src/cpu/x86/vm/assembler_x86_64.cpp

changeset 435
a61af66fc99e
child 485
485d403e94e1
child 506
3d62cb85208d
equal deleted inserted replaced
-1:000000000000 435:a61af66fc99e
1 /*
2 * Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_assembler_x86_64.cpp.incl"
27
28 // Implementation of AddressLiteral
29
30 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
31 _is_lval = false;
32 _target = target;
33 switch (rtype) {
34 case relocInfo::oop_type:
35 // Oops are a special case. Normally they would be their own section
36 // but in cases like icBuffer they are literals in the code stream that
37 // we don't have a section for. We use none so that we get a literal address
38 // which is always patchable.
39 break;
40 case relocInfo::external_word_type:
41 _rspec = external_word_Relocation::spec(target);
42 break;
43 case relocInfo::internal_word_type:
44 _rspec = internal_word_Relocation::spec(target);
45 break;
46 case relocInfo::opt_virtual_call_type:
47 _rspec = opt_virtual_call_Relocation::spec();
48 break;
49 case relocInfo::static_call_type:
50 _rspec = static_call_Relocation::spec();
51 break;
52 case relocInfo::runtime_call_type:
53 _rspec = runtime_call_Relocation::spec();
54 break;
55 case relocInfo::none:
56 break;
57 default:
58 ShouldNotReachHere();
59 break;
60 }
61 }
62
63 // Implementation of Address
64
65 Address Address::make_array(ArrayAddress adr) {
66 #ifdef _LP64
67 // Not implementable on 64bit machines
68 // Should have been handled higher up the call chain.
69 ShouldNotReachHere();
70 return Address();
71 #else
72 AddressLiteral base = adr.base();
73 Address index = adr.index();
74 assert(index._disp == 0, "must not have disp"); // maybe it can?
75 Address array(index._base, index._index, index._scale, (intptr_t) base.target());
76 array._rspec = base._rspec;
77 return array;
78 #endif // _LP64
79 }
80
81 // exceedingly dangerous constructor
82 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
83 _base = noreg;
84 _index = noreg;
85 _scale = no_scale;
86 _disp = disp;
87 switch (rtype) {
88 case relocInfo::external_word_type:
89 _rspec = external_word_Relocation::spec(loc);
90 break;
91 case relocInfo::internal_word_type:
92 _rspec = internal_word_Relocation::spec(loc);
93 break;
94 case relocInfo::runtime_call_type:
95 // HMM
96 _rspec = runtime_call_Relocation::spec();
97 break;
98 case relocInfo::none:
99 break;
100 default:
101 ShouldNotReachHere();
102 }
103 }
104
105 // Convert the raw encoding form into the form expected by the constructor for
106 // Address. An index of 4 (rsp) corresponds to having no index, so convert
107 // that to noreg for the Address constructor.
108 Address Address::make_raw(int base, int index, int scale, int disp) {
109 bool valid_index = index != rsp->encoding();
110 if (valid_index) {
111 Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
112 return madr;
113 } else {
114 Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
115 return madr;
116 }
117 }
118
119
120 // Implementation of Assembler
121 int AbstractAssembler::code_fill_byte() {
122 return (u_char)'\xF4'; // hlt
123 }
124
125 // This should only be used by 64bit instructions that can use rip-relative
126 // it cannot be used by instructions that want an immediate value.
127
128 bool Assembler::reachable(AddressLiteral adr) {
129 int64_t disp;
130 // None will force a 64bit literal to the code stream. Likely a placeholder
131 // for something that will be patched later and we need to certain it will
132 // always be reachable.
133 if (adr.reloc() == relocInfo::none) {
134 return false;
135 }
136 if (adr.reloc() == relocInfo::internal_word_type) {
137 // This should be rip relative and easily reachable.
138 return true;
139 }
140 if (adr.reloc() != relocInfo::external_word_type &&
141 adr.reloc() != relocInfo::runtime_call_type ) {
142 return false;
143 }
144
145 // Stress the correction code
146 if (ForceUnreachable) {
147 // Must be runtimecall reloc, see if it is in the codecache
148 // Flipping stuff in the codecache to be unreachable causes issues
149 // with things like inline caches where the additional instructions
150 // are not handled.
151 if (CodeCache::find_blob(adr._target) == NULL) {
152 return false;
153 }
154 }
155 // For external_word_type/runtime_call_type if it is reachable from where we
156 // are now (possibly a temp buffer) and where we might end up
157 // anywhere in the codeCache then we are always reachable.
158 // This would have to change if we ever save/restore shared code
159 // to be more pessimistic.
160
161 disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
162 if (!is_simm32(disp)) return false;
163 disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
164 if (!is_simm32(disp)) return false;
165
166 disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
167
168 // Because rip relative is a disp + address_of_next_instruction and we
169 // don't know the value of address_of_next_instruction we apply a fudge factor
170 // to make sure we will be ok no matter the size of the instruction we get placed into.
171 // We don't have to fudge the checks above here because they are already worst case.
172
173 // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
174 // + 4 because better safe than sorry.
175 const int fudge = 12 + 4;
176 if (disp < 0) {
177 disp -= fudge;
178 } else {
179 disp += fudge;
180 }
181 return is_simm32(disp);
182 }
183
184
185 // make this go away eventually
186 void Assembler::emit_data(jint data,
187 relocInfo::relocType rtype,
188 int format) {
189 if (rtype == relocInfo::none) {
190 emit_long(data);
191 } else {
192 emit_data(data, Relocation::spec_simple(rtype), format);
193 }
194 }
195
196 void Assembler::emit_data(jint data,
197 RelocationHolder const& rspec,
198 int format) {
199 assert(imm64_operand == 0, "default format must be imm64 in this file");
200 assert(imm64_operand != format, "must not be imm64");
201 assert(inst_mark() != NULL, "must be inside InstructionMark");
202 if (rspec.type() != relocInfo::none) {
203 #ifdef ASSERT
204 check_relocation(rspec, format);
205 #endif
206 // Do not use AbstractAssembler::relocate, which is not intended for
207 // embedded words. Instead, relocate to the enclosing instruction.
208
209 // hack. call32 is too wide for mask so use disp32
210 if (format == call32_operand)
211 code_section()->relocate(inst_mark(), rspec, disp32_operand);
212 else
213 code_section()->relocate(inst_mark(), rspec, format);
214 }
215 emit_long(data);
216 }
217
218 void Assembler::emit_data64(jlong data,
219 relocInfo::relocType rtype,
220 int format) {
221 if (rtype == relocInfo::none) {
222 emit_long64(data);
223 } else {
224 emit_data64(data, Relocation::spec_simple(rtype), format);
225 }
226 }
227
228 void Assembler::emit_data64(jlong data,
229 RelocationHolder const& rspec,
230 int format) {
231 assert(imm64_operand == 0, "default format must be imm64 in this file");
232 assert(imm64_operand == format, "must be imm64");
233 assert(inst_mark() != NULL, "must be inside InstructionMark");
234 // Do not use AbstractAssembler::relocate, which is not intended for
235 // embedded words. Instead, relocate to the enclosing instruction.
236 code_section()->relocate(inst_mark(), rspec, format);
237 #ifdef ASSERT
238 check_relocation(rspec, format);
239 #endif
240 emit_long64(data);
241 }
242
243 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
244 assert(isByte(op1) && isByte(op2), "wrong opcode");
245 assert(isByte(imm8), "not a byte");
246 assert((op1 & 0x01) == 0, "should be 8bit operation");
247 int dstenc = dst->encoding();
248 if (dstenc >= 8) {
249 dstenc -= 8;
250 }
251 emit_byte(op1);
252 emit_byte(op2 | dstenc);
253 emit_byte(imm8);
254 }
255
256 void Assembler::emit_arith(int op1, int op2, Register dst, int imm32) {
257 assert(isByte(op1) && isByte(op2), "wrong opcode");
258 assert((op1 & 0x01) == 1, "should be 32bit operation");
259 assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
260 int dstenc = dst->encoding();
261 if (dstenc >= 8) {
262 dstenc -= 8;
263 }
264 if (is8bit(imm32)) {
265 emit_byte(op1 | 0x02); // set sign bit
266 emit_byte(op2 | dstenc);
267 emit_byte(imm32 & 0xFF);
268 } else {
269 emit_byte(op1);
270 emit_byte(op2 | dstenc);
271 emit_long(imm32);
272 }
273 }
274
275 // immediate-to-memory forms
276 void Assembler::emit_arith_operand(int op1,
277 Register rm, Address adr,
278 int imm32) {
279 assert((op1 & 0x01) == 1, "should be 32bit operation");
280 assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
281 if (is8bit(imm32)) {
282 emit_byte(op1 | 0x02); // set sign bit
283 emit_operand(rm, adr, 1);
284 emit_byte(imm32 & 0xFF);
285 } else {
286 emit_byte(op1);
287 emit_operand(rm, adr, 4);
288 emit_long(imm32);
289 }
290 }
291
292
293 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
294 assert(isByte(op1) && isByte(op2), "wrong opcode");
295 int dstenc = dst->encoding();
296 int srcenc = src->encoding();
297 if (dstenc >= 8) {
298 dstenc -= 8;
299 }
300 if (srcenc >= 8) {
301 srcenc -= 8;
302 }
303 emit_byte(op1);
304 emit_byte(op2 | dstenc << 3 | srcenc);
305 }
306
307 void Assembler::emit_operand(Register reg, Register base, Register index,
308 Address::ScaleFactor scale, int disp,
309 RelocationHolder const& rspec,
310 int rip_relative_correction) {
311 relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
312 int regenc = reg->encoding();
313 if (regenc >= 8) {
314 regenc -= 8;
315 }
316 if (base->is_valid()) {
317 if (index->is_valid()) {
318 assert(scale != Address::no_scale, "inconsistent address");
319 int indexenc = index->encoding();
320 if (indexenc >= 8) {
321 indexenc -= 8;
322 }
323 int baseenc = base->encoding();
324 if (baseenc >= 8) {
325 baseenc -= 8;
326 }
327 // [base + index*scale + disp]
328 if (disp == 0 && rtype == relocInfo::none &&
329 base != rbp && base != r13) {
330 // [base + index*scale]
331 // [00 reg 100][ss index base]
332 assert(index != rsp, "illegal addressing mode");
333 emit_byte(0x04 | regenc << 3);
334 emit_byte(scale << 6 | indexenc << 3 | baseenc);
335 } else if (is8bit(disp) && rtype == relocInfo::none) {
336 // [base + index*scale + imm8]
337 // [01 reg 100][ss index base] imm8
338 assert(index != rsp, "illegal addressing mode");
339 emit_byte(0x44 | regenc << 3);
340 emit_byte(scale << 6 | indexenc << 3 | baseenc);
341 emit_byte(disp & 0xFF);
342 } else {
343 // [base + index*scale + disp32]
344 // [10 reg 100][ss index base] disp32
345 assert(index != rsp, "illegal addressing mode");
346 emit_byte(0x84 | regenc << 3);
347 emit_byte(scale << 6 | indexenc << 3 | baseenc);
348 emit_data(disp, rspec, disp32_operand);
349 }
350 } else if (base == rsp || base == r12) {
351 // [rsp + disp]
352 if (disp == 0 && rtype == relocInfo::none) {
353 // [rsp]
354 // [00 reg 100][00 100 100]
355 emit_byte(0x04 | regenc << 3);
356 emit_byte(0x24);
357 } else if (is8bit(disp) && rtype == relocInfo::none) {
358 // [rsp + imm8]
359 // [01 reg 100][00 100 100] disp8
360 emit_byte(0x44 | regenc << 3);
361 emit_byte(0x24);
362 emit_byte(disp & 0xFF);
363 } else {
364 // [rsp + imm32]
365 // [10 reg 100][00 100 100] disp32
366 emit_byte(0x84 | regenc << 3);
367 emit_byte(0x24);
368 emit_data(disp, rspec, disp32_operand);
369 }
370 } else {
371 // [base + disp]
372 assert(base != rsp && base != r12, "illegal addressing mode");
373 int baseenc = base->encoding();
374 if (baseenc >= 8) {
375 baseenc -= 8;
376 }
377 if (disp == 0 && rtype == relocInfo::none &&
378 base != rbp && base != r13) {
379 // [base]
380 // [00 reg base]
381 emit_byte(0x00 | regenc << 3 | baseenc);
382 } else if (is8bit(disp) && rtype == relocInfo::none) {
383 // [base + disp8]
384 // [01 reg base] disp8
385 emit_byte(0x40 | regenc << 3 | baseenc);
386 emit_byte(disp & 0xFF);
387 } else {
388 // [base + disp32]
389 // [10 reg base] disp32
390 emit_byte(0x80 | regenc << 3 | baseenc);
391 emit_data(disp, rspec, disp32_operand);
392 }
393 }
394 } else {
395 if (index->is_valid()) {
396 assert(scale != Address::no_scale, "inconsistent address");
397 int indexenc = index->encoding();
398 if (indexenc >= 8) {
399 indexenc -= 8;
400 }
401 // [index*scale + disp]
402 // [00 reg 100][ss index 101] disp32
403 assert(index != rsp, "illegal addressing mode");
404 emit_byte(0x04 | regenc << 3);
405 emit_byte(scale << 6 | indexenc << 3 | 0x05);
406 emit_data(disp, rspec, disp32_operand);
407 #ifdef _LP64
408 } else if (rtype != relocInfo::none ) {
409 // [disp] RIP-RELATIVE
410 // [00 000 101] disp32
411
412 emit_byte(0x05 | regenc << 3);
413 // Note that the RIP-rel. correction applies to the generated
414 // disp field, but _not_ to the target address in the rspec.
415
416 // disp was created by converting the target address minus the pc
417 // at the start of the instruction. That needs more correction here.
418 // intptr_t disp = target - next_ip;
419 assert(inst_mark() != NULL, "must be inside InstructionMark");
420 address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
421 int64_t adjusted = (int64_t) disp - (next_ip - inst_mark());
422 assert(is_simm32(adjusted),
423 "must be 32bit offset (RIP relative address)");
424 emit_data((int) adjusted, rspec, disp32_operand);
425
426 #endif // _LP64
427 } else {
428 // [disp] ABSOLUTE
429 // [00 reg 100][00 100 101] disp32
430 emit_byte(0x04 | regenc << 3);
431 emit_byte(0x25);
432 emit_data(disp, rspec, disp32_operand);
433 }
434 }
435 }
436
437 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
438 Address::ScaleFactor scale, int disp,
439 RelocationHolder const& rspec,
440 int rip_relative_correction) {
441 relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
442 int regenc = reg->encoding();
443 if (regenc >= 8) {
444 regenc -= 8;
445 }
446 if (base->is_valid()) {
447 if (index->is_valid()) {
448 assert(scale != Address::no_scale, "inconsistent address");
449 int indexenc = index->encoding();
450 if (indexenc >= 8) {
451 indexenc -= 8;
452 }
453 int baseenc = base->encoding();
454 if (baseenc >= 8) {
455 baseenc -= 8;
456 }
457 // [base + index*scale + disp]
458 if (disp == 0 && rtype == relocInfo::none &&
459 base != rbp && base != r13) {
460 // [base + index*scale]
461 // [00 reg 100][ss index base]
462 assert(index != rsp, "illegal addressing mode");
463 emit_byte(0x04 | regenc << 3);
464 emit_byte(scale << 6 | indexenc << 3 | baseenc);
465 } else if (is8bit(disp) && rtype == relocInfo::none) {
466 // [base + index*scale + disp8]
467 // [01 reg 100][ss index base] disp8
468 assert(index != rsp, "illegal addressing mode");
469 emit_byte(0x44 | regenc << 3);
470 emit_byte(scale << 6 | indexenc << 3 | baseenc);
471 emit_byte(disp & 0xFF);
472 } else {
473 // [base + index*scale + disp32]
474 // [10 reg 100][ss index base] disp32
475 assert(index != rsp, "illegal addressing mode");
476 emit_byte(0x84 | regenc << 3);
477 emit_byte(scale << 6 | indexenc << 3 | baseenc);
478 emit_data(disp, rspec, disp32_operand);
479 }
480 } else if (base == rsp || base == r12) {
481 // [rsp + disp]
482 if (disp == 0 && rtype == relocInfo::none) {
483 // [rsp]
484 // [00 reg 100][00 100 100]
485 emit_byte(0x04 | regenc << 3);
486 emit_byte(0x24);
487 } else if (is8bit(disp) && rtype == relocInfo::none) {
488 // [rsp + imm8]
489 // [01 reg 100][00 100 100] disp8
490 emit_byte(0x44 | regenc << 3);
491 emit_byte(0x24);
492 emit_byte(disp & 0xFF);
493 } else {
494 // [rsp + imm32]
495 // [10 reg 100][00 100 100] disp32
496 emit_byte(0x84 | regenc << 3);
497 emit_byte(0x24);
498 emit_data(disp, rspec, disp32_operand);
499 }
500 } else {
501 // [base + disp]
502 assert(base != rsp && base != r12, "illegal addressing mode");
503 int baseenc = base->encoding();
504 if (baseenc >= 8) {
505 baseenc -= 8;
506 }
507 if (disp == 0 && rtype == relocInfo::none &&
508 base != rbp && base != r13) {
509 // [base]
510 // [00 reg base]
511 emit_byte(0x00 | regenc << 3 | baseenc);
512 } else if (is8bit(disp) && rtype == relocInfo::none) {
513 // [base + imm8]
514 // [01 reg base] disp8
515 emit_byte(0x40 | regenc << 3 | baseenc);
516 emit_byte(disp & 0xFF);
517 } else {
518 // [base + imm32]
519 // [10 reg base] disp32
520 emit_byte(0x80 | regenc << 3 | baseenc);
521 emit_data(disp, rspec, disp32_operand);
522 }
523 }
524 } else {
525 if (index->is_valid()) {
526 assert(scale != Address::no_scale, "inconsistent address");
527 int indexenc = index->encoding();
528 if (indexenc >= 8) {
529 indexenc -= 8;
530 }
531 // [index*scale + disp]
532 // [00 reg 100][ss index 101] disp32
533 assert(index != rsp, "illegal addressing mode");
534 emit_byte(0x04 | regenc << 3);
535 emit_byte(scale << 6 | indexenc << 3 | 0x05);
536 emit_data(disp, rspec, disp32_operand);
537 #ifdef _LP64
538 } else if ( rtype != relocInfo::none ) {
539 // [disp] RIP-RELATIVE
540 // [00 reg 101] disp32
541 emit_byte(0x05 | regenc << 3);
542 // Note that the RIP-rel. correction applies to the generated
543 // disp field, but _not_ to the target address in the rspec.
544
545 // disp was created by converting the target address minus the pc
546 // at the start of the instruction. That needs more correction here.
547 // intptr_t disp = target - next_ip;
548
549 assert(inst_mark() != NULL, "must be inside InstructionMark");
550 address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
551
552 int64_t adjusted = (int64_t) disp - (next_ip - inst_mark());
553 assert(is_simm32(adjusted),
554 "must be 32bit offset (RIP relative address)");
555 emit_data((int) adjusted, rspec, disp32_operand);
556 #endif // _LP64
557 } else {
558 // [disp] ABSOLUTE
559 // [00 reg 100][00 100 101] disp32
560 emit_byte(0x04 | regenc << 3);
561 emit_byte(0x25);
562 emit_data(disp, rspec, disp32_operand);
563 }
564 }
565 }
566
567 // Secret local extension to Assembler::WhichOperand:
568 #define end_pc_operand (_WhichOperand_limit)
569
570 address Assembler::locate_operand(address inst, WhichOperand which) {
571 // Decode the given instruction, and return the address of
572 // an embedded 32-bit operand word.
573
574 // If "which" is disp32_operand, selects the displacement portion
575 // of an effective address specifier.
576 // If "which" is imm64_operand, selects the trailing immediate constant.
577 // If "which" is call32_operand, selects the displacement of a call or jump.
578 // Caller is responsible for ensuring that there is such an operand,
579 // and that it is 32/64 bits wide.
580
581 // If "which" is end_pc_operand, find the end of the instruction.
582
583 address ip = inst;
584 bool is_64bit = false;
585
586 debug_only(bool has_disp32 = false);
587 int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
588
589 again_after_prefix:
590 switch (0xFF & *ip++) {
591
592 // These convenience macros generate groups of "case" labels for the switch.
