src/share/vm/opto/callnode.hpp

Fri, 31 Jul 2009 17:12:33 -0700

author
cfang
date
Fri, 31 Jul 2009 17:12:33 -0700
changeset 1335
9987d9d5eb0e
parent 1139
ad8c635e757e
child 1338
15bbd3f505c0
permissions
-rw-r--r--

6833129: specjvm98 fails with NullPointerException in the compiler with -XX:DeoptimizeALot
Summary: developed a reexecute logic for the interpreter to reexecute the bytecode when deopt happens
Reviewed-by: kvn, never, jrose, twisti

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 class Chaitin;
    30 class NamedCounter;
    31 class MultiNode;
    32 class  SafePointNode;
    33 class   CallNode;
    34 class     CallJavaNode;
    35 class       CallStaticJavaNode;
    36 class       CallDynamicJavaNode;
    37 class     CallRuntimeNode;
    38 class       CallLeafNode;
    39 class         CallLeafNoFPNode;
    40 class     AllocateNode;
    41 class       AllocateArrayNode;
    42 class     LockNode;
    43 class     UnlockNode;
    44 class JVMState;
    45 class OopMap;
    46 class State;
    47 class StartNode;
    48 class MachCallNode;
    49 class FastLockNode;
    51 //------------------------------StartNode--------------------------------------
    52 // The method start node
    53 class StartNode : public MultiNode {
    54   virtual uint cmp( const Node &n ) const;
    55   virtual uint size_of() const; // Size is bigger
    56 public:
    57   const TypeTuple *_domain;
    58   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    59     init_class_id(Class_Start);
    60     init_flags(Flag_is_block_start);
    61     init_req(0,this);
    62     init_req(1,root);
    63   }
    64   virtual int Opcode() const;
    65   virtual bool pinned() const { return true; };
    66   virtual const Type *bottom_type() const;
    67   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
    68   virtual const Type *Value( PhaseTransform *phase ) const;
    69   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    70   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
    71   virtual const RegMask &in_RegMask(uint) const;
    72   virtual Node *match( const ProjNode *proj, const Matcher *m );
    73   virtual uint ideal_reg() const { return 0; }
    74 #ifndef PRODUCT
    75   virtual void  dump_spec(outputStream *st) const;
    76 #endif
    77 };
    79 //------------------------------StartOSRNode-----------------------------------
    80 // The method start node for on stack replacement code
    81 class StartOSRNode : public StartNode {
    82 public:
    83   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
    84   virtual int   Opcode() const;
    85   static  const TypeTuple *osr_domain();
    86 };
    89 //------------------------------ParmNode---------------------------------------
    90 // Incoming parameters
    91 class ParmNode : public ProjNode {
    92   static const char * const names[TypeFunc::Parms+1];
    93 public:
    94   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
    95     init_class_id(Class_Parm);
    96   }
    97   virtual int Opcode() const;
    98   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
    99   virtual uint ideal_reg() const;
   100 #ifndef PRODUCT
   101   virtual void dump_spec(outputStream *st) const;
   102 #endif
   103 };
   106 //------------------------------ReturnNode-------------------------------------
   107 // Return from subroutine node
   108 class ReturnNode : public Node {
   109 public:
   110   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
   111   virtual int Opcode() const;
   112   virtual bool  is_CFG() const { return true; }
   113   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   114   virtual bool depends_only_on_test() const { return false; }
   115   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   116   virtual const Type *Value( PhaseTransform *phase ) const;
   117   virtual uint ideal_reg() const { return NotAMachineReg; }
   118   virtual uint match_edge(uint idx) const;
   119 #ifndef PRODUCT
   120   virtual void dump_req() const;
   121 #endif
   122 };
   125 //------------------------------RethrowNode------------------------------------
   126 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
   127 // ends the current basic block like a ReturnNode.  Restores registers and
   128 // unwinds stack.  Rethrow happens in the caller's method.
