src/cpu/x86/vm/assembler_x86_64.hpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 506
3d62cb85208d
permissions
-rw-r--r--

Initial load

     1 /*
     2  * Copyright 2003-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class BiasedLockingCounters;
    27 // Contains all the definitions needed for amd64 assembly code generation.
    29 #ifdef _LP64
    30 // Calling convention
    31 class Argument VALUE_OBJ_CLASS_SPEC {
    32  public:
    33   enum {
    34 #ifdef _WIN64
    35     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
    36     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
    37 #else
    38     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
    39     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
    40 #endif
    41     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
    42     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
    43   };
    44 };
    47 // Symbolically name the register arguments used by the c calling convention.
    48 // Windows is different from linux/solaris. So much for standards...
    50 #ifdef _WIN64
    52 REGISTER_DECLARATION(Register, c_rarg0, rcx);
    53 REGISTER_DECLARATION(Register, c_rarg1, rdx);
    54 REGISTER_DECLARATION(Register, c_rarg2, r8);
    55 REGISTER_DECLARATION(Register, c_rarg3, r9);
    57 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    58 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    59 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    60 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    62 #else
    64 REGISTER_DECLARATION(Register, c_rarg0, rdi);
    65 REGISTER_DECLARATION(Register, c_rarg1, rsi);
    66 REGISTER_DECLARATION(Register, c_rarg2, rdx);
    67 REGISTER_DECLARATION(Register, c_rarg3, rcx);
    68 REGISTER_DECLARATION(Register, c_rarg4, r8);
    69 REGISTER_DECLARATION(Register, c_rarg5, r9);
    71 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    72 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    73 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    74 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    75 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
    76 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
    77 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
    78 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
    80 #endif
    82 // Symbolically name the register arguments used by the Java calling convention.
    83 // We have control over the convention for java so we can do what we please.
    84 // What pleases us is to offset the java calling convention so that when
    85 // we call a suitable jni method the arguments are lined up and we don't
    86 // have to do little shuffling. A suitable jni method is non-static and a
    87 // small number of arguments (two fewer args on windows)
    88 //
    89 //        |-------------------------------------------------------|
    90 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
    91 //        |-------------------------------------------------------|
    92 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
    93 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
    94 //        |-------------------------------------------------------|
    95 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
    96 //        |-------------------------------------------------------|
    98 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
    99 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
   100 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
   101 // Windows runs out of register args here
   102 #ifdef _WIN64
   103 REGISTER_DECLARATION(Register, j_rarg3, rdi);
   104 REGISTER_DECLARATION(Register, j_rarg4, rsi);
   105 #else
   106 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
   107 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
   108 #endif /* _WIN64 */
   109 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
   111 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
   112 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
   113 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
   114 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
   115 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
   116 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
   117 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
   118 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
   120 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
   121 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
   123 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
   125 #endif // _LP64
   127 // Address is an abstraction used to represent a memory location
   128 // using any of the amd64 addressing modes with one object.
   129 //
   130 // Note: A register location is represented via a Register, not
   131 //       via an address for efficiency & simplicity reasons.
   133 class ArrayAddress;
   135 class Address VALUE_OBJ_CLASS_SPEC {
   136  public:
   137   enum ScaleFactor {
   138     no_scale = -1,
   139     times_1  =  0,
   140     times_2  =  1,
   141     times_4  =  2,
   142     times_8  =  3
   143   };
   145  private:
   146   Register         _base;
   147   Register         _index;
   148   ScaleFactor      _scale;
   149   int              _disp;
   150   RelocationHolder _rspec;
   152   // Easily misused constructors make them private
   153   Address(int disp, address loc, relocInfo::relocType rtype);
   154   Address(int disp, address loc, RelocationHolder spec);
   156  public:
   157   // creation
   158   Address()
   159     : _base(noreg),
   160       _index(noreg),
   161       _scale(no_scale),
   162       _disp(0) {
   163   }
   165   // No default displacement otherwise Register can be implicitly
   166   // converted to 0(Register) which is quite a different animal.
   168   Address(Register base, int disp)
   169     : _base(base),
   170       _index(noreg),
   171       _scale(no_scale),
   172       _disp(disp) {
   173   }
   175   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
   176     : _base (base),
   177       _index(index),
   178       _scale(scale),
   179       _disp (disp) {
   180     assert(!index->is_valid() == (scale == Address::no_scale),
   181            "inconsistent address");
   182   }
   184   // The following two overloads are used in connection with the
   185   // ByteSize type (see sizes.hpp).  They simplify the use of
   186   // ByteSize'd arguments in assembly code. Note that their equivalent
   187   // for the optimized build are the member functions with int disp
   188   // argument since ByteSize is mapped to an int type in that case.
   189   //
   190   // Note: DO NOT introduce similar overloaded functions for WordSize
   191   // arguments as in the optimized mode, both ByteSize and WordSize
   192   // are mapped to the same type and thus the compiler cannot make a
   193   // distinction anymore (=> compiler errors).
   195 #ifdef ASSERT
   196   Address(Register base, ByteSize disp)
   197     : _base(base),
   198       _index(noreg),
   199       _scale(no_scale),
   200       _disp(in_bytes(disp)) {
   201   }
   203   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
   204     : _base(base),
   205       _index(index),
   206       _scale(scale),
   207       _disp(in_bytes(disp)) {
   208     assert(!index->is_valid() == (scale == Address::no_scale),
   209            "inconsistent address");
   210   }
   211 #endif // ASSERT
   213   // accessors
   214   bool uses(Register reg) const {
   215     return _base == reg || _index == reg;
   216   }
   218   // Convert the raw encoding form into the form expected by the constructor for
   219   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   220   // that to noreg for the Address constructor.