593 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
594 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
595 case (x)+4: case (x)+5: case (x)+6: case (x)+7
596 #define REP16(x) REP8((x)+0): \
597 case REP8((x)+8)
598
599 case CS_segment:
600 case SS_segment:
601 case DS_segment:
602 case ES_segment:
603 case FS_segment:
604 case GS_segment:
605 assert(0, "shouldn't have that prefix");
606 assert(ip == inst + 1 || ip == inst + 2, "only two prefixes allowed");
607 goto again_after_prefix;
608
609 case 0x67:
610 case REX:
611 case REX_B:
612 case REX_X:
613 case REX_XB:
614 case REX_R:
615 case REX_RB:
616 case REX_RX:
617 case REX_RXB:
618 // assert(ip == inst + 1, "only one prefix allowed");
619 goto again_after_prefix;
620
621 case REX_W:
622 case REX_WB:
623 case REX_WX:
624 case REX_WXB:
625 case REX_WR:
626 case REX_WRB:
627 case REX_WRX:
628 case REX_WRXB:
629 is_64bit = true;
630 // assert(ip == inst + 1, "only one prefix allowed");
631 goto again_after_prefix;
632
633 case 0xFF: // pushq a; decl a; incl a; call a; jmp a
634 case 0x88: // movb a, r
635 case 0x89: // movl a, r
636 case 0x8A: // movb r, a
637 case 0x8B: // movl r, a
638 case 0x8F: // popl a
639 debug_only(has_disp32 = true);
640 break;
641
642 case 0x68: // pushq #32
643 if (which == end_pc_operand) {
644 return ip + 4;
645 }
646 assert(0, "pushq has no disp32 or imm64");
647 ShouldNotReachHere();
648
649 case 0x66: // movw ... (size prefix)
650 again_after_size_prefix2:
651 switch (0xFF & *ip++) {
652 case REX:
653 case REX_B:
654 case REX_X:
655 case REX_XB:
656 case REX_R:
657 case REX_RB:
658 case REX_RX:
659 case REX_RXB:
660 case REX_W:
661 case REX_WB:
662 case REX_WX:
663 case REX_WXB:
664 case REX_WR:
665 case REX_WRB:
666 case REX_WRX:
667 case REX_WRXB:
668 goto again_after_size_prefix2;
669 case 0x8B: // movw r, a
670 case 0x89: // movw a, r
671 break;
672 case 0xC7: // movw a, #16
673 tail_size = 2; // the imm16
674 break;
675 case 0x0F: // several SSE/SSE2 variants
676 ip--; // reparse the 0x0F
677 goto again_after_prefix;
678 default:
679 ShouldNotReachHere();
680 }
681 break;
682
683 case REP8(0xB8): // movl/q r, #32/#64(oop?)
684 if (which == end_pc_operand) return ip + (is_64bit ? 8 : 4);
685 assert((which == call32_operand || which == imm64_operand) && is_64bit, "");
686 return ip;
687
688 case 0x69: // imul r, a, #32
689 case 0xC7: // movl a, #32(oop?)
690 tail_size = 4;
691 debug_only(has_disp32 = true); // has both kinds of operands!
692 break;
693
694 case 0x0F: // movx..., etc.
695 switch (0xFF & *ip++) {
696 case 0x12: // movlps
697 case 0x28: // movaps
698 case 0x2E: // ucomiss
699 case 0x2F: // comiss
700 case 0x54: // andps
701 case 0x57: // xorps
702 case 0x6E: // movd
703 case 0x7E: // movd
704 case 0xAE: // ldmxcsr a
705 debug_only(has_disp32 = true); // has both kinds of operands!
706 break;
707 case 0xAD: // shrd r, a, %cl
708 case 0xAF: // imul r, a
709 case 0xBE: // movsbl r, a
710 case 0xBF: // movswl r, a
711 case 0xB6: // movzbl r, a
712 case 0xB7: // movzwl r, a
713 case REP16(0x40): // cmovl cc, r, a
714 case 0xB0: // cmpxchgb
715 case 0xB1: // cmpxchg
716 case 0xC1: // xaddl
717 case 0xC7: // cmpxchg8
718 case REP16(0x90): // setcc a
719 debug_only(has_disp32 = true);
720 // fall out of the switch to decode the address
721 break;
722 case 0xAC: // shrd r, a, #8
723 debug_only(has_disp32 = true);
724 tail_size = 1; // the imm8
725 break;
726 case REP16(0x80): // jcc rdisp32
727 if (which == end_pc_operand) return ip + 4;
728 assert(which == call32_operand, "jcc has no disp32 or imm64");
729 return ip;
730 default:
731 ShouldNotReachHere();
732 }
733 break;
734
735 case 0x81: // addl a, #32; addl r, #32
736 // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
737 tail_size = 4;
738 debug_only(has_disp32 = true); // has both kinds of operands!
739 break;
740
741 case 0x83: // addl a, #8; addl r, #8
742 // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
743 debug_only(has_disp32 = true); // has both kinds of operands!
744 tail_size = 1;
745 break;
746
747 case 0x9B:
748 switch (0xFF & *ip++) {
749 case 0xD9: // fnstcw a
750 debug_only(has_disp32 = true);
751 break;
752 default:
753 ShouldNotReachHere();
754 }
755 break;
756
757 case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
758 case REP4(0x10): // adc...
759 case REP4(0x20): // and...
760 case REP4(0x30): // xor...
761 case REP4(0x08): // or...
762 case REP4(0x18): // sbb...
763 case REP4(0x28): // sub...
764 case 0xF7: // mull a
765 case 0x87: // xchg r, a
766 debug_only(has_disp32 = true);
767 break;
768 case REP4(0x38): // cmp...
769 case 0x8D: // lea r, a
770 case 0x85: // test r, a
771 debug_only(has_disp32 = true); // has both kinds of operands!
772 break;
773
774 case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
775 case 0xC6: // movb a, #8
776 case 0x80: // cmpb a, #8
777 case 0x6B: // imul r, a, #8
778 debug_only(has_disp32 = true); // has both kinds of operands!
779 tail_size = 1; // the imm8
780 break;
781
782 case 0xE8: // call rdisp32
783 case 0xE9: // jmp rdisp32
784 if (which == end_pc_operand) return ip + 4;
785 assert(which == call32_operand, "call has no disp32 or imm32");
786 return ip;
787
788 case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
789 case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
790 case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
791 case 0xDD: // fld_d a; fst_d a; fstp_d a
792 case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
793 case 0xDF: // fild_d a; fistp_d a
794 case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
795 case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
796 case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
797 debug_only(has_disp32 = true);
798 break;
799
800 case 0xF3: // For SSE
801 case 0xF2: // For SSE2
802 switch (0xFF & *ip++) {
803 case REX:
804 case REX_B:
805 case REX_X:
806 case REX_XB:
807 case REX_R:
808 case REX_RB:
809 case REX_RX:
810 case REX_RXB:
811 case REX_W:
812 case REX_WB:
813 case REX_WX:
814 case REX_WXB:
815 case REX_WR:
816 case REX_WRB:
817 case REX_WRX:
818 case REX_WRXB:
819 ip++;
820 default:
821 ip++;
822 }
823 debug_only(has_disp32 = true); // has both kinds of operands!
824 break;
825
826 default:
827 ShouldNotReachHere();
828
829 #undef REP8
830 #undef REP16
831 }
832
833 assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
834 assert(which != imm64_operand, "instruction is not a movq reg, imm64");
835 assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
836
837 // parse the output of emit_operand
838 int op2 = 0xFF & *ip++;
839 int base = op2 & 0x07;
840 int op3 = -1;
841 const int b100 = 4;
842 const int b101 = 5;
843 if (base == b100 && (op2 >> 6) != 3) {
844 op3 = 0xFF & *ip++;
845 base = op3 & 0x07; // refetch the base
846 }
847 // now ip points at the disp (if any)
848
849 switch (op2 >> 6) {
850 case 0:
851 // [00 reg 100][ss index base]
852 // [00 reg 100][00 100 esp]
853 // [00 reg base]
854 // [00 reg 100][ss index 101][disp32]
855 // [00 reg 101] [disp32]
856
857 if (base == b101) {
858 if (which == disp32_operand)
859 return ip; // caller wants the disp32
860 ip += 4; // skip the disp32
861 }
862 break;
863
864 case 1:
865 // [01 reg 100][ss index base][disp8]
866 // [01 reg 100][00 100 esp][disp8]
867 // [01 reg base] [disp8]
868 ip += 1; // skip the disp8
869 break;
870
871 case 2:
872 // [10 reg 100][ss index base][disp32]
873 // [10 reg 100][00 100 esp][disp32]
874 // [10 reg base] [disp32]
875 if (which == disp32_operand)
876 return ip; // caller wants the disp32
877 ip += 4; // skip the disp32
878 break;
879
880 case 3:
881 // [11 reg base] (not a memory addressing mode)
882 break;
883 }
884
885 if (which == end_pc_operand) {
886 return ip + tail_size;
887 }
888
889 assert(0, "fix locate_operand");
890 return ip;
891 }
892
893 address Assembler::locate_next_instruction(address inst) {
894 // Secretly share code with locate_operand:
895 return locate_operand(inst, end_pc_operand);
896 }
897
898 #ifdef ASSERT
899 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
900 address inst = inst_mark();
901 assert(inst != NULL && inst < pc(),
902 "must point to beginning of instruction");
903 address opnd;
904
905 Relocation* r = rspec.reloc();
906 if (r->type() == relocInfo::none) {
907 return;
908 } else if (r->is_call() || format == call32_operand) {
909 opnd = locate_operand(inst, call32_operand);
910 } else if (r->is_data()) {
911 assert(format == imm64_operand || format == disp32_operand, "format ok");
912 opnd = locate_operand(inst, (WhichOperand) format);
913 } else {
914 assert(format == 0, "cannot specify a format");
915 return;
916 }
917 assert(opnd == pc(), "must put operand where relocs can find it");
918 }
919 #endif
920
921 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
922 if (reg_enc >= 8) {
923 prefix(REX_B);
924 reg_enc -= 8;
925 } else if (byteinst && reg_enc >= 4) {
926 prefix(REX);
927 }
928 return reg_enc;
929 }
930
931 int Assembler::prefixq_and_encode(int reg_enc) {
932 if (reg_enc < 8) {
933 prefix(REX_W);
934 } else {
935 prefix(REX_WB);
936 reg_enc -= 8;
937 }
938 return reg_enc;
939 }
940
941 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
942 if (dst_enc < 8) {
943 if (src_enc >= 8) {
944 prefix(REX_B);
945 src_enc -= 8;
946 } else if (byteinst && src_enc >= 4) {
947 prefix(REX);
948 }
949 } else {
950 if (src_enc < 8) {
951 prefix(REX_R);
952 } else {
953 prefix(REX_RB);
954 src_enc -= 8;
955 }
956 dst_enc -= 8;
957 }
958 return dst_enc << 3 | src_enc;
959 }
960
961 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
962 if (dst_enc < 8) {
963 if (src_enc < 8) {
964 prefix(REX_W);
965 } else {
966 prefix(REX_WB);
967 src_enc -= 8;
968 }
969 } else {
970 if (src_enc < 8) {
971 prefix(REX_WR);
972 } else {
973 prefix(REX_WRB);
974 src_enc -= 8;
975 }
976 dst_enc -= 8;
977 }
978 return dst_enc << 3 | src_enc;
979 }
980
981 void Assembler::prefix(Register reg) {
982 if (reg->encoding() >= 8) {
983 prefix(REX_B);
984 }
985 }
986
987 void Assembler::prefix(Address adr) {
988 if (adr.base_needs_rex()) {
989 if (adr.index_needs_rex()) {
990 prefix(REX_XB);
991 } else {
992 prefix(REX_B);
993 }
994 } else {
995 if (adr.index_needs_rex()) {
996 prefix(REX_X);
997 }
998 }
999 }
1000
1001 void Assembler::prefixq(Address adr) {
1002 if (adr.base_needs_rex()) {
1003 if (adr.index_needs_rex()) {
1004 prefix(REX_WXB);
1005 } else {
1006 prefix(REX_WB);
1007 }
1008 } else {
1009 if (adr.index_needs_rex()) {
1010 prefix(REX_WX);
1011 } else {
1012 prefix(REX_W);
1013 }
1014 }
1015 }
1016
1017
1018 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
1019 if (reg->encoding() < 8) {
1020 if (adr.base_needs_rex()) {
1021 if (adr.index_needs_rex()) {
1022 prefix(REX_XB);
1023 } else {
1024 prefix(REX_B);
1025 }
1026 } else {
1027 if (adr.index_needs_rex()) {
1028 prefix(REX_X);
1029 } else if (reg->encoding() >= 4 ) {
1030 prefix(REX);
1031 }
1032 }
1033 } else {
1034 if (adr.base_needs_rex()) {
1035 if (adr.index_needs_rex()) {
1036 prefix(REX_RXB);
1037 } else {
1038 prefix(REX_RB);
1039 }
1040 } else {
1041 if (adr.index_needs_rex()) {
1042 prefix(REX_RX);
1043 } else {
1044 prefix(REX_R);
1045 }
1046 }
1047 }
1048 }
1049
1050 void Assembler::prefixq(Address adr, Register src) {
1051 if (src->encoding() < 8) {
1052 if (adr.base_needs_rex()) {
1053 if (adr.index_needs_rex()) {
1054 prefix(REX_WXB);
1055 } else {
1056 prefix(REX_WB);
1057 }
1058 } else {
1059 if (adr.index_needs_rex()) {
1060 prefix(REX_WX);
1061 } else {
1062 prefix(REX_W);
1063 }
1064 }
1065 } else {
1066 if (adr.base_needs_rex()) {
1067 if (adr.index_needs_rex()) {
1068 prefix(REX_WRXB);
1069 } else {
1070 prefix(REX_WRB);
1071 }
1072 } else {
1073 if (adr.index_needs_rex()) {
1074 prefix(REX_WRX);
1075 } else {
1076 prefix(REX_WR);
1077 }
1078 }
1079 }
1080 }
1081
1082 void Assembler::prefix(Address adr, XMMRegister reg) {
1083 if (reg->encoding() < 8) {
1084 if (adr.base_needs_rex()) {
1085 if (adr.index_needs_rex()) {
1086 prefix(REX_XB);
1087 } else {
1088 prefix(REX_B);
1089 }
1090 } else {
1091 if (adr.index_needs_rex()) {
1092 prefix(REX_X);
1093 }
1094 }
1095 } else {
1096 if (adr.base_needs_rex()) {
1097 if (adr.index_needs_rex()) {
1098 prefix(REX_RXB);
1099 } else {
1100 prefix(REX_RB);
1101 }
1102 } else {
1103 if (adr.index_needs_rex()) {
1104 prefix(REX_RX);
1105 } else {
1106 prefix(REX_R);
1107 }
1108 }
1109 }
1110 }
1111
1112 void Assembler::emit_operand(Register reg, Address adr,
1113 int rip_relative_correction) {
1114 emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1115 adr._rspec,
1116 rip_relative_correction);
1117 }
1118
1119 void Assembler::emit_operand(XMMRegister reg, Address adr,
1120 int rip_relative_correction) {
1121 emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1122 adr._rspec,
1123 rip_relative_correction);
1124 }
1125
1126 void Assembler::emit_farith(int b1, int b2, int i) {
1127 assert(isByte(b1) && isByte(b2), "wrong opcode");
1128 assert(0 <= i && i < 8, "illegal stack offset");
1129 emit_byte(b1);
1130 emit_byte(b2 + i);
1131 }
1132
1133 // pushad is invalid, use this instead.
1134 // NOTE: Kills flags!!
1135 void Assembler::pushaq() {
1136 // we have to store original rsp. ABI says that 128 bytes
1137 // below rsp are local scratch.
1138 movq(Address(rsp, -5 * wordSize), rsp);
1139
1140 subq(rsp, 16 * wordSize);
1141
1142 movq(Address(rsp, 15 * wordSize), rax);
1143 movq(Address(rsp, 14 * wordSize), rcx);
1144 movq(Address(rsp, 13 * wordSize), rdx);
1145 movq(Address(rsp, 12 * wordSize), rbx);
1146 // skip rsp
1147 movq(Address(rsp, 10 * wordSize), rbp);
1148 movq(Address(rsp, 9 * wordSize), rsi);
1149 movq(Address(rsp, 8 * wordSize), rdi);
1150 movq(Address(rsp, 7 * wordSize), r8);
1151 movq(Address(rsp, 6 * wordSize), r9);
1152 movq(Address(rsp, 5 * wordSize), r10);
1153 movq(Address(rsp, 4 * wordSize), r11);
1154 movq(Address(rsp, 3 * wordSize), r12);
1155 movq(Address(rsp, 2 * wordSize), r13);
1156 movq(Address(rsp, wordSize), r14);
1157 movq(Address(rsp, 0), r15);
1158 }
1159
1160 // popad is invalid, use this instead
1161 // NOTE: Kills flags!!
1162 void Assembler::popaq() {
1163 movq(r15, Address(rsp, 0));
1164 movq(r14, Address(rsp, wordSize));
1165 movq(r13, Address(rsp, 2 * wordSize));
1166 movq(r12, Address(rsp, 3 * wordSize));
1167 movq(r11, Address(rsp, 4 * wordSize));
1168 movq(r10, Address(rsp, 5 * wordSize));
1169 movq(r9, Address(rsp, 6 * wordSize));
1170 movq(r8, Address(rsp, 7 * wordSize));
1171 movq(rdi, Address(rsp, 8 * wordSize));
1172 movq(rsi, Address(rsp, 9 * wordSize));
1173 movq(rbp, Address(rsp, 10 * wordSize));
1174 // skip rsp
1175 movq(rbx, Address(rsp, 12 * wordSize));
1176 movq(rdx, Address(rsp, 13 * wordSize));
1177 movq(rcx, Address(rsp, 14 * wordSize));
1178 movq(rax, Address(rsp, 15 * wordSize));
1179
1180 addq(rsp, 16 * wordSize);
1181 }
1182
1183 void Assembler::pushfq() {
1184 emit_byte(0x9C);
1185 }
1186
1187 void Assembler::popfq() {
1188 emit_byte(0x9D);
1189 }
1190
1191 void Assembler::pushq(int imm32) {
1192 emit_byte(0x68);
1193 emit_long(imm32);
1194 }
1195
1196 void Assembler::pushq(Register src) {
1197 int encode = prefix_and_encode(src->encoding());
1198
1199 emit_byte(0x50 | encode);
1200 }
1201
1202 void Assembler::pushq(Address src) {
1203 InstructionMark im(this);
1204 prefix(src);
1205 emit_byte(0xFF);
1206 emit_operand(rsi, src);
1207 }
1208
1209 void Assembler::popq(Register dst) {
1210 int encode = prefix_and_encode(dst->encoding());
1211 emit_byte(0x58 | encode);
1212 }
1213
1214 void Assembler::popq(Address dst) {
1215 InstructionMark im(this);
1216 prefix(dst);
1217 emit_byte(0x8F);
1218 emit_operand(rax, dst);
1219 }
1220
1221 void Assembler::prefix(Prefix p) {
1222 a_byte(p);
1223 }
1224
1225 void Assembler::movb(Register dst, Address src) {
1226 InstructionMark im(this);
1227 prefix(src, dst, true);
1228 emit_byte(0x8A);
1229 emit_operand(dst, src);
1230 }
1231
1232 void Assembler::movb(Address dst, int imm8) {
1233 InstructionMark im(this);
1234 prefix(dst);
1235 emit_byte(0xC6);
1236 emit_operand(rax, dst, 1);
1237 emit_byte(imm8);
1238 }
1239
1240 void Assembler::movb(Address dst, Register src) {
1241 InstructionMark im(this);
1242 prefix(dst, src, true);
1243 emit_byte(0x88);
1244 emit_operand(src, dst);
1245 }
1246
1247 void Assembler::movw(Address dst, int imm16) {
1248 InstructionMark im(this);
1249 emit_byte(0x66); // switch to 16-bit mode
1250 prefix(dst);
1251 emit_byte(0xC7);
1252 emit_operand(rax, dst, 2);
1253 emit_word(imm16);
1254 }
1255
1256 void Assembler::movw(Register dst, Address src) {
1257 InstructionMark im(this);
1258 emit_byte(0x66);
1259 prefix(src, dst);
1260 emit_byte(0x8B);
1261 emit_operand(dst, src);
1262 }
1263
1264 void Assembler::movw(Address dst, Register src) {
1265 InstructionMark im(this);
1266 emit_byte(0x66);
1267 prefix(dst, src);
1268 emit_byte(0x89);
1269 emit_operand(src, dst);
1270 }
1271
1272 // Uses zero extension.