   129 class RethrowNode : public Node {
   130  public:
   131   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
   132   virtual int Opcode() const;
   133   virtual bool  is_CFG() const { return true; }
   134   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   135   virtual bool depends_only_on_test() const { return false; }
   136   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   137   virtual const Type *Value( PhaseTransform *phase ) const;
   138   virtual uint match_edge(uint idx) const;
   139   virtual uint ideal_reg() const { return NotAMachineReg; }
   140 #ifndef PRODUCT
   141   virtual void dump_req() const;
   142 #endif
   143 };
   146 //------------------------------TailCallNode-----------------------------------
   147 // Pop stack frame and jump indirect
   148 class TailCallNode : public ReturnNode {
   149 public:
   150   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
   151     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
   152     init_req(TypeFunc::Parms, target);
   153     init_req(TypeFunc::Parms+1, moop);
   154   }
   156   virtual int Opcode() const;
   157   virtual uint match_edge(uint idx) const;
   158 };
   160 //------------------------------TailJumpNode-----------------------------------
   161 // Pop stack frame and jump indirect
   162 class TailJumpNode : public ReturnNode {
   163 public:
   164   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
   165     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
   166     init_req(TypeFunc::Parms, target);
   167     init_req(TypeFunc::Parms+1, ex_oop);
   168   }
   170   virtual int Opcode() const;
   171   virtual uint match_edge(uint idx) const;
   172 };
   174 //-------------------------------JVMState-------------------------------------
   175 // A linked list of JVMState nodes captures the whole interpreter state,
   176 // plus GC roots, for all active calls at some call site in this compilation
   177 // unit.  (If there is no inlining, then the list has exactly one link.)
   178 // This provides a way to map the optimized program back into the interpreter,
   179 // or to let the GC mark the stack.
   180 class JVMState : public ResourceObj {
   181 public:
   182   typedef enum {
   183     Reexecute_Undefined = -1, // not defined -- will be translated into false later
   184     Reexecute_False     =  0, // false       -- do not reexecute
   185     Reexecute_True      =  1  // true        -- reexecute the bytecode
   186   } ReexecuteState; //Reexecute State
   188 private:
   189   JVMState*         _caller;    // List pointer for forming scope chains
   190   uint              _depth;     // One mroe than caller depth, or one.
   191   uint              _locoff;    // Offset to locals in input edge mapping
   192   uint              _stkoff;    // Offset to stack in input edge mapping
   193   uint              _monoff;    // Offset to monitors in input edge mapping
   194   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
   195   uint              _endoff;    // Offset to end of input edge mapping
   196   uint              _sp;        // Jave Expression Stack Pointer for this state
   197   int               _bci;       // Byte Code Index of this JVM point
   198   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
   199   ciMethod*         _method;    // Method Pointer
   200   SafePointNode*    _map;       // Map node associated with this scope
   201 public:
   202   friend class Compile;
   203   friend class PreserveReexecuteState;
   205   // Because JVMState objects live over the entire lifetime of the
   206   // Compile object, they are allocated into the comp_arena, which
   207   // does not get resource marked or reset during the compile process
   208   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
   209   void operator delete( void * ) { } // fast deallocation
   211   // Create a new JVMState, ready for abstract interpretation.
   212   JVMState(ciMethod* method, JVMState* caller);
   213   JVMState(int stack_size);  // root state; has a null method
   215   // Access functions for the JVM
   216   uint              locoff() const { return _locoff; }
   217   uint              stkoff() const { return _stkoff; }
   218   uint              argoff() const { return _stkoff + _sp; }
   219   uint              monoff() const { return _monoff; }
   220   uint              scloff() const { return _scloff; }
   221   uint              endoff() const { return _endoff; }
   222   uint              oopoff() const { return debug_end(); }
   224   int            loc_size() const { return _stkoff - _locoff; }
   225   int            stk_size() const { return _monoff - _stkoff; }
   226   int            mon_size() const { return _scloff - _monoff; }
   227   int            scl_size() const { return _endoff - _scloff; }
   229   bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
   230   bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
   231   bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
   232   bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }
   234   uint                      sp() const { return _sp; }
   235   int                      bci() const { return _bci; }
   236   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
   237   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
   238   bool              has_method() const { return _method != NULL; }
   239   ciMethod*             method() const { assert(has_method(), ""); return _method; }
   240   JVMState*             caller() const { return _caller; }
   241   SafePointNode*           map() const { return _map; }
   242   uint                   depth() const { return _depth; }
   243   uint             debug_start() const; // returns locoff of root caller
   244   uint               debug_end() const; // returns endoff of self
   245   uint              debug_size() const {
   246     return loc_size() + sp() + mon_size() + scl_size();
   247   }
   248   uint        debug_depth()  const; // returns sum of debug_size values at all depths
   250   // Returns the JVM state at the desired depth (1 == root).