   221   static Address make_raw(int base, int index, int scale, int disp);
   223   static Address make_array(ArrayAddress);
   225  private:
   226   bool base_needs_rex() const {
   227     return _base != noreg && _base->encoding() >= 8;
   228   }
   230   bool index_needs_rex() const {
   231     return _index != noreg &&_index->encoding() >= 8;
   232   }
   234   relocInfo::relocType reloc() const { return _rspec.type(); }
   236   friend class Assembler;
   237   friend class MacroAssembler;
   238   friend class LIR_Assembler; // base/index/scale/disp
   239 };
   241 //
   242 // AddressLiteral has been split out from Address because operands of this type
   243 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
   244 // the few instructions that need to deal with address literals are unique and the
   245 // MacroAssembler does not have to implement every instruction in the Assembler
   246 // in order to search for address literals that may need special handling depending
   247 // on the instruction and the platform. As small step on the way to merging i486/amd64
   248 // directories.
   249 //
   250 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
   251   friend class ArrayAddress;
   252   RelocationHolder _rspec;
   253   // Typically we use AddressLiterals we want to use their rval
   254   // However in some situations we want the lval (effect address) of the item.
   255   // We provide a special factory for making those lvals.
   256   bool _is_lval;
   258   // If the target is far we'll need to load the ea of this to
   259   // a register to reach it. Otherwise if near we can do rip
   260   // relative addressing.
   262   address          _target;
   264  protected:
   265   // creation
   266   AddressLiteral()
   267     : _is_lval(false),
   268       _target(NULL)
   269   {}
   271   public:
   274   AddressLiteral(address target, relocInfo::relocType rtype);
   276   AddressLiteral(address target, RelocationHolder const& rspec)
   277     : _rspec(rspec),
   278       _is_lval(false),
   279       _target(target)
   280   {}
   282   AddressLiteral addr() {
   283     AddressLiteral ret = *this;
   284     ret._is_lval = true;
   285     return ret;
   286   }
   289  private:
   291   address target() { return _target; }
   292   bool is_lval() { return _is_lval; }
   294   relocInfo::relocType reloc() const { return _rspec.type(); }
   295   const RelocationHolder& rspec() const { return _rspec; }
   297   friend class Assembler;
   298   friend class MacroAssembler;
   299   friend class Address;
   300   friend class LIR_Assembler;
   301 };
   303 // Convience classes
   304 class RuntimeAddress: public AddressLiteral {
   306   public:
   308   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
   310 };
   312 class OopAddress: public AddressLiteral {
   314   public:
   316   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
   318 };
   320 class ExternalAddress: public AddressLiteral {
   322   public:
   324   ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
   326 };
   328 class InternalAddress: public AddressLiteral {
   330   public:
   332   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
   334 };
   336 // x86 can do array addressing as a single operation since disp can be an absolute
   337 // address but amd64 can't [e.g. array_base(rx, ry:width) ]. We create a class
   338 // that expresses the concept but does extra magic on amd64 to get the final result
   340 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
   341   private:
   343   AddressLiteral _base;
   344   Address        _index;
   346   public:
   348   ArrayAddress() {};
   349   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
   350   AddressLiteral base() { return _base; }
   351   Address index() { return _index; }
   353 };
   355 // The amd64 Assembler: Pure assembler doing NO optimizations on
   356 // the instruction level (e.g. mov rax, 0 is not translated into xor
   357 // rax, rax!); i.e., what you write is what you get. The Assembler is
   358 // generating code into a CodeBuffer.
   360 const int FPUStateSizeInWords = 512 / wordSize;
   362 class Assembler : public AbstractAssembler  {
   363   friend class AbstractAssembler; // for the non-virtual hack
   364   friend class StubGenerator;
   367  protected:
   368 #ifdef ASSERT
   369   void check_relocation(RelocationHolder const& rspec, int format);
   370 #endif
   372   inline void emit_long64(jlong x);
   374   void emit_data(jint data, relocInfo::relocType rtype, int format /* = 1 */);
   375   void emit_data(jint data, RelocationHolder const& rspec, int format /* = 1 */);
   376   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
   377   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
   379   // Helper functions for groups of instructions
   380   void emit_arith_b(int op1, int op2, Register dst, int imm8);
   382   void emit_arith(int op1, int op2, Register dst, int imm32);
   383   // only x86??
   384   void emit_arith(int op1, int op2, Register dst, jobject obj);
   385   void emit_arith(int op1, int op2, Register dst, Register src);
   387   void emit_operand(Register reg,
   388                     Register base, Register index, Address::ScaleFactor scale,
   389                     int disp,
   390                     RelocationHolder const& rspec,
   391                     int rip_relative_correction = 0);
   392   void emit_operand(Register reg, Address adr,
   393                     int rip_relative_correction = 0);
   394   void emit_operand(XMMRegister reg,
   395                     Register base, Register index, Address::ScaleFactor scale,
   396                     int disp,
   397                     RelocationHolder const& rspec,
   398                     int rip_relative_correction = 0);
   399   void emit_operand(XMMRegister reg, Address adr,
   400                     int rip_relative_correction = 0);
   402   // Immediate-to-memory forms
   403   void emit_arith_operand(int op1, Register rm, Address adr, int imm32);
   405   void emit_farith(int b1, int b2, int i);
   407   bool reachable(AddressLiteral adr);
   409   // These are all easily abused and hence protected
   411   // Make these disappear in 64bit mode since they would never be correct
   412 #ifndef _LP64
   413   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);
   414   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);
   416   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);
   417   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);
   419   void push_literal32(int32_t imm32, RelocationHolder const& rspec);
   420 #endif // _LP64
   423   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);
   425   // These are unique in that we are ensured by the caller that the 32bit
   426   // relative in these instructions will always be able to reach the potentially
   427   // 64bit address described by entry. Since they can take a 64bit address they
   428   // don't have the 32 suffix like the other instructions in this class.
   429   void jmp_literal(address entry, RelocationHolder const& rspec);
   430   void call_literal(address entry, RelocationHolder const& rspec);
   432  public:
   433   enum Condition { // The amd64 condition codes used for conditional jumps/moves.