1273 void Assembler::movl(Register dst, int imm32) {
1274 int encode = prefix_and_encode(dst->encoding());
1275 emit_byte(0xB8 | encode);
1276 emit_long(imm32);
1277 }
1278
1279 void Assembler::movl(Register dst, Register src) {
1280 int encode = prefix_and_encode(dst->encoding(), src->encoding());
1281 emit_byte(0x8B);
1282 emit_byte(0xC0 | encode);
1283 }
1284
1285 void Assembler::movl(Register dst, Address src) {
1286 InstructionMark im(this);
1287 prefix(src, dst);
1288 emit_byte(0x8B);
1289 emit_operand(dst, src);
1290 }
1291
1292 void Assembler::movl(Address dst, int imm32) {
1293 InstructionMark im(this);
1294 prefix(dst);
1295 emit_byte(0xC7);
1296 emit_operand(rax, dst, 4);
1297 emit_long(imm32);
1298 }
1299
1300 void Assembler::movl(Address dst, Register src) {
1301 InstructionMark im(this);
1302 prefix(dst, src);
1303 emit_byte(0x89);
1304 emit_operand(src, dst);
1305 }
1306
1307 void Assembler::mov64(Register dst, int64_t imm64) {
1308 InstructionMark im(this);
1309 int encode = prefixq_and_encode(dst->encoding());
1310 emit_byte(0xB8 | encode);
1311 emit_long64(imm64);
1312 }
1313
1314 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
1315 InstructionMark im(this);
1316 int encode = prefixq_and_encode(dst->encoding());
1317 emit_byte(0xB8 | encode);
1318 emit_data64(imm64, rspec);
1319 }
1320
1321 void Assembler::movq(Register dst, Register src) {
1322 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
1323 emit_byte(0x8B);
1324 emit_byte(0xC0 | encode);
1325 }
1326
1327 void Assembler::movq(Register dst, Address src) {
1328 InstructionMark im(this);
1329 prefixq(src, dst);
1330 emit_byte(0x8B);
1331 emit_operand(dst, src);
1332 }
1333
1334 void Assembler::mov64(Address dst, int64_t imm32) {
1335 assert(is_simm32(imm32), "lost bits");
1336 InstructionMark im(this);
1337 prefixq(dst);
1338 emit_byte(0xC7);
1339 emit_operand(rax, dst, 4);
1340 emit_long(imm32);
1341 }
1342
1343 void Assembler::movq(Address dst, Register src) {
1344 InstructionMark im(this);
1345 prefixq(dst, src);
1346 emit_byte(0x89);
1347 emit_operand(src, dst);
1348 }
1349
1350 void Assembler::movsbl(Register dst, Address src) {
1351 InstructionMark im(this);
1352 prefix(src, dst);
1353 emit_byte(0x0F);
1354 emit_byte(0xBE);
1355 emit_operand(dst, src);
1356 }
1357
1358 void Assembler::movsbl(Register dst, Register src) {
1359 int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1360 emit_byte(0x0F);
1361 emit_byte(0xBE);
1362 emit_byte(0xC0 | encode);
1363 }
1364
1365 void Assembler::movswl(Register dst, Address src) {
1366 InstructionMark im(this);
1367 prefix(src, dst);
1368 emit_byte(0x0F);
1369 emit_byte(0xBF);
1370 emit_operand(dst, src);
1371 }
1372
1373 void Assembler::movswl(Register dst, Register src) {
1374 int encode = prefix_and_encode(dst->encoding(), src->encoding());
1375 emit_byte(0x0F);
1376 emit_byte(0xBF);
1377 emit_byte(0xC0 | encode);
1378 }
1379
1380 void Assembler::movslq(Register dst, Address src) {
1381 InstructionMark im(this);
1382 prefixq(src, dst);
1383 emit_byte(0x63);
1384 emit_operand(dst, src);
1385 }
1386
1387 void Assembler::movslq(Register dst, Register src) {
1388 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
1389 emit_byte(0x63);
1390 emit_byte(0xC0 | encode);
1391 }
1392
1393 void Assembler::movzbl(Register dst, Address src) {
1394 InstructionMark im(this);
1395 prefix(src, dst);
1396 emit_byte(0x0F);
1397 emit_byte(0xB6);
1398 emit_operand(dst, src);
1399 }
1400
1401 void Assembler::movzbl(Register dst, Register src) {
1402 int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1403 emit_byte(0x0F);
1404 emit_byte(0xB6);
1405 emit_byte(0xC0 | encode);
1406 }
1407
1408 void Assembler::movzwl(Register dst, Address src) {
1409 InstructionMark im(this);
1410 prefix(src, dst);
1411 emit_byte(0x0F);
1412 emit_byte(0xB7);
1413 emit_operand(dst, src);
1414 }
1415
1416 void Assembler::movzwl(Register dst, Register src) {
1417 int encode = prefix_and_encode(dst->encoding(), src->encoding());
1418 emit_byte(0x0F);
1419 emit_byte(0xB7);
1420 emit_byte(0xC0 | encode);
1421 }
1422
1423 void Assembler::movss(XMMRegister dst, XMMRegister src) {
1424 emit_byte(0xF3);
1425 int encode = prefix_and_encode(dst->encoding(), src->encoding());
1426 emit_byte(0x0F);
1427 emit_byte(0x10);
1428 emit_byte(0xC0 | encode);
1429 }
1430
1431 void Assembler::movss(XMMRegister dst, Address src) {
1432 InstructionMark im(this);
1433 emit_byte(0xF3);
1434 prefix(src, dst);
1435 emit_byte(0x0F);
1436 emit_byte(0x10);
1437 emit_operand(dst, src);
1438 }
1439
1440 void Assembler::movss(Address dst, XMMRegister src) {
1441 InstructionMark im(this);
1442 emit_byte(0xF3);
1443 prefix(dst, src);
1444 emit_byte(0x0F);
1445 emit_byte(0x11);
1446 emit_operand(src, dst);
1447 }
1448
1449 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
1450 emit_byte(0xF2);
1451 int encode = prefix_and_encode(dst->encoding(), src->encoding());
1452 emit_byte(0x0F);
1453 emit_byte(0x10);
1454 emit_byte(0xC0 | encode);
1455 }
1456
1457 void Assembler::movsd(XMMRegister dst, Address src) {
1458 InstructionMark im(this);
1459 emit_byte(0xF2);
1460 prefix(src, dst);
1461 emit_byte(0x0F);
1462 emit_byte(0x10);
1463 emit_operand(dst, src);
1464 }
1465
1466 void Assembler::movsd(Address dst, XMMRegister src) {
1467 InstructionMark im(this);
1468 emit_byte(0xF2);
1469 prefix(dst, src);
1470 emit_byte(0x0F);
1471 emit_byte(0x11);
1472 emit_operand(src, dst);
1473 }
1474
1475 // New cpus require to use movsd and movss to avoid partial register stall
1476 // when loading from memory. But for old Opteron use movlpd instead of movsd.
1477 // The selection is done in MacroAssembler::movdbl() and movflt().
1478 void Assembler::movlpd(XMMRegister dst, Address src) {
1479 InstructionMark im(this);
1480 emit_byte(0x66);
1481 prefix(src, dst);
1482 emit_byte(0x0F);
1483 emit_byte(0x12);
1484 emit_operand(dst, src);
1485 }
1486
1487 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1488 int dstenc = dst->encoding();
1489 int srcenc = src->encoding();
1490 emit_byte(0x66);
1491 if (dstenc < 8) {
1492 if (srcenc >= 8) {
1493 prefix(REX_B);
1494 srcenc -= 8;
1495 }
1496 } else {
1497 if (srcenc < 8) {
1498 prefix(REX_R);
1499 } else {
1500 prefix(REX_RB);
1501 srcenc -= 8;
1502 }
1503 dstenc -= 8;
1504 }
1505 emit_byte(0x0F);
1506 emit_byte(0x28);
1507 emit_byte(0xC0 | dstenc << 3 | srcenc);
1508 }
1509
1510 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1511 int dstenc = dst->encoding();
1512 int srcenc = src->encoding();
1513 if (dstenc < 8) {
1514 if (srcenc >= 8) {
1515 prefix(REX_B);
1516 srcenc -= 8;
1517 }
1518 } else {
1519 if (srcenc < 8) {
1520 prefix(REX_R);
1521 } else {
1522 prefix(REX_RB);
1523 srcenc -= 8;
1524 }
1525 dstenc -= 8;
1526 }
1527 emit_byte(0x0F);
1528 emit_byte(0x28);
1529 emit_byte(0xC0 | dstenc << 3 | srcenc);
1530 }
1531
1532 void Assembler::movdl(XMMRegister dst, Register src) {
1533 emit_byte(0x66);
1534 int encode = prefix_and_encode(dst->encoding(), src->encoding());
1535 emit_byte(0x0F);
1536 emit_byte(0x6E);
1537 emit_byte(0xC0 | encode);
1538 }
1539
1540 void Assembler::movdl(Register dst, XMMRegister src) {
1541 emit_byte(0x66);
1542 // swap src/dst to get correct prefix
1543 int encode = prefix_and_encode(src->encoding(), dst->encoding());
1544 emit_byte(0x0F);
1545 emit_byte(0x7E);
1546 emit_byte(0xC0 | encode);
1547 }
1548
1549 void Assembler::movdq(XMMRegister dst, Register src) {
1550 emit_byte(0x66);
1551 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
1552 emit_byte(0x0F);
1553 emit_byte(0x6E);
1554 emit_byte(0xC0 | encode);
1555 }
1556
1557 void Assembler::movdq(Register dst, XMMRegister src) {
1558 emit_byte(0x66);
1559 // swap src/dst to get correct prefix
1560 int encode = prefixq_and_encode(src->encoding(), dst->encoding());
1561 emit_byte(0x0F);
1562 emit_byte(0x7E);
1563 emit_byte(0xC0 | encode);
1564 }
1565
1566 void Assembler::pxor(XMMRegister dst, Address src) {
1567 InstructionMark im(this);
1568 emit_byte(0x66);
1569 prefix(src, dst);
1570 emit_byte(0x0F);
1571 emit_byte(0xEF);
1572 emit_operand(dst, src);
1573 }
1574
1575 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
1576 InstructionMark im(this);
1577 emit_byte(0x66);
1578 int encode = prefix_and_encode(dst->encoding(), src->encoding());
1579 emit_byte(0x0F);
1580 emit_byte(0xEF);
1581 emit_byte(0xC0 | encode);
1582 }
1583
1584 void Assembler::movdqa(XMMRegister dst, Address src) {
1585 InstructionMark im(this);
1586 emit_byte(0x66);
1587 prefix(src, dst);
1588 emit_byte(0x0F);
1589 emit_byte(0x6F);
1590 emit_operand(dst, src);
1591 }
1592
1593 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
1594 emit_byte(0x66);
1595 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
1596 emit_byte(0x0F);
1597 emit_byte(0x6F);
1598 emit_byte(0xC0 | encode);
1599 }
1600
1601 void Assembler::movdqa(Address dst, XMMRegister src) {
1602 InstructionMark im(this);
1603 emit_byte(0x66);
1604 prefix(dst, src);
1605 emit_byte(0x0F);
1606 emit_byte(0x7F);
1607 emit_operand(src, dst);
1608 }
1609
1610 void Assembler::movq(XMMRegister dst, Address src) {
1611 InstructionMark im(this);
1612 emit_byte(0xF3);
1613 prefix(src, dst);
1614 emit_byte(0x0F);
1615 emit_byte(0x7E);
1616 emit_operand(dst, src);
1617 }
1618
1619 void Assembler::movq(Address dst, XMMRegister src) {
1620 InstructionMark im(this);
1621 emit_byte(0x66);
1622 prefix(dst, src);
1623 emit_byte(0x0F);
1624 emit_byte(0xD6);
1625 emit_operand(src, dst);
1626 }
1627
1628 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
1629 assert(isByte(mode), "invalid value");
1630 emit_byte(0x66);
1631 int encode = prefix_and_encode(dst->encoding(), src->encoding());
1632 emit_byte(0x0F);
1633 emit_byte(0x70);
1634 emit_byte(0xC0 | encode);
1635 emit_byte(mode & 0xFF);
1636 }
1637
1638 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
1639 assert(isByte(mode), "invalid value");
1640 InstructionMark im(this);
1641 emit_byte(0x66);
1642 emit_byte(0x0F);
1643 emit_byte(0x70);
1644 emit_operand(dst, src);
1645 emit_byte(mode & 0xFF);
1646 }
1647
1648 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
1649 assert(isByte(mode), "invalid value");
1650 emit_byte(0xF2);
1651 int encode = prefix_and_encode(dst->encoding(), src->encoding());
1652 emit_byte(0x0F);
1653 emit_byte(0x70);
1654 emit_byte(0xC0 | encode);
1655 emit_byte(mode & 0xFF);
1656 }
1657
1658 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
1659 assert(isByte(mode), "invalid value");
1660 InstructionMark im(this);
1661 emit_byte(0xF2);
1662 emit_byte(0x0F);
1663 emit_byte(0x70);
1664 emit_operand(dst, src);
1665 emit_byte(mode & 0xFF);
1666 }
1667
1668 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1669 int encode = prefix_and_encode(dst->encoding(), src->encoding());
1670 emit_byte(0x0F);
1671 emit_byte(0x40 | cc);
1672 emit_byte(0xC0 | encode);
1673 }
1674
1675 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1676 InstructionMark im(this);
1677 prefix(src, dst);
1678 emit_byte(0x0F);
1679 emit_byte(0x40 | cc);
1680 emit_operand(dst, src);
1681 }
1682
1683 void Assembler::cmovq(Condition cc, Register dst, Register src) {
1684 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
1685 emit_byte(0x0F);
1686 emit_byte(0x40 | cc);
1687 emit_byte(0xC0 | encode);
1688 }
1689
1690 void Assembler::cmovq(Condition cc, Register dst, Address src) {
1691 InstructionMark im(this);
1692 prefixq(src, dst);
1693 emit_byte(0x0F);
1694 emit_byte(0x40 | cc);
1695 emit_operand(dst, src);
1696 }
1697
1698 void Assembler::prefetch_prefix(Address src) {
1699 prefix(src);
1700 emit_byte(0x0F);
1701 }
1702
1703 void Assembler::prefetcht0(Address src) {
1704 InstructionMark im(this);
1705 prefetch_prefix(src);
1706 emit_byte(0x18);
1707 emit_operand(rcx, src); // 1, src
1708 }
1709
1710 void Assembler::prefetcht1(Address src) {
1711 InstructionMark im(this);
1712 prefetch_prefix(src);
1713 emit_byte(0x18);
1714 emit_operand(rdx, src); // 2, src
1715 }
1716
1717 void Assembler::prefetcht2(Address src) {
1718 InstructionMark im(this);
1719 prefetch_prefix(src);
1720 emit_byte(0x18);
1721 emit_operand(rbx, src); // 3, src
1722 }
1723
1724 void Assembler::prefetchnta(Address src) {
1725 InstructionMark im(this);
1726 prefetch_prefix(src);
1727 emit_byte(0x18);
1728 emit_operand(rax, src); // 0, src
1729 }
1730
1731 void Assembler::prefetchw(Address src) {
1732 InstructionMark im(this);
1733 prefetch_prefix(src);
1734 emit_byte(0x0D);
1735 emit_operand(rcx, src); // 1, src
1736 }
1737
1738 void Assembler::adcl(Register dst, int imm32) {
1739 prefix(dst);
1740 emit_arith(0x81, 0xD0, dst, imm32);
1741 }
1742
1743 void Assembler::adcl(Register dst, Address src) {
1744 InstructionMark im(this);
1745 prefix(src, dst);
1746 emit_byte(0x13);
1747 emit_operand(dst, src);
1748 }
1749
1750 void Assembler::adcl(Register dst, Register src) {
1751 (void) prefix_and_encode(dst->encoding(), src->encoding());
1752 emit_arith(0x13, 0xC0, dst, src);
1753 }
1754
1755 void Assembler::adcq(Register dst, int imm32) {
1756 (void) prefixq_and_encode(dst->encoding());
1757 emit_arith(0x81, 0xD0, dst, imm32);
1758 }
1759
1760 void Assembler::adcq(Register dst, Address src) {
1761 InstructionMark im(this);
1762 prefixq(src, dst);
1763 emit_byte(0x13);
1764 emit_operand(dst, src);
1765 }
1766
1767 void Assembler::adcq(Register dst, Register src) {
1768 (int) prefixq_and_encode(dst->encoding(), src->encoding());
1769 emit_arith(0x13, 0xC0, dst, src);
1770 }
1771
1772 void Assembler::addl(Address dst, int imm32) {
1773 InstructionMark im(this);
1774 prefix(dst);
1775 emit_arith_operand(0x81, rax, dst,imm32);
1776 }
1777
1778 void Assembler::addl(Address dst, Register src) {
1779 InstructionMark im(this);
1780 prefix(dst, src);
1781 emit_byte(0x01);
1782 emit_operand(src, dst);
1783 }
1784
1785 void Assembler::addl(Register dst, int imm32) {
1786 prefix(dst);
1787 emit_arith(0x81, 0xC0, dst, imm32);
1788 }
1789
1790 void Assembler::addl(Register dst, Address src) {
1791 InstructionMark im(this);
1792 prefix(src, dst);
1793 emit_byte(0x03);
1794 emit_operand(dst, src);
1795 }
1796
1797 void Assembler::addl(Register dst, Register src) {
1798 (void) prefix_and_encode(dst->encoding(), src->encoding());
1799 emit_arith(0x03, 0xC0, dst, src);
1800 }
1801
1802 void Assembler::addq(Address dst, int imm32) {
1803 InstructionMark im(this);
1804 prefixq(dst);
1805 emit_arith_operand(0x81, rax, dst,imm32);
1806 }
1807
1808 void Assembler::addq(Address dst, Register src) {
1809 InstructionMark im(this);
1810 prefixq(dst, src);
1811 emit_byte(0x01);
1812 emit_operand(src, dst);
1813 }
1814
1815 void Assembler::addq(Register dst, int imm32) {
1816 (void) prefixq_and_encode(dst->encoding());
1817 emit_arith(0x81, 0xC0, dst, imm32);
1818 }
1819
1820 void Assembler::addq(Register dst, Address src) {
1821 InstructionMark im(this);
1822 prefixq(src, dst);
1823 emit_byte(0x03);
1824 emit_operand(dst, src);
1825 }
1826
1827 void Assembler::addq(Register dst, Register src) {
1828 (void) prefixq_and_encode(dst->encoding(), src->encoding());
1829 emit_arith(0x03, 0xC0, dst, src);
1830 }
1831
1832 void Assembler::andl(Register dst, int imm32) {
1833 prefix(dst);
1834 emit_arith(0x81, 0xE0, dst, imm32);
1835 }
1836
1837 void Assembler::andl(Register dst, Address src) {
1838 InstructionMark im(this);
1839 prefix(src, dst);
1840 emit_byte(0x23);
1841 emit_operand(dst, src);
1842 }
1843
1844 void Assembler::andl(Register dst, Register src) {
1845 (void) prefix_and_encode(dst->encoding(), src->encoding());
1846 emit_arith(0x23, 0xC0, dst, src);
1847 }
1848
1849 void Assembler::andq(Register dst, int imm32) {
1850 (void) prefixq_and_encode(dst->encoding());
1851 emit_arith(0x81, 0xE0, dst, imm32);
1852 }
1853
1854 void Assembler::andq(Register dst, Address src) {
1855 InstructionMark im(this);
1856 prefixq(src, dst);
1857 emit_byte(0x23);
1858 emit_operand(dst, src);
1859 }
1860
1861 void Assembler::andq(Register dst, Register src) {
1862 (int) prefixq_and_encode(dst->encoding(), src->encoding());
1863 emit_arith(0x23, 0xC0, dst, src);
1864 }
1865
1866 void Assembler::cmpb(Address dst, int imm8) {
1867 InstructionMark im(this);
1868 prefix(dst);
1869 emit_byte(0x80);
1870 emit_operand(rdi, dst, 1);
1871 emit_byte(imm8);
1872 }
1873
1874 void Assembler::cmpl(Address dst, int imm32) {
1875 InstructionMark im(this);
1876 prefix(dst);
1877 emit_byte(0x81);
1878 emit_operand(rdi, dst, 4);
1879 emit_long(imm32);
1880 }
1881
1882 void Assembler::cmpl(Register dst, int imm32) {
1883 prefix(dst);
1884 emit_arith(0x81, 0xF8, dst, imm32);
1885 }
1886
1887 void Assembler::cmpl(Register dst, Register src) {
1888 (void) prefix_and_encode(dst->encoding(), src->encoding());
1889 emit_arith(0x3B, 0xC0, dst, src);
1890 }
1891
1892 void Assembler::cmpl(Register dst, Address src) {
1893 InstructionMark im(this);
1894 prefix(src, dst);
1895 emit_byte(0x3B);
1896 emit_operand(dst, src);
1897 }
1898
1899 void Assembler::cmpq(Address dst, int imm32) {
1900 InstructionMark im(this);
1901 prefixq(dst);
1902 emit_byte(0x81);
1903 emit_operand(rdi, dst, 4);
1904 emit_long(imm32);
1905 }
1906
1907 void Assembler::cmpq(Register dst, int imm32) {
1908 (void) prefixq_and_encode(dst->encoding());
1909 emit_arith(0x81, 0xF8, dst, imm32);
1910 }
1911
1912 void Assembler::cmpq(Address dst, Register src) {
1913 prefixq(dst, src);
1914 emit_byte(0x3B);
1915 emit_operand(src, dst);
1916 }
1917
1918 void Assembler::cmpq(Register dst, Register src) {
1919 (void) prefixq_and_encode(dst->encoding(), src->encoding());
1920 emit_arith(0x3B, 0xC0, dst, src);
1921 }
1922
1923 void Assembler::cmpq(Register dst, Address src) {
1924 InstructionMark im(this);
1925 prefixq(src, dst);
1926 emit_byte(0x3B);
1927 emit_operand(dst, src);
1928 }
1929
1930 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
1931 int encode = prefix_and_encode(dst->encoding(), src->encoding());
1932 emit_byte(0x0F);
1933 emit_byte(0x2E);
1934 emit_byte(0xC0 | encode);
1935 }
1936
1937 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
1938 emit_byte(0x66);
1939 ucomiss(dst, src);
1940 }
1941
1942 void Assembler::decl(Register dst) {
1943 // Don't use it directly. Use MacroAssembler::decrementl() instead.
1944 // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
1945 int encode = prefix_and_encode(dst->encoding());
1946 emit_byte(0xFF);
1947 emit_byte(0xC8 | encode);
1948 }
1949
1950 void Assembler::decl(Address dst) {
1951 // Don't use it directly. Use MacroAssembler::decrementl() instead.
1952 InstructionMark im(this);
1953 prefix(dst);
1954 emit_byte(0xFF);
1955 emit_operand(rcx, dst);
1956 }
1957
1958 void Assembler::decq(Register dst) {
1959 // Don't use it directly. Use MacroAssembler::decrementq() instead.
1960 // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
1961 int encode = prefixq_and_encode(dst->encoding());
1962 emit_byte(0xFF);
1963 emit_byte(0xC8 | encode);
1964 }
1965
1966 void Assembler::decq(Address dst) {
1967 // Don't use it directly. Use MacroAssembler::decrementq() instead.