   251   JVMState* of_depth(int d) const;
   253   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
   254   bool same_calls_as(const JVMState* that) const;
   256   // Monitors (monitors are stored as (boxNode, objNode) pairs
   257   enum { logMonitorEdges = 1 };
   258   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
   259   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
   260   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
   261   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
   262   bool is_monitor_box(uint off)    const {
   263     assert(is_mon(off), "should be called only for monitor edge");
   264     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
   265   }
   266   bool is_monitor_use(uint off)    const { return (is_mon(off)
   267                                                    && is_monitor_box(off))
   268                                              || (caller() && caller()->is_monitor_use(off)); }
   270   // Initialization functions for the JVM
   271   void              set_locoff(uint off) { _locoff = off; }
   272   void              set_stkoff(uint off) { _stkoff = off; }
   273   void              set_monoff(uint off) { _monoff = off; }
   274   void              set_scloff(uint off) { _scloff = off; }
   275   void              set_endoff(uint off) { _endoff = off; }
   276   void              set_offsets(uint off) {
   277     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
   278   }
   279   void              set_map(SafePointNode *map) { _map = map; }
   280   void              set_sp(uint sp) { _sp = sp; }
   281                     // _reexecute is initialized to "undefined" for a new bci
   282   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
   283   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
   285   // Miscellaneous utility functions
   286   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
   287   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
   289 #ifndef PRODUCT
   290   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
   291   void      dump_spec(outputStream *st) const;
   292   void      dump_on(outputStream* st) const;
   293   void      dump() const {
   294     dump_on(tty);
   295   }
   296 #endif
   297 };
   299 //------------------------------SafePointNode----------------------------------
   300 // A SafePointNode is a subclass of a MultiNode for convenience (and
   301 // potential code sharing) only - conceptually it is independent of
   302 // the Node semantics.
   303 class SafePointNode : public MultiNode {
   304   virtual uint           cmp( const Node &n ) const;
   305   virtual uint           size_of() const;       // Size is bigger
   307 public:
   308   SafePointNode(uint edges, JVMState* jvms,
   309                 // A plain safepoint advertises no memory effects (NULL):
   310                 const TypePtr* adr_type = NULL)
   311     : MultiNode( edges ),
   312       _jvms(jvms),
   313       _oop_map(NULL),
   314       _adr_type(adr_type)
   315   {
   316     init_class_id(Class_SafePoint);
   317   }
   319   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
   320   JVMState* const _jvms;      // Pointer to list of JVM State objects
   321   const TypePtr*  _adr_type;  // What type of memory does this node produce?
   323   // Many calls take *all* of memory as input,
   324   // but some produce a limited subset of that memory as output.
   325   // The adr_type reports the call's behavior as a store, not a load.