   434     zero          = 0x4,
   435     notZero       = 0x5,
   436     equal         = 0x4,
   437     notEqual      = 0x5,
   438     less          = 0xc,
   439     lessEqual     = 0xe,
   440     greater       = 0xf,
   441     greaterEqual  = 0xd,
   442     below         = 0x2,
   443     belowEqual    = 0x6,
   444     above         = 0x7,
   445     aboveEqual    = 0x3,
   446     overflow      = 0x0,
   447     noOverflow    = 0x1,
   448     carrySet      = 0x2,
   449     carryClear    = 0x3,
   450     negative      = 0x8,
   451     positive      = 0x9,
   452     parity        = 0xa,
   453     noParity      = 0xb
   454   };
   456   enum Prefix {
   457     // segment overrides
   458     // XXX remove segment prefixes
   459     CS_segment = 0x2e,
   460     SS_segment = 0x36,
   461     DS_segment = 0x3e,
   462     ES_segment = 0x26,
   463     FS_segment = 0x64,
   464     GS_segment = 0x65,
   466     REX        = 0x40,
   468     REX_B      = 0x41,
   469     REX_X      = 0x42,
   470     REX_XB     = 0x43,
   471     REX_R      = 0x44,
   472     REX_RB     = 0x45,
   473     REX_RX     = 0x46,
   474     REX_RXB    = 0x47,
   476     REX_W      = 0x48,
   478     REX_WB     = 0x49,
   479     REX_WX     = 0x4A,
   480     REX_WXB    = 0x4B,
   481     REX_WR     = 0x4C,
   482     REX_WRB    = 0x4D,
   483     REX_WRX    = 0x4E,
   484     REX_WRXB   = 0x4F
   485   };
   487   enum WhichOperand {
   488     // input to locate_operand, and format code for relocations
   489     imm64_operand  = 0,          // embedded 64-bit immediate operand
   490     disp32_operand = 1,          // embedded 32-bit displacement
   491     call32_operand = 2,          // embedded 32-bit self-relative displacement
   492     _WhichOperand_limit = 3
   493   };
   495   public:
   497   // Creation
   498   Assembler(CodeBuffer* code)
   499     : AbstractAssembler(code) {
   500   }
   502   // Decoding
   503   static address locate_operand(address inst, WhichOperand which);
   504   static address locate_next_instruction(address inst);
   506   // Utilities
   508  static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) )  <= x   &&   x  <  ( CONST64(1) << (nbits-1) ); }
   509  static bool is_simm32 (int64_t x) { return x == (int64_t)(int32_t)x; }
   512   // Stack
   513   void pushaq();
   514   void popaq();
   516   void pushfq();
   517   void popfq();
   519   void pushq(int imm32);
   521   void pushq(Register src);
   522   void pushq(Address src);
   524   void popq(Register dst);
   525   void popq(Address dst);
   527   // Instruction prefixes
   528   void prefix(Prefix p);
   530   int prefix_and_encode(int reg_enc, bool byteinst = false);
   531   int prefixq_and_encode(int reg_enc);
   533   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
   534   int prefixq_and_encode(int dst_enc, int src_enc);
   536   void prefix(Register reg);
   537   void prefix(Address adr);
   538   void prefixq(Address adr);
   540   void prefix(Address adr, Register reg,  bool byteinst = false);
   541   void prefixq(Address adr, Register reg);
   543   void prefix(Address adr, XMMRegister reg);
   545   // Moves
   546   void movb(Register dst, Address src);
   547   void movb(Address dst, int imm8);
   548   void movb(Address dst, Register src);
   550   void movw(Address dst, int imm16);
   551   void movw(Register dst, Address src);
   552   void movw(Address dst, Register src);
   554   void movl(Register dst, int imm32);
   555   void movl(Register dst, Register src);
   556   void movl(Register dst, Address src);
   557   void movl(Address dst, int imm32);
   558   void movl(Address dst, Register src);
   560   void movq(Register dst, Register src);
   561   void movq(Register dst, Address src);
   562   void movq(Address dst, Register src);
   563   // These prevent using movq from converting a zero (like NULL) into Register
   564   // by giving the compiler two choices it can't resolve
   565   void movq(Address dst, void* dummy);
   566   void movq(Register dst, void* dummy);
   568   void mov64(Register dst, intptr_t imm64);
   569   void mov64(Address dst, intptr_t imm64);
   571   void movsbl(Register dst, Address src);
   572   void movsbl(Register dst, Register src);
   573   void movswl(Register dst, Address src);
   574   void movswl(Register dst, Register src);
   575   void movslq(Register dst, Address src);
   576   void movslq(Register dst, Register src);
   578   void movzbl(Register dst, Address src);
   579   void movzbl(Register dst, Register src);
   580   void movzwl(Register dst, Address src);
   581   void movzwl(Register dst, Register src);
   583  protected: // Avoid using the next instructions directly.
   584   // New cpus require use of movsd and movss to avoid partial register stall
   585   // when loading from memory. But for old Opteron use movlpd instead of movsd.
   586   // The selection is done in MacroAssembler::movdbl() and movflt().
   587   void movss(XMMRegister dst, XMMRegister src);
   588   void movss(XMMRegister dst, Address src);
   589   void movss(Address dst, XMMRegister src);
   590   void movsd(XMMRegister dst, XMMRegister src);
   591   void movsd(Address dst, XMMRegister src);
   592   void movsd(XMMRegister dst, Address src);
   593   void movlpd(XMMRegister dst, Address src);
   594   // New cpus require use of movaps and movapd to avoid partial register stall
   595   // when moving between registers.