1968 InstructionMark im(this);
1969 prefixq(dst);
1970 emit_byte(0xFF);
1971 emit_operand(rcx, dst);
1972 }
1973
1974 void Assembler::idivl(Register src) {
1975 int encode = prefix_and_encode(src->encoding());
1976 emit_byte(0xF7);
1977 emit_byte(0xF8 | encode);
1978 }
1979
1980 void Assembler::idivq(Register src) {
1981 int encode = prefixq_and_encode(src->encoding());
1982 emit_byte(0xF7);
1983 emit_byte(0xF8 | encode);
1984 }
1985
1986 void Assembler::cdql() {
1987 emit_byte(0x99);
1988 }
1989
1990 void Assembler::cdqq() {
1991 prefix(REX_W);
1992 emit_byte(0x99);
1993 }
1994
1995 void Assembler::imull(Register dst, Register src) {
1996 int encode = prefix_and_encode(dst->encoding(), src->encoding());
1997 emit_byte(0x0F);
1998 emit_byte(0xAF);
1999 emit_byte(0xC0 | encode);
2000 }
2001
2002 void Assembler::imull(Register dst, Register src, int value) {
2003 int encode = prefix_and_encode(dst->encoding(), src->encoding());
2004 if (is8bit(value)) {
2005 emit_byte(0x6B);
2006 emit_byte(0xC0 | encode);
2007 emit_byte(value);
2008 } else {
2009 emit_byte(0x69);
2010 emit_byte(0xC0 | encode);
2011 emit_long(value);
2012 }
2013 }
2014
2015 void Assembler::imulq(Register dst, Register src) {
2016 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
2017 emit_byte(0x0F);
2018 emit_byte(0xAF);
2019 emit_byte(0xC0 | encode);
2020 }
2021
2022 void Assembler::imulq(Register dst, Register src, int value) {
2023 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
2024 if (is8bit(value)) {
2025 emit_byte(0x6B);
2026 emit_byte(0xC0 | encode);
2027 emit_byte(value);
2028 } else {
2029 emit_byte(0x69);
2030 emit_byte(0xC0 | encode);
2031 emit_long(value);
2032 }
2033 }
2034
2035 void Assembler::incl(Register dst) {
2036 // Don't use it directly. Use MacroAssembler::incrementl() instead.
2037 // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
2038 int encode = prefix_and_encode(dst->encoding());
2039 emit_byte(0xFF);
2040 emit_byte(0xC0 | encode);
2041 }
2042
2043 void Assembler::incl(Address dst) {
2044 // Don't use it directly. Use MacroAssembler::incrementl() instead.
2045 InstructionMark im(this);
2046 prefix(dst);
2047 emit_byte(0xFF);
2048 emit_operand(rax, dst);
2049 }
2050
2051 void Assembler::incq(Register dst) {
2052 // Don't use it directly. Use MacroAssembler::incrementq() instead.
2053 // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
2054 int encode = prefixq_and_encode(dst->encoding());
2055 emit_byte(0xFF);
2056 emit_byte(0xC0 | encode);
2057 }
2058
2059 void Assembler::incq(Address dst) {
2060 // Don't use it directly. Use MacroAssembler::incrementq() instead.
2061 InstructionMark im(this);
2062 prefixq(dst);
2063 emit_byte(0xFF);
2064 emit_operand(rax, dst);
2065 }
2066
2067 void Assembler::leal(Register dst, Address src) {
2068 InstructionMark im(this);
2069 emit_byte(0x67); // addr32
2070 prefix(src, dst);
2071 emit_byte(0x8D);
2072 emit_operand(dst, src);
2073 }
2074
2075 void Assembler::leaq(Register dst, Address src) {
2076 InstructionMark im(this);
2077 prefixq(src, dst);
2078 emit_byte(0x8D);
2079 emit_operand(dst, src);
2080 }
2081
2082 void Assembler::mull(Address src) {
2083 InstructionMark im(this);
2084 // was missing
2085 prefix(src);
2086 emit_byte(0xF7);
2087 emit_operand(rsp, src);
2088 }
2089
2090 void Assembler::mull(Register src) {
2091 // was missing
2092 int encode = prefix_and_encode(src->encoding());
2093 emit_byte(0xF7);
2094 emit_byte(0xE0 | encode);
2095 }
2096
2097 void Assembler::negl(Register dst) {
2098 int encode = prefix_and_encode(dst->encoding());
2099 emit_byte(0xF7);
2100 emit_byte(0xD8 | encode);
2101 }
2102
2103 void Assembler::negq(Register dst) {
2104 int encode = prefixq_and_encode(dst->encoding());
2105 emit_byte(0xF7);
2106 emit_byte(0xD8 | encode);
2107 }
2108
2109 void Assembler::notl(Register dst) {
2110 int encode = prefix_and_encode(dst->encoding());
2111 emit_byte(0xF7);
2112 emit_byte(0xD0 | encode);
2113 }
2114
2115 void Assembler::notq(Register dst) {
2116 int encode = prefixq_and_encode(dst->encoding());
2117 emit_byte(0xF7);
2118 emit_byte(0xD0 | encode);
2119 }
2120
2121 void Assembler::orl(Address dst, int imm32) {
2122 InstructionMark im(this);
2123 prefix(dst);
2124 emit_byte(0x81);
2125 emit_operand(rcx, dst, 4);
2126 emit_long(imm32);
2127 }
2128
2129 void Assembler::orl(Register dst, int imm32) {
2130 prefix(dst);
2131 emit_arith(0x81, 0xC8, dst, imm32);
2132 }
2133
2134 void Assembler::orl(Register dst, Address src) {
2135 InstructionMark im(this);
2136 prefix(src, dst);
2137 emit_byte(0x0B);
2138 emit_operand(dst, src);
2139 }
2140
2141 void Assembler::orl(Register dst, Register src) {
2142 (void) prefix_and_encode(dst->encoding(), src->encoding());
2143 emit_arith(0x0B, 0xC0, dst, src);
2144 }
2145
2146 void Assembler::orq(Address dst, int imm32) {
2147 InstructionMark im(this);
2148 prefixq(dst);
2149 emit_byte(0x81);
2150 emit_operand(rcx, dst, 4);
2151 emit_long(imm32);
2152 }
2153
2154 void Assembler::orq(Register dst, int imm32) {
2155 (void) prefixq_and_encode(dst->encoding());
2156 emit_arith(0x81, 0xC8, dst, imm32);
2157 }
2158
2159 void Assembler::orq(Register dst, Address src) {
2160 InstructionMark im(this);
2161 prefixq(src, dst);
2162 emit_byte(0x0B);
2163 emit_operand(dst, src);
2164 }
2165
2166 void Assembler::orq(Register dst, Register src) {
2167 (void) prefixq_and_encode(dst->encoding(), src->encoding());
2168 emit_arith(0x0B, 0xC0, dst, src);
2169 }
2170
2171 void Assembler::rcll(Register dst, int imm8) {
2172 assert(isShiftCount(imm8), "illegal shift count");
2173 int encode = prefix_and_encode(dst->encoding());
2174 if (imm8 == 1) {
2175 emit_byte(0xD1);
2176 emit_byte(0xD0 | encode);
2177 } else {
2178 emit_byte(0xC1);
2179 emit_byte(0xD0 | encode);
2180 emit_byte(imm8);
2181 }
2182 }
2183
2184 void Assembler::rclq(Register dst, int imm8) {
2185 assert(isShiftCount(imm8 >> 1), "illegal shift count");
2186 int encode = prefixq_and_encode(dst->encoding());
2187 if (imm8 == 1) {
2188 emit_byte(0xD1);
2189 emit_byte(0xD0 | encode);
2190 } else {
2191 emit_byte(0xC1);
2192 emit_byte(0xD0 | encode);
2193 emit_byte(imm8);
2194 }
2195 }
2196
2197 void Assembler::sarl(Register dst, int imm8) {
2198 int encode = prefix_and_encode(dst->encoding());
2199 assert(isShiftCount(imm8), "illegal shift count");
2200 if (imm8 == 1) {
2201 emit_byte(0xD1);
2202 emit_byte(0xF8 | encode);
2203 } else {
2204 emit_byte(0xC1);
2205 emit_byte(0xF8 | encode);
2206 emit_byte(imm8);
2207 }
2208 }
2209
2210 void Assembler::sarl(Register dst) {
2211 int encode = prefix_and_encode(dst->encoding());
2212 emit_byte(0xD3);
2213 emit_byte(0xF8 | encode);
2214 }
2215
2216 void Assembler::sarq(Register dst, int imm8) {
2217 assert(isShiftCount(imm8 >> 1), "illegal shift count");
2218 int encode = prefixq_and_encode(dst->encoding());
2219 if (imm8 == 1) {
2220 emit_byte(0xD1);
2221 emit_byte(0xF8 | encode);
2222 } else {
2223 emit_byte(0xC1);
2224 emit_byte(0xF8 | encode);
2225 emit_byte(imm8);
2226 }
2227 }
2228
2229 void Assembler::sarq(Register dst) {
2230 int encode = prefixq_and_encode(dst->encoding());
2231 emit_byte(0xD3);
2232 emit_byte(0xF8 | encode);
2233 }
2234
2235 void Assembler::sbbl(Address dst, int imm32) {
2236 InstructionMark im(this);
2237 prefix(dst);
2238 emit_arith_operand(0x81, rbx, dst, imm32);
2239 }
2240
2241 void Assembler::sbbl(Register dst, int imm32) {
2242 prefix(dst);
2243 emit_arith(0x81, 0xD8, dst, imm32);
2244 }
2245
2246 void Assembler::sbbl(Register dst, Address src) {
2247 InstructionMark im(this);
2248 prefix(src, dst);
2249 emit_byte(0x1B);
2250 emit_operand(dst, src);
2251 }
2252
2253 void Assembler::sbbl(Register dst, Register src) {
2254 (void) prefix_and_encode(dst->encoding(), src->encoding());
2255 emit_arith(0x1B, 0xC0, dst, src);
2256 }
2257
2258 void Assembler::sbbq(Address dst, int imm32) {
2259 InstructionMark im(this);
2260 prefixq(dst);
2261 emit_arith_operand(0x81, rbx, dst, imm32);
2262 }
2263
2264 void Assembler::sbbq(Register dst, int imm32) {
2265 (void) prefixq_and_encode(dst->encoding());
2266 emit_arith(0x81, 0xD8, dst, imm32);
2267 }
2268
2269 void Assembler::sbbq(Register dst, Address src) {
2270 InstructionMark im(this);
2271 prefixq(src, dst);
2272 emit_byte(0x1B);
2273 emit_operand(dst, src);
2274 }
2275
2276 void Assembler::sbbq(Register dst, Register src) {
2277 (void) prefixq_and_encode(dst->encoding(), src->encoding());
2278 emit_arith(0x1B, 0xC0, dst, src);
2279 }
2280
2281 void Assembler::shll(Register dst, int imm8) {
2282 assert(isShiftCount(imm8), "illegal shift count");
2283 int encode = prefix_and_encode(dst->encoding());
2284 if (imm8 == 1 ) {
2285 emit_byte(0xD1);
2286 emit_byte(0xE0 | encode);
2287 } else {
2288 emit_byte(0xC1);
2289 emit_byte(0xE0 | encode);
2290 emit_byte(imm8);
2291 }
2292 }
2293
2294 void Assembler::shll(Register dst) {
2295 int encode = prefix_and_encode(dst->encoding());
2296 emit_byte(0xD3);
2297 emit_byte(0xE0 | encode);
2298 }
2299
2300 void Assembler::shlq(Register dst, int imm8) {
2301 assert(isShiftCount(imm8 >> 1), "illegal shift count");
2302 int encode = prefixq_and_encode(dst->encoding());
2303 if (imm8 == 1) {
2304 emit_byte(0xD1);
2305 emit_byte(0xE0 | encode);
2306 } else {
2307 emit_byte(0xC1);
2308 emit_byte(0xE0 | encode);
2309 emit_byte(imm8);
2310 }
2311 }
2312
2313 void Assembler::shlq(Register dst) {
2314 int encode = prefixq_and_encode(dst->encoding());
2315 emit_byte(0xD3);
2316 emit_byte(0xE0 | encode);
2317 }
2318
2319 void Assembler::shrl(Register dst, int imm8) {
2320 assert(isShiftCount(imm8), "illegal shift count");
2321 int encode = prefix_and_encode(dst->encoding());
2322 emit_byte(0xC1);
2323 emit_byte(0xE8 | encode);
2324 emit_byte(imm8);
2325 }
2326
2327 void Assembler::shrl(Register dst) {
2328 int encode = prefix_and_encode(dst->encoding());
2329 emit_byte(0xD3);
2330 emit_byte(0xE8 | encode);
2331 }
2332
2333 void Assembler::shrq(Register dst, int imm8) {
2334 assert(isShiftCount(imm8 >> 1), "illegal shift count");
2335 int encode = prefixq_and_encode(dst->encoding());
2336 emit_byte(0xC1);
2337 emit_byte(0xE8 | encode);
2338 emit_byte(imm8);
2339 }
2340
2341 void Assembler::shrq(Register dst) {
2342 int encode = prefixq_and_encode(dst->encoding());
2343 emit_byte(0xD3);
2344 emit_byte(0xE8 | encode);
2345 }
2346
2347 void Assembler::subl(Address dst, int imm32) {
2348 InstructionMark im(this);
2349 prefix(dst);
2350 if (is8bit(imm32)) {
2351 emit_byte(0x83);
2352 emit_operand(rbp, dst, 1);
2353 emit_byte(imm32 & 0xFF);
2354 } else {
2355 emit_byte(0x81);
2356 emit_operand(rbp, dst, 4);
2357 emit_long(imm32);
2358 }
2359 }
2360
2361 void Assembler::subl(Register dst, int imm32) {
2362 prefix(dst);
2363 emit_arith(0x81, 0xE8, dst, imm32);
2364 }
2365
2366 void Assembler::subl(Address dst, Register src) {
2367 InstructionMark im(this);
2368 prefix(dst, src);
2369 emit_byte(0x29);
2370 emit_operand(src, dst);
2371 }
2372
2373 void Assembler::subl(Register dst, Address src) {
2374 InstructionMark im(this);
2375 prefix(src, dst);
2376 emit_byte(0x2B);
2377 emit_operand(dst, src);
2378 }
2379
2380 void Assembler::subl(Register dst, Register src) {
2381 (void) prefix_and_encode(dst->encoding(), src->encoding());
2382 emit_arith(0x2B, 0xC0, dst, src);
2383 }
2384
2385 void Assembler::subq(Address dst, int imm32) {
2386 InstructionMark im(this);
2387 prefixq(dst);
2388 if (is8bit(imm32)) {
2389 emit_byte(0x83);
2390 emit_operand(rbp, dst, 1);
2391 emit_byte(imm32 & 0xFF);
2392 } else {
2393 emit_byte(0x81);
2394 emit_operand(rbp, dst, 4);
2395 emit_long(imm32);
2396 }
2397 }
2398
2399 void Assembler::subq(Register dst, int imm32) {
2400 (void) prefixq_and_encode(dst->encoding());
2401 emit_arith(0x81, 0xE8, dst, imm32);
2402 }
2403
2404 void Assembler::subq(Address dst, Register src) {
2405 InstructionMark im(this);
2406 prefixq(dst, src);
2407 emit_byte(0x29);
2408 emit_operand(src, dst);
2409 }
2410
2411 void Assembler::subq(Register dst, Address src) {
2412 InstructionMark im(this);
2413 prefixq(src, dst);
2414 emit_byte(0x2B);
2415 emit_operand(dst, src);
2416 }
2417
2418 void Assembler::subq(Register dst, Register src) {
2419 (void) prefixq_and_encode(dst->encoding(), src->encoding());
2420 emit_arith(0x2B, 0xC0, dst, src);
2421 }
2422
2423 void Assembler::testb(Register dst, int imm8) {
2424 (void) prefix_and_encode(dst->encoding(), true);
2425 emit_arith_b(0xF6, 0xC0, dst, imm8);
2426 }
2427
2428 void Assembler::testl(Register dst, int imm32) {
2429 // not using emit_arith because test
2430 // doesn't support sign-extension of
2431 // 8bit operands
2432 int encode = dst->encoding();
2433 if (encode == 0) {
2434 emit_byte(0xA9);
2435 } else {
2436 encode = prefix_and_encode(encode);
2437 emit_byte(0xF7);
2438 emit_byte(0xC0 | encode);
2439 }
2440 emit_long(imm32);
2441 }
2442
2443 void Assembler::testl(Register dst, Register src) {
2444 (void) prefix_and_encode(dst->encoding(), src->encoding());
2445 emit_arith(0x85, 0xC0, dst, src);
2446 }
2447
2448 void Assembler::testq(Register dst, int imm32) {
2449 // not using emit_arith because test
2450 // doesn't support sign-extension of
2451 // 8bit operands
2452 int encode = dst->encoding();
2453 if (encode == 0) {
2454 prefix(REX_W);
2455 emit_byte(0xA9);
2456 } else {
2457 encode = prefixq_and_encode(encode);
2458 emit_byte(0xF7);
2459 emit_byte(0xC0 | encode);
2460 }
2461 emit_long(imm32);
2462 }
2463
2464 void Assembler::testq(Register dst, Register src) {
2465 (void) prefixq_and_encode(dst->encoding(), src->encoding());
2466 emit_arith(0x85, 0xC0, dst, src);
2467 }
2468
2469 void Assembler::xaddl(Address dst, Register src) {
2470 InstructionMark im(this);
2471 prefix(dst, src);
2472 emit_byte(0x0F);
2473 emit_byte(0xC1);
2474 emit_operand(src, dst);
2475 }
2476
2477 void Assembler::xaddq(Address dst, Register src) {
2478 InstructionMark im(this);
2479 prefixq(dst, src);
2480 emit_byte(0x0F);
2481 emit_byte(0xC1);
2482 emit_operand(src, dst);
2483 }
2484
2485 void Assembler::xorl(Register dst, int imm32) {
2486 prefix(dst);
2487 emit_arith(0x81, 0xF0, dst, imm32);
2488 }
2489
2490 void Assembler::xorl(Register dst, Register src) {
2491 (void) prefix_and_encode(dst->encoding(), src->encoding());
2492 emit_arith(0x33, 0xC0, dst, src);
2493 }
2494
2495 void Assembler::xorl(Register dst, Address src) {
2496 InstructionMark im(this);
2497 prefix(src, dst);
2498 emit_byte(0x33);
2499 emit_operand(dst, src);
2500 }
2501
2502 void Assembler::xorq(Register dst, int imm32) {
2503 (void) prefixq_and_encode(dst->encoding());
2504 emit_arith(0x81, 0xF0, dst, imm32);
2505 }
2506
2507 void Assembler::xorq(Register dst, Register src) {
2508 (void) prefixq_and_encode(dst->encoding(), src->encoding());
2509 emit_arith(0x33, 0xC0, dst, src);
2510 }
2511
2512 void Assembler::xorq(Register dst, Address src) {
2513 InstructionMark im(this);
2514 prefixq(src, dst);
2515 emit_byte(0x33);
2516 emit_operand(dst, src);
2517 }
2518
2519 void Assembler::bswapl(Register reg) {
2520 int encode = prefix_and_encode(reg->encoding());
2521 emit_byte(0x0F);
2522 emit_byte(0xC8 | encode);
2523 }
2524
2525 void Assembler::bswapq(Register reg) {
2526 int encode = prefixq_and_encode(reg->encoding());
2527 emit_byte(0x0F);
2528 emit_byte(0xC8 | encode);
2529 }
2530
2531 void Assembler::lock() {
2532 emit_byte(0xF0);
2533 }
2534
2535 void Assembler::xchgl(Register dst, Address src) {
2536 InstructionMark im(this);
2537 prefix(src, dst);
2538 emit_byte(0x87);
2539 emit_operand(dst, src);
2540 }
2541
2542 void Assembler::xchgl(Register dst, Register src) {
2543 int encode = prefix_and_encode(dst->encoding(), src->encoding());
2544 emit_byte(0x87);
2545 emit_byte(0xc0 | encode);
2546 }
2547
2548 void Assembler::xchgq(Register dst, Address src) {
2549 InstructionMark im(this);
2550 prefixq(src, dst);
2551 emit_byte(0x87);
2552 emit_operand(dst, src);
2553 }
2554
2555 void Assembler::xchgq(Register dst, Register src) {
2556 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
2557 emit_byte(0x87);
2558 emit_byte(0xc0 | encode);
2559 }
2560
2561 void Assembler::cmpxchgl(Register reg, Address adr) {
2562 InstructionMark im(this);
2563 prefix(adr, reg);
2564 emit_byte(0x0F);
2565 emit_byte(0xB1);
2566 emit_operand(reg, adr);
2567 }
2568
2569 void Assembler::cmpxchgq(Register reg, Address adr) {
2570 InstructionMark im(this);
2571 prefixq(adr, reg);
2572 emit_byte(0x0F);
2573 emit_byte(0xB1);
2574 emit_operand(reg, adr);
2575 }
2576
2577 void Assembler::hlt() {
2578 emit_byte(0xF4);
2579 }
2580
2581
2582 void Assembler::addr_nop_4() {
2583 // 4 bytes: NOP DWORD PTR [EAX+0]
2584 emit_byte(0x0F);
2585 emit_byte(0x1F);
2586 emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
2587 emit_byte(0); // 8-bits offset (1 byte)
2588 }
2589
2590 void Assembler::addr_nop_5() {
2591 // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
2592 emit_byte(0x0F);
2593 emit_byte(0x1F);
2594 emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
2595 emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
2596 emit_byte(0); // 8-bits offset (1 byte)
2597 }
2598
2599 void Assembler::addr_nop_7() {
2600 // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
2601 emit_byte(0x0F);
2602 emit_byte(0x1F);
2603 emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
2604 emit_long(0); // 32-bits offset (4 bytes)
2605 }
2606
2607 void Assembler::addr_nop_8() {
2608 // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
2609 emit_byte(0x0F);
2610 emit_byte(0x1F);
2611 emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
2612 emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
2613 emit_long(0); // 32-bits offset (4 bytes)
2614 }
2615
2616 void Assembler::nop(int i) {
2617 assert(i > 0, " ");
2618 if (UseAddressNop && VM_Version::is_intel()) {
2619 //
2620 // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2621 // 1: 0x90
2622 // 2: 0x66 0x90
2623 // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2624 // 4: 0x0F 0x1F 0x40 0x00
2625 // 5: 0x0F 0x1F 0x44 0x00 0x00
2626 // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2627 // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2628 // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2629 // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2630 // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2631 // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2632
2633 // The rest coding is Intel specific - don't use consecutive address nops
2634
2635 // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2636 // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2637 // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2638 // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2639
2640 while(i >= 15) {
2641 // For Intel don't generate consecutive addess nops (mix with regular nops)
2642 i -= 15;
2643 emit_byte(0x66); // size prefix
2644 emit_byte(0x66); // size prefix
2645 emit_byte(0x66); // size prefix
2646 addr_nop_8();
2647 emit_byte(0x66); // size prefix
2648 emit_byte(0x66); // size prefix
2649 emit_byte(0x66); // size prefix
2650 emit_byte(0x90); // nop
2651 }
2652 switch (i) {
2653 case 14:
2654 emit_byte(0x66); // size prefix
2655 case 13:
2656 emit_byte(0x66); // size prefix
2657 case 12:
2658 addr_nop_8();
2659 emit_byte(0x66); // size prefix
2660 emit_byte(0x66); // size prefix
2661 emit_byte(0x66); // size prefix
2662 emit_byte(0x90); // nop
2663 break;
2664 case 11:
2665 emit_byte(0x66); // size prefix
2666 case 10:
2667 emit_byte(0x66); // size prefix
2668 case 9:
2669 emit_byte(0x66); // size prefix
2670 case 8:
2671 addr_nop_8();
2672 break;
2673 case 7:
2674 addr_nop_7();
2675 break;
2676 case 6:
2677 emit_byte(0x66); // size prefix
2678 case 5:
2679 addr_nop_5();
2680 break;
2681 case 4:
2682 addr_nop_4();
2683 break;
2684 case 3:
2685 // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2686 emit_byte(0x66); // size prefix
2687 case 2:
2688 emit_byte(0x66); // size prefix
2689 case 1:
2690 emit_byte(0x90); // nop
2691 break;
2692 default:
2693 assert(i == 0, " ");
2694 }
2695 return;
2696 }
2697 if (UseAddressNop && VM_Version::is_amd()) {
2698 //
2699 // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2700 // 1: 0x90
2701 // 2: 0x66 0x90
2702 // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2703 // 4: 0x0F 0x1F 0x40 0x00
2704 // 5: 0x0F 0x1F 0x44 0x00 0x00
2705 // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2706 // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2707 // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2708 // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2709 // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2710 // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2711
2712 // The rest coding is AMD specific - use consecutive address nops
2713
2714 // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2715 // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2716 // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2717 // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2718 // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2719 // Size prefixes (0x66) are added for larger sizes
2720
2721 while(i >= 22) {
2722 i -= 11;
2723 emit_byte(0x66); // size prefix
2724 emit_byte(0x66); // size prefix
2725 emit_byte(0x66); // size prefix
2726 addr_nop_8();
2727 }
2728 // Generate first nop for size between 21-12
2729 switch (i) {
2730 case 21:
2731 i -= 1;
2732 emit_byte(0x66); // size prefix
2733 case 20:
2734 case 19:
2735 i -= 1;
2736 emit_byte(0x66); // size prefix
2737 case 18:
2738 case 17:
2739 i -= 1;
2740 emit_byte(0x66); // size prefix
2741 case 16:
2742 case 15:
2743 i -= 8;
2744 addr_nop_8();
2745 break;
2746 case 14:
2747 case 13:
2748 i -= 7;
2749 addr_nop_7();
2750 break;
2751 case 12:
2752 i -= 6;
2753 emit_byte(0x66); // size prefix
2754 addr_nop_5();
2755 break;
2756 default:
2757 assert(i < 12, " ");
2758 }
2759
2760 // Generate second nop for size between 11-1
2761 switch (i) {
2762 case 11:
2763 emit_byte(0x66); // size prefix
2764 case 10:
2765 emit_byte(0x66); // size prefix
2766 case 9:
2767 emit_byte(0x66); // size prefix
2768 case 8:
2769 addr_nop_8();
2770 break;
2771 case 7:
2772 addr_nop_7();
2773 break;
2774 case 6:
2775 emit_byte(0x66); // size prefix
2776 case 5:
2777 addr_nop_5();
2778 break;
2779 case 4:
2780 addr_nop_4();
2781 break;
2782 case 3:
2783 // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2784 emit_byte(0x66); // size prefix
2785 case 2:
2786 emit_byte(0x66); // size prefix
2787 case 1:
2788 emit_byte(0x90); // nop
2789 break;
2790 default:
2791 assert(i == 0, " ");
2792 }
2793 return;
2794 }
2795
2796 // Using nops with size prefixes "0x66 0x90".
