 +
  1.3034 +  // Compare the target method with the expected method (e.g., Object.hashCode).
  1.3035 +  const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
  1.3036 +
  1.3037 +  Node* native_call = makecon(native_call_addr);
  1.3038 +  Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  1.3039 +  Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
  1.3040 +
  1.3041 +  return generate_slow_guard(test_native, slow_region);
  1.3042 +}
  1.3043 +
  1.3044 +//-----------------------generate_method_call----------------------------
  1.3045 +// Use generate_method_call to make a slow-call to the real
  1.3046 +// method if the fast path fails.  An alternative would be to
  1.3047 +// use a stub like OptoRuntime::slow_arraycopy_Java.
  1.3048 +// This only works for expanding the current library call,
  1.3049 +// not another intrinsic.  (E.g., don't use this for making an
  1.3050 +// arraycopy call inside of the copyOf intrinsic.)
  1.3051 +CallJavaNode*
  1.3052 +LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  1.3053 +  // When compiling the intrinsic method itself, do not use this technique.
  1.3054 +  guarantee(callee() != C->method(), "cannot make slow-call to self");
  1.3055 +
  1.3056 +  ciMethod* method = callee();
  1.3057 +  // ensure the JVMS we have will be correct for this call
  1.3058 +  guarantee(method_id == method->intrinsic_id(), "must match");
  1.3059 +
  1.3060 +  const TypeFunc* tf = TypeFunc::make(method);
  1.3061 +  int tfdc = tf->domain()->cnt();
  1.3062 +  CallJavaNode* slow_call;
  1.3063 +  if (is_static) {
  1.3064 +    assert(!is_virtual, "");
  1.3065 +    slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  1.3066 +                                SharedRuntime::get_resolve_static_call_stub(),
  1.3067 +                                method, bci());
  1.3068 +  } else if (is_virtual) {
  1.3069 +    null_check_receiver(method);
  1.3070 +    int vtable_index = methodOopDesc::invalid_vtable_index;
  1.3071 +    if (UseInlineCaches) {
  1.3072 +      // Suppress the vtable call
  1.3073 +    } else {
  1.3074 +      // hashCode and clone are not a miranda methods,
  1.3075 +      // so the vtable index is fixed.
  1.3076 +      // No need to use the linkResolver to get it.
  1.3077 +       vtable_index = method->vtable_index();
  1.3078 +    }
  1.3079 +    slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
  1.3080 +                                SharedRuntime::get_resolve_virtual_call_stub(),
  1.3081 +                                method, vtable_index, bci());
  1.3082 +  } else {  // neither virtual nor static:  opt_virtual
  1.3083 +    null_check_receiver(method);
  1.3084 +    slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  1.3085 +                                SharedRuntime::get_resolve_opt_virtual_call_stub(),
  1.3086 +                                method, bci());
  1.3087 +    slow_call->set_optimized_virtual(true);
  1.3088 +  }
  1.3089 +  set_arguments_for_java_call(slow_call);
  1.3090 +  set_edges_for_java_call(slow_call);
  1.3091 +  return slow_call;
  1.3092 +}
  1.3093 +
  1.3094 +
  1.3095 +//------------------------------inline_native_hashcode--------------------
  1.3096 +// Build special case code for calls to hashCode on an object.
  1.3097 +bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  1.3098 +  assert(is_static == callee()->is_static(), "correct intrinsic selection");
  1.3099 +  assert(!(is_virtual && is_static), "either virtual, special, or static");
  1.3100 +
  1.3101 +  enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  1.3102 +
  1.3103 +  RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  1.3104 +  PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  1.3105 +                                                      TypeInt::INT);
  1.3106 +  PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  1.3107 +  PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  1.3108 +                                                      TypePtr::BOTTOM);
  1.3109 +  Node* obj = NULL;
  1.3110 +  if (!is_static) {
  1.3111 +    // Check for hashing null object
  1.3112 +    obj = null_check_receiver(callee());
  1.3113 +    if (stopped())  return true;        // unconditionally null
  1.3114 +    result_reg->init_req(_null_path, top());
  1.3115 +    result_val->init_req(_null_path, top());
  1.3116 +  } else {
  1.3117 +    // Do a null check, and return zero if null.
  1.3118 +    // System.identityHashCode(null) == 0
  1.3119 +    obj = argument(0);
  1.3120 +    Node* null_ctl = top();
  1.3121 +    obj = null_check_oop(obj, &null_ctl);
  1.3122 +    result_reg->init_req(_null_path, null_ctl);
  1.3123 +    result_val->init_req(_null_path, _gvn.intcon(0));
  1.3124 +  }
  1.3125 +
  1.3126 +  // Unconditionally null?  Then return right away.
  1.3127 +  if (stopped()) {
  1.3128 +    set_control( result_reg->in(_null_path) );
  1.3129 +    if (!stopped())
  1.3130 +      push(      result_val ->in(_null_path) );
  1.3131 +    return true;
  1.3132 +  }
  1.3133 +
  1.3134 +  // After null check, get the object's klass.
  1.3135 +  Node* obj_klass = load_object_klass(obj);
  1.3136 +
  1.3137 +  // This call may be virtual (invokevirtual) or bound (invokespecial).
  1.3138 +  // For each case we generate slightly different code.
  1.3139 +
  1.3140 +  // We only go to the fast case code if we pass a number of guards.  The
  1.3141 +  // paths which do not pass are accumulated in the slow_region.
  1.3142 +  RegionNode* slow_region = new (C, 1) RegionNode(1);
  1.3143 +  record_for_igvn(slow_region);
  1.3144 +
  1.3145 +  // If this is a virtual call, we generate a funny guard.  We pull out
  1.3146 +  // the vtable entry corresponding to hashCode() from the target object.
  1.3147 +  // If the target method which we are calling happens to be the native
  1.3148 +  // Object hashCode() method, we pass the guard.  We do not need this
  1.3149 +  // guard for non-virtual calls -- the caller is known to be the native
  1.3150 +  // Object hashCode().
  1.3151 +  if (is_virtual) {
  1.3152 +    generate_virtual_guard(obj_klass, slow_region);
  1.3153 +  }
  1.3154 +
  1.3155 +  // Get the header out of the object, use LoadMarkNode when available
  1.3156 +  Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  1.3157 +  Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
  1.3158 +  header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
  1.3159 +
  1.3160 +  // Test the header to see if it is unlocked.
  1.3161 +  Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  1.3162 +  Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  1.3163 +  Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  1.3164 +  Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  1.3165 +  Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
  1.3166 +
  1.3167 +  generate_slow_guard(test_unlocked, slow_region);
  1.3168 +
  1.3169 +  // Get the hash value and check to see that it has been properly assigned.
  1.3170 +  // We depend on hash_mask being at most 32 bits and avoid the use of
  1.3171 +  // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  1.3172 +  // vm: see markOop.hpp.
  1.3173 +  Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  1.3174 +  Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  1.3175 +  Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  1.3176 +  // This hack lets the hash bits live anywhere in the mark object now, as long
  1.3177 +  // as the shift drops the relevent bits into the low 32 bits.  Note that
  1.3178 +  // Java spec says that HashCode is an int so there's no point in capturing
  1.3179 +  // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  1.3180 +  hshifted_header      = ConvX2I(hshifted_header);
  1.3181 +  Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
  1.3182 +
  1.3183 +  Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  1.3184 +  Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  1.3185 +  Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
  1.3186 +
  1.3187 +  generate_slow_guard(test_assigned, slow_region);
  1.3188 +
  1.3189 +  Node* init_mem = reset_memory();
  1.3190 +  // fill in the rest of the null path:
  1.3191 +  result_io ->init_req(_null_path, i_o());
  1.3192 +  result_mem->init_req(_null_path, init_mem);
  1.3193 +
  1.3194 +  result_val->init_req(_fast_path, hash_val);
  1.3195 +  result_reg->init_req(_fast_path, control());
  1.3196 +  result_io ->init_req(_fast_path, i_o());
  1.3197 +  result_mem->init_req(_fast_path, init_mem);
  1.3198 +
  1.3199 +  // Generate code for the slow case.  We make a call to hashCode().
  1.3200 +  set_control(_gvn.transform(slow_region));
  1.3201 +  if (!stopped()) {
  1.3202 +    // No need for PreserveJVMState, because we're using up the present state.
  1.3203 +    set_all_memory(init_mem);
  1.3204 +    vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  1.3205 +    if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  1.3206 +    CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  1.3207 +    Node* slow_result = set_results_for_java_call(slow_call);
  1.3208 +    // this->control() comes from set_results_for_java_call
  1.3209 +    result_reg->init_req(_slow_path, control());
  1.3210 +    result_val->init_req(_slow_path, slow_result);
  1.3211 +    result_io  ->set_req(_slow_path, i_o());
  1.3212 +    result_mem ->set_req(_slow_path, reset_memory());
  1.3213 +  }
  1.3214 +
  1.3215 +  // Return the combined state.
  1.3216 +  set_i_o(        _gvn.transform(result_io)  );
  1.3217 +  set_all_memory( _gvn.transform(result_mem) );
  1.3218 +  push_result(result_reg, result_val);
  1.3219 +
  1.3220 +  return true;
  1.3221 +}
  1.3222 +
  1.3223 +//---------------------------inline_native_getClass----------------------------
  1.3224 +// Build special case code for calls to hashCode on an object.
  1.3225 +bool LibraryCallKit::inline_native_getClass() {
  1.3226 +  Node* obj = null_check_receiver(callee());
  1.3227 +  if (stopped())  return true;
  1.3228 +  push( load_mirror_from_klass(load_object_klass(obj)) );
  1.3229 +  return true;
  1.3230 +}
  1.3231 +
  1.3232 +//-----------------inline_native_Reflection_getCallerClass---------------------
  1.3233 +// In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  1.3234 +//
  1.3235 +// NOTE that this code must perform the same logic as
  1.3236 +// vframeStream::security_get_caller_frame in that it must skip
  1.3237 +// Method.invoke() and auxiliary frames.
  1.3238 +
  1.3239 +
  1.3240 +
  1.3241 +
  1.3242 +bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  1.3243 +  ciMethod*       method = callee();
  1.3244 +
  1.3245 +#ifndef PRODUCT
  1.3246 +  if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  1.3247 +    tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  1.3248 +  }
  1.3249 +#endif
  1.3250 +
  1.3251 +  debug_only(int saved_sp = _sp);
  1.3252 +
  1.3253 +  // Argument words:  (int depth)
  1.3254 +  int nargs = 1;
  1.3255 +
  1.3256 +  _sp += nargs;
  1.3257 +  Node* caller_depth_node = pop();
  1.3258 +
  1.3259 +  assert(saved_sp == _sp, "must have correct argument count");
  1.3260 +
  1.3261 +  // The depth value must be a constant in order for the runtime call
  1.3262 +  // to be eliminated.
  1.3263 +  const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  1.3264 +  if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  1.3265 +#ifndef PRODUCT
  1.3266 +    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  1.3267 +      tty->print_cr("  Bailing out because caller depth was not a constant");
  1.3268 +    }
  1.3269 +#endif
  1.3270 +    return false;
  1.3271 +  }
  1.3272 +  // Note that the JVM state at this point does not include the
  1.3273 +  // getCallerClass() frame which we are trying to inline. The
  1.3274 +  // semantics of getCallerClass(), however, are that the "first"
  1.3275 +  // frame is the getCallerClass() frame, so we subtract one from the
  1.3276 +  // requested depth before continuing. We don't inline requests of
  1.3277 +  // getCallerClass(0).
