src/share/vm/runtime/orderAccess.hpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 435
a61af66fc99e
child 1106
d0994e5bebce
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

duke@435 1 /*
duke@435 2 * Copyright 2003 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Memory Access Ordering Model
duke@435 26 //
duke@435 27 // This interface is based on the JSR-133 Cookbook for Compiler Writers
duke@435 28 // and on the IA64 memory model. It is the dynamic equivalent of the
duke@435 29 // C/C++ volatile specifier. I.e., volatility restricts compile-time
duke@435 30 // memory access reordering in a way similar to what we want to occur
duke@435 31 // at runtime.
duke@435 32 //
duke@435 33 // In the following, the terms 'previous', 'subsequent', 'before',
twisti@1040 34 // 'after', 'preceding' and 'succeeding' refer to program order. The
duke@435 35 // terms 'down' and 'below' refer to forward load or store motion
duke@435 36 // relative to program order, while 'up' and 'above' refer to backward
duke@435 37 // motion.
duke@435 38 //
duke@435 39 //
duke@435 40 // We define four primitive memory barrier operations.
duke@435 41 //
duke@435 42 // LoadLoad: Load1(s); LoadLoad; Load2
duke@435 43 //
duke@435 44 // Ensures that Load1 completes (obtains the value it loads from memory)
duke@435 45 // before Load2 and any subsequent load operations. Loads before Load1
duke@435 46 // may *not* float below Load2 and any subsequent load operations.
duke@435 47 //
duke@435 48 // StoreStore: Store1(s); StoreStore; Store2
duke@435 49 //
duke@435 50 // Ensures that Store1 completes (the effect on memory of Store1 is made
duke@435 51 // visible to other processors) before Store2 and any subsequent store
duke@435 52 // operations. Stores before Store1 may *not* float below Store2 and any
duke@435 53 // subsequent store operations.
duke@435 54 //
duke@435 55 // LoadStore: Load1(s); LoadStore; Store2
duke@435 56 //
duke@435 57 // Ensures that Load1 completes before Store2 and any subsequent store
duke@435 58 // operations. Loads before Load1 may *not* float below Store2 and any
duke@435 59 // subseqeuent store operations.
duke@435 60 //
duke@435 61 // StoreLoad: Store1(s); StoreLoad; Load2
duke@435 62 //
duke@435 63 // Ensures that Store1 completes before Load2 and any subsequent load
duke@435 64 // operations. Stores before Store1 may *not* float below Load2 and any
duke@435 65 // subseqeuent load operations.
duke@435 66 //
duke@435 67 //
duke@435 68 // We define two further operations, 'release' and 'acquire'. They are
duke@435 69 // mirror images of each other.
duke@435 70 //
duke@435 71 // Execution by a processor of release makes the effect of all memory
duke@435 72 // accesses issued by it previous to the release visible to all
duke@435 73 // processors *before* the release completes. The effect of subsequent
duke@435 74 // memory accesses issued by it *may* be made visible *before* the
duke@435 75 // release. I.e., subsequent memory accesses may float above the
duke@435 76 // release, but prior ones may not float below it.
duke@435 77 //
duke@435 78 // Execution by a processor of acquire makes the effect of all memory
duke@435 79 // accesses issued by it subsequent to the acquire visible to all
duke@435 80 // processors *after* the acquire completes. The effect of prior memory
duke@435 81 // accesses issued by it *may* be made visible *after* the acquire.
duke@435 82 // I.e., prior memory accesses may float below the acquire, but
duke@435 83 // subsequent ones may not float above it.
duke@435 84 //
duke@435 85 // Finally, we define a 'fence' operation, which conceptually is a
duke@435 86 // release combined with an acquire. In the real world these operations
duke@435 87 // require one or more machine instructions which can float above and
duke@435 88 // below the release or acquire, so we usually can't just issue the
duke@435 89 // release-acquire back-to-back. All machines we know of implement some
duke@435 90 // sort of memory fence instruction.