2797 // From AMD Optimization Guide:
2798 // 1: 0x90
2799 // 2: 0x66 0x90
2800 // 3: 0x66 0x66 0x90
2801 // 4: 0x66 0x66 0x66 0x90
2802 // 5: 0x66 0x66 0x90 0x66 0x90
2803 // 6: 0x66 0x66 0x90 0x66 0x66 0x90
2804 // 7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2805 // 8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2806 // 9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2807 // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2808 //
2809 while(i > 12) {
2810 i -= 4;
2811 emit_byte(0x66); // size prefix
2812 emit_byte(0x66);
2813 emit_byte(0x66);
2814 emit_byte(0x90); // nop
2815 }
2816 // 1 - 12 nops
2817 if(i > 8) {
2818 if(i > 9) {
2819 i -= 1;
2820 emit_byte(0x66);
2821 }
2822 i -= 3;
2823 emit_byte(0x66);
2824 emit_byte(0x66);
2825 emit_byte(0x90);
2826 }
2827 // 1 - 8 nops
2828 if(i > 4) {
2829 if(i > 6) {
2830 i -= 1;
2831 emit_byte(0x66);
2832 }
2833 i -= 3;
2834 emit_byte(0x66);
2835 emit_byte(0x66);
2836 emit_byte(0x90);
2837 }
2838 switch (i) {
2839 case 4:
2840 emit_byte(0x66);
2841 case 3:
2842 emit_byte(0x66);
2843 case 2:
2844 emit_byte(0x66);
2845 case 1:
2846 emit_byte(0x90);
2847 break;
2848 default:
2849 assert(i == 0, " ");
2850 }
2851 }
2852
2853 void Assembler::ret(int imm16) {
2854 if (imm16 == 0) {
2855 emit_byte(0xC3);
2856 } else {
2857 emit_byte(0xC2);
2858 emit_word(imm16);
2859 }
2860 }
2861
2862 // copies a single word from [esi] to [edi]
2863 void Assembler::smovl() {
2864 emit_byte(0xA5);
2865 }
2866
2867 // copies data from [rsi] to [rdi] using rcx words (m32)
2868 void Assembler::rep_movl() {
2869 // REP
2870 emit_byte(0xF3);
2871 // MOVSL
2872 emit_byte(0xA5);
2873 }
2874
2875 // copies data from [rsi] to [rdi] using rcx double words (m64)
2876 void Assembler::rep_movq() {
2877 // REP
2878 emit_byte(0xF3);
2879 // MOVSQ
2880 prefix(REX_W);
2881 emit_byte(0xA5);
2882 }
2883
2884 // sets rcx double words (m64) with rax value at [rdi]
2885 void Assembler::rep_set() {
2886 // REP
2887 emit_byte(0xF3);
2888 // STOSQ
2889 prefix(REX_W);
2890 emit_byte(0xAB);
2891 }
2892
2893 // scans rcx double words (m64) at [rdi] for occurance of rax
2894 void Assembler::repne_scan() {
2895 // REPNE/REPNZ
2896 emit_byte(0xF2);
2897 // SCASQ
2898 prefix(REX_W);
2899 emit_byte(0xAF);
2900 }
2901
2902 void Assembler::setb(Condition cc, Register dst) {
2903 assert(0 <= cc && cc < 16, "illegal cc");
2904 int encode = prefix_and_encode(dst->encoding(), true);
2905 emit_byte(0x0F);
2906 emit_byte(0x90 | cc);
2907 emit_byte(0xC0 | encode);
2908 }
2909
2910 void Assembler::clflush(Address adr) {
2911 prefix(adr);
2912 emit_byte(0x0F);
2913 emit_byte(0xAE);
2914 emit_operand(rdi, adr);
2915 }
2916
2917 void Assembler::call(Label& L, relocInfo::relocType rtype) {
2918 if (L.is_bound()) {
2919 const int long_size = 5;
2920 int offs = (int)( target(L) - pc() );
2921 assert(offs <= 0, "assembler error");
2922 InstructionMark im(this);
2923 // 1110 1000 #32-bit disp
2924 emit_byte(0xE8);
2925 emit_data(offs - long_size, rtype, disp32_operand);
2926 } else {
2927 InstructionMark im(this);
2928 // 1110 1000 #32-bit disp
2929 L.add_patch_at(code(), locator());
2930
2931 emit_byte(0xE8);
2932 emit_data(int(0), rtype, disp32_operand);
2933 }
2934 }
2935
2936 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
2937 assert(entry != NULL, "call most probably wrong");
2938 InstructionMark im(this);
2939 emit_byte(0xE8);
2940 intptr_t disp = entry - (_code_pos + sizeof(int32_t));
2941 assert(is_simm32(disp), "must be 32bit offset (call2)");
2942 // Technically, should use call32_operand, but this format is
2943 // implied by the fact that we're emitting a call instruction.
2944 emit_data((int) disp, rspec, disp32_operand);
2945 }
2946
2947
2948 void Assembler::call(Register dst) {
2949 // This was originally using a 32bit register encoding
2950 // and surely we want 64bit!
2951 // this is a 32bit encoding but in 64bit mode the default
2952 // operand size is 64bit so there is no need for the
2953 // wide prefix. So prefix only happens if we use the
2954 // new registers. Much like push/pop.
2955 int encode = prefixq_and_encode(dst->encoding());
2956 emit_byte(0xFF);
2957 emit_byte(0xD0 | encode);
2958 }
2959
2960 void Assembler::call(Address adr) {
2961 InstructionMark im(this);
2962 prefix(adr);
2963 emit_byte(0xFF);
2964 emit_operand(rdx, adr);
2965 }
2966
2967 void Assembler::jmp(Register reg) {
2968 int encode = prefix_and_encode(reg->encoding());
2969 emit_byte(0xFF);
2970 emit_byte(0xE0 | encode);
2971 }
2972
2973 void Assembler::jmp(Address adr) {
2974 InstructionMark im(this);
2975 prefix(adr);
2976 emit_byte(0xFF);
2977 emit_operand(rsp, adr);
2978 }
2979
2980 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2981 InstructionMark im(this);
2982 emit_byte(0xE9);
2983 assert(dest != NULL, "must have a target");
2984 intptr_t disp = dest - (_code_pos + sizeof(int32_t));
2985 assert(is_simm32(disp), "must be 32bit offset (jmp)");
2986 emit_data(disp, rspec.reloc(), call32_operand);
2987 }
2988
2989 void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
2990 if (L.is_bound()) {
2991 address entry = target(L);
2992 assert(entry != NULL, "jmp most probably wrong");
2993 InstructionMark im(this);
2994 const int short_size = 2;
2995 const int long_size = 5;
2996 intptr_t offs = entry - _code_pos;
2997 if (rtype == relocInfo::none && is8bit(offs - short_size)) {
2998 emit_byte(0xEB);
2999 emit_byte((offs - short_size) & 0xFF);
3000 } else {
3001 emit_byte(0xE9);
3002 emit_long(offs - long_size);
3003 }
3004 } else {
3005 // By default, forward jumps are always 32-bit displacements, since
3006 // we can't yet know where the label will be bound. If you're sure that
3007 // the forward jump will not run beyond 256 bytes, use jmpb to
3008 // force an 8-bit displacement.
3009 InstructionMark im(this);
3010 relocate(rtype);
3011 L.add_patch_at(code(), locator());
3012 emit_byte(0xE9);
3013 emit_long(0);
3014 }
3015 }
3016
3017 void Assembler::jmpb(Label& L) {
3018 if (L.is_bound()) {
3019 const int short_size = 2;
3020 address entry = target(L);
3021 assert(is8bit((entry - _code_pos) + short_size),
3022 "Dispacement too large for a short jmp");
3023 assert(entry != NULL, "jmp most probably wrong");
3024 intptr_t offs = entry - _code_pos;
3025 emit_byte(0xEB);
3026 emit_byte((offs - short_size) & 0xFF);
3027 } else {
3028 InstructionMark im(this);
3029 L.add_patch_at(code(), locator());
3030 emit_byte(0xEB);
3031 emit_byte(0);
3032 }
3033 }
3034
3035 void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
3036 InstructionMark im(this);
3037 relocate(rtype);
3038 assert((0 <= cc) && (cc < 16), "illegal cc");
3039 if (L.is_bound()) {
3040 address dst = target(L);
3041 assert(dst != NULL, "jcc most probably wrong");
3042
3043 const int short_size = 2;
3044 const int long_size = 6;
3045 intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
3046 if (rtype == relocInfo::none && is8bit(offs - short_size)) {
3047 // 0111 tttn #8-bit disp
3048 emit_byte(0x70 | cc);
3049 emit_byte((offs - short_size) & 0xFF);
3050 } else {
3051 // 0000 1111 1000 tttn #32-bit disp
3052 assert(is_simm32(offs - long_size),
3053 "must be 32bit offset (call4)");
3054 emit_byte(0x0F);
3055 emit_byte(0x80 | cc);
3056 emit_long(offs - long_size);
3057 }
3058 } else {
3059 // Note: could eliminate cond. jumps to this jump if condition
3060 // is the same however, seems to be rather unlikely case.
3061 // Note: use jccb() if label to be bound is very close to get
3062 // an 8-bit displacement
3063 L.add_patch_at(code(), locator());
3064 emit_byte(0x0F);
3065 emit_byte(0x80 | cc);
3066 emit_long(0);
3067 }
3068 }
3069
3070 void Assembler::jccb(Condition cc, Label& L) {
3071 if (L.is_bound()) {
3072 const int short_size = 2;
3073 const int long_size = 6;
3074 address entry = target(L);
3075 assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
3076 "Dispacement too large for a short jmp");
3077 intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
3078 // 0111 tttn #8-bit disp
3079 emit_byte(0x70 | cc);
3080 emit_byte((offs - short_size) & 0xFF);
3081 } else {
3082 InstructionMark im(this);
3083 L.add_patch_at(code(), locator());
3084 emit_byte(0x70 | cc);
3085 emit_byte(0);
3086 }
3087 }
3088
3089 // FP instructions
3090
3091 void Assembler::fxsave(Address dst) {
3092 prefixq(dst);
3093 emit_byte(0x0F);
3094 emit_byte(0xAE);
3095 emit_operand(as_Register(0), dst);
3096 }
3097
3098 void Assembler::fxrstor(Address src) {
3099 prefixq(src);
3100 emit_byte(0x0F);
3101 emit_byte(0xAE);
3102 emit_operand(as_Register(1), src);
3103 }
3104
3105 void Assembler::ldmxcsr(Address src) {
3106 InstructionMark im(this);
3107 prefix(src);
3108 emit_byte(0x0F);
3109 emit_byte(0xAE);
3110 emit_operand(as_Register(2), src);
3111 }
3112
3113 void Assembler::stmxcsr(Address dst) {
3114 InstructionMark im(this);
3115 prefix(dst);
3116 emit_byte(0x0F);
3117 emit_byte(0xAE);
3118 emit_operand(as_Register(3), dst);
3119 }
3120
3121 void Assembler::addss(XMMRegister dst, XMMRegister src) {
3122 emit_byte(0xF3);
3123 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3124 emit_byte(0x0F);
3125 emit_byte(0x58);
3126 emit_byte(0xC0 | encode);
3127 }
3128
3129 void Assembler::addss(XMMRegister dst, Address src) {
3130 InstructionMark im(this);
3131 emit_byte(0xF3);
3132 prefix(src, dst);
3133 emit_byte(0x0F);
3134 emit_byte(0x58);
3135 emit_operand(dst, src);
3136 }
3137
3138 void Assembler::subss(XMMRegister dst, XMMRegister src) {
3139 emit_byte(0xF3);
3140 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3141 emit_byte(0x0F);
3142 emit_byte(0x5C);
3143 emit_byte(0xC0 | encode);
3144 }
3145
3146 void Assembler::subss(XMMRegister dst, Address src) {
3147 InstructionMark im(this);
3148 emit_byte(0xF3);
3149 prefix(src, dst);
3150 emit_byte(0x0F);
3151 emit_byte(0x5C);
3152 emit_operand(dst, src);
3153 }
3154
3155 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
3156 emit_byte(0xF3);
3157 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3158 emit_byte(0x0F);
3159 emit_byte(0x59);
3160 emit_byte(0xC0 | encode);
3161 }
3162
3163 void Assembler::mulss(XMMRegister dst, Address src) {
3164 InstructionMark im(this);
3165 emit_byte(0xF3);
3166 prefix(src, dst);
3167 emit_byte(0x0F);
3168 emit_byte(0x59);
3169 emit_operand(dst, src);
3170 }
3171
3172 void Assembler::divss(XMMRegister dst, XMMRegister src) {
3173 emit_byte(0xF3);
3174 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3175 emit_byte(0x0F);
3176 emit_byte(0x5E);
3177 emit_byte(0xC0 | encode);
3178 }
3179
3180 void Assembler::divss(XMMRegister dst, Address src) {
3181 InstructionMark im(this);
3182 emit_byte(0xF3);
3183 prefix(src, dst);
3184 emit_byte(0x0F);
3185 emit_byte(0x5E);
3186 emit_operand(dst, src);
3187 }
3188
3189 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
3190 emit_byte(0xF2);
3191 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3192 emit_byte(0x0F);
3193 emit_byte(0x58);
3194 emit_byte(0xC0 | encode);
3195 }
3196
3197 void Assembler::addsd(XMMRegister dst, Address src) {
3198 InstructionMark im(this);
3199 emit_byte(0xF2);
3200 prefix(src, dst);
3201 emit_byte(0x0F);
3202 emit_byte(0x58);
3203 emit_operand(dst, src);
3204 }
3205
3206 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
3207 emit_byte(0xF2);
3208 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3209 emit_byte(0x0F);
3210 emit_byte(0x5C);
3211 emit_byte(0xC0 | encode);
3212 }
3213
3214 void Assembler::subsd(XMMRegister dst, Address src) {
3215 InstructionMark im(this);
3216 emit_byte(0xF2);
3217 prefix(src, dst);
3218 emit_byte(0x0F);
3219 emit_byte(0x5C);
3220 emit_operand(dst, src);
3221 }
3222
3223 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
3224 emit_byte(0xF2);
3225 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3226 emit_byte(0x0F);
3227 emit_byte(0x59);
3228 emit_byte(0xC0 | encode);
3229 }
3230
3231 void Assembler::mulsd(XMMRegister dst, Address src) {
3232 InstructionMark im(this);
3233 emit_byte(0xF2);
3234 prefix(src, dst);
3235 emit_byte(0x0F);
3236 emit_byte(0x59);
3237 emit_operand(dst, src);
3238 }
3239
3240 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
3241 emit_byte(0xF2);
3242 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3243 emit_byte(0x0F);
3244 emit_byte(0x5E);
3245 emit_byte(0xC0 | encode);
3246 }
3247
3248 void Assembler::divsd(XMMRegister dst, Address src) {
3249 InstructionMark im(this);
3250 emit_byte(0xF2);
3251 prefix(src, dst);
3252 emit_byte(0x0F);
3253 emit_byte(0x5E);
3254 emit_operand(dst, src);
3255 }
3256
3257 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
3258 emit_byte(0xF2);
3259 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3260 emit_byte(0x0F);
3261 emit_byte(0x51);
3262 emit_byte(0xC0 | encode);
3263 }
3264
3265 void Assembler::sqrtsd(XMMRegister dst, Address src) {
3266 InstructionMark im(this);
3267 emit_byte(0xF2);
3268 prefix(src, dst);
3269 emit_byte(0x0F);
3270 emit_byte(0x51);
3271 emit_operand(dst, src);
3272 }
3273
3274 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
3275 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3276 emit_byte(0x0F);
3277 emit_byte(0x57);
3278 emit_byte(0xC0 | encode);
3279 }
3280
3281 void Assembler::xorps(XMMRegister dst, Address src) {
3282 InstructionMark im(this);
3283 prefix(src, dst);
3284 emit_byte(0x0F);
3285 emit_byte(0x57);
3286 emit_operand(dst, src);
3287 }
3288
3289 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
3290 emit_byte(0x66);
3291 xorps(dst, src);
3292 }
3293
3294 void Assembler::xorpd(XMMRegister dst, Address src) {
3295 InstructionMark im(this);
3296 emit_byte(0x66);
3297 prefix(src, dst);
3298 emit_byte(0x0F);
3299 emit_byte(0x57);
3300 emit_operand(dst, src);
3301 }
3302
3303 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
3304 emit_byte(0xF3);
3305 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3306 emit_byte(0x0F);
3307 emit_byte(0x2A);
3308 emit_byte(0xC0 | encode);
3309 }
3310
3311 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
3312 emit_byte(0xF3);
3313 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3314 emit_byte(0x0F);
3315 emit_byte(0x2A);
3316 emit_byte(0xC0 | encode);
3317 }
3318
3319 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
3320 emit_byte(0xF2);
3321 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3322 emit_byte(0x0F);
3323 emit_byte(0x2A);
3324 emit_byte(0xC0 | encode);
3325 }
3326
3327 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
3328 emit_byte(0xF2);
3329 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3330 emit_byte(0x0F);
3331 emit_byte(0x2A);
3332 emit_byte(0xC0 | encode);
3333 }
3334
3335 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
3336 emit_byte(0xF3);
3337 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3338 emit_byte(0x0F);
3339 emit_byte(0x2C);
3340 emit_byte(0xC0 | encode);
3341 }
3342
3343 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
3344 emit_byte(0xF3);
3345 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3346 emit_byte(0x0F);
3347 emit_byte(0x2C);
3348 emit_byte(0xC0 | encode);
3349 }
3350
3351 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
3352 emit_byte(0xF2);
3353 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3354 emit_byte(0x0F);
3355 emit_byte(0x2C);
3356 emit_byte(0xC0 | encode);
3357 }
3358
3359 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
3360 emit_byte(0xF2);
3361 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3362 emit_byte(0x0F);
3363 emit_byte(0x2C);
3364 emit_byte(0xC0 | encode);
3365 }
3366
3367 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
3368 emit_byte(0xF3);
3369 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3370 emit_byte(0x0F);
3371 emit_byte(0x5A);
3372 emit_byte(0xC0 | encode);
3373 }
3374
3375 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
3376 emit_byte(0xF2);
3377 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3378 emit_byte(0x0F);
3379 emit_byte(0x5A);
3380 emit_byte(0xC0 | encode);
3381 }
3382
3383 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3384 emit_byte(0x66);
3385 int encode = prefix_and_encode(dst->encoding(), src->encoding());
3386 emit_byte(0x0F);
3387 emit_byte(0x60);
3388 emit_byte(0xC0 | encode);
3389 }
3390
3391 // Implementation of MacroAssembler
3392
3393 // On 32 bit it returns a vanilla displacement on 64 bit is a rip relative displacement
3394 Address MacroAssembler::as_Address(AddressLiteral adr) {
3395 assert(!adr.is_lval(), "must be rval");
3396 assert(reachable(adr), "must be");
3397 return Address((int)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
3398 }
3399
3400 Address MacroAssembler::as_Address(ArrayAddress adr) {
3401 #ifdef _LP64
3402 AddressLiteral base = adr.base();
3403 lea(rscratch1, base);
3404 Address index = adr.index();
3405 assert(index._disp == 0, "must not have disp"); // maybe it can?