  1.3278 +  int caller_depth = caller_depth_type->get_con() - 1;
  1.3279 +  if (caller_depth < 0) {
  1.3280 +#ifndef PRODUCT
  1.3281 +    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  1.3282 +      tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  1.3283 +    }
  1.3284 +#endif
  1.3285 +    return false;
  1.3286 +  }
  1.3287 +
  1.3288 +  if (!jvms()->has_method()) {
  1.3289 +#ifndef PRODUCT
  1.3290 +    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  1.3291 +      tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  1.3292 +    }
  1.3293 +#endif
  1.3294 +    return false;
  1.3295 +  }
  1.3296 +  int _depth = jvms()->depth();  // cache call chain depth
  1.3297 +
  1.3298 +  // Walk back up the JVM state to find the caller at the required
  1.3299 +  // depth. NOTE that this code must perform the same logic as
  1.3300 +  // vframeStream::security_get_caller_frame in that it must skip
  1.3301 +  // Method.invoke() and auxiliary frames. Note also that depth is
  1.3302 +  // 1-based (1 is the bottom of the inlining).
  1.3303 +  int inlining_depth = _depth;
  1.3304 +  JVMState* caller_jvms = NULL;
  1.3305 +
  1.3306 +  if (inlining_depth > 0) {
  1.3307 +    caller_jvms = jvms();
  1.3308 +    assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  1.3309 +    do {
  1.3310 +      // The following if-tests should be performed in this order
  1.3311 +      if (is_method_invoke_or_aux_frame(caller_jvms)) {
  1.3312 +        // Skip a Method.invoke() or auxiliary frame
  1.3313 +      } else if (caller_depth > 0) {
  1.3314 +        // Skip real frame
  1.3315 +        --caller_depth;
  1.3316 +      } else {
  1.3317 +        // We're done: reached desired caller after skipping.
  1.3318 +        break;
  1.3319 +      }
  1.3320 +      caller_jvms = caller_jvms->caller();
  1.3321 +      --inlining_depth;
  1.3322 +    } while (inlining_depth > 0);
  1.3323 +  }
  1.3324 +
  1.3325 +  if (inlining_depth == 0) {
  1.3326 +#ifndef PRODUCT
  1.3327 +    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  1.3328 +      tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  1.3329 +      tty->print_cr("  JVM state at this point:");
  1.3330 +      for (int i = _depth; i >= 1; i--) {
  1.3331 +        tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  1.3332 +      }
  1.3333 +    }
  1.3334 +#endif
  1.3335 +    return false; // Reached end of inlining
  1.3336 +  }
  1.3337 +
  1.3338 +  // Acquire method holder as java.lang.Class
  1.3339 +  ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  1.3340 +  ciInstance*      caller_mirror = caller_klass->java_mirror();
  1.3341 +  // Push this as a constant
  1.3342 +  push(makecon(TypeInstPtr::make(caller_mirror)));
  1.3343 +#ifndef PRODUCT
  1.3344 +  if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  1.3345 +    tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  1.3346 +    tty->print_cr("  JVM state at this point:");
  1.3347 +    for (int i = _depth; i >= 1; i--) {
  1.3348 +      tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  1.3349 +    }
  1.3350 +  }
  1.3351 +#endif
  1.3352 +  return true;
  1.3353 +}
  1.3354 +
  1.3355 +// Helper routine for above
  1.3356 +bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  1.3357 +  // Is this the Method.invoke method itself?
  1.3358 +  if (jvms->method()->intrinsic_id() == vmIntrinsics::_invoke)
  1.3359 +    return true;
  1.3360 +
  1.3361 +  // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  1.3362 +  ciKlass* k = jvms->method()->holder();
  1.3363 +  if (k->is_instance_klass()) {
  1.3364 +    ciInstanceKlass* ik = k->as_instance_klass();
  1.3365 +    for (; ik != NULL; ik = ik->super()) {
  1.3366 +      if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  1.3367 +          ik == env()->find_system_klass(ik->name())) {
  1.3368 +        return true;
  1.3369 +      }
  1.3370 +    }
  1.3371 +  }
  1.3372 +
  1.3373 +  return false;
  1.3374 +}
  1.3375 +
  1.3376 +static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
  1.3377 +                                     // inline_native_AtomicLong_attemptUpdate() but it has no way of
  1.3378 +                                     // computing it since there is no lookup field by name function in the
  1.3379 +                                     // CI interface.  This is computed and set by inline_native_AtomicLong_get().
  1.3380 +                                     // Using a static variable here is safe even if we have multiple compilation
  1.3381 +                                     // threads because the offset is constant.  At worst the same offset will be
  1.3382 +                                     // computed and  stored multiple
  1.3383 +
  1.3384 +bool LibraryCallKit::inline_native_AtomicLong_get() {
  1.3385 +  // Restore the stack and pop off the argument
  1.3386 +  _sp+=1;
  1.3387 +  Node *obj = pop();
  1.3388 +
  1.3389 +  // get the offset of the "value" field. Since the CI interfaces
  1.3390 +  // does not provide a way to look up a field by name, we scan the bytecodes
  1.3391 +  // to get the field index.  We expect the first 2 instructions of the method
  1.3392 +  // to be:
  1.3393 +  //    0 aload_0
  1.3394 +  //    1 getfield "value"
  1.3395 +  ciMethod* method = callee();
  1.3396 +  if (value_field_offset == -1)
  1.3397 +  {
  1.3398 +    ciField* value_field;
  1.3399 +    ciBytecodeStream iter(method);
  1.3400 +    Bytecodes::Code bc = iter.next();
  1.3401 +
  1.3402 +    if ((bc != Bytecodes::_aload_0) &&
  1.3403 +              ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
  1.3404 +      return false;
  1.3405 +    bc = iter.next();
  1.3406 +    if (bc != Bytecodes::_getfield)
  1.3407 +      return false;
  1.3408 +    bool ignore;
  1.3409 +    value_field = iter.get_field(ignore);
  1.3410 +    value_field_offset = value_field->offset_in_bytes();
  1.3411 +  }
  1.3412 +
  1.3413 +  // Null check without removing any arguments.
  1.3414 +  _sp++;
  1.3415 +  obj = do_null_check(obj, T_OBJECT);
  1.3416 +  _sp--;
  1.3417 +  // Check for locking null object
  1.3418 +  if (stopped()) return true;
  1.3419 +
  1.3420 +  Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  1.3421 +  const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  1.3422 +  int alias_idx = C->get_alias_index(adr_type);
  1.3423 +
  1.3424 +  Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
  1.3425 +
  1.3426 +  push_pair(result);
  1.3427 +
  1.3428 +  return true;
  1.3429 +}
  1.3430 +
  1.3431 +bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
  1.3432 +  // Restore the stack and pop off the arguments
  1.3433 +  _sp+=5;
  1.3434 +  Node *newVal = pop_pair();
  1.3435 +  Node *oldVal = pop_pair();
  1.3436 +  Node *obj = pop();
  1.3437 +
  1.3438 +  // we need the offset of the "value" field which was computed when
  1.3439 +  // inlining the get() method.  Give up if we don't have it.
  1.3440 +  if (value_field_offset == -1)
  1.3441 +    return false;
  1.3442 +
  1.3443 +  // Null check without removing any arguments.
  1.3444 +  _sp+=5;
  1.3445 +  obj = do_null_check(obj, T_OBJECT);
  1.3446 +  _sp-=5;
  1.3447 +  // Check for locking null object
  1.3448 +  if (stopped()) return true;
  1.3449 +
  1.3450 +  Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  1.3451 +  const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  1.3452 +  int alias_idx = C->get_alias_index(adr_type);
  1.3453 +
  1.3454 +  Node *result = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
  1.3455 +  Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(result));
  1.3456 +  set_memory(store_proj, alias_idx);
  1.3457 +
  1.3458 +  push(result);
  1.3459 +  return true;
  1.3460 +}
  1.3461 +
  1.3462 +bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  1.3463 +  // restore the arguments
  1.3464 +  _sp += arg_size();
  1.3465 +
  1.3466 +  switch (id) {
  1.3467 +  case vmIntrinsics::_floatToRawIntBits:
  1.3468 +    push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
  1.3469 +    break;
  1.3470 +
  1.3471 +  case vmIntrinsics::_intBitsToFloat:
  1.3472 +    push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
  1.3473 +    break;
  1.3474 +
  1.3475 +  case vmIntrinsics::_doubleToRawLongBits:
  1.3476 +    push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
  1.3477 +    break;
  1.3478 +
  1.3479 +  case vmIntrinsics::_longBitsToDouble:
  1.3480 +    push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
  1.3481 +    break;
  1.3482 +
  1.3483 +  case vmIntrinsics::_doubleToLongBits: {
  1.3484 +    Node* value = pop_pair();
  1.3485 +
  1.3486 +    // two paths (plus control) merge in a wood
  1.3487 +    RegionNode *r = new (C, 3) RegionNode(3);
  1.3488 +    Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  1.3489 +
  1.3490 +    Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
  1.3491 +    // Build the boolean node
  1.3492 +    Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  1.3493 +
  1.3494 +    // Branch either way.
  1.3495 +    // NaN case is less traveled, which makes all the difference.
  1.3496 +    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1.3497 +    Node *opt_isnan = _gvn.transform(ifisnan);
  1.3498 +    assert( opt_isnan->is_If(), "Expect an IfNode");
  1.3499 +    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  1.3500 +    Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  1.3501 +
  1.3502 +    set_control(iftrue);
  1.3503 +
  1.3504 +    static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1.3505 +    Node *slow_result = longcon(nan_bits); // return NaN
  1.3506 +    phi->init_req(1, _gvn.transform( slow_result ));
  1.3507 +    r->init_req(1, iftrue);
  1.3508 +
  1.3509 +    // Else fall through
  1.3510 +    Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  1.3511 +    set_control(iffalse);
  1.3512 +
  1.3513 +    phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
  1.3514 +    r->init_req(2, iffalse);
  1.3515 +
  1.3516 +    // Post merge
  1.3517 +    set_control(_gvn.transform(r));
  1.3518 +    record_for_igvn(r);
  1.3519 +
  1.3520 +    Node* result = _gvn.transform(phi);
  1.3521 +    assert(result->bottom_type()->isa_long(), "must be");
  1.3522 +    push_pair(result);
  1.3523 +
  1.3524 +    C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.3525 +
  1.3526 +    break;
  1.3527 +  }
  1.3528 +
  1.3529 +  case vmIntrinsics::_floatToIntBits: {
  1.3530 +    Node* value = pop();
  1.3531 +
  1.3532 +    // two paths (plus control) merge in a wood
  1.3533 +    RegionNode *r = new (C, 3) RegionNode(3);
  1.3534 +    Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
  1.3535 +
  1.3536 +    Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
  1.3537 +    // Build the boolean node
  1.3538 +    Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  1.3539 +
  1.3540 +    // Branch either way.
  1.3541 +    // NaN case is less traveled, which makes all the difference.