   327   virtual JVMState* jvms() const { return _jvms; }
   328   void set_jvms(JVMState* s) {
   329     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
   330   }
   331   OopMap *oop_map() const { return _oop_map; }
   332   void set_oop_map(OopMap *om) { _oop_map = om; }
   334   // Functionality from old debug nodes which has changed
   335   Node *local(JVMState* jvms, uint idx) const {
   336     assert(verify_jvms(jvms), "jvms must match");
   337     return in(jvms->locoff() + idx);
   338   }
   339   Node *stack(JVMState* jvms, uint idx) const {
   340     assert(verify_jvms(jvms), "jvms must match");
   341     return in(jvms->stkoff() + idx);
   342   }
   343   Node *argument(JVMState* jvms, uint idx) const {
   344     assert(verify_jvms(jvms), "jvms must match");
   345     return in(jvms->argoff() + idx);
   346   }
   347   Node *monitor_box(JVMState* jvms, uint idx) const {
   348     assert(verify_jvms(jvms), "jvms must match");
   349     return in(jvms->monitor_box_offset(idx));
   350   }
   351   Node *monitor_obj(JVMState* jvms, uint idx) const {
   352     assert(verify_jvms(jvms), "jvms must match");
   353     return in(jvms->monitor_obj_offset(idx));
   354   }
   356   void  set_local(JVMState* jvms, uint idx, Node *c);
   358   void  set_stack(JVMState* jvms, uint idx, Node *c) {
   359     assert(verify_jvms(jvms), "jvms must match");
   360     set_req(jvms->stkoff() + idx, c);
   361   }
   362   void  set_argument(JVMState* jvms, uint idx, Node *c) {
   363     assert(verify_jvms(jvms), "jvms must match");
   364     set_req(jvms->argoff() + idx, c);
   365   }
   366   void ensure_stack(JVMState* jvms, uint stk_size) {
   367     assert(verify_jvms(jvms), "jvms must match");
   368     int grow_by = (int)stk_size - (int)jvms->stk_size();
   369     if (grow_by > 0)  grow_stack(jvms, grow_by);
   370   }
   371   void grow_stack(JVMState* jvms, uint grow_by);
   372   // Handle monitor stack
   373   void push_monitor( const FastLockNode *lock );
   374   void pop_monitor ();
   375   Node *peek_monitor_box() const;
   376   Node *peek_monitor_obj() const;
   378   // Access functions for the JVM
   379   Node *control  () const { return in(TypeFunc::Control  ); }
   380   Node *i_o      () const { return in(TypeFunc::I_O      ); }
   381   Node *memory   () const { return in(TypeFunc::Memory   ); }
   382   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
   383   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
   385   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
   386   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
   387   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
   389   MergeMemNode* merged_memory() const {
   390     return in(TypeFunc::Memory)->as_MergeMem();
   391   }
   393   // The parser marks useless maps as dead when it's done with them:
   394   bool is_killed() { return in(TypeFunc::Control) == NULL; }
   396   // Exception states bubbling out of subgraphs such as inlined calls
   397   // are recorded here.  (There might be more than one, hence the "next".)
   398   // This feature is used only for safepoints which serve as "maps"
   399   // for JVM states during parsing, intrinsic expansion, etc.
   400   SafePointNode*         next_exception() const;
   401   void               set_next_exception(SafePointNode* n);
   402   bool                   has_exceptions() const { return next_exception() != NULL; }
   404   // Standard Node stuff
   405   virtual int            Opcode() const;
   406   virtual bool           pinned() const { return true; }
   407   virtual const Type    *Value( PhaseTransform *phase ) const;
   408   virtual const Type    *bottom_type() const { return Type::CONTROL; }
   409   virtual const TypePtr *adr_type() const { return _adr_type; }
   410   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
   411   virtual Node          *Identity( PhaseTransform *phase );
   412   virtual uint           ideal_reg() const { return 0; }
   413   virtual const RegMask &in_RegMask(uint) const;
   414   virtual const RegMask &out_RegMask() const;
   415   virtual uint           match_edge(uint idx) const;
   417   static  bool           needs_polling_address_input();
   419 #ifndef PRODUCT
   420   virtual void              dump_spec(outputStream *st) const;
   421 #endif
   422 };
   424 //------------------------------SafePointScalarObjectNode----------------------
   425 // A SafePointScalarObjectNode represents the state of a scalarized object
   426 // at a safepoint.
   428 class SafePointScalarObjectNode: public TypeNode {
   429   uint _first_index; // First input edge index of a SafePoint node where
   430                      // states of the scalarized object fields are collected.
   431   uint _n_fields;    // Number of non-static fields of the scalarized object.