duke@435 91 //
duke@435 92 //
duke@435 93 // The standalone implementations of release and acquire need an associated
duke@435 94 // dummy volatile store or load respectively. To avoid redundant operations,
duke@435 95 // we can define the composite operators: 'release_store', 'store_fence' and
duke@435 96 // 'load_acquire'. Here's a summary of the machine instructions corresponding
duke@435 97 // to each operation.
duke@435 98 //
duke@435 99 // sparc RMO ia64 x86
duke@435 100 // ---------------------------------------------------------------------
duke@435 101 // fence membar #LoadStore | mf lock addl 0,(sp)
duke@435 102 // #StoreStore |
duke@435 103 // #LoadLoad |
duke@435 104 // #StoreLoad
duke@435 105 //
duke@435 106 // release membar #LoadStore | st.rel [sp]=r0 movl $0,<dummy>
duke@435 107 // #StoreStore
duke@435 108 // st %g0,[]
duke@435 109 //
duke@435 110 // acquire ld [%sp],%g0 ld.acq <r>=[sp] movl (sp),<r>
duke@435 111 // membar #LoadLoad |
duke@435 112 // #LoadStore
duke@435 113 //
duke@435 114 // release_store membar #LoadStore | st.rel <store>
duke@435 115 // #StoreStore
duke@435 116 // st
duke@435 117 //
duke@435 118 // store_fence st st lock xchg
duke@435 119 // fence mf
duke@435 120 //
duke@435 121 // load_acquire ld ld.acq <load>
duke@435 122 // membar #LoadLoad |
duke@435 123 // #LoadStore
duke@435 124 //
duke@435 125 // Using only release_store and load_acquire, we can implement the
duke@435 126 // following ordered sequences.
duke@435 127 //
duke@435 128 // 1. load, load == load_acquire, load
duke@435 129 // or load_acquire, load_acquire
duke@435 130 // 2. load, store == load, release_store
duke@435 131 // or load_acquire, store
duke@435 132 // or load_acquire, release_store
duke@435 133 // 3. store, store == store, release_store
duke@435 134 // or release_store, release_store
duke@435 135 //
duke@435 136 // These require no membar instructions for sparc-TSO and no extra
duke@435 137 // instructions for ia64.
duke@435 138 //
duke@435 139 // Ordering a load relative to preceding stores requires a store_fence,
duke@435 140 // which implies a membar #StoreLoad between the store and load under
duke@435 141 // sparc-TSO. A fence is required by ia64. On x86, we use locked xchg.
duke@435 142 //
duke@435 143 // 4. store, load == store_fence, load
duke@435 144 //
duke@435 145 // Use store_fence to make sure all stores done in an 'interesting'
duke@435 146 // region are made visible prior to both subsequent loads and stores.
duke@435 147 //
duke@435 148 // Conventional usage is to issue a load_acquire for ordered loads. Use
duke@435 149 // release_store for ordered stores when you care only that prior stores
duke@435 150 // are visible before the release_store, but don't care exactly when the
duke@435 151 // store associated with the release_store becomes visible. Use
duke@435 152 // release_store_fence to update values like the thread state, where we
duke@435 153 // don't want the current thread to continue until all our prior memory
duke@435 154 // accesses (including the new thread state) are visible to other threads.
duke@435 155 //
duke@435 156 //
duke@435 157 // C++ Volatility
duke@435 158 //
duke@435 159 // C++ guarantees ordering at operations termed 'sequence points' (defined
duke@435 160 // to be volatile accesses and calls to library I/O functions). 'Side
duke@435 161 // effects' (defined as volatile accesses, calls to library I/O functions
duke@435 162 // and object modification) previous to a sequence point must be visible
duke@435 163 // at that sequence point. See the C++ standard, section 1.9, titled
duke@435 164 // "Program Execution". This means that all barrier implementations,
duke@435 165 // including standalone loadload, storestore, loadstore, storeload, acquire
duke@435 166 // and release must include a sequence point, usually via a volatile memory
duke@435 167 // access. Other ways to guarantee a sequence point are, e.g., use of
duke@435 168 // indirect calls and linux's __asm__ volatile.