  1.3542 +    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1.3543 +    Node *opt_isnan = _gvn.transform(ifisnan);
  1.3544 +    assert( opt_isnan->is_If(), "Expect an IfNode");
  1.3545 +    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  1.3546 +    Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  1.3547 +
  1.3548 +    set_control(iftrue);
  1.3549 +
  1.3550 +    static const jint nan_bits = 0x7fc00000;
  1.3551 +    Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  1.3552 +    phi->init_req(1, _gvn.transform( slow_result ));
  1.3553 +    r->init_req(1, iftrue);
  1.3554 +
  1.3555 +    // Else fall through
  1.3556 +    Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  1.3557 +    set_control(iffalse);
  1.3558 +
  1.3559 +    phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
  1.3560 +    r->init_req(2, iffalse);
  1.3561 +
  1.3562 +    // Post merge
  1.3563 +    set_control(_gvn.transform(r));
  1.3564 +    record_for_igvn(r);
  1.3565 +
  1.3566 +    Node* result = _gvn.transform(phi);
  1.3567 +    assert(result->bottom_type()->isa_int(), "must be");
  1.3568 +    push(result);
  1.3569 +
  1.3570 +    C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.3571 +
  1.3572 +    break;
  1.3573 +  }
  1.3574 +
  1.3575 +  default:
  1.3576 +    ShouldNotReachHere();
  1.3577 +  }
  1.3578 +
  1.3579 +  return true;
  1.3580 +}
  1.3581 +
  1.3582 +#ifdef _LP64
  1.3583 +#define XTOP ,top() /*additional argument*/
  1.3584 +#else  //_LP64
  1.3585 +#define XTOP        /*no additional argument*/
  1.3586 +#endif //_LP64
  1.3587 +
  1.3588 +//----------------------inline_unsafe_copyMemory-------------------------
  1.3589 +bool LibraryCallKit::inline_unsafe_copyMemory() {
  1.3590 +  if (callee()->is_static())  return false;  // caller must have the capability!
  1.3591 +  int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  1.3592 +  assert(signature()->size() == nargs-1, "copy has 5 arguments");
  1.3593 +  null_check_receiver(callee());  // check then ignore argument(0)
  1.3594 +  if (stopped())  return true;
  1.3595 +
  1.3596 +  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  1.3597 +
  1.3598 +  Node* src_ptr = argument(1);
  1.3599 +  Node* src_off = ConvL2X(argument(2));
  1.3600 +  assert(argument(3)->is_top(), "2nd half of long");
  1.3601 +  Node* dst_ptr = argument(4);
  1.3602 +  Node* dst_off = ConvL2X(argument(5));
  1.3603 +  assert(argument(6)->is_top(), "2nd half of long");
  1.3604 +  Node* size    = ConvL2X(argument(7));
  1.3605 +  assert(argument(8)->is_top(), "2nd half of long");
  1.3606 +
  1.3607 +  assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  1.3608 +         "fieldOffset must be byte-scaled");
  1.3609 +
  1.3610 +  Node* src = make_unsafe_address(src_ptr, src_off);
  1.3611 +  Node* dst = make_unsafe_address(dst_ptr, dst_off);
  1.3612 +
  1.3613 +  // Conservatively insert a memory barrier on all memory slices.
  1.3614 +  // Do not let writes of the copy source or destination float below the copy.
  1.3615 +  insert_mem_bar(Op_MemBarCPUOrder);
  1.3616 +
  1.3617 +  // Call it.  Note that the length argument is not scaled.
  1.3618 +  make_runtime_call(RC_LEAF|RC_NO_FP,
  1.3619 +                    OptoRuntime::fast_arraycopy_Type(),
  1.3620 +                    StubRoutines::unsafe_arraycopy(),
  1.3621 +                    "unsafe_arraycopy",
  1.3622 +                    TypeRawPtr::BOTTOM,
  1.3623 +                    src, dst, size XTOP);
  1.3624 +
  1.3625 +  // Do not let reads of the copy destination float above the copy.
  1.3626 +  insert_mem_bar(Op_MemBarCPUOrder);
  1.3627 +
  1.3628 +  return true;
  1.3629 +}
  1.3630 +
  1.3631 +
  1.3632 +//------------------------inline_native_clone----------------------------
  1.3633 +// Here are the simple edge cases:
  1.3634 +//  null receiver => normal trap
  1.3635 +//  virtual and clone was overridden => slow path to out-of-line clone
  1.3636 +//  not cloneable or finalizer => slow path to out-of-line Object.clone
  1.3637 +//
  1.3638 +// The general case has two steps, allocation and copying.
  1.3639 +// Allocation has two cases, and uses GraphKit::new_instance or new_array.
  1.3640 +//
  1.3641 +// Copying also has two cases, oop arrays and everything else.
  1.3642 +// Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  1.3643 +// Everything else uses the tight inline loop supplied by CopyArrayNode.
  1.3644 +//
  1.3645 +// These steps fold up nicely if and when the cloned object's klass
  1.3646 +// can be sharply typed as an object array, a type array, or an instance.
  1.3647 +//
  1.3648 +bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  1.3649 +  int nargs = 1;
  1.3650 +  Node* obj = null_check_receiver(callee());
  1.3651 +  if (stopped())  return true;
  1.3652 +  Node* obj_klass = load_object_klass(obj);
  1.3653 +  const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  1.3654 +  const TypeOopPtr*   toop   = ((tklass != NULL)
  1.3655 +                                ? tklass->as_instance_type()
  1.3656 +                                : TypeInstPtr::NOTNULL);
  1.3657 +
  1.3658 +  // Conservatively insert a memory barrier on all memory slices.
  1.3659 +  // Do not let writes into the original float below the clone.
  1.3660 +  insert_mem_bar(Op_MemBarCPUOrder);
  1.3661 +
  1.3662 +  // paths into result_reg:
  1.3663 +  enum {
  1.3664 +    _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  1.3665 +    _objArray_path,     // plain allocation, plus arrayof_oop_arraycopy
  1.3666 +    _fast_path,         // plain allocation, plus a CopyArray operation
  1.3667 +    PATH_LIMIT
  1.3668 +  };
  1.3669 +  RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  1.3670 +  PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  1.3671 +                                                      TypeInstPtr::NOTNULL);
  1.3672 +  PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  1.3673 +  PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  1.3674 +                                                      TypePtr::BOTTOM);
  1.3675 +  record_for_igvn(result_reg);
  1.3676 +
  1.3677 +  const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  1.3678 +  int raw_adr_idx = Compile::AliasIdxRaw;
  1.3679 +  const bool raw_mem_only = true;
  1.3680 +
  1.3681 +  // paths into alloc_reg (on the fast path, just before the CopyArray):
  1.3682 +  enum { _typeArray_alloc = 1, _instance_alloc, ALLOC_LIMIT };
  1.3683 +  RegionNode* alloc_reg = new(C, ALLOC_LIMIT) RegionNode(ALLOC_LIMIT);
  1.3684 +  PhiNode*    alloc_val = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, raw_adr_type);
  1.3685 +  PhiNode*    alloc_siz = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, TypeX_X);
  1.3686 +  PhiNode*    alloc_i_o = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::ABIO);
  1.3687 +  PhiNode*    alloc_mem = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::MEMORY,
  1.3688 +                                                      raw_adr_type);
  1.3689 +  record_for_igvn(alloc_reg);
  1.3690 +
  1.3691 +  bool card_mark = false;  // (see below)
  1.3692 +
  1.3693 +  Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  1.3694 +  if (array_ctl != NULL) {
  1.3695 +    // It's an array.
  1.3696 +    PreserveJVMState pjvms(this);
  1.3697 +    set_control(array_ctl);
  1.3698 +    Node* obj_length = load_array_length(obj);
  1.3699 +    Node* obj_size = NULL;
  1.3700 +    _sp += nargs;  // set original stack for use by uncommon_trap
  1.3701 +    Node* alloc_obj = new_array(obj_klass, obj_length,
  1.3702 +                                raw_mem_only, &obj_size);
  1.3703 +    _sp -= nargs;
  1.3704 +    assert(obj_size != NULL, "");
  1.3705 +    Node* raw_obj = alloc_obj->in(1);
  1.3706 +    assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  1.3707 +    if (ReduceBulkZeroing) {
  1.3708 +      AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  1.3709 +      if (alloc != NULL) {
  1.3710 +        // We will be completely responsible for initializing this object.
  1.3711 +        alloc->maybe_set_complete(&_gvn);
  1.3712 +      }
  1.3713 +    }
  1.3714 +
  1.3715 +    if (!use_ReduceInitialCardMarks()) {
  1.3716 +      // If it is an oop array, it requires very special treatment,
  1.3717 +      // because card marking is required on each card of the array.
  1.3718 +      Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  1.3719 +      if (is_obja != NULL) {
  1.3720 +        PreserveJVMState pjvms2(this);
  1.3721 +        set_control(is_obja);
  1.3722 +        // Generate a direct call to the right arraycopy function(s).
  1.3723 +        bool disjoint_bases = true;
  1.3724 +        bool length_never_negative = true;
  1.3725 +        generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  1.3726 +                           obj, intcon(0), alloc_obj, intcon(0),
  1.3727 +                           obj_length, nargs,
  1.3728 +                           disjoint_bases, length_never_negative);
  1.3729 +        result_reg->init_req(_objArray_path, control());
  1.3730 +        result_val->init_req(_objArray_path, alloc_obj);
  1.3731 +        result_i_o ->set_req(_objArray_path, i_o());
  1.3732 +        result_mem ->set_req(_objArray_path, reset_memory());
  1.3733 +      }
  1.3734 +    }
  1.3735 +    // We can dispense with card marks if we know the allocation
  1.3736 +    // comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  1.3737 +    // causes the non-eden paths to simulate a fresh allocation,
  1.3738 +    // insofar that no further card marks are required to initialize
  1.3739 +    // the object.
  1.3740 +
  1.3741 +    // Otherwise, there are no card marks to worry about.
  1.3742 +    alloc_val->init_req(_typeArray_alloc, raw_obj);
  1.3743 +    alloc_siz->init_req(_typeArray_alloc, obj_size);
  1.3744 +    alloc_reg->init_req(_typeArray_alloc, control());
  1.3745 +    alloc_i_o->init_req(_typeArray_alloc, i_o());
  1.3746 +    alloc_mem->init_req(_typeArray_alloc, memory(raw_adr_type));
  1.3747 +  }
  1.3748 +
  1.3749 +  // We only go to the fast case code if we pass a number of guards.
  1.3750 +  // The paths which do not pass are accumulated in the slow_region.
  1.3751 +  RegionNode* slow_region = new (C, 1) RegionNode(1);
  1.3752 +  record_for_igvn(slow_region);
  1.3753 +  if (!stopped()) {
  1.3754 +    // It's an instance.  Make the slow-path tests.
  1.3755 +    // If this is a virtual call, we generate a funny guard.  We grab
  1.3756 +    // the vtable entry corresponding to clone() from the target object.
  1.3757 +    // If the target method which we are calling happens to be the
  1.3758 +    // Object clone() method, we pass the guard.  We do not need this
  1.3759 +    // guard for non-virtual calls; the caller is known to be the native
  1.3760 +    // Object clone().
  1.3761 +    if (is_virtual) {
  1.3762 +      generate_virtual_guard(obj_klass, slow_region);
  1.3763 +    }
  1.3764 +
  1.3765 +    // The object must be cloneable and must not have a finalizer.
  1.3766 +    // Both of these conditions may be checked in a single test.
  1.3767 +    // We could optimize the cloneable test further, but we don't care.