   432   DEBUG_ONLY(AllocateNode* _alloc;)
   433 public:
   434   SafePointScalarObjectNode(const TypeOopPtr* tp,
   435 #ifdef ASSERT
   436                             AllocateNode* alloc,
   437 #endif
   438                             uint first_index, uint n_fields);
   439   virtual int Opcode() const;
   440   virtual uint           ideal_reg() const;
   441   virtual const RegMask &in_RegMask(uint) const;
   442   virtual const RegMask &out_RegMask() const;
   443   virtual uint           match_edge(uint idx) const;
   445   uint first_index() const { return _first_index; }
   446   uint n_fields()    const { return _n_fields; }
   447   DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
   449   // SafePointScalarObject should be always pinned to the control edge
   450   // of the SafePoint node for which it was generated.
   451   virtual bool pinned() const; // { return true; }
   453   // SafePointScalarObject depends on the SafePoint node
   454   // for which it was generated.
   455   virtual bool depends_only_on_test() const; // { return false; }
   457   virtual uint size_of() const { return sizeof(*this); }
   459   // Assumes that "this" is an argument to a safepoint node "s", and that
   460   // "new_call" is being created to correspond to "s".  But the difference
   461   // between the start index of the jvmstates of "new_call" and "s" is
   462   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
   463   // corresponds appropriately to "this" in "new_call".  Assumes that
   464   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
   465   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
   466   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
   468 #ifndef PRODUCT
   469   virtual void              dump_spec(outputStream *st) const;
   470 #endif
   471 };
   473 //------------------------------CallNode---------------------------------------
   474 // Call nodes now subsume the function of debug nodes at callsites, so they
   475 // contain the functionality of a full scope chain of debug nodes.
   476 class CallNode : public SafePointNode {
   477 public:
   478   const TypeFunc *_tf;        // Function type
   479   address      _entry_point;  // Address of method being called
   480   float        _cnt;          // Estimate of number of times called
   482   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
   483     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
   484       _tf(tf),
   485       _entry_point(addr),
   486       _cnt(COUNT_UNKNOWN)
   487   {
   488     init_class_id(Class_Call);
   489     init_flags(Flag_is_Call);
   490   }
   492   const TypeFunc* tf()        const { return _tf; }
   493   const address entry_point() const { return _entry_point; }
   494   const float   cnt()         const { return _cnt; }
   496   void set_tf(const TypeFunc* tf) { _tf = tf; }
   497   void set_entry_point(address p) { _entry_point = p; }
   498   void set_cnt(float c)           { _cnt = c; }
   500   virtual const Type *bottom_type() const;
   501   virtual const Type *Value( PhaseTransform *phase ) const;
   502   virtual Node *Identity( PhaseTransform *phase ) { return this; }
   503   virtual uint        cmp( const Node &n ) const;
   504   virtual uint        size_of() const = 0;
   505   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   506   virtual Node       *match( const ProjNode *proj, const Matcher *m );
   507   virtual uint        ideal_reg() const { return NotAMachineReg; }
   508   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
   509   // for some macro nodes whose expansion does not have a safepoint on the fast path.
   510   virtual bool        guaranteed_safepoint()  { return true; }
   511   // For macro nodes, the JVMState gets modified during expansion, so when cloning
   512   // the node the JVMState must be cloned.
   513   virtual void        clone_jvms() { }   // default is not to clone
   515   // Returns true if the call may modify n
   516   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
   517   // Does this node have a use of n other than in debug information?
   518   bool                has_non_debug_use(Node *n);
   519   // Returns the unique CheckCastPP of a call
   520   // or result projection is there are several CheckCastPP
   521   // or returns NULL if there is no one.
   522   Node *result_cast();
   524   virtual uint match_edge(uint idx) const;
   526 #ifndef PRODUCT
   527   virtual void        dump_req()  const;
   528   virtual void        dump_spec(outputStream *st) const;
   529 #endif
   530 };
   532 //------------------------------CallJavaNode-----------------------------------
   533 // Make a static or dynamic subroutine call node using Java calling
   534 // convention.  (The "Java" calling convention is the compiler's calling
   535 // convention, as opposed to the interpreter's or that of native C.)