duke@435 169 //
duke@435 170 //
duke@435 171 // os::is_MP Considered Redundant
duke@435 172 //
duke@435 173 // Callers of this interface do not need to test os::is_MP() before
duke@435 174 // issuing an operation. The test is taken care of by the implementation
duke@435 175 // of the interface (depending on the vm version and platform, the test
duke@435 176 // may or may not be actually done by the implementation).
duke@435 177 //
duke@435 178 //
duke@435 179 // A Note on Memory Ordering and Cache Coherency
duke@435 180 //
duke@435 181 // Cache coherency and memory ordering are orthogonal concepts, though they
duke@435 182 // interact. E.g., all existing itanium machines are cache-coherent, but
duke@435 183 // the hardware can freely reorder loads wrt other loads unless it sees a
duke@435 184 // load-acquire instruction. All existing sparc machines are cache-coherent
duke@435 185 // and, unlike itanium, TSO guarantees that the hardware orders loads wrt
duke@435 186 // loads and stores, and stores wrt to each other.
duke@435 187 //
duke@435 188 // Consider the implementation of loadload. *If* your platform *isn't*
duke@435 189 // cache-coherent, then loadload must not only prevent hardware load
duke@435 190 // instruction reordering, but it must *also* ensure that subsequent
duke@435 191 // loads from addresses that could be written by other processors (i.e.,
duke@435 192 // that are broadcast by other processors) go all the way to the first
duke@435 193 // level of memory shared by those processors and the one issuing
duke@435 194 // the loadload.
duke@435 195 //
duke@435 196 // So if we have a MP that has, say, a per-processor D$ that doesn't see
duke@435 197 // writes by other processors, and has a shared E$ that does, the loadload
duke@435 198 // barrier would have to make sure that either
duke@435 199 //
duke@435 200 // 1. cache lines in the issuing processor's D$ that contained data from
duke@435 201 // addresses that could be written by other processors are invalidated, so
duke@435 202 // subsequent loads from those addresses go to the E$, (it could do this
duke@435 203 // by tagging such cache lines as 'shared', though how to tell the hardware
duke@435 204 // to do the tagging is an interesting problem), or
duke@435 205 //
duke@435 206 // 2. there never are such cache lines in the issuing processor's D$, which
duke@435 207 // means all references to shared data (however identified: see above)
duke@435 208 // bypass the D$ (i.e., are satisfied from the E$).
duke@435 209 //
duke@435 210 // If your machine doesn't have an E$, substitute 'main memory' for 'E$'.
duke@435 211 //
duke@435 212 // Either of these alternatives is a pain, so no current machine we know of
duke@435 213 // has incoherent caches.
duke@435 214 //
duke@435 215 // If loadload didn't have these properties, the store-release sequence for
duke@435 216 // publishing a shared data structure wouldn't work, because a processor
duke@435 217 // trying to read data newly published by another processor might go to
duke@435 218 // its own incoherent caches to satisfy the read instead of to the newly
duke@435 219 // written shared memory.
duke@435 220 //
duke@435 221 //
duke@435 222 // NOTE WELL!!
duke@435 223 //
duke@435 224 // A Note on MutexLocker and Friends
duke@435 225 //
duke@435 226 // See mutexLocker.hpp. We assume throughout the VM that MutexLocker's
duke@435 227 // and friends' constructors do a fence, a lock and an acquire *in that
duke@435 228 // order*. And that their destructors do a release and unlock, in *that*
duke@435 229 // order. If their implementations change such that these assumptions
duke@435 230 // are violated, a whole lot of code will break.