  1.3768 +    generate_access_flags_guard(obj_klass,
  1.3769 +                                // Test both conditions:
  1.3770 +                                JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  1.3771 +                                // Must be cloneable but not finalizer:
  1.3772 +                                JVM_ACC_IS_CLONEABLE,
  1.3773 +                                slow_region);
  1.3774 +  }
  1.3775 +
  1.3776 +  if (!stopped()) {
  1.3777 +    // It's an instance, and it passed the slow-path tests.
  1.3778 +    PreserveJVMState pjvms(this);
  1.3779 +    Node* obj_size = NULL;
  1.3780 +    Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
  1.3781 +    assert(obj_size != NULL, "");
  1.3782 +    Node* raw_obj = alloc_obj->in(1);
  1.3783 +    assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  1.3784 +    if (ReduceBulkZeroing) {
  1.3785 +      AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  1.3786 +      if (alloc != NULL && !alloc->maybe_set_complete(&_gvn))
  1.3787 +        alloc = NULL;
  1.3788 +    }
  1.3789 +    if (!use_ReduceInitialCardMarks()) {
  1.3790 +      // Put in store barrier for any and all oops we are sticking
  1.3791 +      // into this object.  (We could avoid this if we could prove
  1.3792 +      // that the object type contains no oop fields at all.)
  1.3793 +      card_mark = true;
  1.3794 +    }
  1.3795 +    alloc_val->init_req(_instance_alloc, raw_obj);
  1.3796 +    alloc_siz->init_req(_instance_alloc, obj_size);
  1.3797 +    alloc_reg->init_req(_instance_alloc, control());
  1.3798 +    alloc_i_o->init_req(_instance_alloc, i_o());
  1.3799 +    alloc_mem->init_req(_instance_alloc, memory(raw_adr_type));
  1.3800 +  }
  1.3801 +
  1.3802 +  // Generate code for the slow case.  We make a call to clone().
  1.3803 +  set_control(_gvn.transform(slow_region));
  1.3804 +  if (!stopped()) {
  1.3805 +    PreserveJVMState pjvms(this);
  1.3806 +    CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  1.3807 +    Node* slow_result = set_results_for_java_call(slow_call);
  1.3808 +    // this->control() comes from set_results_for_java_call
  1.3809 +    result_reg->init_req(_slow_path, control());
  1.3810 +    result_val->init_req(_slow_path, slow_result);
  1.3811 +    result_i_o ->set_req(_slow_path, i_o());
  1.3812 +    result_mem ->set_req(_slow_path, reset_memory());
  1.3813 +  }
  1.3814 +
  1.3815 +  // The object is allocated, as an array and/or an instance.  Now copy it.
  1.3816 +  set_control( _gvn.transform(alloc_reg) );
  1.3817 +  set_i_o(     _gvn.transform(alloc_i_o) );
  1.3818 +  set_memory(  _gvn.transform(alloc_mem), raw_adr_type );
  1.3819 +  Node* raw_obj  = _gvn.transform(alloc_val);
  1.3820 +
  1.3821 +  if (!stopped()) {
  1.3822 +    // Copy the fastest available way.
  1.3823 +    // (No need for PreserveJVMState, since we're using it all up now.)
  1.3824 +    Node* src  = obj;
  1.3825 +    Node* dest = raw_obj;
  1.3826 +    Node* end  = dest;
  1.3827 +    Node* size = _gvn.transform(alloc_siz);
  1.3828 +
  1.3829 +    // Exclude the header.
  1.3830 +    int base_off = sizeof(oopDesc);
  1.3831 +    src  = basic_plus_adr(src,  base_off);
  1.3832 +    dest = basic_plus_adr(dest, base_off);
  1.3833 +    end  = basic_plus_adr(end,  size);
  1.3834 +
  1.3835 +    // Compute the length also, if needed:
  1.3836 +    Node* countx = size;
  1.3837 +    countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  1.3838 +    countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  1.3839 +
  1.3840 +    // Select an appropriate instruction to initialize the range.
  1.3841 +    // The CopyArray instruction (if supported) can be optimized
  1.3842 +    // into a discrete set of scalar loads and stores.
  1.3843 +    bool disjoint_bases = true;
  1.3844 +    generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  1.3845 +                                 src, NULL, dest, NULL, countx);
  1.3846 +
  1.3847 +    // Now that the object is properly initialized, type it as an oop.
  1.3848 +    // Use a secondary InitializeNode memory barrier.
  1.3849 +    InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, raw_adr_idx,
  1.3850 +                                                   raw_obj)->as_Initialize();
  1.3851 +    init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  1.3852 +    Node* new_obj = new(C, 2) CheckCastPPNode(control(), raw_obj,
  1.3853 +                                              TypeInstPtr::NOTNULL);
  1.3854 +    new_obj = _gvn.transform(new_obj);
  1.3855 +
  1.3856 +    // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  1.3857 +    if (card_mark) {
  1.3858 +      Node* no_particular_value = NULL;
  1.3859 +      Node* no_particular_field = NULL;
  1.3860 +      post_barrier(control(),
  1.3861 +                   memory(raw_adr_type),
  1.3862 +                   new_obj,
  1.3863 +                   no_particular_field,
  1.3864 +                   raw_adr_idx,
  1.3865 +                   no_particular_value,
  1.3866 +                   T_OBJECT,
  1.3867 +                   false);
  1.3868 +    }
  1.3869 +    // Present the results of the slow call.
  1.3870 +    result_reg->init_req(_fast_path, control());
  1.3871 +    result_val->init_req(_fast_path, new_obj);
  1.3872 +    result_i_o ->set_req(_fast_path, i_o());
  1.3873 +    result_mem ->set_req(_fast_path, reset_memory());
  1.3874 +  }
  1.3875 +
  1.3876 +  // Return the combined state.
  1.3877 +  set_control(    _gvn.transform(result_reg) );
  1.3878 +  set_i_o(        _gvn.transform(result_i_o) );
  1.3879 +  set_all_memory( _gvn.transform(result_mem) );
  1.3880 +
  1.3881 +  // Cast the result to a sharper type, since we know what clone does.
  1.3882 +  Node* new_obj = _gvn.transform(result_val);
  1.3883 +  Node* cast    = new (C, 2) CheckCastPPNode(control(), new_obj, toop);
  1.3884 +  push(_gvn.transform(cast));
  1.3885 +
  1.3886 +  return true;
  1.3887 +}
  1.3888 +
  1.3889 +
  1.3890 +// constants for computing the copy function
  1.3891 +enum {
  1.3892 +  COPYFUNC_UNALIGNED = 0,
  1.3893 +  COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
  1.3894 +  COPYFUNC_CONJOINT = 0,
  1.3895 +  COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
  1.3896 +};
  1.3897 +
  1.3898 +// Note:  The condition "disjoint" applies also for overlapping copies
  1.3899 +// where an descending copy is permitted (i.e., dest_offset <= src_offset).
  1.3900 +static address
  1.3901 +select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
  1.3902 +  int selector =
  1.3903 +    (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
  1.3904 +    (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
  1.3905 +
  1.3906 +#define RETURN_STUB(xxx_arraycopy) { \
  1.3907 +  name = #xxx_arraycopy; \
  1.3908 +  return StubRoutines::xxx_arraycopy(); }
  1.3909 +
  1.3910 +  switch (t) {
  1.3911 +  case T_BYTE:
  1.3912 +  case T_BOOLEAN:
  1.3913 +    switch (selector) {
  1.3914 +    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
  1.3915 +    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
  1.3916 +    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
  1.3917 +    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
  1.3918 +    }
  1.3919 +  case T_CHAR:
  1.3920 +  case T_SHORT:
  1.3921 +    switch (selector) {
  1.3922 +    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
  1.3923 +    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
  1.3924 +    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
  1.3925 +    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
  1.3926 +    }
  1.3927 +  case T_INT:
  1.3928 +  case T_FLOAT:
  1.3929 +    switch (selector) {
  1.3930 +    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
  1.3931 +    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
  1.3932 +    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
  1.3933 +    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
  1.3934 +    }
  1.3935 +  case T_DOUBLE:
  1.3936 +  case T_LONG:
  1.3937 +    switch (selector) {
  1.3938 +    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
  1.3939 +    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
  1.3940 +    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
  1.3941 +    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
  1.3942 +    }
  1.3943 +  case T_ARRAY:
  1.3944 +  case T_OBJECT:
  1.3945 +    switch (selector) {
  1.3946 +    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
  1.3947 +    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
  1.3948 +    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
  1.3949 +    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
  1.3950 +    }
  1.3951 +  default:
  1.3952 +    ShouldNotReachHere();
  1.3953 +    return NULL;
  1.3954 +  }
  1.3955 +
  1.3956 +#undef RETURN_STUB
  1.3957 +}
  1.3958 +
  1.3959 +//------------------------------basictype2arraycopy----------------------------
  1.3960 +address LibraryCallKit::basictype2arraycopy(BasicType t,
  1.3961 +                                            Node* src_offset,
  1.3962 +                                            Node* dest_offset,
  1.3963 +                                            bool disjoint_bases,
  1.3964 +                                            const char* &name) {
  1.3965 +  const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  1.3966 +  const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  1.3967 +
  1.3968 +  bool aligned = false;
  1.3969 +  bool disjoint = disjoint_bases;
  1.3970 +
  1.3971 +  // if the offsets are the same, we can treat the memory regions as
  1.3972 +  // disjoint, because either the memory regions are in different arrays,
  1.3973 +  // or they are identical (which we can treat as disjoint.)  We can also
  1.3974 +  // treat a copy with a destination index  less that the source index
  1.3975 +  // as disjoint since a low->high copy will work correctly in this case.
  1.3976 +  if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  1.3977 +      dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  1.3978 +    // both indices are constants
  1.3979 +    int s_offs = src_offset_inttype->get_con();
  1.3980 +    int d_offs = dest_offset_inttype->get_con();
  1.3981 +    int element_size = type2aelembytes[t];
  1.3982 +    aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  1.3983 +              ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  1.3984 +    if (s_offs >= d_offs)  disjoint = true;
  1.3985 +  } else if (src_offset == dest_offset && src_offset != NULL) {
  1.3986 +    // This can occur if the offsets are identical non-constants.
  1.3987 +    disjoint = true;
  1.3988 +  }
  1.3989 +
  1.3990 +  return select_arraycopy_function(t, aligned, disjoint, name);
  1.3991 +}
  1.3992 +
  1.3993 +
  1.3994 +//------------------------------inline_arraycopy-----------------------
  1.3995 +bool LibraryCallKit::inline_arraycopy() {
  1.3996 +  // Restore the stack and pop off the arguments.
  1.3997 +  int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  1.3998 +  assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  1.3999 +
  1.4000 +  Node *src         = argument(0);
  1.4001 +  Node *src_offset  = argument(1);
  1.4002 +  Node *dest        = argument(2);
  1.4003 +  Node *dest_offset = argument(3);
  1.4004 +  Node *length      = argument(4);
  1.4005 +
  1.4006 +  // Compile time checks.  If any of these checks cannot be verified at compile time,
  1.4007 +  // we do not make a fast path for this call.  Instead, we let the call remain as it
  1.4008 +  // is.  The checks we choose to mandate at compile time are:
  1.4009 +  //
  1.4010 +  // (1) src and dest are arrays.