   536 class CallJavaNode : public CallNode {
   537 protected:
   538   virtual uint cmp( const Node &n ) const;
   539   virtual uint size_of() const; // Size is bigger
   541   bool    _optimized_virtual;
   542   ciMethod* _method;            // Method being direct called
   543 public:
   544   const int       _bci;         // Byte Code Index of call byte code
   545   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
   546     : CallNode(tf, addr, TypePtr::BOTTOM),
   547       _method(method), _bci(bci), _optimized_virtual(false)
   548   {
   549     init_class_id(Class_CallJava);
   550   }
   552   virtual int   Opcode() const;
   553   ciMethod* method() const                { return _method; }
   554   void  set_method(ciMethod *m)           { _method = m; }
   555   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
   556   bool  is_optimized_virtual() const      { return _optimized_virtual; }
   558 #ifndef PRODUCT
   559   virtual void  dump_spec(outputStream *st) const;
   560 #endif
   561 };
   563 //------------------------------CallStaticJavaNode-----------------------------
   564 // Make a direct subroutine call using Java calling convention (for static
   565 // calls and optimized virtual calls, plus calls to wrappers for run-time
   566 // routines); generates static stub.
   567 class CallStaticJavaNode : public CallJavaNode {
   568   virtual uint cmp( const Node &n ) const;
   569   virtual uint size_of() const; // Size is bigger
   570 public:
   571   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
   572     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
   573     init_class_id(Class_CallStaticJava);
   574   }
   575   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
   576                      const TypePtr* adr_type)
   577     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
   578     init_class_id(Class_CallStaticJava);
   579     // This node calls a runtime stub, which often has narrow memory effects.
   580     _adr_type = adr_type;
   581   }
   582   const char *_name;            // Runtime wrapper name
   584   // If this is an uncommon trap, return the request code, else zero.
   585   int uncommon_trap_request() const;
   586   static int extract_uncommon_trap_request(const Node* call);
   588   virtual int         Opcode() const;
   589 #ifndef PRODUCT
   590   virtual void        dump_spec(outputStream *st) const;
   591 #endif
   592 };
   594 //------------------------------CallDynamicJavaNode----------------------------
   595 // Make a dispatched call using Java calling convention.
   596 class CallDynamicJavaNode : public CallJavaNode {
   597   virtual uint cmp( const Node &n ) const;
   598   virtual uint size_of() const; // Size is bigger
   599 public:
   600   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
   601     init_class_id(Class_CallDynamicJava);
   602   }
   604   int _vtable_index;
   605   virtual int   Opcode() const;
   606 #ifndef PRODUCT
   607   virtual void  dump_spec(outputStream *st) const;
   608 #endif
   609 };
   611 //------------------------------CallRuntimeNode--------------------------------
   612 // Make a direct subroutine call node into compiled C++ code.
   613 class CallRuntimeNode : public CallNode {
   614   virtual uint cmp( const Node &n ) const;
   615   virtual uint size_of() const; // Size is bigger
   616 public:
   617   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
   618                   const TypePtr* adr_type)
   619     : CallNode(tf, addr, adr_type),
   620       _name(name)
   621   {
   622     init_class_id(Class_CallRuntime);
   623   }
   625   const char *_name;            // Printable name, if _method is NULL
   626   virtual int   Opcode() const;
   627   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   629 #ifndef PRODUCT
   630   virtual void  dump_spec(outputStream *st) const;
   631 #endif
   632 };
   634 //------------------------------CallLeafNode-----------------------------------
   635 // Make a direct subroutine call node into compiled C++ code, without
   636 // safepoints
   637 class CallLeafNode : public CallRuntimeNode {
   638 public:
   639   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
   640                const TypePtr* adr_type)
   641     : CallRuntimeNode(tf, addr, name, adr_type)
   642   {
   643     init_class_id(Class_CallLeaf);
   644   }
   645   virtual int   Opcode() const;
   646   virtual bool        guaranteed_safepoint()  { return false; }
   647 #ifndef PRODUCT
   648   virtual void  dump_spec(outputStream *st) const;
   649 #endif
   650 };
   652 //------------------------------CallLeafNoFPNode-------------------------------
   653 // CallLeafNode, not using floating point or using it in the same manner as
   654 // the generated code
   655 class CallLeafNoFPNode : public CallLeafNode {
   656 public:
   657   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
   658                    const TypePtr* adr_type)
   659     : CallLeafNode(tf, addr, name, adr_type)
   660   {
   661   }
   662   virtual int   Opcode() const;
   663 };
   666 //------------------------------Allocate---------------------------------------
   667 // High-level memory allocation
   668 //
   669 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
   670 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
   671 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
   672 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
   673 //  order to differentiate the uses of the projection on the normal control path from
   674 //  those on the exception return path.