   596   void movapd(XMMRegister dst, XMMRegister src);
   597   void movaps(XMMRegister dst, XMMRegister src);
   598  public:
   600   void movdl(XMMRegister dst, Register src);
   601   void movdl(Register dst, XMMRegister src);
   602   void movdq(XMMRegister dst, Register src);
   603   void movdq(Register dst, XMMRegister src);
   605   void cmovl(Condition cc, Register dst, Register src);
   606   void cmovl(Condition cc, Register dst, Address src);
   607   void cmovq(Condition cc, Register dst, Register src);
   608   void cmovq(Condition cc, Register dst, Address src);
   610   // Prefetches
   611  private:
   612   void prefetch_prefix(Address src);
   613  public:
   614   void prefetcht0(Address src);
   615   void prefetcht1(Address src);
   616   void prefetcht2(Address src);
   617   void prefetchnta(Address src);
   618   void prefetchw(Address src);
   620   // Arithmetics
   621   void adcl(Register dst, int imm32);
   622   void adcl(Register dst, Address src);
   623   void adcl(Register dst, Register src);
   624   void adcq(Register dst, int imm32);
   625   void adcq(Register dst, Address src);
   626   void adcq(Register dst, Register src);
   628   void addl(Address dst, int imm32);
   629   void addl(Address dst, Register src);
   630   void addl(Register dst, int imm32);
   631   void addl(Register dst, Address src);
   632   void addl(Register dst, Register src);
   633   void addq(Address dst, int imm32);
   634   void addq(Address dst, Register src);
   635   void addq(Register dst, int imm32);
   636   void addq(Register dst, Address src);
   637   void addq(Register dst, Register src);
   639   void andl(Register dst, int imm32);
   640   void andl(Register dst, Address src);
   641   void andl(Register dst, Register src);
   642   void andq(Register dst, int imm32);
   643   void andq(Register dst, Address src);
   644   void andq(Register dst, Register src);
   646   void cmpb(Address dst, int imm8);
   647   void cmpl(Address dst, int imm32);
   648   void cmpl(Register dst, int imm32);
   649   void cmpl(Register dst, Register src);
   650   void cmpl(Register dst, Address src);
   651   void cmpq(Address dst, int imm32);
   652   void cmpq(Address dst, Register src);
   653   void cmpq(Register dst, int imm32);
   654   void cmpq(Register dst, Register src);
   655   void cmpq(Register dst, Address src);
   657   void ucomiss(XMMRegister dst, XMMRegister src);
   658   void ucomisd(XMMRegister dst, XMMRegister src);
   660  protected:
   661   // Don't use next inc() and dec() methods directly. INC & DEC instructions
   662   // could cause a partial flag stall since they don't set CF flag.
   663   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
   664   // which call inc() & dec() or add() & sub() in accordance with
   665   // the product flag UseIncDec value.
   667   void decl(Register dst);
   668   void decl(Address dst);
   669   void decq(Register dst);
   670   void decq(Address dst);
   672   void incl(Register dst);
   673   void incl(Address dst);
   674   void incq(Register dst);
   675   void incq(Address dst);
   677  public:
   678   void idivl(Register src);
   679   void idivq(Register src);
   680   void cdql();
   681   void cdqq();
   683   void imull(Register dst, Register src);
   684   void imull(Register dst, Register src, int value);
   685   void imulq(Register dst, Register src);
   686   void imulq(Register dst, Register src, int value);
   688   void leal(Register dst, Address src);
   689   void leaq(Register dst, Address src);
   691   void mull(Address src);
   692   void mull(Register src);
   694   void negl(Register dst);
   695   void negq(Register dst);
   697   void notl(Register dst);
   698   void notq(Register dst);
   700   void orl(Address dst, int imm32);
   701   void orl(Register dst, int imm32);
   702   void orl(Register dst, Address src);
   703   void orl(Register dst, Register src);
   704   void orq(Address dst, int imm32);
   705   void orq(Register dst, int imm32);
   706   void orq(Register dst, Address src);
   707   void orq(Register dst, Register src);
   709   void rcll(Register dst, int imm8);
   710   void rclq(Register dst, int imm8);
   712   void sarl(Register dst, int imm8);
   713   void sarl(Register dst);
   714   void sarq(Register dst, int imm8);
   715   void sarq(Register dst);
   717   void sbbl(Address dst, int imm32);
   718   void sbbl(Register dst, int imm32);
   719   void sbbl(Register dst, Address src);
   720   void sbbl(Register dst, Register src);
   721   void sbbq(Address dst, int imm32);
   722   void sbbq(Register dst, int imm32);
   723   void sbbq(Register dst, Address src);
   724   void sbbq(Register dst, Register src);
   726   void shll(Register dst, int imm8);
   727   void shll(Register dst);
   728   void shlq(Register dst, int imm8);
   729   void shlq(Register dst);
   731   void shrl(Register dst, int imm8);
   732   void shrl(Register dst);
   733   void shrq(Register dst, int imm8);
   734   void shrq(Register dst);
   736   void subl(Address dst, int imm32);
   737   void subl(Address dst, Register src);
   738   void subl(Register dst, int imm32);
   739   void subl(Register dst, Address src);
   740   void subl(Register dst, Register src);
   741   void subq(Address dst, int imm32);
   742   void subq(Address dst, Register src);
   743   void subq(Register dst, int imm32);
   744   void subq(Register dst, Address src);
   745   void subq(Register dst, Register src);
   747   void testb(Register dst, int imm8);
   748   void testl(Register dst, int imm32);
   749   void testl(Register dst, Register src);
   750   void testq(Register dst, int imm32);
   751   void testq(Register dst, Register src);
   753   void xaddl(Address dst, Register src);
   754   void xaddq(Address dst, Register src);
   756   void xorl(Register dst, int imm32);
   757   void xorl(Register dst, Address src);
   758   void xorl(Register dst, Register src);
   759   void xorq(Register dst, int imm32);
   760   void xorq(Register dst, Address src);
   761   void xorq(Register dst, Register src);
   763   // Miscellaneous
   764   void bswapl(Register reg);
   765   void bswapq(Register reg);
   766   void lock();
   768   void xchgl(Register reg, Address adr);
   769   void xchgl(Register dst, Register src);
   770   void xchgq(Register reg, Address adr);
   771   void xchgq(Register dst, Register src);
   773   void cmpxchgl(Register reg, Address adr);
   774   void cmpxchgq(Register reg, Address adr);
   776   void nop(int i = 1);
   777   void addr_nop_4();
   778   void addr_nop_5();
   779   void addr_nop_7();
   780   void addr_nop_8();
   782   void hlt();
   783   void ret(int imm16);
   784   void smovl();
   785   void rep_movl();
   786   void rep_movq();
   787   void rep_set();
   788   void repne_scan();
   789   void setb(Condition cc, Register dst);
   791   void clflush(Address adr);
   793   enum Membar_mask_bits {
   794     StoreStore = 1 << 3,
   795     LoadStore  = 1 << 2,
   796     StoreLoad  = 1 << 1,
   797     LoadLoad   = 1 << 0
   798   };
   800   // Serializes memory.