  1.4011 +  const Type* src_type = src->Value(&_gvn);
  1.4012 +  const Type* dest_type = dest->Value(&_gvn);
  1.4013 +  const TypeAryPtr* top_src = src_type->isa_aryptr();
  1.4014 +  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  1.4015 +  if (top_src  == NULL || top_src->klass()  == NULL ||
  1.4016 +      top_dest == NULL || top_dest->klass() == NULL) {
  1.4017 +    // Conservatively insert a memory barrier on all memory slices.
  1.4018 +    // Do not let writes into the source float below the arraycopy.
  1.4019 +    insert_mem_bar(Op_MemBarCPUOrder);
  1.4020 +
  1.4021 +    // Call StubRoutines::generic_arraycopy stub.
  1.4022 +    generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  1.4023 +                       src, src_offset, dest, dest_offset, length,
  1.4024 +                       nargs);
  1.4025 +
  1.4026 +    // Do not let reads from the destination float above the arraycopy.
  1.4027 +    // Since we cannot type the arrays, we don't know which slices
  1.4028 +    // might be affected.  We could restrict this barrier only to those
  1.4029 +    // memory slices which pertain to array elements--but don't bother.
  1.4030 +    if (!InsertMemBarAfterArraycopy)
  1.4031 +      // (If InsertMemBarAfterArraycopy, there is already one in place.)
  1.4032 +      insert_mem_bar(Op_MemBarCPUOrder);
  1.4033 +    return true;
  1.4034 +  }
  1.4035 +
  1.4036 +  // (2) src and dest arrays must have elements of the same BasicType
  1.4037 +  // Figure out the size and type of the elements we will be copying.
  1.4038 +  BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  1.4039 +  BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  1.4040 +  if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  1.4041 +  if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  1.4042 +
  1.4043 +  if (src_elem != dest_elem || dest_elem == T_VOID) {
  1.4044 +    // The component types are not the same or are not recognized.  Punt.
  1.4045 +    // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  1.4046 +    generate_slow_arraycopy(TypePtr::BOTTOM,
  1.4047 +                            src, src_offset, dest, dest_offset, length,
  1.4048 +                            nargs);
  1.4049 +    return true;
  1.4050 +  }
  1.4051 +
  1.4052 +  //---------------------------------------------------------------------------
  1.4053 +  // We will make a fast path for this call to arraycopy.
  1.4054 +
  1.4055 +  // We have the following tests left to perform:
  1.4056 +  //
  1.4057 +  // (3) src and dest must not be null.
  1.4058 +  // (4) src_offset must not be negative.
  1.4059 +  // (5) dest_offset must not be negative.
  1.4060 +  // (6) length must not be negative.
  1.4061 +  // (7) src_offset + length must not exceed length of src.
  1.4062 +  // (8) dest_offset + length must not exceed length of dest.
  1.4063 +  // (9) each element of an oop array must be assignable
  1.4064 +
  1.4065 +  RegionNode* slow_region = new (C, 1) RegionNode(1);
  1.4066 +  record_for_igvn(slow_region);
  1.4067 +
  1.4068 +  // (3) operands must not be null
  1.4069 +  // We currently perform our null checks with the do_null_check routine.
  1.4070 +  // This means that the null exceptions will be reported in the caller
  1.4071 +  // rather than (correctly) reported inside of the native arraycopy call.
  1.4072 +  // This should be corrected, given time.  We do our null check with the
  1.4073 +  // stack pointer restored.
  1.4074 +  _sp += nargs;
  1.4075 +  src  = do_null_check(src,  T_ARRAY);
  1.4076 +  dest = do_null_check(dest, T_ARRAY);
  1.4077 +  _sp -= nargs;
  1.4078 +
  1.4079 +  // (4) src_offset must not be negative.
  1.4080 +  generate_negative_guard(src_offset, slow_region);
  1.4081 +
  1.4082 +  // (5) dest_offset must not be negative.
  1.4083 +  generate_negative_guard(dest_offset, slow_region);
  1.4084 +
  1.4085 +  // (6) length must not be negative (moved to generate_arraycopy()).
  1.4086 +  // generate_negative_guard(length, slow_region);
  1.4087 +
  1.4088 +  // (7) src_offset + length must not exceed length of src.
  1.4089 +  generate_limit_guard(src_offset, length,
  1.4090 +                       load_array_length(src),
  1.4091 +                       slow_region);
  1.4092 +
  1.4093 +  // (8) dest_offset + length must not exceed length of dest.
  1.4094 +  generate_limit_guard(dest_offset, length,
  1.4095 +                       load_array_length(dest),
  1.4096 +                       slow_region);
  1.4097 +
  1.4098 +  // (9) each element of an oop array must be assignable
  1.4099 +  // The generate_arraycopy subroutine checks this.
  1.4100 +
  1.4101 +  // This is where the memory effects are placed:
  1.4102 +  const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  1.4103 +  generate_arraycopy(adr_type, dest_elem,
  1.4104 +                     src, src_offset, dest, dest_offset, length,
  1.4105 +                     nargs, false, false, slow_region);
  1.4106 +
  1.4107 +  return true;
  1.4108 +}
  1.4109 +
  1.4110 +//-----------------------------generate_arraycopy----------------------
  1.4111 +// Generate an optimized call to arraycopy.
  1.4112 +// Caller must guard against non-arrays.
  1.4113 +// Caller must determine a common array basic-type for both arrays.
  1.4114 +// Caller must validate offsets against array bounds.
  1.4115 +// The slow_region has already collected guard failure paths
  1.4116 +// (such as out of bounds length or non-conformable array types).
  1.4117 +// The generated code has this shape, in general:
  1.4118 +//
  1.4119 +//     if (length == 0)  return   // via zero_path
  1.4120 +//     slowval = -1
  1.4121 +//     if (types unknown) {
  1.4122 +//       slowval = call generic copy loop
  1.4123 +//       if (slowval == 0)  return  // via checked_path
  1.4124 +//     } else if (indexes in bounds) {
  1.4125 +//       if ((is object array) && !(array type check)) {
  1.4126 +//         slowval = call checked copy loop
  1.4127 +//         if (slowval == 0)  return  // via checked_path
  1.4128 +//       } else {
  1.4129 +//         call bulk copy loop
  1.4130 +//         return  // via fast_path
  1.4131 +//       }
  1.4132 +//     }
  1.4133 +//     // adjust params for remaining work:
  1.4134 +//     if (slowval != -1) {
  1.4135 +//       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  1.4136 +//     }
  1.4137 +//   slow_region:
  1.4138 +//     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  1.4139 +//     return  // via slow_call_path
  1.4140 +//
  1.4141 +// This routine is used from several intrinsics:  System.arraycopy,
  1.4142 +// Object.clone (the array subcase), and Arrays.copyOf[Range].
  1.4143 +//
  1.4144 +void
  1.4145 +LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  1.4146 +                                   BasicType basic_elem_type,
  1.4147 +                                   Node* src,  Node* src_offset,
  1.4148 +                                   Node* dest, Node* dest_offset,
  1.4149 +                                   Node* copy_length,
  1.4150 +                                   int nargs,
  1.4151 +                                   bool disjoint_bases,
  1.4152 +                                   bool length_never_negative,
  1.4153 +                                   RegionNode* slow_region) {
  1.4154 +
  1.4155 +  if (slow_region == NULL) {
  1.4156 +    slow_region = new(C,1) RegionNode(1);
  1.4157 +    record_for_igvn(slow_region);
  1.4158 +  }
  1.4159 +
  1.4160 +  Node* original_dest      = dest;
  1.4161 +  AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  1.4162 +  Node* raw_dest           = NULL;  // used before zeroing, if needed
  1.4163 +  bool  must_clear_dest    = false;
  1.4164 +
  1.4165 +  // See if this is the initialization of a newly-allocated array.
  1.4166 +  // If so, we will take responsibility here for initializing it to zero.
  1.4167 +  // (Note:  Because tightly_coupled_allocation performs checks on the
  1.4168 +  // out-edges of the dest, we need to avoid making derived pointers
  1.4169 +  // from it until we have checked its uses.)
  1.4170 +  if (ReduceBulkZeroing
  1.4171 +      && !ZeroTLAB              // pointless if already zeroed
  1.4172 +      && basic_elem_type != T_CONFLICT // avoid corner case
  1.4173 +      && !_gvn.eqv_uncast(src, dest)
  1.4174 +      && ((alloc = tightly_coupled_allocation(dest, slow_region))
  1.4175 +          != NULL)
  1.4176 +      && alloc->maybe_set_complete(&_gvn)) {
  1.4177 +    // "You break it, you buy it."
  1.4178 +    InitializeNode* init = alloc->initialization();
  1.4179 +    assert(init->is_complete(), "we just did this");
  1.4180 +    assert(dest->Opcode() == Op_CheckCastPP, "sanity");
  1.4181 +    assert(dest->in(0)->in(0) == init, "dest pinned");
  1.4182 +    raw_dest = dest->in(1);  // grab the raw pointer!
  1.4183 +    original_dest = dest;
  1.4184 +    dest = raw_dest;
  1.4185 +    adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  1.4186 +    // Decouple the original InitializeNode, turning it into a simple membar.
  1.4187 +    // We will build a new one at the end of this routine.
  1.4188 +    init->set_req(InitializeNode::RawAddress, top());
  1.4189 +    // From this point on, every exit path is responsible for
  1.4190 +    // initializing any non-copied parts of the object to zero.
  1.4191 +    must_clear_dest = true;
  1.4192 +  } else {
  1.4193 +    // No zeroing elimination here.
  1.4194 +    alloc             = NULL;
  1.4195 +    //original_dest   = dest;
  1.4196 +    //must_clear_dest = false;
  1.4197 +  }
  1.4198 +
  1.4199 +  // Results are placed here:
  1.4200 +  enum { fast_path        = 1,  // normal void-returning assembly stub
  1.4201 +         checked_path     = 2,  // special assembly stub with cleanup
  1.4202 +         slow_call_path   = 3,  // something went wrong; call the VM
  1.4203 +         zero_path        = 4,  // bypass when length of copy is zero
  1.4204 +         bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  1.4205 +         PATH_LIMIT       = 6
  1.4206 +  };
  1.4207 +  RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  1.4208 +  PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  1.4209 +  PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  1.4210 +  record_for_igvn(result_region);
  1.4211 +  _gvn.set_type_bottom(result_i_o);
  1.4212 +  _gvn.set_type_bottom(result_memory);
  1.4213 +  assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  1.4214 +
  1.4215 +  // The slow_control path:
  1.4216 +  Node* slow_control;
  1.4217 +  Node* slow_i_o = i_o();
  1.4218 +  Node* slow_mem = memory(adr_type);
  1.4219 +  debug_only(slow_control = (Node*) badAddress);
  1.4220 +
  1.4221 +  // Checked control path:
  1.4222 +  Node* checked_control = top();
  1.4223 +  Node* checked_mem     = NULL;
  1.4224 +  Node* checked_i_o     = NULL;
  1.4225 +  Node* checked_value   = NULL;
  1.4226 +
  1.4227 +  if (basic_elem_type == T_CONFLICT) {
  1.4228 +    assert(!must_clear_dest, "");
  1.4229 +    Node* cv = generate_generic_arraycopy(adr_type,
  1.4230 +                                          src, src_offset, dest, dest_offset,
  1.4231 +                                          copy_length, nargs);
  1.4232 +    if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  1.4233 +    checked_control = control();
  1.4234 +    checked_i_o     = i_o();
  1.4235 +    checked_mem     = memory(adr_type);
  1.4236 +    checked_value   = cv;
  1.4237 +    set_control(top());         // no fast path
  1.4238 +  }
  1.4239 +
  1.4240 +  Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  1.4241 +  if (not_pos != NULL) {
  1.4242 +    PreserveJVMState pjvms(this);
  1.4243 +    set_control(not_pos);
  1.4244 +
  1.4245 +    // (6) length must not be negative.