   675 //
   676 class AllocateNode : public CallNode {
   677 public:
   678   enum {
   679     // Output:
   680     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
   681     // Inputs:
   682     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
   683     KlassNode,                        // type (maybe dynamic) of the obj.
   684     InitialTest,                      // slow-path test (may be constant)
   685     ALength,                          // array length (or TOP if none)
   686     ParmLimit
   687   };
   689   static const TypeFunc* alloc_type() {
   690     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
   691     fields[AllocSize]   = TypeInt::POS;
   692     fields[KlassNode]   = TypeInstPtr::NOTNULL;
   693     fields[InitialTest] = TypeInt::BOOL;
   694     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
   696     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
   698     // create result type (range)
   699     fields = TypeTuple::fields(1);
   700     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   702     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   704     return TypeFunc::make(domain, range);
   705   }
   707   bool _is_scalar_replaceable;  // Result of Escape Analysis
   709   virtual uint size_of() const; // Size is bigger
   710   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   711                Node *size, Node *klass_node, Node *initial_test);
   712   // Expansion modifies the JVMState, so we need to clone it
   713   virtual void  clone_jvms() {
   714     set_jvms(jvms()->clone_deep(Compile::current()));
   715   }
   716   virtual int Opcode() const;
   717   virtual uint ideal_reg() const { return Op_RegP; }
   718   virtual bool        guaranteed_safepoint()  { return false; }
   720   // allocations do not modify their arguments
   721   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
   723   // Pattern-match a possible usage of AllocateNode.
   724   // Return null if no allocation is recognized.
   725   // The operand is the pointer produced by the (possible) allocation.
   726   // It must be a projection of the Allocate or its subsequent CastPP.
   727   // (Note:  This function is defined in file graphKit.cpp, near
   728   // GraphKit::new_instance/new_array, whose output it recognizes.)
   729   // The 'ptr' may not have an offset unless the 'offset' argument is given.
   730   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
   732   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
   733   // an offset, which is reported back to the caller.
   734   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
   735   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
   736                                         intptr_t& offset);
   738   // Dig the klass operand out of a (possible) allocation site.
   739   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
   740     AllocateNode* allo = Ideal_allocation(ptr, phase);
   741     return (allo == NULL) ? NULL : allo->in(KlassNode);
   742   }
   744   // Conservatively small estimate of offset of first non-header byte.
   745   int minimum_header_size() {
   746     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
   747                                 instanceOopDesc::base_offset_in_bytes();
   748   }
   750   // Return the corresponding initialization barrier (or null if none).
   751   // Walks out edges to find it...
   752   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   753   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   754   InitializeNode* initialization();
   756   // Convenience for initialization->maybe_set_complete(phase)
   757   bool maybe_set_complete(PhaseGVN* phase);
   758 };
   760 //------------------------------AllocateArray---------------------------------
   761 //
   762 // High-level array allocation
   763 //
   764 class AllocateArrayNode : public AllocateNode {
   765 public:
   766   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   767                     Node* size, Node* klass_node, Node* initial_test,
   768                     Node* count_val
   769                     )
   770     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
   771                    initial_test)
   772   {
   773     init_class_id(Class_AllocateArray);
   774     set_req(AllocateNode::ALength,        count_val);
   775   }
   776   virtual int Opcode() const;
   777   virtual uint size_of() const; // Size is bigger
   778   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   780   // Dig the length operand out of a array allocation site.