   801   void membar(Membar_mask_bits order_constraint) {
   802     // We only have to handle StoreLoad and LoadLoad
   803     if (order_constraint & StoreLoad) {
   804       // MFENCE subsumes LFENCE
   805       mfence();
   806     } /* [jk] not needed currently: else if (order_constraint & LoadLoad) {
   807          lfence();
   808     } */
   809   }
   811   void lfence() {
   812     emit_byte(0x0F);
   813     emit_byte(0xAE);
   814     emit_byte(0xE8);
   815   }
   817   void mfence() {
   818     emit_byte(0x0F);
   819     emit_byte(0xAE);
   820     emit_byte(0xF0);
   821   }
   823   // Identify processor type and features
   824   void cpuid() {
   825     emit_byte(0x0F);
   826     emit_byte(0xA2);
   827   }
   829   void cld() { emit_byte(0xfc);
   830   }
   832   void std() { emit_byte(0xfd);
   833   }
   836   // Calls
   838   void call(Label& L, relocInfo::relocType rtype);
   839   void call(Register reg);
   840   void call(Address adr);
   842   // Jumps
   844   void jmp(Register reg);
   845   void jmp(Address adr);
   847   // Label operations & relative jumps (PPUM Appendix D)
   848   // unconditional jump to L
   849   void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);
   852   // Unconditional 8-bit offset jump to L.
   853   // WARNING: be very careful using this for forward jumps.  If the label is
   854   // not bound within an 8-bit offset of this instruction, a run-time error
   855   // will occur.
   856   void jmpb(Label& L);
   858   // jcc is the generic conditional branch generator to run- time
   859   // routines, jcc is used for branches to labels. jcc takes a branch
   860   // opcode (cc) and a label (L) and generates either a backward
   861   // branch or a forward branch and links it to the label fixup
   862   // chain. Usage:
   863   //
   864   // Label L;      // unbound label
   865   // jcc(cc, L);   // forward branch to unbound label
   866   // bind(L);      // bind label to the current pc
   867   // jcc(cc, L);   // backward branch to bound label
   868   // bind(L);      // illegal: a label may be bound only once
   869   //
   870   // Note: The same Label can be used for forward and backward branches
   871   // but it may be bound only once.
   873   void jcc(Condition cc, Label& L,
   874            relocInfo::relocType rtype = relocInfo::none);
   876   // Conditional jump to a 8-bit offset to L.
   877   // WARNING: be very careful using this for forward jumps.  If the label is
   878   // not bound within an 8-bit offset of this instruction, a run-time error
   879   // will occur.
   880   void jccb(Condition cc, Label& L);
   882   // Floating-point operations
   884   void fxsave(Address dst);
   885   void fxrstor(Address src);
   886   void ldmxcsr(Address src);
   887   void stmxcsr(Address dst);
   889   void addss(XMMRegister dst, XMMRegister src);
   890   void addss(XMMRegister dst, Address src);
   891   void subss(XMMRegister dst, XMMRegister src);
   892   void subss(XMMRegister dst, Address src);
   893   void mulss(XMMRegister dst, XMMRegister src);
   894   void mulss(XMMRegister dst, Address src);
   895   void divss(XMMRegister dst, XMMRegister src);
   896   void divss(XMMRegister dst, Address src);
   897   void addsd(XMMRegister dst, XMMRegister src);
   898   void addsd(XMMRegister dst, Address src);
   899   void subsd(XMMRegister dst, XMMRegister src);
   900   void subsd(XMMRegister dst, Address src);
   901   void mulsd(XMMRegister dst, XMMRegister src);
   902   void mulsd(XMMRegister dst, Address src);
   903   void divsd(XMMRegister dst, XMMRegister src);
   904   void divsd(XMMRegister dst, Address src);
   906   // We only need the double form
   907   void sqrtsd(XMMRegister dst, XMMRegister src);
   908   void sqrtsd(XMMRegister dst, Address src);
   910   void xorps(XMMRegister dst, XMMRegister src);
   911   void xorps(XMMRegister dst, Address src);
   912   void xorpd(XMMRegister dst, XMMRegister src);
   913   void xorpd(XMMRegister dst, Address src);
   915   void cvtsi2ssl(XMMRegister dst, Register src);
   916   void cvtsi2ssq(XMMRegister dst, Register src);
   917   void cvtsi2sdl(XMMRegister dst, Register src);
   918   void cvtsi2sdq(XMMRegister dst, Register src);
   919   void cvttss2sil(Register dst, XMMRegister src); // truncates
   920   void cvttss2siq(Register dst, XMMRegister src); // truncates
   921   void cvttsd2sil(Register dst, XMMRegister src); // truncates
   922   void cvttsd2siq(Register dst, XMMRegister src); // truncates
   923   void cvtss2sd(XMMRegister dst, XMMRegister src);
   924   void cvtsd2ss(XMMRegister dst, XMMRegister src);
   926   void pxor(XMMRegister dst, Address src);       // Xor Packed Byte Integer Values
   927   void pxor(XMMRegister dst, XMMRegister src);   // Xor Packed Byte Integer Values
   929   void movdqa(XMMRegister dst, Address src);     // Move Aligned Double Quadword
   930   void movdqa(XMMRegister dst, XMMRegister src);
   931   void movdqa(Address     dst, XMMRegister src);
   933   void movq(XMMRegister dst, Address src);
   934   void movq(Address dst, XMMRegister src);
   936   void pshufd(XMMRegister dst, XMMRegister src, int mode); // Shuffle Packed Doublewords
   937   void pshufd(XMMRegister dst, Address src,     int mode);
   938   void pshuflw(XMMRegister dst, XMMRegister src, int mode); // Shuffle Packed Low Words
   939   void pshuflw(XMMRegister dst, Address src,     int mode);
   941   void psrlq(XMMRegister dst, int shift); // Shift Right Logical Quadword Immediate
   943   void punpcklbw(XMMRegister dst, XMMRegister src); // Interleave Low Bytes
   944   void punpcklbw(XMMRegister dst, Address src);
   945 };
   948 // MacroAssembler extends Assembler by frequently used macros.