  1.4246 +    if (!length_never_negative) {
  1.4247 +      generate_negative_guard(copy_length, slow_region);
  1.4248 +    }
  1.4249 +
  1.4250 +    if (!stopped() && must_clear_dest) {
  1.4251 +      Node* dest_length = alloc->in(AllocateNode::ALength);
  1.4252 +      if (_gvn.eqv_uncast(copy_length, dest_length)
  1.4253 +          || _gvn.find_int_con(dest_length, 1) <= 0) {
  1.4254 +        // There is no zeroing to do.
  1.4255 +      } else {
  1.4256 +        // Clear the whole thing since there are no source elements to copy.
  1.4257 +        generate_clear_array(adr_type, dest, basic_elem_type,
  1.4258 +                             intcon(0), NULL,
  1.4259 +                             alloc->in(AllocateNode::AllocSize));
  1.4260 +      }
  1.4261 +    }
  1.4262 +
  1.4263 +    // Present the results of the fast call.
  1.4264 +    result_region->init_req(zero_path, control());
  1.4265 +    result_i_o   ->init_req(zero_path, i_o());
  1.4266 +    result_memory->init_req(zero_path, memory(adr_type));
  1.4267 +  }
  1.4268 +
  1.4269 +  if (!stopped() && must_clear_dest) {
  1.4270 +    // We have to initialize the *uncopied* part of the array to zero.
  1.4271 +    // The copy destination is the slice dest[off..off+len].  The other slices
  1.4272 +    // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  1.4273 +    Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  1.4274 +    Node* dest_length = alloc->in(AllocateNode::ALength);
  1.4275 +    Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
  1.4276 +                                                          copy_length) );
  1.4277 +
  1.4278 +    // If there is a head section that needs zeroing, do it now.
  1.4279 +    if (find_int_con(dest_offset, -1) != 0) {
  1.4280 +      generate_clear_array(adr_type, dest, basic_elem_type,
  1.4281 +                           intcon(0), dest_offset,
  1.4282 +                           NULL);
  1.4283 +    }
  1.4284 +
  1.4285 +    // Next, perform a dynamic check on the tail length.
  1.4286 +    // It is often zero, and we can win big if we prove this.
  1.4287 +    // There are two wins:  Avoid generating the ClearArray
  1.4288 +    // with its attendant messy index arithmetic, and upgrade
  1.4289 +    // the copy to a more hardware-friendly word size of 64 bits.
  1.4290 +    Node* tail_ctl = NULL;
  1.4291 +    if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
  1.4292 +      Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
  1.4293 +      Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
  1.4294 +      tail_ctl = generate_slow_guard(bol_lt, NULL);
  1.4295 +      assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  1.4296 +    }
  1.4297 +
  1.4298 +    // At this point, let's assume there is no tail.
  1.4299 +    if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  1.4300 +      // There is no tail.  Try an upgrade to a 64-bit copy.
  1.4301 +      bool didit = false;
  1.4302 +      { PreserveJVMState pjvms(this);
  1.4303 +        didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  1.4304 +                                         src, src_offset, dest, dest_offset,
  1.4305 +                                         dest_size);
  1.4306 +        if (didit) {
  1.4307 +          // Present the results of the block-copying fast call.
  1.4308 +          result_region->init_req(bcopy_path, control());
  1.4309 +          result_i_o   ->init_req(bcopy_path, i_o());
  1.4310 +          result_memory->init_req(bcopy_path, memory(adr_type));
  1.4311 +        }
  1.4312 +      }
  1.4313 +      if (didit)
  1.4314 +        set_control(top());     // no regular fast path
  1.4315 +    }
  1.4316 +
  1.4317 +    // Clear the tail, if any.
  1.4318 +    if (tail_ctl != NULL) {
  1.4319 +      Node* notail_ctl = stopped() ? NULL : control();
  1.4320 +      set_control(tail_ctl);
  1.4321 +      if (notail_ctl == NULL) {
  1.4322 +        generate_clear_array(adr_type, dest, basic_elem_type,
  1.4323 +                             dest_tail, NULL,
  1.4324 +                             dest_size);
  1.4325 +      } else {
  1.4326 +        // Make a local merge.
  1.4327 +        Node* done_ctl = new(C,3) RegionNode(3);
  1.4328 +        Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
  1.4329 +        done_ctl->init_req(1, notail_ctl);
  1.4330 +        done_mem->init_req(1, memory(adr_type));
  1.4331 +        generate_clear_array(adr_type, dest, basic_elem_type,
  1.4332 +                             dest_tail, NULL,
  1.4333 +                             dest_size);
  1.4334 +        done_ctl->init_req(2, control());
  1.4335 +        done_mem->init_req(2, memory(adr_type));
  1.4336 +        set_control( _gvn.transform(done_ctl) );
  1.4337 +        set_memory(  _gvn.transform(done_mem), adr_type );
  1.4338 +      }
  1.4339 +    }
  1.4340 +  }
  1.4341 +
  1.4342 +  BasicType copy_type = basic_elem_type;
  1.4343 +  assert(basic_elem_type != T_ARRAY, "caller must fix this");
  1.4344 +  if (!stopped() && copy_type == T_OBJECT) {
  1.4345 +    // If src and dest have compatible element types, we can copy bits.
  1.4346 +    // Types S[] and D[] are compatible if D is a supertype of S.
  1.4347 +    //
  1.4348 +    // If they are not, we will use checked_oop_disjoint_arraycopy,
  1.4349 +    // which performs a fast optimistic per-oop check, and backs off
  1.4350 +    // further to JVM_ArrayCopy on the first per-oop check that fails.
  1.4351 +    // (Actually, we don't move raw bits only; the GC requires card marks.)
  1.4352 +
  1.4353 +    // Get the klassOop for both src and dest
  1.4354 +    Node* src_klass  = load_object_klass(src);
  1.4355 +    Node* dest_klass = load_object_klass(dest);
  1.4356 +
  1.4357 +    // Generate the subtype check.
  1.4358 +    // This might fold up statically, or then again it might not.
  1.4359 +    //
  1.4360 +    // Non-static example:  Copying List<String>.elements to a new String[].
  1.4361 +    // The backing store for a List<String> is always an Object[],
  1.4362 +    // but its elements are always type String, if the generic types
  1.4363 +    // are correct at the source level.
  1.4364 +    //
  1.4365 +    // Test S[] against D[], not S against D, because (probably)
  1.4366 +    // the secondary supertype cache is less busy for S[] than S.
  1.4367 +    // This usually only matters when D is an interface.
  1.4368 +    Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  1.4369 +    // Plug failing path into checked_oop_disjoint_arraycopy
  1.4370 +    if (not_subtype_ctrl != top()) {
  1.4371 +      PreserveJVMState pjvms(this);
  1.4372 +      set_control(not_subtype_ctrl);
  1.4373 +      // (At this point we can assume disjoint_bases, since types differ.)
  1.4374 +      int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
  1.4375 +      Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  1.4376 +      Node* n1 = new (C, 3) LoadKlassNode(0, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  1.4377 +      Node* dest_elem_klass = _gvn.transform(n1);
  1.4378 +      Node* cv = generate_checkcast_arraycopy(adr_type,
  1.4379 +                                              dest_elem_klass,
  1.4380 +                                              src, src_offset, dest, dest_offset,
  1.4381 +                                              copy_length,
  1.4382 +                                              nargs);
  1.4383 +      if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  1.4384 +      checked_control = control();
  1.4385 +      checked_i_o     = i_o();
  1.4386 +      checked_mem     = memory(adr_type);
  1.4387 +      checked_value   = cv;
  1.4388 +    }
  1.4389 +    // At this point we know we do not need type checks on oop stores.
  1.4390 +
  1.4391 +    // Let's see if we need card marks:
  1.4392 +    if (alloc != NULL && use_ReduceInitialCardMarks()) {
  1.4393 +      // If we do not need card marks, copy using the jint or jlong stub.
  1.4394 +      copy_type = LP64_ONLY(T_LONG) NOT_LP64(T_INT);
  1.4395 +      assert(type2aelembytes[basic_elem_type] == type2aelembytes[copy_type],
  1.4396 +             "sizes agree");
  1.4397 +    }
  1.4398 +  }
  1.4399 +
  1.4400 +  if (!stopped()) {
  1.4401 +    // Generate the fast path, if possible.
  1.4402 +    PreserveJVMState pjvms(this);
  1.4403 +    generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  1.4404 +                                 src, src_offset, dest, dest_offset,
  1.4405 +                                 ConvI2X(copy_length));
  1.4406 +
  1.4407 +    // Present the results of the fast call.
  1.4408 +    result_region->init_req(fast_path, control());
  1.4409 +    result_i_o   ->init_req(fast_path, i_o());
  1.4410 +    result_memory->init_req(fast_path, memory(adr_type));
  1.4411 +  }
  1.4412 +
  1.4413 +  // Here are all the slow paths up to this point, in one bundle:
  1.4414 +  slow_control = top();
  1.4415 +  if (slow_region != NULL)
  1.4416 +    slow_control = _gvn.transform(slow_region);
  1.4417 +  debug_only(slow_region = (RegionNode*)badAddress);
  1.4418 +
  1.4419 +  set_control(checked_control);
  1.4420 +  if (!stopped()) {
  1.4421 +    // Clean up after the checked call.
  1.4422 +    // The returned value is either 0 or -1^K,
  1.4423 +    // where K = number of partially transferred array elements.
  1.4424 +    Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
  1.4425 +    Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  1.4426 +    IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  1.4427 +
  1.4428 +    // If it is 0, we are done, so transfer to the end.
  1.4429 +    Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
  1.4430 +    result_region->init_req(checked_path, checks_done);
  1.4431 +    result_i_o   ->init_req(checked_path, checked_i_o);
  1.4432 +    result_memory->init_req(checked_path, checked_mem);
  1.4433 +
  1.4434 +    // If it is not zero, merge into the slow call.
  1.4435 +    set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
  1.4436 +    RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
  1.4437 +    PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
  1.4438 +    PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  1.4439 +    record_for_igvn(slow_reg2);
  1.4440 +    slow_reg2  ->init_req(1, slow_control);
  1.4441 +    slow_i_o2  ->init_req(1, slow_i_o);
  1.4442 +    slow_mem2  ->init_req(1, slow_mem);
  1.4443 +    slow_reg2  ->init_req(2, control());
  1.4444 +    slow_i_o2  ->init_req(2, i_o());
  1.4445 +    slow_mem2  ->init_req(2, memory(adr_type));
  1.4446 +
  1.4447 +    slow_control = _gvn.transform(slow_reg2);
  1.4448 +    slow_i_o     = _gvn.transform(slow_i_o2);
  1.4449 +    slow_mem     = _gvn.transform(slow_mem2);
  1.4450 +
  1.4451 +    if (alloc != NULL) {
  1.4452 +      // We'll restart from the very beginning, after zeroing the whole thing.
  1.4453 +      // This can cause double writes, but that's OK since dest is brand new.
  1.4454 +      // So we ignore the low 31 bits of the value returned from the stub.