   781   Node* Ideal_length() {
   782     return in(AllocateNode::ALength);
   783   }
   785   // Dig the length operand out of a array allocation site and narrow the
   786   // type with a CastII, if necesssary
   787   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
   789   // Pattern-match a possible usage of AllocateArrayNode.
   790   // Return null if no allocation is recognized.
   791   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
   792     AllocateNode* allo = Ideal_allocation(ptr, phase);
   793     return (allo == NULL || !allo->is_AllocateArray())
   794            ? NULL : allo->as_AllocateArray();
   795   }
   796 };
   798 //------------------------------AbstractLockNode-----------------------------------
   799 class AbstractLockNode: public CallNode {
   800 private:
   801   bool _eliminate;    // indicates this lock can be safely eliminated
   802   bool _coarsened;    // indicates this lock was coarsened
   803 #ifndef PRODUCT
   804   NamedCounter* _counter;
   805 #endif
   807 protected:
   808   // helper functions for lock elimination
   809   //
   811   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
   812                             GrowableArray<AbstractLockNode*> &lock_ops);
   813   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
   814                                        GrowableArray<AbstractLockNode*> &lock_ops);
   815   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
   816                                GrowableArray<AbstractLockNode*> &lock_ops);
   817   LockNode *find_matching_lock(UnlockNode* unlock);
   820 public:
   821   AbstractLockNode(const TypeFunc *tf)
   822     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
   823       _coarsened(false),
   824       _eliminate(false)
   825   {
   826 #ifndef PRODUCT
   827     _counter = NULL;
   828 #endif
   829   }
   830   virtual int Opcode() const = 0;
   831   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
   832   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
   833   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
   834   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
   836   virtual uint size_of() const { return sizeof(*this); }
   838   bool is_eliminated()         {return _eliminate; }
   839   // mark node as eliminated and update the counter if there is one
   840   void set_eliminated();
   842   bool is_coarsened()  { return _coarsened; }
   843   void set_coarsened() { _coarsened = true; }
   845   // locking does not modify its arguments
   846   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
   848 #ifndef PRODUCT
   849   void create_lock_counter(JVMState* s);
   850   NamedCounter* counter() const { return _counter; }
   851 #endif
   852 };
   854 //------------------------------Lock---------------------------------------
   855 // High-level lock operation
   856 //
   857 // This is a subclass of CallNode because it is a macro node which gets expanded
   858 // into a code sequence containing a call.  This node takes 3 "parameters":
   859 //    0  -  object to lock
   860 //    1 -   a BoxLockNode
   861 //    2 -   a FastLockNode
   862 //
   863 class LockNode : public AbstractLockNode {
   864 public:
   866   static const TypeFunc *lock_type() {
   867     // create input type (domain)
   868     const Type **fields = TypeTuple::fields(3);
   869     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   870     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
   871     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
   872     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
   874     // create result type (range)
   875     fields = TypeTuple::fields(0);
   877     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   879     return TypeFunc::make(domain,range);
   880   }
   882   virtual int Opcode() const;
   883   virtual uint size_of() const; // Size is bigger
   884   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   885     init_class_id(Class_Lock);
   886     init_flags(Flag_is_macro);
   887     C->add_macro_node(this);
   888   }
   889   virtual bool        guaranteed_safepoint()  { return false; }
   891   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   892   // Expansion modifies the JVMState, so we need to clone it
   893   virtual void  clone_jvms() {
   894     set_jvms(jvms()->clone_deep(Compile::current()));
   895   }
   896 };
   898 //------------------------------Unlock---------------------------------------
   899 // High-level unlock operation
   900 class UnlockNode : public AbstractLockNode {
   901 public:
   902   virtual int Opcode() const;
   903   virtual uint size_of() const; // Size is bigger
   904   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   905     init_class_id(Class_Unlock);
   906     init_flags(Flag_is_macro);
   907     C->add_macro_node(this);
   908   }
   909   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   910   // unlock is never a safepoint
   911   virtual bool        guaranteed_safepoint()  { return false; }
   912 };

mercurial