3406 Address array(rscratch1, index._index, index._scale, index._disp);
3407 return array;
3408 #else
3409 return Address::make_array(adr);
3410 #endif // _LP64
3411
3412 }
3413
3414 void MacroAssembler::fat_nop() {
3415 // A 5 byte nop that is safe for patching (see patch_verified_entry)
3416 // Recommened sequence from 'Software Optimization Guide for the AMD
3417 // Hammer Processor'
3418 emit_byte(0x66);
3419 emit_byte(0x66);
3420 emit_byte(0x90);
3421 emit_byte(0x66);
3422 emit_byte(0x90);
3423 }
3424
3425 static Assembler::Condition reverse[] = {
3426 Assembler::noOverflow /* overflow = 0x0 */ ,
3427 Assembler::overflow /* noOverflow = 0x1 */ ,
3428 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ ,
3429 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ ,
3430 Assembler::notZero /* zero = 0x4, equal = 0x4 */ ,
3431 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ ,
3432 Assembler::above /* belowEqual = 0x6 */ ,
3433 Assembler::belowEqual /* above = 0x7 */ ,
3434 Assembler::positive /* negative = 0x8 */ ,
3435 Assembler::negative /* positive = 0x9 */ ,
3436 Assembler::noParity /* parity = 0xa */ ,
3437 Assembler::parity /* noParity = 0xb */ ,
3438 Assembler::greaterEqual /* less = 0xc */ ,
3439 Assembler::less /* greaterEqual = 0xd */ ,
3440 Assembler::greater /* lessEqual = 0xe */ ,
3441 Assembler::lessEqual /* greater = 0xf, */
3442
3443 };
3444
3445 // 32bit can do a case table jump in one instruction but we no longer allow the base
3446 // to be installed in the Address class
3447 void MacroAssembler::jump(ArrayAddress entry) {
3448 #ifdef _LP64
3449 lea(rscratch1, entry.base());
3450 Address dispatch = entry.index();
3451 assert(dispatch._base == noreg, "must be");
3452 dispatch._base = rscratch1;
3453 jmp(dispatch);
3454 #else
3455 jmp(as_Address(entry));
3456 #endif // _LP64
3457 }
3458
3459 void MacroAssembler::jump(AddressLiteral dst) {
3460 if (reachable(dst)) {
3461 jmp_literal(dst.target(), dst.rspec());
3462 } else {
3463 lea(rscratch1, dst);
3464 jmp(rscratch1);
3465 }
3466 }
3467
3468 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3469 if (reachable(dst)) {
3470 InstructionMark im(this);
3471 relocate(dst.reloc());
3472 const int short_size = 2;
3473 const int long_size = 6;
3474 int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
3475 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3476 // 0111 tttn #8-bit disp
3477 emit_byte(0x70 | cc);
3478 emit_byte((offs - short_size) & 0xFF);
3479 } else {
3480 // 0000 1111 1000 tttn #32-bit disp
3481 emit_byte(0x0F);
3482 emit_byte(0x80 | cc);
3483 emit_long(offs - long_size);
3484 }
3485 } else {
3486 #ifdef ASSERT
3487 warning("reversing conditional branch");
3488 #endif /* ASSERT */
3489 Label skip;
3490 jccb(reverse[cc], skip);
3491 lea(rscratch1, dst);
3492 Assembler::jmp(rscratch1);
3493 bind(skip);
3494 }
3495 }
3496
3497 // Wouldn't need if AddressLiteral version had new name
3498 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
3499 Assembler::call(L, rtype);
3500 }
3501
3502 // Wouldn't need if AddressLiteral version had new name
3503 void MacroAssembler::call(Register entry) {
3504 Assembler::call(entry);
3505 }
3506
3507 void MacroAssembler::call(AddressLiteral entry) {
3508 if (reachable(entry)) {
3509 Assembler::call_literal(entry.target(), entry.rspec());
3510 } else {
3511 lea(rscratch1, entry);
3512 Assembler::call(rscratch1);
3513 }
3514 }
3515
3516 void MacroAssembler::cmp8(AddressLiteral src1, int8_t src2) {
3517 if (reachable(src1)) {
3518 cmpb(as_Address(src1), src2);
3519 } else {
3520 lea(rscratch1, src1);
3521 cmpb(Address(rscratch1, 0), src2);
3522 }
3523 }
3524
3525 void MacroAssembler::cmp32(AddressLiteral src1, int32_t src2) {
3526 if (reachable(src1)) {
3527 cmpl(as_Address(src1), src2);
3528 } else {
3529 lea(rscratch1, src1);
3530 cmpl(Address(rscratch1, 0), src2);
3531 }
3532 }
3533
3534 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
3535 if (reachable(src2)) {
3536 cmpl(src1, as_Address(src2));
3537 } else {
3538 lea(rscratch1, src2);
3539 cmpl(src1, Address(rscratch1, 0));
3540 }
3541 }
3542
3543 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
3544 #ifdef _LP64
3545 if (src2.is_lval()) {
3546 movptr(rscratch1, src2);
3547 Assembler::cmpq(src1, rscratch1);
3548 } else if (reachable(src2)) {
3549 cmpq(src1, as_Address(src2));
3550 } else {
3551 lea(rscratch1, src2);
3552 Assembler::cmpq(src1, Address(rscratch1, 0));
3553 }
3554 #else
3555 if (src2.is_lval()) {
3556 cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
3557 } else {
3558 cmpl(src1, as_Address(src2));
3559 }
3560 #endif // _LP64
3561 }
3562
3563 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
3564 assert(src2.is_lval(), "not a mem-mem compare");
3565 #ifdef _LP64
3566 // moves src2's literal address
3567 movptr(rscratch1, src2);
3568 Assembler::cmpq(src1, rscratch1);
3569 #else
3570 cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
3571 #endif // _LP64
3572 }
3573
3574 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
3575 assert(!src2.is_lval(), "should use cmpptr");
3576
3577 if (reachable(src2)) {
3578 #ifdef _LP64
3579 cmpq(src1, as_Address(src2));
3580 #else
3581 ShouldNotReachHere();
3582 #endif // _LP64
3583 } else {
3584 lea(rscratch1, src2);
3585 Assembler::cmpq(src1, Address(rscratch1, 0));
3586 }
3587 }
3588
3589 void MacroAssembler::cmpxchgptr(Register reg, AddressLiteral adr) {
3590 if (reachable(adr)) {
3591 #ifdef _LP64
3592 cmpxchgq(reg, as_Address(adr));
3593 #else
3594 cmpxchgl(reg, as_Address(adr));
3595 #endif // _LP64
3596 } else {
3597 lea(rscratch1, adr);
3598 cmpxchgq(reg, Address(rscratch1, 0));
3599 }
3600 }
3601
3602 void MacroAssembler::incrementl(AddressLiteral dst) {
3603 if (reachable(dst)) {
3604 incrementl(as_Address(dst));
3605 } else {
3606 lea(rscratch1, dst);
3607 incrementl(Address(rscratch1, 0));
3608 }
3609 }
3610
3611 void MacroAssembler::incrementl(ArrayAddress dst) {
3612 incrementl(as_Address(dst));
3613 }
3614
3615 void MacroAssembler::lea(Register dst, Address src) {
3616 #ifdef _LP64
3617 leaq(dst, src);
3618 #else
3619 leal(dst, src);
3620 #endif // _LP64
3621 }
3622
3623 void MacroAssembler::lea(Register dst, AddressLiteral src) {
3624 #ifdef _LP64
3625 mov_literal64(dst, (intptr_t)src.target(), src.rspec());
3626 #else
3627 mov_literal32(dst, (intptr_t)src.target(), src.rspec());
3628 #endif // _LP64
3629 }
3630
3631 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3632 if (reachable(dst)) {
3633 movl(as_Address(dst), src);
3634 } else {
3635 lea(rscratch1, dst);
3636 movl(Address(rscratch1, 0), src);
3637 }
3638 }
3639
3640 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3641 if (reachable(src)) {
3642 movl(dst, as_Address(src));
3643 } else {
3644 lea(rscratch1, src);
3645 movl(dst, Address(rscratch1, 0));
3646 }
3647 }
3648
3649 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3650 if (reachable(src)) {
3651 if (UseXmmLoadAndClearUpper) {
3652 movsd (dst, as_Address(src));
3653 } else {
3654 movlpd(dst, as_Address(src));
3655 }
3656 } else {
3657 lea(rscratch1, src);
3658 if (UseXmmLoadAndClearUpper) {
3659 movsd (dst, Address(rscratch1, 0));
3660 } else {
3661 movlpd(dst, Address(rscratch1, 0));
3662 }
3663 }
3664 }
3665
3666 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3667 if (reachable(src)) {
3668 movss(dst, as_Address(src));
3669 } else {
3670 lea(rscratch1, src);
3671 movss(dst, Address(rscratch1, 0));
3672 }
3673 }
3674
3675 void MacroAssembler::movoop(Register dst, jobject obj) {
3676 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
3677 }
3678
3679 void MacroAssembler::movoop(Address dst, jobject obj) {
3680 mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
3681 movq(dst, rscratch1);
3682 }
3683
3684 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
3685 #ifdef _LP64
3686 if (src.is_lval()) {
3687 mov_literal64(dst, (intptr_t)src.target(), src.rspec());
3688 } else {
3689 if (reachable(src)) {
3690 movq(dst, as_Address(src));
3691 } else {
3692 lea(rscratch1, src);
3693 movq(dst, Address(rscratch1,0));
3694 }
3695 }
3696 #else
3697 if (src.is_lval()) {
3698 mov_literal32(dst, (intptr_t)src.target(), src.rspec());
3699 } else {
3700 movl(dst, as_Address(src));
3701 }
3702 #endif // LP64
3703 }
3704
3705 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
3706 #ifdef _LP64
3707 movq(as_Address(dst), src);
3708 #else
3709 movl(as_Address(dst), src);
3710 #endif // _LP64
3711 }
3712
3713 void MacroAssembler::pushoop(jobject obj) {
3714 #ifdef _LP64
3715 movoop(rscratch1, obj);
3716 pushq(rscratch1);
3717 #else
3718 push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
3719 #endif // _LP64
3720 }
3721
3722 void MacroAssembler::pushptr(AddressLiteral src) {
3723 #ifdef _LP64
3724 lea(rscratch1, src);
3725 if (src.is_lval()) {
3726 pushq(rscratch1);
3727 } else {
3728 pushq(Address(rscratch1, 0));
3729 }
3730 #else
3731 if (src.is_lval()) {
3732 push_literal((int32_t)src.target(), src.rspec());
3733 else {
3734 pushl(as_Address(src));
3735 }
3736 #endif // _LP64
3737 }
3738
3739 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3740 if (reachable(src)) {
3741 Assembler::ldmxcsr(as_Address(src));
3742 } else {
3743 lea(rscratch1, src);
3744 Assembler::ldmxcsr(Address(rscratch1, 0));
3745 }
3746 }
3747
3748 void MacroAssembler::movlpd(XMMRegister dst, AddressLiteral src) {
3749 if (reachable(src)) {
3750 movlpd(dst, as_Address(src));
3751 } else {
3752 lea(rscratch1, src);
3753 movlpd(dst, Address(rscratch1, 0));
3754 }
3755 }
3756
3757 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3758 if (reachable(src)) {
3759 movss(dst, as_Address(src));
3760 } else {
3761 lea(rscratch1, src);
3762 movss(dst, Address(rscratch1, 0));
3763 }
3764 }
3765 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
3766 if (reachable(src)) {
3767 xorpd(dst, as_Address(src));
3768 } else {
3769 lea(rscratch1, src);
3770 xorpd(dst, Address(rscratch1, 0));
3771 }
3772 }
3773
3774 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
3775 if (reachable(src)) {
3776 xorps(dst, as_Address(src));
3777 } else {
3778 lea(rscratch1, src);
3779 xorps(dst, Address(rscratch1, 0));
3780 }
3781 }
3782
3783 void MacroAssembler::null_check(Register reg, int offset) {
3784 if (needs_explicit_null_check(offset)) {
3785 // provoke OS NULL exception if reg = NULL by
3786 // accessing M[reg] w/o changing any (non-CC) registers
3787 cmpq(rax, Address(reg, 0));
3788 // Note: should probably use testl(rax, Address(reg, 0));
3789 // may be shorter code (however, this version of
3790 // testl needs to be implemented first)
3791 } else {
3792 // nothing to do, (later) access of M[reg + offset]
3793 // will provoke OS NULL exception if reg = NULL
3794 }
3795 }
3796
3797 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3798 int off = offset();
3799 movzbl(dst, src);
3800 return off;
3801 }
3802
3803 int MacroAssembler::load_unsigned_word(Register dst, Address src) {
3804 int off = offset();
3805 movzwl(dst, src);
3806 return off;
3807 }
3808
3809 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3810 int off = offset();
3811 movsbl(dst, src);
3812 return off;
3813 }
3814
3815 int MacroAssembler::load_signed_word(Register dst, Address src) {
3816 int off = offset();
3817 movswl(dst, src);
3818 return off;
3819 }
3820
3821 void MacroAssembler::incrementl(Register reg, int value) {
3822 if (value == min_jint) { addl(reg, value); return; }
3823 if (value < 0) { decrementl(reg, -value); return; }
3824 if (value == 0) { ; return; }
3825 if (value == 1 && UseIncDec) { incl(reg) ; return; }
3826 /* else */ { addl(reg, value) ; return; }
3827 }
3828
3829 void MacroAssembler::decrementl(Register reg, int value) {
3830 if (value == min_jint) { subl(reg, value); return; }
3831 if (value < 0) { incrementl(reg, -value); return; }
3832 if (value == 0) { ; return; }
3833 if (value == 1 && UseIncDec) { decl(reg) ; return; }
3834 /* else */ { subl(reg, value) ; return; }
3835 }
3836
3837 void MacroAssembler::incrementq(Register reg, int value) {
3838 if (value == min_jint) { addq(reg, value); return; }
3839 if (value < 0) { decrementq(reg, -value); return; }
3840 if (value == 0) { ; return; }
3841 if (value == 1 && UseIncDec) { incq(reg) ; return; }
3842 /* else */ { addq(reg, value) ; return; }
3843 }
3844
3845 void MacroAssembler::decrementq(Register reg, int value) {
3846 if (value == min_jint) { subq(reg, value); return; }
3847 if (value < 0) { incrementq(reg, -value); return; }
3848 if (value == 0) { ; return; }
3849 if (value == 1 && UseIncDec) { decq(reg) ; return; }
3850 /* else */ { subq(reg, value) ; return; }
3851 }
3852
3853 void MacroAssembler::incrementl(Address dst, int value) {
3854 if (value == min_jint) { addl(dst, value); return; }
3855 if (value < 0) { decrementl(dst, -value); return; }
3856 if (value == 0) { ; return; }
3857 if (value == 1 && UseIncDec) { incl(dst) ; return; }
3858 /* else */ { addl(dst, value) ; return; }
3859 }
3860
3861 void MacroAssembler::decrementl(Address dst, int value) {
3862 if (value == min_jint) { subl(dst, value); return; }
3863 if (value < 0) { incrementl(dst, -value); return; }
3864 if (value == 0) { ; return; }
3865 if (value == 1 && UseIncDec) { decl(dst) ; return; }
3866 /* else */ { subl(dst, value) ; return; }
3867 }
3868
3869 void MacroAssembler::incrementq(Address dst, int value) {
3870 if (value == min_jint) { addq(dst, value); return; }
3871 if (value < 0) { decrementq(dst, -value); return; }
3872 if (value == 0) { ; return; }
3873 if (value == 1 && UseIncDec) { incq(dst) ; return; }
3874 /* else */ { addq(dst, value) ; return; }
3875 }
3876
3877 void MacroAssembler::decrementq(Address dst, int value) {
3878 if (value == min_jint) { subq(dst, value); return; }
3879 if (value < 0) { incrementq(dst, -value); return; }
3880 if (value == 0) { ; return; }
3881 if (value == 1 && UseIncDec) { decq(dst) ; return; }
3882 /* else */ { subq(dst, value) ; return; }
3883 }
3884
3885 void MacroAssembler::align(int modulus) {
3886 if (offset() % modulus != 0) {
3887 nop(modulus - (offset() % modulus));
3888 }
3889 }
3890
3891 void MacroAssembler::enter() {
3892 pushq(rbp);
3893 movq(rbp, rsp);
3894 }
3895
3896 void MacroAssembler::leave() {
3897 emit_byte(0xC9); // LEAVE
3898 }
3899
3900 // C++ bool manipulation
3901
3902 void MacroAssembler::movbool(Register dst, Address src) {
3903 if(sizeof(bool) == 1)
3904 movb(dst, src);
3905 else if(sizeof(bool) == 2)
3906 movw(dst, src);
3907 else if(sizeof(bool) == 4)
3908 movl(dst, src);
3909 else {
3910 // unsupported
3911 ShouldNotReachHere();
3912 }
3913 }
3914
3915 void MacroAssembler::movbool(Address dst, bool boolconst) {
3916 if(sizeof(bool) == 1)
3917 movb(dst, (int) boolconst);
3918 else if(sizeof(bool) == 2)
3919 movw(dst, (int) boolconst);
3920 else if(sizeof(bool) == 4)
3921 movl(dst, (int) boolconst);
3922 else {
3923 // unsupported
3924 ShouldNotReachHere();
3925 }
3926 }
3927
3928 void MacroAssembler::movbool(Address dst, Register src) {
3929 if(sizeof(bool) == 1)
3930 movb(dst, src);
3931 else if(sizeof(bool) == 2)
3932 movw(dst, src);
3933 else if(sizeof(bool) == 4)
3934 movl(dst, src);
3935 else {
3936 // unsupported
3937 ShouldNotReachHere();
3938 }
3939 }
3940
3941 void MacroAssembler::testbool(Register dst) {
3942 if(sizeof(bool) == 1)
3943 testb(dst, (int) 0xff);
3944 else if(sizeof(bool) == 2) {
3945 // need testw impl
3946 ShouldNotReachHere();
3947 } else if(sizeof(bool) == 4)
3948 testl(dst, dst);
3949 else {
3950 // unsupported
3951 ShouldNotReachHere();
3952 }
3953 }
3954
3955 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
3956 Register last_java_fp,
3957 address last_java_pc) {
3958 // determine last_java_sp register
3959 if (!last_java_sp->is_valid()) {
3960 last_java_sp = rsp;
3961 }
3962
3963 // last_java_fp is optional
3964 if (last_java_fp->is_valid()) {
3965 movq(Address(r15_thread, JavaThread::last_Java_fp_offset()),
3966 last_java_fp);
3967 }
3968
3969 // last_java_pc is optional
3970 if (last_java_pc != NULL) {
3971 Address java_pc(r15_thread,
3972 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
3973 lea(rscratch1, InternalAddress(last_java_pc));
3974 movq(java_pc, rscratch1);
3975 }
3976
3977 movq(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3978 }
3979
3980 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
3981 bool clear_pc) {
3982 // we must set sp to zero to clear frame
3983 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3984 // must clear fp, so that compiled frames are not confused; it is
3985 // possible that we need it only for debugging
3986 if (clear_fp) {
3987 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3988 }
3989
3990 if (clear_pc) {
3991 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3992 }
3993 }
3994
3995
3996 // Implementation of call_VM versions
3997
3998 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
3999 Label L, E;
4000
4001 #ifdef _WIN64
4002 // Windows always allocates space for it's register args
4003 assert(num_args <= 4, "only register arguments supported");
4004 subq(rsp, frame::arg_reg_save_area_bytes);
4005 #endif
4006
4007 // Align stack if necessary
4008 testl(rsp, 15);
4009 jcc(Assembler::zero, L);
4010
4011 subq(rsp, 8);
4012 {
4013 call(RuntimeAddress(entry_point));
4014 }
4015 addq(rsp, 8);
4016 jmp(E);
4017
4018 bind(L);
4019 {
4020 call(RuntimeAddress(entry_point));
4021 }
4022
4023 bind(E);
4024
4025 #ifdef _WIN64
4026 // restore stack pointer
4027 addq(rsp, frame::arg_reg_save_area_bytes);
4028 #endif
4029
4030 }
4031
4032
4033 void MacroAssembler::call_VM_base(Register oop_result,
4034 Register java_thread,
4035 Register last_java_sp,
4036 address entry_point,
4037 int num_args,
4038 bool check_exceptions) {
4039 // determine last_java_sp register
4040 if (!last_java_sp->is_valid()) {
4041 last_java_sp = rsp;
4042 }
4043
4044 // debugging support
4045 assert(num_args >= 0, "cannot have negative number of arguments");
4046 assert(r15_thread != oop_result,
4047 "cannot use the same register for java_thread & oop_result");
4048 assert(r15_thread != last_java_sp,
4049 "cannot use the same register for java_thread & last_java_sp");
4050
4051 // set last Java frame before call
4052
4053 // This sets last_Java_fp which is only needed from interpreted frames
4054 // and should really be done only from the interp_masm version before
4055 // calling the underlying call_VM. That doesn't happen yet so we set
4056 // last_Java_fp here even though some callers don't need it and
4057 // also clear it below.