   949 //
   950 // Instructions for which a 'better' code sequence exists depending
   951 // on arguments should also go in here.
   953 class MacroAssembler : public Assembler {
   954  friend class LIR_Assembler;
   955  protected:
   957   Address as_Address(AddressLiteral adr);
   958   Address as_Address(ArrayAddress adr);
   960   // Support for VM calls
   961   //
   962   // This is the base routine called by the different versions of
   963   // call_VM_leaf. The interpreter may customize this version by
   964   // overriding it for its purposes (e.g., to save/restore additional
   965   // registers when doing a VM call).
   967   virtual void call_VM_leaf_base(
   968     address entry_point,               // the entry point
   969     int     number_of_arguments        // the number of arguments to
   970                                        // pop after the call
   971   );
   973   // This is the base routine called by the different versions of
   974   // call_VM. The interpreter may customize this version by overriding
   975   // it for its purposes (e.g., to save/restore additional registers
   976   // when doing a VM call).
   977   //
   978   // If no java_thread register is specified (noreg) than rdi will be
   979   // used instead. call_VM_base returns the register which contains
   980   // the thread upon return. If a thread register has been specified,
   981   // the return value will correspond to that register. If no
   982   // last_java_sp is specified (noreg) than rsp will be used instead.
   983   virtual void call_VM_base(           // returns the register
   984                                        // containing the thread upon
   985                                        // return
   986     Register oop_result,               // where an oop-result ends up
   987                                        // if any; use noreg otherwise
   988     Register java_thread,              // the thread if computed
   989                                        // before ; use noreg otherwise
   990     Register last_java_sp,             // to set up last_Java_frame in
   991                                        // stubs; use noreg otherwise
   992     address  entry_point,              // the entry point
   993     int      number_of_arguments,      // the number of arguments (w/o
   994                                        // thread) to pop after the
   995                                        // call
   996     bool     check_exceptions          // whether to check for pending
   997                                        // exceptions after return
   998   );
  1000   // This routines should emit JVMTI PopFrame handling and ForceEarlyReturn code.
  1001   // The implementation is only non-empty for the InterpreterMacroAssembler,
  1002   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  1003   virtual void check_and_handle_popframe(Register java_thread);
  1004   virtual void check_and_handle_earlyret(Register java_thread);
  1006   void call_VM_helper(Register oop_result,
  1007                       address entry_point,
  1008                       int number_of_arguments,
  1009                       bool check_exceptions = true);
  1011  public:
  1012   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  1014   // Support for NULL-checks
  1015   //
  1016   // Generates code that causes a NULL OS exception if the content of
  1017   // reg is NULL.  If the accessed location is M[reg + offset] and the
  1018   // offset is known, provide the offset. No explicit code generation
  1019   // is needed if the offset is within a certain range (0 <= offset <=
  1020   // page_size).
  1021   void null_check(Register reg, int offset = -1);
  1022   static bool needs_explicit_null_check(int offset);
  1024   // Required platform-specific helpers for Label::patch_instructions.
  1025   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  1026   void pd_patch_instruction(address branch, address target);
  1027 #ifndef PRODUCT
  1028   static void pd_print_patched_instruction(address branch);
  1029 #endif
  1032   // The following 4 methods return the offset of the appropriate move
  1033   // instruction.  Note: these are 32 bit instructions
  1035   // Support for fast byte/word loading with zero extension (depending
  1036   // on particular CPU)
  1037   int load_unsigned_byte(Register dst, Address src);
  1038   int load_unsigned_word(Register dst, Address src);
  1040   // Support for fast byte/word loading with sign extension (depending
  1041   // on particular CPU)
  1042   int load_signed_byte(Register dst, Address src);
  1043   int load_signed_word(Register dst, Address src);
  1045   // Support for inc/dec with optimal instruction selection depending
  1046   // on value
  1047   void incrementl(Register reg, int value = 1);
  1048   void decrementl(Register reg, int value = 1);
  1049   void incrementq(Register reg, int value = 1);
  1050   void decrementq(Register reg, int value = 1);
  1052   void incrementl(Address dst, int value = 1);
  1053   void decrementl(Address dst, int value = 1);
  1054   void incrementq(Address dst, int value = 1);
  1055   void decrementq(Address dst, int value = 1);
  1057   // Support optimal SSE move instructions.
  1058   void movflt(XMMRegister dst, XMMRegister src) {
  1059     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
  1060     else                       { movss (dst, src); return; }
  1063   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
  1065   void movflt(XMMRegister dst, AddressLiteral src);
  1067   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
  1069   void movdbl(XMMRegister dst, XMMRegister src) {
  1070     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
  1071     else                       { movsd (dst, src); return; }
  1074   void movdbl(XMMRegister dst, AddressLiteral src);
  1076   void movdbl(XMMRegister dst, Address src) {
  1077     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
  1078     else                         { movlpd(dst, src); return; }
  1081   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
  1083   void incrementl(AddressLiteral dst);
  1084   void incrementl(ArrayAddress dst);
  1086   // Alignment
  1087   void align(int modulus);
  1089   // Misc
  1090   void fat_nop(); // 5 byte nop
  1093   // C++ bool manipulation
  1095   void movbool(Register dst, Address src);
  1096   void movbool(Address dst, bool boolconst);
  1097   void movbool(Address dst, Register src);
  1098   void testbool(Register dst);
  1100   // Stack frame creation/removal
  1101   void enter();
  1102   void leave();
  1104   // Support for getting the JavaThread pointer (i.e.; a reference to
  1105   // thread-local information) The pointer will be loaded into the
  1106   // thread register.