  1.4455 +    } else {
  1.4456 +      // We must continue the copy exactly where it failed, or else
  1.4457 +      // another thread might see the wrong number of writes to dest.
  1.4458 +      Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
  1.4459 +      Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
  1.4460 +      slow_offset->init_req(1, intcon(0));
  1.4461 +      slow_offset->init_req(2, checked_offset);
  1.4462 +      slow_offset  = _gvn.transform(slow_offset);
  1.4463 +
  1.4464 +      // Adjust the arguments by the conditionally incoming offset.
  1.4465 +      Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
  1.4466 +      Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
  1.4467 +      Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
  1.4468 +
  1.4469 +      // Tweak the node variables to adjust the code produced below:
  1.4470 +      src_offset  = src_off_plus;
  1.4471 +      dest_offset = dest_off_plus;
  1.4472 +      copy_length = length_minus;
  1.4473 +    }
  1.4474 +  }
  1.4475 +
  1.4476 +  set_control(slow_control);
  1.4477 +  if (!stopped()) {
  1.4478 +    // Generate the slow path, if needed.
  1.4479 +    PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  1.4480 +
  1.4481 +    set_memory(slow_mem, adr_type);
  1.4482 +    set_i_o(slow_i_o);
  1.4483 +
  1.4484 +    if (must_clear_dest) {
  1.4485 +      generate_clear_array(adr_type, dest, basic_elem_type,
  1.4486 +                           intcon(0), NULL,
  1.4487 +                           alloc->in(AllocateNode::AllocSize));
  1.4488 +    }
  1.4489 +
  1.4490 +    if (dest != original_dest) {
  1.4491 +      // Promote from rawptr to oop, so it looks right in the call's GC map.
  1.4492 +      dest = _gvn.transform( new(C,2) CheckCastPPNode(control(), dest,
  1.4493 +                                                      TypeInstPtr::NOTNULL) );
  1.4494 +
  1.4495 +      // Edit the call's debug-info to avoid referring to original_dest.
  1.4496 +      // (The problem with original_dest is that it isn't ready until
  1.4497 +      // after the InitializeNode completes, but this stuff is before.)
  1.4498 +      // Substitute in the locally valid dest_oop.
  1.4499 +      replace_in_map(original_dest, dest);
  1.4500 +    }
  1.4501 +
  1.4502 +    generate_slow_arraycopy(adr_type,
  1.4503 +                            src, src_offset, dest, dest_offset,
  1.4504 +                            copy_length, nargs);
  1.4505 +
  1.4506 +    result_region->init_req(slow_call_path, control());
  1.4507 +    result_i_o   ->init_req(slow_call_path, i_o());
  1.4508 +    result_memory->init_req(slow_call_path, memory(adr_type));
  1.4509 +  }
  1.4510 +
  1.4511 +  // Remove unused edges.
  1.4512 +  for (uint i = 1; i < result_region->req(); i++) {
  1.4513 +    if (result_region->in(i) == NULL)
  1.4514 +      result_region->init_req(i, top());
  1.4515 +  }
  1.4516 +
  1.4517 +  // Finished; return the combined state.
  1.4518 +  set_control( _gvn.transform(result_region) );
  1.4519 +  set_i_o(     _gvn.transform(result_i_o)    );
  1.4520 +  set_memory(  _gvn.transform(result_memory), adr_type );
  1.4521 +
  1.4522 +  if (dest != original_dest) {
  1.4523 +    // Pin the "finished" array node after the arraycopy/zeroing operations.
  1.4524 +    // Use a secondary InitializeNode memory barrier.
  1.4525 +    InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  1.4526 +                                                   Compile::AliasIdxRaw,
  1.4527 +                                                   raw_dest)->as_Initialize();
  1.4528 +    init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  1.4529 +    _gvn.hash_delete(original_dest);
  1.4530 +    original_dest->set_req(0, control());
  1.4531 +    _gvn.hash_find_insert(original_dest);  // put back into GVN table
  1.4532 +  }
  1.4533 +
  1.4534 +  // The memory edges above are precise in order to model effects around
  1.4535 +  // array copyies accurately to allow value numbering of field loads around
  1.4536 +  // arraycopy.  Such field loads, both before and after, are common in Java
  1.4537 +  // collections and similar classes involving header/array data structures.
  1.4538 +  //
  1.4539 +  // But with low number of register or when some registers are used or killed
  1.4540 +  // by arraycopy calls it causes registers spilling on stack. See 6544710.
  1.4541 +  // The next memory barrier is added to avoid it. If the arraycopy can be
  1.4542 +  // optimized away (which it can, sometimes) then we can manually remove
  1.4543 +  // the membar also.
  1.4544 +  if (InsertMemBarAfterArraycopy)
  1.4545 +    insert_mem_bar(Op_MemBarCPUOrder);
  1.4546 +}
  1.4547 +
  1.4548 +
  1.4549 +// Helper function which determines if an arraycopy immediately follows
  1.4550 +// an allocation, with no intervening tests or other escapes for the object.
  1.4551 +AllocateArrayNode*
  1.4552 +LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  1.4553 +                                           RegionNode* slow_region) {
  1.4554 +  if (stopped())             return NULL;  // no fast path
  1.4555 +  if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  1.4556 +
  1.4557 +  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  1.4558 +  if (alloc == NULL)  return NULL;
  1.4559 +
  1.4560 +  Node* rawmem = memory(Compile::AliasIdxRaw);
  1.4561 +  // Is the allocation's memory state untouched?
  1.4562 +  if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  1.4563 +    // Bail out if there have been raw-memory effects since the allocation.
  1.4564 +    // (Example:  There might have been a call or safepoint.)
  1.4565 +    return NULL;
  1.4566 +  }
  1.4567 +  rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  1.4568 +  if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  1.4569 +    return NULL;
  1.4570 +  }
  1.4571 +
  1.4572 +  // There must be no unexpected observers of this allocation.
  1.4573 +  for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  1.4574 +    Node* obs = ptr->fast_out(i);
  1.4575 +    if (obs != this->map()) {
  1.4576 +      return NULL;
  1.4577 +    }
  1.4578 +  }
  1.4579 +
  1.4580 +  // This arraycopy must unconditionally follow the allocation of the ptr.
  1.4581 +  Node* alloc_ctl = ptr->in(0);
  1.4582 +  assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  1.4583 +
  1.4584 +  Node* ctl = control();
  1.4585 +  while (ctl != alloc_ctl) {
  1.4586 +    // There may be guards which feed into the slow_region.
  1.4587 +    // Any other control flow means that we might not get a chance
  1.4588 +    // to finish initializing the allocated object.
  1.4589 +    if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  1.4590 +      IfNode* iff = ctl->in(0)->as_If();
  1.4591 +      Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  1.4592 +      assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  1.4593 +      if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  1.4594 +        ctl = iff->in(0);       // This test feeds the known slow_region.
  1.4595 +        continue;
  1.4596 +      }
  1.4597 +      // One more try:  Various low-level checks bottom out in
  1.4598 +      // uncommon traps.  If the debug-info of the trap omits
  1.4599 +      // any reference to the allocation, as we've already
  1.4600 +      // observed, then there can be no objection to the trap.
  1.4601 +      bool found_trap = false;
  1.4602 +      for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  1.4603 +        Node* obs = not_ctl->fast_out(j);
  1.4604 +        if (obs->in(0) == not_ctl && obs->is_Call() &&
  1.4605 +            (obs->as_Call()->entry_point() ==
  1.4606 +             SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
  1.4607 +          found_trap = true; break;
  1.4608 +        }
  1.4609 +      }
  1.4610 +      if (found_trap) {
  1.4611 +        ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  1.4612 +        continue;
  1.4613 +      }
  1.4614 +    }
  1.4615 +    return NULL;
  1.4616 +  }
  1.4617 +
  1.4618 +  // If we get this far, we have an allocation which immediately
  1.4619 +  // precedes the arraycopy, and we can take over zeroing the new object.
  1.4620 +  // The arraycopy will finish the initialization, and provide
  1.4621 +  // a new control state to which we will anchor the destination pointer.
  1.4622 +
  1.4623 +  return alloc;
  1.4624 +}
  1.4625 +
  1.4626 +// Helper for initialization of arrays, creating a ClearArray.
  1.4627 +// It writes zero bits in [start..end), within the body of an array object.
  1.4628 +// The memory effects are all chained onto the 'adr_type' alias category.
  1.4629 +//
  1.4630 +// Since the object is otherwise uninitialized, we are free
  1.4631 +// to put a little "slop" around the edges of the cleared area,
  1.4632 +// as long as it does not go back into the array's header,
  1.4633 +// or beyond the array end within the heap.
  1.4634 +//
  1.4635 +// The lower edge can be rounded down to the nearest jint and the
  1.4636 +// upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  1.4637 +//
  1.4638 +// Arguments:
  1.4639 +//   adr_type           memory slice where writes are generated
  1.4640 +//   dest               oop of the destination array
  1.4641 +//   basic_elem_type    element type of the destination
  1.4642 +//   slice_idx          array index of first element to store
  1.4643 +//   slice_len          number of elements to store (or NULL)
  1.4644 +//   dest_size          total size in bytes of the array object
  1.4645 +//
  1.4646 +// Exactly one of slice_len or dest_size must be non-NULL.
  1.4647 +// If dest_size is non-NULL, zeroing extends to the end of the object.
  1.4648 +// If slice_len is non-NULL, the slice_idx value must be a constant.
  1.4649 +void
  1.4650 +LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  1.4651 +                                     Node* dest,
  1.4652 +                                     BasicType basic_elem_type,
  1.4653 +                                     Node* slice_idx,
  1.4654 +                                     Node* slice_len,
  1.4655 +                                     Node* dest_size) {
  1.4656 +  // one or the other but not both of slice_len and dest_size:
  1.4657 +  assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  1.4658 +  if (slice_len == NULL)  slice_len = top();
  1.4659 +  if (dest_size == NULL)  dest_size = top();
  1.4660 +
  1.4661 +  // operate on this memory slice:
  1.4662 +  Node* mem = memory(adr_type); // memory slice to operate on
  1.4663 +
  1.4664 +  // scaling and rounding of indexes:
  1.4665 +  int scale = exact_log2(type2aelembytes[basic_elem_type]);
  1.4666 +  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  1.4667 +  int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  1.4668 +  int bump_bit  = (-1 << scale) & BytesPerInt;
  1.4669 +
  1.4670 +  // determine constant starts and ends
  1.4671 +  const intptr_t BIG_NEG = -128;
  1.4672 +  assert(BIG_NEG + 2*abase < 0, "neg enough");
  1.4673 +  intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  1.4674 +  intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  1.4675 +  if (slice_len_con == 0) {
  1.4676 +    return;                     // nothing to do here
  1.4677 +  }
  1.4678 +  intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  1.4679 +  intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  1.4680 +  if (slice_idx_con >= 0 && slice_len_con >= 0) {
  1.4681 +    assert(end_con < 0, "not two cons");
  1.4682 +    end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  1.4683 +                       BytesPerLong);
  1.4684 +  }
  1.4685 +
  1.4686 +  if (start_con >= 0 && end_con >= 0) {
  1.4687 +    // Constant start and end.  Simple.
  1.4688 +    mem = ClearArrayNode::clear_memory(control(), mem, dest,
  1.4689 +                                       start_con, end_con, &_gvn);
  1.4690 +  } else if (start_con >= 0 && dest_size != top()) {
  1.4691 +    // Constant start, pre-rounded end after the tail of the array.