duke@435 231
duke@435 232 class OrderAccess : AllStatic {
duke@435 233 public:
duke@435 234 static void loadload();
duke@435 235 static void storestore();
duke@435 236 static void loadstore();
duke@435 237 static void storeload();
duke@435 238
duke@435 239 static void acquire();
duke@435 240 static void release();
duke@435 241 static void fence();
duke@435 242
duke@435 243 static jbyte load_acquire(volatile jbyte* p);
duke@435 244 static jshort load_acquire(volatile jshort* p);
duke@435 245 static jint load_acquire(volatile jint* p);
duke@435 246 static jlong load_acquire(volatile jlong* p);
duke@435 247 static jubyte load_acquire(volatile jubyte* p);
duke@435 248 static jushort load_acquire(volatile jushort* p);
duke@435 249 static juint load_acquire(volatile juint* p);
duke@435 250 static julong load_acquire(volatile julong* p);
duke@435 251 static jfloat load_acquire(volatile jfloat* p);
duke@435 252 static jdouble load_acquire(volatile jdouble* p);
duke@435 253
duke@435 254 static intptr_t load_ptr_acquire(volatile intptr_t* p);
duke@435 255 static void* load_ptr_acquire(volatile void* p);
duke@435 256 static void* load_ptr_acquire(const volatile void* p);
duke@435 257
duke@435 258 static void release_store(volatile jbyte* p, jbyte v);
duke@435 259 static void release_store(volatile jshort* p, jshort v);
duke@435 260 static void release_store(volatile jint* p, jint v);
duke@435 261 static void release_store(volatile jlong* p, jlong v);
duke@435 262 static void release_store(volatile jubyte* p, jubyte v);
duke@435 263 static void release_store(volatile jushort* p, jushort v);
duke@435 264 static void release_store(volatile juint* p, juint v);
duke@435 265 static void release_store(volatile julong* p, julong v);
duke@435 266 static void release_store(volatile jfloat* p, jfloat v);
duke@435 267 static void release_store(volatile jdouble* p, jdouble v);
duke@435 268
duke@435 269 static void release_store_ptr(volatile intptr_t* p, intptr_t v);
duke@435 270 static void release_store_ptr(volatile void* p, void* v);
duke@435 271
duke@435 272 static void store_fence(jbyte* p, jbyte v);
duke@435 273 static void store_fence(jshort* p, jshort v);
duke@435 274 static void store_fence(jint* p, jint v);
duke@435 275 static void store_fence(jlong* p, jlong v);
duke@435 276 static void store_fence(jubyte* p, jubyte v);
duke@435 277 static void store_fence(jushort* p, jushort v);
duke@435 278 static void store_fence(juint* p, juint v);
duke@435 279 static void store_fence(julong* p, julong v);
duke@435 280 static void store_fence(jfloat* p, jfloat v);
duke@435 281 static void store_fence(jdouble* p, jdouble v);
duke@435 282
duke@435 283 static void store_ptr_fence(intptr_t* p, intptr_t v);
duke@435 284 static void store_ptr_fence(void** p, void* v);
duke@435 285
duke@435 286 static void release_store_fence(volatile jbyte* p, jbyte v);
duke@435 287 static void release_store_fence(volatile jshort* p, jshort v);
duke@435 288 static void release_store_fence(volatile jint* p, jint v);
duke@435 289 static void release_store_fence(volatile jlong* p, jlong v);
duke@435 290 static void release_store_fence(volatile jubyte* p, jubyte v);
duke@435 291 static void release_store_fence(volatile jushort* p, jushort v);
duke@435 292 static void release_store_fence(volatile juint* p, juint v);
duke@435 293 static void release_store_fence(volatile julong* p, julong v);
duke@435 294 static void release_store_fence(volatile jfloat* p, jfloat v);
duke@435 295 static void release_store_fence(volatile jdouble* p, jdouble v);
duke@435 296
duke@435 297 static void release_store_ptr_fence(volatile intptr_t* p, intptr_t v);
duke@435 298 static void release_store_ptr_fence(volatile void* p, void* v);
duke@435 299
duke@435 300 // In order to force a memory access, implementations may
duke@435 301 // need a volatile externally visible dummy variable.
duke@435 302 static volatile intptr_t dummy;
duke@435 303 };

mercurial