  1107   void get_thread(Register thread);
  1109   void int3();
  1111   // Support for VM calls
  1112   //
  1113   // It is imperative that all calls into the VM are handled via the
  1114   // call_VM macros.  They make sure that the stack linkage is setup
  1115   // correctly. call_VM's correspond to ENTRY/ENTRY_X entry points
  1116   // while call_VM_leaf's correspond to LEAF entry points.
  1117   void call_VM(Register oop_result,
  1118                address entry_point,
  1119                bool check_exceptions = true);
  1120   void call_VM(Register oop_result,
  1121                address entry_point,
  1122                Register arg_1,
  1123                bool check_exceptions = true);
  1124   void call_VM(Register oop_result,
  1125                address entry_point,
  1126                Register arg_1, Register arg_2,
  1127                bool check_exceptions = true);
  1128   void call_VM(Register oop_result,
  1129                address entry_point,
  1130                Register arg_1, Register arg_2, Register arg_3,
  1131                bool check_exceptions = true);
  1133   // Overloadings with last_Java_sp
  1134   void call_VM(Register oop_result,
  1135                Register last_java_sp,
  1136                address entry_point,
  1137                int number_of_arguments = 0,
  1138                bool check_exceptions = true);
  1139   void call_VM(Register oop_result,
  1140                Register last_java_sp,
  1141                address entry_point,
  1142                Register arg_1, bool
  1143                check_exceptions = true);
  1144   void call_VM(Register oop_result,
  1145                Register last_java_sp,
  1146                address entry_point,
  1147                Register arg_1, Register arg_2,
  1148                bool check_exceptions = true);
  1149   void call_VM(Register oop_result,
  1150                Register last_java_sp,
  1151                address entry_point,
  1152                Register arg_1, Register arg_2, Register arg_3,
  1153                bool check_exceptions = true);
  1155   void call_VM_leaf(address entry_point,
  1156                     int number_of_arguments = 0);
  1157   void call_VM_leaf(address entry_point,
  1158                     Register arg_1);
  1159   void call_VM_leaf(address entry_point,
  1160                     Register arg_1, Register arg_2);
  1161   void call_VM_leaf(address entry_point,
  1162                     Register arg_1, Register arg_2, Register arg_3);
  1164   // last Java Frame (fills frame anchor)
  1165   void set_last_Java_frame(Register last_java_sp,
  1166                            Register last_java_fp,
  1167                            address last_java_pc);
  1168   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
  1170   // Stores
  1171   void store_check(Register obj);                // store check for
  1172                                                  // obj - register is
  1173                                                  // destroyed
  1174                                                  // afterwards
  1175   void store_check(Register obj, Address dst);   // same as above, dst
  1176                                                  // is exact store
  1177                                                  // location (reg. is
  1178                                                  // destroyed)
  1180   // split store_check(Register obj) to enhance instruction interleaving
  1181   void store_check_part_1(Register obj);
  1182   void store_check_part_2(Register obj);
  1184   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
  1185   void c2bool(Register x);
  1187   // Int division/reminder for Java
  1188   // (as idivl, but checks for special case as described in JVM spec.)
  1189   // returns idivl instruction offset for implicit exception handling
  1190   int corrected_idivl(Register reg);
  1191   // Long division/reminder for Java
  1192   // (as idivq, but checks for special case as described in JVM spec.)
  1193   // returns idivq instruction offset for implicit exception handling
  1194   int corrected_idivq(Register reg);
  1196   // Push and pop integer/fpu/cpu state
  1197   void push_IU_state();
  1198   void pop_IU_state();
  1200   void push_FPU_state();
  1201   void pop_FPU_state();
  1203   void push_CPU_state();
  1204   void pop_CPU_state();
  1206   // Sign extension
  1207   void sign_extend_short(Register reg);
  1208   void sign_extend_byte(Register reg);
  1210   // Division by power of 2, rounding towards 0
  1211   void division_with_shift(Register reg, int shift_value);
  1213   // Round up to a power of two
  1214   void round_to_l(Register reg, int modulus);
  1215   void round_to_q(Register reg, int modulus);
  1217   // allocation
  1218   void eden_allocate(
  1219     Register obj,               // result: pointer to object after
  1220                                 // successful allocation
  1221     Register var_size_in_bytes, // object size in bytes if unknown at
  1222                                 // compile time; invalid otherwise
  1223     int con_size_in_bytes,      // object size in bytes if known at
  1224                                 // compile time
  1225     Register t1,                // temp register
  1226     Label& slow_case            // continuation point if fast
  1227                                 // allocation fails
  1228     );
  1229   void tlab_allocate(
  1230     Register obj,               // result: pointer to object after
  1231                                 // successful allocation
  1232     Register var_size_in_bytes, // object size in bytes if unknown at
  1233                                 // compile time; invalid otherwise
  1234     int con_size_in_bytes,      // object size in bytes if known at
  1235                                 // compile time
  1236     Register t1,                // temp register
  1237     Register t2,                // temp register
  1238     Label& slow_case            // continuation point if fast
  1239                                 // allocation fails
  1240   );
  1241   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
  1243   //----
  1245   // Debugging
  1247   // only if +VerifyOops
  1248   void verify_oop(Register reg, const char* s = "broken oop");
  1249   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
  1251   // only if +VerifyFPU
  1252   void verify_FPU(int stack_depth, const char* s = "illegal FPU state") {}
  1254   // prints msg, dumps registers and stops execution
  1255   void stop(const char* msg);
  1257   // prints message and continues
  1258   void warn(const char* msg);
  1260   static void debug(char* msg, int64_t pc, int64_t regs[]);
  1262   void os_breakpoint();
  1264   void untested()
  1266     stop("untested");
  1269   void unimplemented(const char* what = "")
  1271     char* b = new char[1024];
  1272     sprintf(b, "unimplemented: %s", what);
  1273     stop(b);
  1276   void should_not_reach_here()
  1278     stop("should not reach here");
  1281   // Stack overflow checking
  1282   void bang_stack_with_offset(int offset)
  1284     // stack grows down, caller passes positive offset
  1285     assert(offset > 0, "must bang with negative offset");
  1286     movl(Address(rsp, (-offset)), rax);
  1289   // Writes to stack successive pages until offset reached to check for
  1290   // stack overflow + shadow pages.  Also, clobbers tmp
  1291   void bang_stack_size(Register offset, Register tmp);
  1293   // Support for serializing memory accesses between threads.