4058 set_last_Java_frame(last_java_sp, rbp, NULL);
4059
4060 {
4061 Label L, E;
4062
4063 // Align stack if necessary
4064 #ifdef _WIN64
4065 assert(num_args <= 4, "only register arguments supported");
4066 // Windows always allocates space for it's register args
4067 subq(rsp, frame::arg_reg_save_area_bytes);
4068 #endif
4069 testl(rsp, 15);
4070 jcc(Assembler::zero, L);
4071
4072 subq(rsp, 8);
4073 {
4074 call(RuntimeAddress(entry_point));
4075 }
4076 addq(rsp, 8);
4077 jmp(E);
4078
4079
4080 bind(L);
4081 {
4082 call(RuntimeAddress(entry_point));
4083 }
4084
4085 bind(E);
4086
4087 #ifdef _WIN64
4088 // restore stack pointer
4089 addq(rsp, frame::arg_reg_save_area_bytes);
4090 #endif
4091 }
4092
4093 #ifdef ASSERT
4094 pushq(rax);
4095 {
4096 Label L;
4097 get_thread(rax);
4098 cmpq(r15_thread, rax);
4099 jcc(Assembler::equal, L);
4100 stop("MacroAssembler::call_VM_base: register not callee saved?");
4101 bind(L);
4102 }
4103 popq(rax);
4104 #endif
4105
4106 // reset last Java frame
4107 // This really shouldn't have to clear fp set note above at the
4108 // call to set_last_Java_frame
4109 reset_last_Java_frame(true, false);
4110
4111 check_and_handle_popframe(noreg);
4112 check_and_handle_earlyret(noreg);
4113
4114 if (check_exceptions) {
4115 cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int) NULL);
4116 // This used to conditionally jump to forward_exception however it is
4117 // possible if we relocate that the branch will not reach. So we must jump
4118 // around so we can always reach
4119 Label ok;
4120 jcc(Assembler::equal, ok);
4121 jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
4122 bind(ok);
4123 }
4124
4125 // get oop result if there is one and reset the value in the thread
4126 if (oop_result->is_valid()) {
4127 movq(oop_result, Address(r15_thread, JavaThread::vm_result_offset()));
4128 movptr(Address(r15_thread, JavaThread::vm_result_offset()), NULL_WORD);
4129 verify_oop(oop_result);
4130 }
4131 }
4132
4133 void MacroAssembler::check_and_handle_popframe(Register java_thread) {}
4134 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {}
4135
4136 void MacroAssembler::call_VM_helper(Register oop_result,
4137 address entry_point,
4138 int num_args,
4139 bool check_exceptions) {
4140 // Java thread becomes first argument of C function
4141 movq(c_rarg0, r15_thread);
4142
4143 // We've pushed one address, correct last_Java_sp
4144 leaq(rax, Address(rsp, wordSize));
4145
4146 call_VM_base(oop_result, noreg, rax, entry_point, num_args,
4147 check_exceptions);
4148 }
4149
4150
4151 void MacroAssembler::call_VM(Register oop_result,
4152 address entry_point,
4153 bool check_exceptions) {
4154 Label C, E;
4155 Assembler::call(C, relocInfo::none);
4156 jmp(E);
4157
4158 bind(C);
4159 call_VM_helper(oop_result, entry_point, 0, check_exceptions);
4160 ret(0);
4161
4162 bind(E);
4163 }
4164
4165
4166 void MacroAssembler::call_VM(Register oop_result,
4167 address entry_point,
4168 Register arg_1,
4169 bool check_exceptions) {
4170 assert(rax != arg_1, "smashed argument");
4171 assert(c_rarg0 != arg_1, "smashed argument");
4172
4173 Label C, E;
4174 Assembler::call(C, relocInfo::none);
4175 jmp(E);
4176
4177 bind(C);
4178 // c_rarg0 is reserved for thread
4179 if (c_rarg1 != arg_1) {
4180 movq(c_rarg1, arg_1);
4181 }
4182 call_VM_helper(oop_result, entry_point, 1, check_exceptions);
4183 ret(0);
4184
4185 bind(E);
4186 }
4187
4188 void MacroAssembler::call_VM(Register oop_result,
4189 address entry_point,
4190 Register arg_1,
4191 Register arg_2,
4192 bool check_exceptions) {
4193 assert(rax != arg_1, "smashed argument");
4194 assert(rax != arg_2, "smashed argument");
4195 assert(c_rarg0 != arg_1, "smashed argument");
4196 assert(c_rarg0 != arg_2, "smashed argument");
4197 assert(c_rarg1 != arg_2, "smashed argument");
4198 assert(c_rarg2 != arg_1, "smashed argument");
4199
4200 Label C, E;
4201 Assembler::call(C, relocInfo::none);
4202 jmp(E);
4203
4204 bind(C);
4205 // c_rarg0 is reserved for thread
4206 if (c_rarg1 != arg_1) {
4207 movq(c_rarg1, arg_1);
4208 }
4209 if (c_rarg2 != arg_2) {
4210 movq(c_rarg2, arg_2);
4211 }
4212 call_VM_helper(oop_result, entry_point, 2, check_exceptions);
4213 ret(0);
4214
4215 bind(E);
4216 }
4217
4218
4219 void MacroAssembler::call_VM(Register oop_result,
4220 address entry_point,
4221 Register arg_1,
4222 Register arg_2,
4223 Register arg_3,
4224 bool check_exceptions) {
4225 assert(rax != arg_1, "smashed argument");
4226 assert(rax != arg_2, "smashed argument");
4227 assert(rax != arg_3, "smashed argument");
4228 assert(c_rarg0 != arg_1, "smashed argument");
4229 assert(c_rarg0 != arg_2, "smashed argument");
4230 assert(c_rarg0 != arg_3, "smashed argument");
4231 assert(c_rarg1 != arg_2, "smashed argument");
4232 assert(c_rarg1 != arg_3, "smashed argument");
4233 assert(c_rarg2 != arg_1, "smashed argument");
4234 assert(c_rarg2 != arg_3, "smashed argument");
4235 assert(c_rarg3 != arg_1, "smashed argument");
4236 assert(c_rarg3 != arg_2, "smashed argument");
4237
4238 Label C, E;
4239 Assembler::call(C, relocInfo::none);
4240 jmp(E);
4241
4242 bind(C);
4243 // c_rarg0 is reserved for thread
4244 if (c_rarg1 != arg_1) {
4245 movq(c_rarg1, arg_1);
4246 }
4247 if (c_rarg2 != arg_2) {
4248 movq(c_rarg2, arg_2);
4249 }
4250 if (c_rarg3 != arg_3) {
4251 movq(c_rarg3, arg_3);
4252 }
4253 call_VM_helper(oop_result, entry_point, 3, check_exceptions);
4254 ret(0);
4255
4256 bind(E);
4257 }
4258
4259 void MacroAssembler::call_VM(Register oop_result,
4260 Register last_java_sp,
4261 address entry_point,
4262 int num_args,
4263 bool check_exceptions) {
4264 call_VM_base(oop_result, noreg, last_java_sp, entry_point, num_args,
4265 check_exceptions);
4266 }
4267
4268 void MacroAssembler::call_VM(Register oop_result,
4269 Register last_java_sp,
4270 address entry_point,
4271 Register arg_1,
4272 bool check_exceptions) {
4273 assert(c_rarg0 != arg_1, "smashed argument");
4274 assert(c_rarg1 != last_java_sp, "smashed argument");
4275 // c_rarg0 is reserved for thread
4276 if (c_rarg1 != arg_1) {
4277 movq(c_rarg1, arg_1);
4278 }
4279 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
4280 }
4281
4282 void MacroAssembler::call_VM(Register oop_result,
4283 Register last_java_sp,
4284 address entry_point,
4285 Register arg_1,
4286 Register arg_2,
4287 bool check_exceptions) {
4288 assert(c_rarg0 != arg_1, "smashed argument");
4289 assert(c_rarg0 != arg_2, "smashed argument");
4290 assert(c_rarg1 != arg_2, "smashed argument");
4291 assert(c_rarg1 != last_java_sp, "smashed argument");
4292 assert(c_rarg2 != arg_1, "smashed argument");
4293 assert(c_rarg2 != last_java_sp, "smashed argument");
4294 // c_rarg0 is reserved for thread
4295 if (c_rarg1 != arg_1) {
4296 movq(c_rarg1, arg_1);
4297 }
4298 if (c_rarg2 != arg_2) {
4299 movq(c_rarg2, arg_2);
4300 }
4301 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
4302 }
4303
4304
4305 void MacroAssembler::call_VM(Register oop_result,
4306 Register last_java_sp,
4307 address entry_point,
4308 Register arg_1,
4309 Register arg_2,
4310 Register arg_3,
4311 bool check_exceptions) {
4312 assert(c_rarg0 != arg_1, "smashed argument");
4313 assert(c_rarg0 != arg_2, "smashed argument");
4314 assert(c_rarg0 != arg_3, "smashed argument");
4315 assert(c_rarg1 != arg_2, "smashed argument");
4316 assert(c_rarg1 != arg_3, "smashed argument");
4317 assert(c_rarg1 != last_java_sp, "smashed argument");
4318 assert(c_rarg2 != arg_1, "smashed argument");
4319 assert(c_rarg2 != arg_3, "smashed argument");
4320 assert(c_rarg2 != last_java_sp, "smashed argument");
4321 assert(c_rarg3 != arg_1, "smashed argument");
4322 assert(c_rarg3 != arg_2, "smashed argument");
4323 assert(c_rarg3 != last_java_sp, "smashed argument");
4324 // c_rarg0 is reserved for thread
4325 if (c_rarg1 != arg_1) {
4326 movq(c_rarg1, arg_1);
4327 }
4328 if (c_rarg2 != arg_2) {
4329 movq(c_rarg2, arg_2);
4330 }
4331 if (c_rarg3 != arg_3) {
4332 movq(c_rarg2, arg_3);
4333 }
4334 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
4335 }
4336
4337 void MacroAssembler::call_VM_leaf(address entry_point, int num_args) {
4338 call_VM_leaf_base(entry_point, num_args);
4339 }
4340
4341 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
4342 if (c_rarg0 != arg_1) {
4343 movq(c_rarg0, arg_1);
4344 }
4345 call_VM_leaf(entry_point, 1);
4346 }
4347
4348 void MacroAssembler::call_VM_leaf(address entry_point,
4349 Register arg_1,
4350 Register arg_2) {
4351 assert(c_rarg0 != arg_2, "smashed argument");
4352 assert(c_rarg1 != arg_1, "smashed argument");
4353 if (c_rarg0 != arg_1) {
4354 movq(c_rarg0, arg_1);
4355 }
4356 if (c_rarg1 != arg_2) {
4357 movq(c_rarg1, arg_2);
4358 }
4359 call_VM_leaf(entry_point, 2);
4360 }
4361
4362 void MacroAssembler::call_VM_leaf(address entry_point,
4363 Register arg_1,
4364 Register arg_2,
4365 Register arg_3) {
4366 assert(c_rarg0 != arg_2, "smashed argument");
4367 assert(c_rarg0 != arg_3, "smashed argument");
4368 assert(c_rarg1 != arg_1, "smashed argument");
4369 assert(c_rarg1 != arg_3, "smashed argument");
4370 assert(c_rarg2 != arg_1, "smashed argument");
4371 assert(c_rarg2 != arg_2, "smashed argument");
4372 if (c_rarg0 != arg_1) {
4373 movq(c_rarg0, arg_1);
4374 }
4375 if (c_rarg1 != arg_2) {
4376 movq(c_rarg1, arg_2);
4377 }
4378 if (c_rarg2 != arg_3) {
4379 movq(c_rarg2, arg_3);
4380 }
4381 call_VM_leaf(entry_point, 3);
4382 }
4383
4384
4385 // Calls to C land
4386 //
4387 // When entering C land, the rbp & rsp of the last Java frame have to
4388 // be recorded in the (thread-local) JavaThread object. When leaving C
4389 // land, the last Java fp has to be reset to 0. This is required to
4390 // allow proper stack traversal.
4391 void MacroAssembler::store_check(Register obj) {
4392 // Does a store check for the oop in register obj. The content of
4393 // register obj is destroyed afterwards.
4394 store_check_part_1(obj);
4395 store_check_part_2(obj);
4396 }
4397
4398 void MacroAssembler::store_check(Register obj, Address dst) {
4399 store_check(obj);
4400 }
4401
4402 // split the store check operation so that other instructions can be
4403 // scheduled inbetween
4404 void MacroAssembler::store_check_part_1(Register obj) {
4405 BarrierSet* bs = Universe::heap()->barrier_set();
4406 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4407 shrq(obj, CardTableModRefBS::card_shift);
4408 }
4409
4410 void MacroAssembler::store_check_part_2(Register obj) {
4411 BarrierSet* bs = Universe::heap()->barrier_set();
4412 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4413 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
4414 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4415 ExternalAddress cardtable((address)ct->byte_map_base);
4416 Address index(noreg, obj, Address::times_1);
4417 movb(as_Address(ArrayAddress(cardtable, index)), 0);
4418 }
4419
4420 void MacroAssembler::c2bool(Register x) {
4421 // implements x == 0 ? 0 : 1
4422 // note: must only look at least-significant byte of x
4423 // since C-style booleans are stored in one byte
4424 // only! (was bug)
4425 andl(x, 0xFF);
4426 setb(Assembler::notZero, x);
4427 }
4428
4429 int MacroAssembler::corrected_idivl(Register reg) {
4430 // Full implementation of Java idiv and irem; checks for special
4431 // case as described in JVM spec., p.243 & p.271. The function
4432 // returns the (pc) offset of the idivl instruction - may be needed
4433 // for implicit exceptions.
4434 //
4435 // normal case special case
4436 //
4437 // input : eax: dividend min_int
4438 // reg: divisor (may not be eax/edx) -1
4439 //
4440 // output: eax: quotient (= eax idiv reg) min_int
4441 // edx: remainder (= eax irem reg) 0
4442 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
4443 const int min_int = 0x80000000;
4444 Label normal_case, special_case;
4445
4446 // check for special case
4447 cmpl(rax, min_int);
4448 jcc(Assembler::notEqual, normal_case);
4449 xorl(rdx, rdx); // prepare edx for possible special case (where
4450 // remainder = 0)
4451 cmpl(reg, -1);
4452 jcc(Assembler::equal, special_case);
4453
4454 // handle normal case
4455 bind(normal_case);
4456 cdql();
4457 int idivl_offset = offset();
4458 idivl(reg);
4459
4460 // normal and special case exit
4461 bind(special_case);
4462
4463 return idivl_offset;
4464 }
4465
4466 int MacroAssembler::corrected_idivq(Register reg) {
4467 // Full implementation of Java ldiv and lrem; checks for special
4468 // case as described in JVM spec., p.243 & p.271. The function
4469 // returns the (pc) offset of the idivl instruction - may be needed
4470 // for implicit exceptions.
4471 //
4472 // normal case special case
4473 //
4474 // input : rax: dividend min_long
4475 // reg: divisor (may not be eax/edx) -1
4476 //
4477 // output: rax: quotient (= rax idiv reg) min_long
4478 // rdx: remainder (= rax irem reg) 0
4479 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
4480 static const int64_t min_long = 0x8000000000000000;
4481 Label normal_case, special_case;
4482
4483 // check for special case
4484 cmp64(rax, ExternalAddress((address) &min_long));
4485 jcc(Assembler::notEqual, normal_case);
4486 xorl(rdx, rdx); // prepare rdx for possible special case (where
4487 // remainder = 0)
4488 cmpq(reg, -1);
4489 jcc(Assembler::equal, special_case);
4490
4491 // handle normal case
4492 bind(normal_case);
4493 cdqq();
4494 int idivq_offset = offset();
4495 idivq(reg);
4496
4497 // normal and special case exit
4498 bind(special_case);
4499
4500 return idivq_offset;
4501 }
4502
4503 void MacroAssembler::push_IU_state() {
4504 pushfq(); // Push flags first because pushaq kills them
4505 subq(rsp, 8); // Make sure rsp stays 16-byte aligned
4506 pushaq();
4507 }
4508
4509 void MacroAssembler::pop_IU_state() {
4510 popaq();
4511 addq(rsp, 8);
4512 popfq();
4513 }
4514
4515 void MacroAssembler::push_FPU_state() {
4516 subq(rsp, FPUStateSizeInWords * wordSize);
4517 fxsave(Address(rsp, 0));
4518 }
4519
4520 void MacroAssembler::pop_FPU_state() {
4521 fxrstor(Address(rsp, 0));
4522 addq(rsp, FPUStateSizeInWords * wordSize);
4523 }
4524
4525 // Save Integer and Float state
4526 // Warning: Stack must be 16 byte aligned
4527 void MacroAssembler::push_CPU_state() {
4528 push_IU_state();
4529 push_FPU_state();
4530 }
4531
4532 void MacroAssembler::pop_CPU_state() {
4533 pop_FPU_state();
4534 pop_IU_state();
4535 }
4536
4537 void MacroAssembler::sign_extend_short(Register reg) {
4538 movswl(reg, reg);
4539 }
4540
4541 void MacroAssembler::sign_extend_byte(Register reg) {
4542 movsbl(reg, reg);
4543 }
4544
4545 void MacroAssembler::division_with_shift(Register reg, int shift_value) {
4546 assert (shift_value > 0, "illegal shift value");
4547 Label _is_positive;
4548 testl (reg, reg);
4549 jcc (Assembler::positive, _is_positive);
4550 int offset = (1 << shift_value) - 1 ;
4551
4552 if (offset == 1) {
4553 incrementl(reg);
4554 } else {
4555 addl(reg, offset);
4556 }
4557
4558 bind (_is_positive);
4559 sarl(reg, shift_value);
4560 }
4561
4562 void MacroAssembler::round_to_l(Register reg, int modulus) {
4563 addl(reg, modulus - 1);
4564 andl(reg, -modulus);
4565 }
4566
4567 void MacroAssembler::round_to_q(Register reg, int modulus) {
4568 addq(reg, modulus - 1);
4569 andq(reg, -modulus);
4570 }
4571
4572 void MacroAssembler::verify_oop(Register reg, const char* s) {
4573 if (!VerifyOops) {
4574 return;
4575 }
4576
4577 // Pass register number to verify_oop_subroutine
4578 char* b = new char[strlen(s) + 50];
4579 sprintf(b, "verify_oop: %s: %s", reg->name(), s);
4580
4581 pushq(rax); // save rax, restored by receiver
4582
4583 // pass args on stack, only touch rax
4584 pushq(reg);
4585
4586 // avoid using pushptr, as it modifies scratch registers
4587 // and our contract is not to modify anything
4588 ExternalAddress buffer((address)b);
4589 movptr(rax, buffer.addr());
4590 pushq(rax);
4591
4592 // call indirectly to solve generation ordering problem
4593 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4594 call(rax); // no alignment requirement
4595 // everything popped by receiver
4596 }
4597
4598 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
4599 if (!VerifyOops) return;
4600 // Pass register number to verify_oop_subroutine
4601 char* b = new char[strlen(s) + 50];
4602 sprintf(b, "verify_oop_addr: %s", s);
4603 pushq(rax); // save rax
4604 movq(addr, rax);
4605 pushq(rax); // pass register argument
4606
4607
4608 // avoid using pushptr, as it modifies scratch registers
4609 // and our contract is not to modify anything
4610 ExternalAddress buffer((address)b);
4611 movptr(rax, buffer.addr());
4612 pushq(rax);
4613
4614 // call indirectly to solve generation ordering problem
4615 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4616 call(rax); // no alignment requirement
4617 // everything popped by receiver
4618 }
4619
4620
4621 void MacroAssembler::stop(const char* msg) {
4622 address rip = pc();
4623 pushaq(); // get regs on stack
4624 lea(c_rarg0, ExternalAddress((address) msg));
4625 lea(c_rarg1, InternalAddress(rip));
4626 movq(c_rarg2, rsp); // pass pointer to regs array
4627 andq(rsp, -16); // align stack as required by ABI
4628 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
4629 hlt();
4630 }
4631
4632 void MacroAssembler::warn(const char* msg) {
4633 pushq(r12);
4634 movq(r12, rsp);
4635 andq(rsp, -16); // align stack as required by push_CPU_state and call
4636
4637 push_CPU_state(); // keeps alignment at 16 bytes
4638 lea(c_rarg0, ExternalAddress((address) msg));
4639 call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
4640 pop_CPU_state();
4641
4642 movq(rsp, r12);
4643 popq(r12);
4644 }
4645
4646 void MacroAssembler::debug(char* msg, int64_t pc, int64_t regs[]) {
4647 // In order to get locks to work, we need to fake a in_VM state
4648 if (ShowMessageBoxOnError ) {
4649 JavaThread* thread = JavaThread::current();
4650 JavaThreadState saved_state = thread->thread_state();
4651 thread->set_thread_state(_thread_in_vm);
4652 ttyLocker ttyl;
4653 #ifndef PRODUCT
4654 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
4655 BytecodeCounter::print();
4656 }
4657 #endif
4658 // To see where a verify_oop failed, get $ebx+40/X for this frame.