  1.4692 +    Node* end = dest_size;
  1.4693 +    mem = ClearArrayNode::clear_memory(control(), mem, dest,
  1.4694 +                                       start_con, end, &_gvn);
  1.4695 +  } else if (start_con >= 0 && slice_len != top()) {
  1.4696 +    // Constant start, non-constant end.  End needs rounding up.
  1.4697 +    // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  1.4698 +    intptr_t end_base  = abase + (slice_idx_con << scale);
  1.4699 +    int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  1.4700 +    Node*    end       = ConvI2X(slice_len);
  1.4701 +    if (scale != 0)
  1.4702 +      end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
  1.4703 +    end_base += end_round;
  1.4704 +    end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
  1.4705 +    end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
  1.4706 +    mem = ClearArrayNode::clear_memory(control(), mem, dest,
  1.4707 +                                       start_con, end, &_gvn);
  1.4708 +  } else if (start_con < 0 && dest_size != top()) {
  1.4709 +    // Non-constant start, pre-rounded end after the tail of the array.
  1.4710 +    // This is almost certainly a "round-to-end" operation.
  1.4711 +    Node* start = slice_idx;
  1.4712 +    start = ConvI2X(start);
  1.4713 +    if (scale != 0)
  1.4714 +      start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
  1.4715 +    start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
  1.4716 +    if ((bump_bit | clear_low) != 0) {
  1.4717 +      int to_clear = (bump_bit | clear_low);
  1.4718 +      // Align up mod 8, then store a jint zero unconditionally
  1.4719 +      // just before the mod-8 boundary.
  1.4720 +      // This would only fail if the first array element were immediately
  1.4721 +      // after the length field, and were also at an even offset mod 8.
  1.4722 +      assert(((abase + bump_bit) & ~to_clear) - BytesPerInt
  1.4723 +             >= arrayOopDesc::length_offset_in_bytes() + BytesPerInt,
  1.4724 +             "store must not trash length field");
  1.4725 +
  1.4726 +      // Bump 'start' up to (or past) the next jint boundary:
  1.4727 +      start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
  1.4728 +      // Round bumped 'start' down to jlong boundary in body of array.
  1.4729 +      start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
  1.4730 +      // Store a zero to the immediately preceding jint:
  1.4731 +      Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-BytesPerInt)) );
  1.4732 +      Node* p1 = basic_plus_adr(dest, x1);
  1.4733 +      mem = StoreNode::make(C, control(), mem, p1, adr_type, intcon(0), T_INT);
  1.4734 +      mem = _gvn.transform(mem);
  1.4735 +    }
  1.4736 +
  1.4737 +    Node* end = dest_size; // pre-rounded
  1.4738 +    mem = ClearArrayNode::clear_memory(control(), mem, dest,
  1.4739 +                                       start, end, &_gvn);
  1.4740 +  } else {
  1.4741 +    // Non-constant start, unrounded non-constant end.
  1.4742 +    // (Nobody zeroes a random midsection of an array using this routine.)
  1.4743 +    ShouldNotReachHere();       // fix caller
  1.4744 +  }
  1.4745 +
  1.4746 +  // Done.
  1.4747 +  set_memory(mem, adr_type);
  1.4748 +}
  1.4749 +
  1.4750 +
  1.4751 +bool
  1.4752 +LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  1.4753 +                                         BasicType basic_elem_type,
  1.4754 +                                         AllocateNode* alloc,
  1.4755 +                                         Node* src,  Node* src_offset,
  1.4756 +                                         Node* dest, Node* dest_offset,
  1.4757 +                                         Node* dest_size) {
  1.4758 +  // See if there is an advantage from block transfer.
  1.4759 +  int scale = exact_log2(type2aelembytes[basic_elem_type]);
  1.4760 +  if (scale >= LogBytesPerLong)
  1.4761 +    return false;               // it is already a block transfer
  1.4762 +
  1.4763 +  // Look at the alignment of the starting offsets.
  1.4764 +  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  1.4765 +  const intptr_t BIG_NEG = -128;
  1.4766 +  assert(BIG_NEG + 2*abase < 0, "neg enough");
  1.4767 +
  1.4768 +  intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
  1.4769 +  intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
  1.4770 +  if (src_off < 0 || dest_off < 0)
  1.4771 +    // At present, we can only understand constants.
  1.4772 +    return false;
  1.4773 +
  1.4774 +  if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  1.4775 +    // Non-aligned; too bad.
  1.4776 +    // One more chance:  Pick off an initial 32-bit word.
  1.4777 +    // This is a common case, since abase can be odd mod 8.
  1.4778 +    if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  1.4779 +        ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  1.4780 +      Node* sptr = basic_plus_adr(src,  src_off);
  1.4781 +      Node* dptr = basic_plus_adr(dest, dest_off);
  1.4782 +      Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  1.4783 +      store_to_memory(control(), dptr, sval, T_INT, adr_type);
  1.4784 +      src_off += BytesPerInt;
  1.4785 +      dest_off += BytesPerInt;
  1.4786 +    } else {
  1.4787 +      return false;
  1.4788 +    }
  1.4789 +  }
  1.4790 +  assert(src_off % BytesPerLong == 0, "");
  1.4791 +  assert(dest_off % BytesPerLong == 0, "");
  1.4792 +
  1.4793 +  // Do this copy by giant steps.
  1.4794 +  Node* sptr  = basic_plus_adr(src,  src_off);
  1.4795 +  Node* dptr  = basic_plus_adr(dest, dest_off);
  1.4796 +  Node* countx = dest_size;
  1.4797 +  countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  1.4798 +  countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  1.4799 +
  1.4800 +  bool disjoint_bases = true;   // since alloc != NULL
  1.4801 +  generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  1.4802 +                               sptr, NULL, dptr, NULL, countx);
  1.4803 +
  1.4804 +  return true;
  1.4805 +}
  1.4806 +
  1.4807 +
  1.4808 +// Helper function; generates code for the slow case.
  1.4809 +// We make a call to a runtime method which emulates the native method,
  1.4810 +// but without the native wrapper overhead.
  1.4811 +void
  1.4812 +LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  1.4813 +                                        Node* src,  Node* src_offset,
  1.4814 +                                        Node* dest, Node* dest_offset,
  1.4815 +                                        Node* copy_length,
  1.4816 +                                        int nargs) {
  1.4817 +  _sp += nargs; // any deopt will start just before call to enclosing method
  1.4818 +  Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  1.4819 +                                 OptoRuntime::slow_arraycopy_Type(),
  1.4820 +                                 OptoRuntime::slow_arraycopy_Java(),
  1.4821 +                                 "slow_arraycopy", adr_type,
  1.4822 +                                 src, src_offset, dest, dest_offset,
  1.4823 +                                 copy_length);
  1.4824 +  _sp -= nargs;
  1.4825 +
  1.4826 +  // Handle exceptions thrown by this fellow:
  1.4827 +  make_slow_call_ex(call, env()->Throwable_klass(), false);
  1.4828 +}
  1.4829 +
  1.4830 +// Helper function; generates code for cases requiring runtime checks.
  1.4831 +Node*
  1.4832 +LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  1.4833 +                                             Node* dest_elem_klass,
  1.4834 +                                             Node* src,  Node* src_offset,
  1.4835 +                                             Node* dest, Node* dest_offset,
  1.4836 +                                             Node* copy_length,
  1.4837 +                                             int nargs) {
  1.4838 +  if (stopped())  return NULL;
  1.4839 +
  1.4840 +  address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  1.4841 +  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  1.4842 +    return NULL;
  1.4843 +  }
  1.4844 +
  1.4845 +  // Pick out the parameters required to perform a store-check
  1.4846 +  // for the target array.  This is an optimistic check.  It will
  1.4847 +  // look in each non-null element's class, at the desired klass's
  1.4848 +  // super_check_offset, for the desired klass.
  1.4849 +  int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
  1.4850 +  Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  1.4851 +  Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
  1.4852 +  Node* check_offset = _gvn.transform(n3);
  1.4853 +  Node* check_value  = dest_elem_klass;
  1.4854 +
  1.4855 +  Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  1.4856 +  Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  1.4857 +
  1.4858 +  // (We know the arrays are never conjoint, because their types differ.)
  1.4859 +  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  1.4860 +                                 OptoRuntime::checkcast_arraycopy_Type(),
  1.4861 +                                 copyfunc_addr, "checkcast_arraycopy", adr_type,
  1.4862 +                                 // five arguments, of which two are
  1.4863 +                                 // intptr_t (jlong in LP64)
  1.4864 +                                 src_start, dest_start,
  1.4865 +                                 copy_length XTOP,
  1.4866 +                                 check_offset XTOP,
  1.4867 +                                 check_value);
  1.4868 +
  1.4869 +  return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  1.4870 +}
  1.4871 +
  1.4872 +
  1.4873 +// Helper function; generates code for cases requiring runtime checks.
  1.4874 +Node*
  1.4875 +LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  1.4876 +                                           Node* src,  Node* src_offset,
  1.4877 +                                           Node* dest, Node* dest_offset,
  1.4878 +                                           Node* copy_length,
  1.4879 +                                           int nargs) {
  1.4880 +  if (stopped())  return NULL;
  1.4881 +
  1.4882 +  address copyfunc_addr = StubRoutines::generic_arraycopy();
  1.4883 +  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  1.4884 +    return NULL;
  1.4885 +  }
  1.4886 +
  1.4887 +  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  1.4888 +                    OptoRuntime::generic_arraycopy_Type(),
  1.4889 +                    copyfunc_addr, "generic_arraycopy", adr_type,
  1.4890 +                    src, src_offset, dest, dest_offset, copy_length);
  1.4891 +
  1.4892 +  return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  1.4893 +}
  1.4894 +
  1.4895 +// Helper function; generates the fast out-of-line call to an arraycopy stub.
  1.4896 +void
  1.4897 +LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  1.4898 +                                             BasicType basic_elem_type,
  1.4899 +                                             bool disjoint_bases,
  1.4900 +                                             Node* src,  Node* src_offset,
  1.4901 +                                             Node* dest, Node* dest_offset,
  1.4902 +                                             Node* copy_length) {
  1.4903 +  if (stopped())  return;               // nothing to do
  1.4904 +
  1.4905 +  Node* src_start  = src;
  1.4906 +  Node* dest_start = dest;
  1.4907 +  if (src_offset != NULL || dest_offset != NULL) {
  1.4908 +    assert(src_offset != NULL && dest_offset != NULL, "");
  1.4909 +    src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  1.4910 +    dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  1.4911 +  }
  1.4912 +
  1.4913 +  // Figure out which arraycopy runtime method to call.
  1.4914 +  const char* copyfunc_name = "arraycopy";
  1.4915 +  address     copyfunc_addr =
  1.4916 +      basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  1.4917 +                          disjoint_bases, copyfunc_name);
  1.4918 +
  1.4919 +  // Call it.  Note that the count_ix value is not scaled to a byte-size.
  1.4920 +  make_runtime_call(RC_LEAF|RC_NO_FP,
  1.4921 +                    OptoRuntime::fast_arraycopy_Type(),
  1.4922 +                    copyfunc_addr, copyfunc_name, adr_type,
  1.4923 +                    src_start, dest_start, copy_length XTOP);
  1.4924 +}

mercurial