  1294   void serialize_memory(Register thread, Register tmp);
  1296   void verify_tlab();
  1298   // Biased locking support
  1299   // lock_reg and obj_reg must be loaded up with the appropriate values.
  1300   // swap_reg must be rax and is killed.
  1301   // tmp_reg must be supplied and is killed.
  1302   // If swap_reg_contains_mark is true then the code assumes that the
  1303   // mark word of the object has already been loaded into swap_reg.
  1304   // Optional slow case is for implementations (interpreter and C1) which branch to
  1305   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
  1306   // Returns offset of first potentially-faulting instruction for null
  1307   // check info (currently consumed only by C1). If
  1308   // swap_reg_contains_mark is true then returns -1 as it is assumed
  1309   // the calling code has already passed any potential faults.
  1310   int biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
  1311                            bool swap_reg_contains_mark,
  1312                            Label& done, Label* slow_case = NULL,
  1313                            BiasedLockingCounters* counters = NULL);
  1314   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
  1316   Condition negate_condition(Condition cond);
  1318   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
  1319   // operands. In general the names are modified to avoid hiding the instruction in Assembler
  1320   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
  1321   // here in MacroAssembler. The major exception to this rule is call
  1323   // Arithmetics
  1325   void cmp8(AddressLiteral src1, int8_t imm32);
  1327   void cmp32(AddressLiteral src1, int32_t src2);
  1328   // compare reg - mem, or reg - &mem
  1329   void cmp32(Register src1, AddressLiteral src2);
  1331   void cmp32(Register src1, Address src2);
  1333 #ifndef _LP64
  1334   void cmpoop(Address dst, jobject obj);
  1335   void cmpoop(Register dst, jobject obj);
  1336 #endif // _LP64
  1338   // NOTE src2 must be the lval. This is NOT an mem-mem compare
  1339   void cmpptr(Address src1, AddressLiteral src2);
  1341   void cmpptr(Register src1, AddressLiteral src);
  1343   // will be cmpreg(?)
  1344   void cmp64(Register src1, AddressLiteral src);
  1346   void cmpxchgptr(Register reg, Address adr);
  1347   void cmpxchgptr(Register reg, AddressLiteral adr);
  1349   // Helper functions for statistics gathering.
  1350   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
  1351   void cond_inc32(Condition cond, AddressLiteral counter_addr);
  1352   // Unconditional atomic increment.
  1353   void atomic_incl(AddressLiteral counter_addr);
  1356   void lea(Register dst, AddressLiteral src);
  1357   void lea(Register dst, Address src);
  1360   // Calls
  1361   void call(Label& L, relocInfo::relocType rtype);
  1362   void call(Register entry);
  1363   void call(AddressLiteral entry);
  1365   // Jumps
  1367   // 32bit can do a case table jump in one instruction but we no longer allow the base
  1368   // to be installed in the Address class
  1369   void jump(ArrayAddress entry);
  1371   void jump(AddressLiteral entry);
  1372   void jump_cc(Condition cc, AddressLiteral dst);
  1374   // Floating
  1376   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
  1377   void ldmxcsr(AddressLiteral src);
  1379 private:
  1380   // these are private because users should be doing movflt/movdbl
  1382   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
  1383   void movss(Address dst, XMMRegister src)       { Assembler::movss(dst, src); }
  1384   void movss(XMMRegister dst, Address src)       { Assembler::movss(dst, src); }
  1385   void movss(XMMRegister dst, AddressLiteral src);
  1387   void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
  1388   void movlpd(XMMRegister dst, AddressLiteral src);
  1390 public:
  1393   void xorpd(XMMRegister dst, XMMRegister src) {Assembler::xorpd(dst, src); }
  1394   void xorpd(XMMRegister dst, Address src)       {Assembler::xorpd(dst, src); }
  1395   void xorpd(XMMRegister dst, AddressLiteral src);
  1397   void xorps(XMMRegister dst, XMMRegister src) {Assembler::xorps(dst, src); }
  1398   void xorps(XMMRegister dst, Address src)       {Assembler::xorps(dst, src); }
  1399   void xorps(XMMRegister dst, AddressLiteral src);
  1402   // Data
  1404   void movoop(Register dst, jobject obj);
  1405   void movoop(Address dst, jobject obj);
  1407   void movptr(ArrayAddress dst, Register src);
  1408   void movptr(Register dst, AddressLiteral src);
  1410   void movptr(Register dst, intptr_t src);
  1411   void movptr(Address dst, intptr_t src);
  1413   void movptr(Register dst, ArrayAddress src);
  1415   // to avoid hiding movl
  1416   void mov32(AddressLiteral dst, Register src);
  1417   void mov32(Register dst, AddressLiteral src);
  1419   void pushoop(jobject obj);
  1421   // Can push value or effective address
  1422   void pushptr(AddressLiteral src);
  1424 };
  1426 /**
  1427  * class SkipIfEqual:
  1429  * Instantiating this class will result in assembly code being output that will
  1430  * jump around any code emitted between the creation of the instance and it's
  1431  * automatic destruction at the end of a scope block, depending on the value of
  1432  * the flag passed to the constructor, which will be checked at run-time.
  1433  */
  1434 class SkipIfEqual {
  1435  private:
  1436   MacroAssembler* _masm;
  1437   Label _label;
  1439  public:
  1440    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
  1441    ~SkipIfEqual();
  1442 };
  1445 #ifdef ASSERT
  1446 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  1447 #endif

mercurial