4659 // XXX correct this offset for amd64
4660 // This is the value of eip which points to where verify_oop will return.
4661 if (os::message_box(msg, "Execution stopped, print registers?")) {
4662 tty->print_cr("rip = 0x%016lx", pc);
4663 tty->print_cr("rax = 0x%016lx", regs[15]);
4664 tty->print_cr("rbx = 0x%016lx", regs[12]);
4665 tty->print_cr("rcx = 0x%016lx", regs[14]);
4666 tty->print_cr("rdx = 0x%016lx", regs[13]);
4667 tty->print_cr("rdi = 0x%016lx", regs[8]);
4668 tty->print_cr("rsi = 0x%016lx", regs[9]);
4669 tty->print_cr("rbp = 0x%016lx", regs[10]);
4670 tty->print_cr("rsp = 0x%016lx", regs[11]);
4671 tty->print_cr("r8 = 0x%016lx", regs[7]);
4672 tty->print_cr("r9 = 0x%016lx", regs[6]);
4673 tty->print_cr("r10 = 0x%016lx", regs[5]);
4674 tty->print_cr("r11 = 0x%016lx", regs[4]);
4675 tty->print_cr("r12 = 0x%016lx", regs[3]);
4676 tty->print_cr("r13 = 0x%016lx", regs[2]);
4677 tty->print_cr("r14 = 0x%016lx", regs[1]);
4678 tty->print_cr("r15 = 0x%016lx", regs[0]);
4679 BREAKPOINT;
4680 }
4681 ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
4682 } else {
4683 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
4684 msg);
4685 }
4686 }
4687
4688 void MacroAssembler::os_breakpoint() {
4689 // instead of directly emitting a breakpoint, call os:breakpoint for
4690 // better debugability
4691 // This shouldn't need alignment, it's an empty function
4692 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
4693 }
4694
4695 // Write serialization page so VM thread can do a pseudo remote membar.
4696 // We use the current thread pointer to calculate a thread specific
4697 // offset to write to within the page. This minimizes bus traffic
4698 // due to cache line collision.
4699 void MacroAssembler::serialize_memory(Register thread,
4700 Register tmp) {
4701
4702 movl(tmp, thread);
4703 shrl(tmp, os::get_serialize_page_shift_count());
4704 andl(tmp, (os::vm_page_size() - sizeof(int)));
4705
4706 Address index(noreg, tmp, Address::times_1);
4707 ExternalAddress page(os::get_memory_serialize_page());
4708
4709 movptr(ArrayAddress(page, index), tmp);
4710 }
4711
4712 void MacroAssembler::verify_tlab() {
4713 #ifdef ASSERT
4714 if (UseTLAB) {
4715 Label next, ok;
4716 Register t1 = rsi;
4717
4718 pushq(t1);
4719
4720 movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
4721 cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_start_offset())));
4722 jcc(Assembler::aboveEqual, next);
4723 stop("assert(top >= start)");
4724 should_not_reach_here();
4725
4726 bind(next);
4727 movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
4728 cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
4729 jcc(Assembler::aboveEqual, ok);
4730 stop("assert(top <= end)");
4731 should_not_reach_here();
4732
4733 bind(ok);
4734
4735 popq(t1);
4736 }
4737 #endif
4738 }
4739
4740 // Defines obj, preserves var_size_in_bytes
4741 void MacroAssembler::eden_allocate(Register obj,
4742 Register var_size_in_bytes,
4743 int con_size_in_bytes,
4744 Register t1,
4745 Label& slow_case) {
4746 assert(obj == rax, "obj must be in rax for cmpxchg");
4747 assert_different_registers(obj, var_size_in_bytes, t1);
4748 Register end = t1;
4749 Label retry;
4750 bind(retry);
4751 ExternalAddress heap_top((address) Universe::heap()->top_addr());
4752 movptr(obj, heap_top);
4753 if (var_size_in_bytes == noreg) {
4754 leaq(end, Address(obj, con_size_in_bytes));
4755 } else {
4756 leaq(end, Address(obj, var_size_in_bytes, Address::times_1));
4757 }
4758 // if end < obj then we wrapped around => object too long => slow case
4759 cmpq(end, obj);
4760 jcc(Assembler::below, slow_case);
4761 cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
4762
4763 jcc(Assembler::above, slow_case);
4764 // Compare obj with the top addr, and if still equal, store the new
4765 // top addr in end at the address of the top addr pointer. Sets ZF
4766 // if was equal, and clears it otherwise. Use lock prefix for
4767 // atomicity on MPs.
4768 if (os::is_MP()) {
4769 lock();
4770 }
4771 cmpxchgptr(end, heap_top);
4772 // if someone beat us on the allocation, try again, otherwise continue
4773 jcc(Assembler::notEqual, retry);
4774 }
4775
4776 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4777 void MacroAssembler::tlab_allocate(Register obj,
4778 Register var_size_in_bytes,
4779 int con_size_in_bytes,
4780 Register t1,
4781 Register t2,
4782 Label& slow_case) {
4783 assert_different_registers(obj, t1, t2);
4784 assert_different_registers(obj, var_size_in_bytes, t1);
4785 Register end = t2;
4786
4787 verify_tlab();
4788
4789 movq(obj, Address(r15_thread, JavaThread::tlab_top_offset()));
4790 if (var_size_in_bytes == noreg) {
4791 leaq(end, Address(obj, con_size_in_bytes));
4792 } else {
4793 leaq(end, Address(obj, var_size_in_bytes, Address::times_1));
4794 }
4795 cmpq(end, Address(r15_thread, JavaThread::tlab_end_offset()));
4796 jcc(Assembler::above, slow_case);
4797
4798 // update the tlab top pointer
4799 movq(Address(r15_thread, JavaThread::tlab_top_offset()), end);
4800
4801 // recover var_size_in_bytes if necessary
4802 if (var_size_in_bytes == end) {
4803 subq(var_size_in_bytes, obj);
4804 }
4805 verify_tlab();
4806 }
4807
4808 // Preserves rbx and rdx.
4809 void MacroAssembler::tlab_refill(Label& retry,
4810 Label& try_eden,
4811 Label& slow_case) {
4812 Register top = rax;
4813 Register t1 = rcx;
4814 Register t2 = rsi;
4815 Register t3 = r10;
4816 Register thread_reg = r15_thread;
4817 assert_different_registers(top, thread_reg, t1, t2, t3,
4818 /* preserve: */ rbx, rdx);
4819 Label do_refill, discard_tlab;
4820
4821 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
4822 // No allocation in the shared eden.
4823 jmp(slow_case);
4824 }
4825
4826 movq(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4827 movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4828
4829 // calculate amount of free space
4830 subq(t1, top);
4831 shrq(t1, LogHeapWordSize);
4832
4833 // Retain tlab and allocate object in shared space if
4834 // the amount free in the tlab is too large to discard.
4835 cmpq(t1, Address(thread_reg, // size_t
4836 in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
4837 jcc(Assembler::lessEqual, discard_tlab);
4838
4839 // Retain
4840 mov64(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment());
4841 addq(Address(thread_reg, // size_t
4842 in_bytes(JavaThread::tlab_refill_waste_limit_offset())),
4843 t2);
4844 if (TLABStats) {
4845 // increment number of slow_allocations
4846 addl(Address(thread_reg, // unsigned int
4847 in_bytes(JavaThread::tlab_slow_allocations_offset())),
4848 1);
4849 }
4850 jmp(try_eden);
4851
4852 bind(discard_tlab);
4853 if (TLABStats) {
4854 // increment number of refills
4855 addl(Address(thread_reg, // unsigned int
4856 in_bytes(JavaThread::tlab_number_of_refills_offset())),
4857 1);
4858 // accumulate wastage -- t1 is amount free in tlab
4859 addl(Address(thread_reg, // unsigned int
4860 in_bytes(JavaThread::tlab_fast_refill_waste_offset())),
4861 t1);
4862 }
4863
4864 // if tlab is currently allocated (top or end != null) then
4865 // fill [top, end + alignment_reserve) with array object
4866 testq(top, top);
4867 jcc(Assembler::zero, do_refill);
4868
4869 // set up the mark word
4870 mov64(t3, (int64_t) markOopDesc::prototype()->copy_set_hash(0x2));
4871 movq(Address(top, oopDesc::mark_offset_in_bytes()), t3);
4872 // set the length to the remaining space
4873 subq(t1, typeArrayOopDesc::header_size(T_INT));
4874 addq(t1, (int)ThreadLocalAllocBuffer::alignment_reserve());
4875 shlq(t1, log2_intptr(HeapWordSize / sizeof(jint)));
4876 movq(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
4877 // set klass to intArrayKlass
4878 movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
4879 movq(Address(top, oopDesc::klass_offset_in_bytes()), t1);
4880
4881 // refill the tlab with an eden allocation
4882 bind(do_refill);
4883 movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4884 shlq(t1, LogHeapWordSize);
4885 // add object_size ??
4886 eden_allocate(top, t1, 0, t2, slow_case);
4887
4888 // Check that t1 was preserved in eden_allocate.
4889 #ifdef ASSERT
4890 if (UseTLAB) {
4891 Label ok;
4892 Register tsize = rsi;
4893 assert_different_registers(tsize, thread_reg, t1);
4894 pushq(tsize);
4895 movq(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4896 shlq(tsize, LogHeapWordSize);
4897 cmpq(t1, tsize);
4898 jcc(Assembler::equal, ok);
4899 stop("assert(t1 != tlab size)");
4900 should_not_reach_here();
4901
4902 bind(ok);
4903 popq(tsize);
4904 }
4905 #endif
4906 movq(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
4907 movq(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
4908 addq(top, t1);
4909 subq(top, (int)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
4910 movq(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
4911 verify_tlab();
4912 jmp(retry);
4913 }
4914
4915
4916 int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
4917 bool swap_reg_contains_mark,
4918 Label& done, Label* slow_case,
4919 BiasedLockingCounters* counters) {
4920 assert(UseBiasedLocking, "why call this otherwise?");
4921 assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
4922 assert(tmp_reg != noreg, "tmp_reg must be supplied");
4923 assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
4924 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
4925 Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes());
4926 Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes());
4927 Address saved_mark_addr(lock_reg, 0);
4928
4929 if (PrintBiasedLockingStatistics && counters == NULL)
4930 counters = BiasedLocking::counters();
4931
4932 // Biased locking
4933 // See whether the lock is currently biased toward our thread and
4934 // whether the epoch is still valid
4935 // Note that the runtime guarantees sufficient alignment of JavaThread
4936 // pointers to allow age to be placed into low bits
4937 // First check to see whether biasing is even enabled for this object
4938 Label cas_label;
4939 int null_check_offset = -1;
4940 if (!swap_reg_contains_mark) {
4941 null_check_offset = offset();
4942 movq(swap_reg, mark_addr);
4943 }
4944 movq(tmp_reg, swap_reg);
4945 andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
4946 cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
4947 jcc(Assembler::notEqual, cas_label);
4948 // The bias pattern is present in the object's header. Need to check
4949 // whether the bias owner and the epoch are both still current.
4950 movq(tmp_reg, klass_addr);
4951 movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
4952 orq(tmp_reg, r15_thread);
4953 xorq(tmp_reg, swap_reg);
4954 andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
4955 if (counters != NULL) {
4956 cond_inc32(Assembler::zero,
4957 ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
4958 }
4959 jcc(Assembler::equal, done);
4960
4961 Label try_revoke_bias;
4962 Label try_rebias;
4963
4964 // At this point we know that the header has the bias pattern and
4965 // that we are not the bias owner in the current epoch. We need to
4966 // figure out more details about the state of the header in order to
4967 // know what operations can be legally performed on the object's
4968 // header.
4969
4970 // If the low three bits in the xor result aren't clear, that means
4971 // the prototype header is no longer biased and we have to revoke
4972 // the bias on this object.
4973 testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
4974 jcc(Assembler::notZero, try_revoke_bias);
4975
4976 // Biasing is still enabled for this data type. See whether the
4977 // epoch of the current bias is still valid, meaning that the epoch
4978 // bits of the mark word are equal to the epoch bits of the
4979 // prototype header. (Note that the prototype header's epoch bits
4980 // only change at a safepoint.) If not, attempt to rebias the object
4981 // toward the current thread. Note that we must be absolutely sure
4982 // that the current epoch is invalid in order to do this because
4983 // otherwise the manipulations it performs on the mark word are
4984 // illegal.
4985 testq(tmp_reg, markOopDesc::epoch_mask_in_place);
4986 jcc(Assembler::notZero, try_rebias);
4987
4988 // The epoch of the current bias is still valid but we know nothing
4989 // about the owner; it might be set or it might be clear. Try to
4990 // acquire the bias of the object using an atomic operation. If this
4991 // fails we will go in to the runtime to revoke the object's bias.
4992 // Note that we first construct the presumed unbiased header so we
4993 // don't accidentally blow away another thread's valid bias.
4994 andq(swap_reg,
4995 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
4996 movq(tmp_reg, swap_reg);
4997 orq(tmp_reg, r15_thread);
4998 if (os::is_MP()) {
4999 lock();
5000 }
5001 cmpxchgq(tmp_reg, Address(obj_reg, 0));
5002 // If the biasing toward our thread failed, this means that
5003 // another thread succeeded in biasing it toward itself and we
5004 // need to revoke that bias. The revocation will occur in the
5005 // interpreter runtime in the slow case.
5006 if (counters != NULL) {
5007 cond_inc32(Assembler::zero,
5008 ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
5009 }
5010 if (slow_case != NULL) {
5011 jcc(Assembler::notZero, *slow_case);
5012 }
5013 jmp(done);
5014
5015 bind(try_rebias);
5016 // At this point we know the epoch has expired, meaning that the
5017 // current "bias owner", if any, is actually invalid. Under these
5018 // circumstances _only_, we are allowed to use the current header's
5019 // value as the comparison value when doing the cas to acquire the
5020 // bias in the current epoch. In other words, we allow transfer of
5021 // the bias from one thread to another directly in this situation.
5022 //
5023 // FIXME: due to a lack of registers we currently blow away the age
5024 // bits in this situation. Should attempt to preserve them.
5025 movq(tmp_reg, klass_addr);
5026 movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
5027 orq(tmp_reg, r15_thread);
5028 if (os::is_MP()) {
5029 lock();
5030 }
5031 cmpxchgq(tmp_reg, Address(obj_reg, 0));
5032 // If the biasing toward our thread failed, then another thread
5033 // succeeded in biasing it toward itself and we need to revoke that
5034 // bias. The revocation will occur in the runtime in the slow case.
5035 if (counters != NULL) {
5036 cond_inc32(Assembler::zero,
5037 ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
5038 }
5039 if (slow_case != NULL) {
5040 jcc(Assembler::notZero, *slow_case);
5041 }
5042 jmp(done);
5043
5044 bind(try_revoke_bias);
5045 // The prototype mark in the klass doesn't have the bias bit set any
5046 // more, indicating that objects of this data type are not supposed
5047 // to be biased any more. We are going to try to reset the mark of
5048 // this object to the prototype value and fall through to the
5049 // CAS-based locking scheme. Note that if our CAS fails, it means
5050 // that another thread raced us for the privilege of revoking the
5051 // bias of this particular object, so it's okay to continue in the
5052 // normal locking code.
5053 //
5054 // FIXME: due to a lack of registers we currently blow away the age
5055 // bits in this situation. Should attempt to preserve them.
5056 movq(tmp_reg, klass_addr);
5057 movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
5058 if (os::is_MP()) {
5059 lock();
5060 }
5061 cmpxchgq(tmp_reg, Address(obj_reg, 0));
5062 // Fall through to the normal CAS-based lock, because no matter what
5063 // the result of the above CAS, some thread must have succeeded in
5064 // removing the bias bit from the object's header.
5065 if (counters != NULL) {
5066 cond_inc32(Assembler::zero,
5067 ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
5068 }
5069
5070 bind(cas_label);
5071
5072 return null_check_offset;
5073 }
5074
5075
5076 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
5077 assert(UseBiasedLocking, "why call this otherwise?");
5078
5079 // Check for biased locking unlock case, which is a no-op
5080 // Note: we do not have to check the thread ID for two reasons.
5081 // First, the interpreter checks for IllegalMonitorStateException at
5082 // a higher level. Second, if the bias was revoked while we held the
5083 // lock, the object could not be rebiased toward another thread, so
5084 // the bias bit would be clear.
5085 movq(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
5086 andq(temp_reg, markOopDesc::biased_lock_mask_in_place);
5087 cmpq(temp_reg, markOopDesc::biased_lock_pattern);
5088 jcc(Assembler::equal, done);
5089 }
5090
5091
5092 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
5093 switch (cond) {
5094 // Note some conditions are synonyms for others
5095 case Assembler::zero: return Assembler::notZero;
5096 case Assembler::notZero: return Assembler::zero;
5097 case Assembler::less: return Assembler::greaterEqual;
5098 case Assembler::lessEqual: return Assembler::greater;
5099 case Assembler::greater: return Assembler::lessEqual;
5100 case Assembler::greaterEqual: return Assembler::less;
5101 case Assembler::below: return Assembler::aboveEqual;
5102 case Assembler::belowEqual: return Assembler::above;
5103 case Assembler::above: return Assembler::belowEqual;
5104 case Assembler::aboveEqual: return Assembler::below;
5105 case Assembler::overflow: return Assembler::noOverflow;
5106 case Assembler::noOverflow: return Assembler::overflow;
5107 case Assembler::negative: return Assembler::positive;
5108 case Assembler::positive: return Assembler::negative;
5109 case Assembler::parity: return Assembler::noParity;
5110 case Assembler::noParity: return Assembler::parity;
5111 }
5112 ShouldNotReachHere(); return Assembler::overflow;
5113 }
5114
5115
5116 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
5117 Condition negated_cond = negate_condition(cond);
5118 Label L;
5119 jcc(negated_cond, L);
5120 atomic_incl(counter_addr);
5121 bind(L);
5122 }
5123
5124 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
5125 pushfq();
5126 if (os::is_MP())
5127 lock();
5128 incrementl(counter_addr);
5129 popfq();
5130 }
5131
5132 SkipIfEqual::SkipIfEqual(
5133 MacroAssembler* masm, const bool* flag_addr, bool value) {
5134 _masm = masm;
5135 _masm->cmp8(ExternalAddress((address)flag_addr), value);
5136 _masm->jcc(Assembler::equal, _label);
5137 }
5138
5139 SkipIfEqual::~SkipIfEqual() {
5140 _masm->bind(_label);
5141 }
5142
5143 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
5144 movq(tmp, rsp);
5145 // Bang stack for total size given plus shadow page size.
5146 // Bang one page at a time because large size can bang beyond yellow and
5147 // red zones.
5148 Label loop;
5149 bind(loop);
5150 movl(Address(tmp, (-os::vm_page_size())), size );
5151 subq(tmp, os::vm_page_size());
5152 subl(size, os::vm_page_size());
5153 jcc(Assembler::greater, loop);
5154
5155 // Bang down shadow pages too.
5156 // The -1 because we already subtracted 1 page.
5157 for (int i = 0; i< StackShadowPages-1; i++) {
5158 movq(Address(tmp, (-i*os::vm_page_size())), size );
5159 }
5160 }

mercurial