src/share/vm/runtime/orderAccess.hpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 435
a61af66fc99e
child 1106
d0994e5bebce
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 2003 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 //                Memory Access Ordering Model
    26 //
    27 // This interface is based on the JSR-133 Cookbook for Compiler Writers
    28 // and on the IA64 memory model.  It is the dynamic equivalent of the
    29 // C/C++ volatile specifier.  I.e., volatility restricts compile-time
    30 // memory access reordering in a way similar to what we want to occur
    31 // at runtime.
    32 //
    33 // In the following, the terms 'previous', 'subsequent', 'before',
    34 // 'after', 'preceding' and 'succeeding' refer to program order.  The
    35 // terms 'down' and 'below' refer to forward load or store motion
    36 // relative to program order, while 'up' and 'above' refer to backward
    37 // motion.
    38 //
    39 //
    40 // We define four primitive memory barrier operations.
    41 //
    42 // LoadLoad:   Load1(s); LoadLoad; Load2
    43 //
    44 // Ensures that Load1 completes (obtains the value it loads from memory)
    45 // before Load2 and any subsequent load operations.  Loads before Load1
    46 // may *not* float below Load2 and any subsequent load operations.
    47 //
    48 // StoreStore: Store1(s); StoreStore; Store2
    49 //
    50 // Ensures that Store1 completes (the effect on memory of Store1 is made
    51 // visible to other processors) before Store2 and any subsequent store
    52 // operations.  Stores before Store1 may *not* float below Store2 and any
    53 // subsequent store operations.
    54 //
    55 // LoadStore:  Load1(s); LoadStore; Store2
    56 //
    57 // Ensures that Load1 completes before Store2 and any subsequent store
    58 // operations.  Loads before Load1 may *not* float below Store2 and any
    59 // subseqeuent store operations.
    60 //
    61 // StoreLoad:  Store1(s); StoreLoad; Load2
    62 //
    63 // Ensures that Store1 completes before Load2 and any subsequent load
    64 // operations.  Stores before Store1 may *not* float below Load2 and any
    65 // subseqeuent load operations.
    66 //
    67 //
    68 // We define two further operations, 'release' and 'acquire'.  They are
    69 // mirror images of each other.
    70 //
    71 // Execution by a processor of release makes the effect of all memory
    72 // accesses issued by it previous to the release visible to all
    73 // processors *before* the release completes.  The effect of subsequent
    74 // memory accesses issued by it *may* be made visible *before* the
    75 // release.  I.e., subsequent memory accesses may float above the
    76 // release, but prior ones may not float below it.
    77 //
    78 // Execution by a processor of acquire makes the effect of all memory
    79 // accesses issued by it subsequent to the acquire visible to all
    80 // processors *after* the acquire completes.  The effect of prior memory
    81 // accesses issued by it *may* be made visible *after* the acquire.
    82 // I.e., prior memory accesses may float below the acquire, but
    83 // subsequent ones may not float above it.
    84 //
    85 // Finally, we define a 'fence' operation, which conceptually is a
    86 // release combined with an acquire.  In the real world these operations
    87 // require one or more machine instructions which can float above and
    88 // below the release or acquire, so we usually can't just issue the
    89 // release-acquire back-to-back.  All machines we know of implement some
    90 // sort of memory fence instruction.
    91 //
    92 //
    93 // The standalone implementations of release and acquire need an associated
    94 // dummy volatile store or load respectively.  To avoid redundant operations,
    95 // we can define the composite operators: 'release_store', 'store_fence' and
    96 // 'load_acquire'.  Here's a summary of the machine instructions corresponding
    97 // to each operation.
    98 //
    99 //               sparc RMO             ia64             x86
   100 // ---------------------------------------------------------------------
   101 // fence         membar #LoadStore |   mf               lock addl 0,(sp)
   102 //                      #StoreStore |
   103 //                      #LoadLoad |
   104 //                      #StoreLoad
   105 //
   106 // release       membar #LoadStore |   st.rel [sp]=r0   movl $0,<dummy>
   107 //                      #StoreStore
   108 //               st %g0,[]
   109 //
   110 // acquire       ld [%sp],%g0          ld.acq <r>=[sp]  movl (sp),<r>
   111 //               membar #LoadLoad |
   112 //                      #LoadStore
   113 //
   114 // release_store membar #LoadStore |   st.rel           <store>
   115 //                      #StoreStore
   116 //               st
   117 //
   118 // store_fence   st                    st               lock xchg
   119 //               fence                 mf
   120 //
   121 // load_acquire  ld                    ld.acq           <load>
   122 //               membar #LoadLoad |
   123 //                      #LoadStore
   124 //
   125 // Using only release_store and load_acquire, we can implement the
   126 // following ordered sequences.
   127 //
   128 // 1. load, load   == load_acquire,  load
   129 //                 or load_acquire,  load_acquire
   130 // 2. load, store  == load,          release_store
   131 //                 or load_acquire,  store
   132 //                 or load_acquire,  release_store
   133 // 3. store, store == store,         release_store
   134 //                 or release_store, release_store
   135 //
   136 // These require no membar instructions for sparc-TSO and no extra
   137 // instructions for ia64.
   138 //
   139 // Ordering a load relative to preceding stores requires a store_fence,
   140 // which implies a membar #StoreLoad between the store and load under
   141 // sparc-TSO.  A fence is required by ia64.  On x86, we use locked xchg.
   142 //
   143 // 4. store, load  == store_fence, load
   144 //
   145 // Use store_fence to make sure all stores done in an 'interesting'
   146 // region are made visible prior to both subsequent loads and stores.
   147 //
   148 // Conventional usage is to issue a load_acquire for ordered loads.  Use
   149 // release_store for ordered stores when you care only that prior stores
   150 // are visible before the release_store, but don't care exactly when the
   151 // store associated with the release_store becomes visible.  Use
   152 // release_store_fence to update values like the thread state, where we
   153 // don't want the current thread to continue until all our prior memory
   154 // accesses (including the new thread state) are visible to other threads.
   155 //
   156 //
   157 //                C++ Volatility
   158 //
   159 // C++ guarantees ordering at operations termed 'sequence points' (defined
   160 // to be volatile accesses and calls to library I/O functions).  'Side
   161 // effects' (defined as volatile accesses, calls to library I/O functions
   162 // and object modification) previous to a sequence point must be visible
   163 // at that sequence point.  See the C++ standard, section 1.9, titled
   164 // "Program Execution".  This means that all barrier implementations,
   165 // including standalone loadload, storestore, loadstore, storeload, acquire
   166 // and release must include a sequence point, usually via a volatile memory
   167 // access.  Other ways to guarantee a sequence point are, e.g., use of
   168 // indirect calls and linux's __asm__ volatile.
   169 //
   170 //
   171 //                os::is_MP Considered Redundant
   172 //
   173 // Callers of this interface do not need to test os::is_MP() before
   174 // issuing an operation. The test is taken care of by the implementation
   175 // of the interface (depending on the vm version and platform, the test
   176 // may or may not be actually done by the implementation).
   177 //
   178 //
   179 //                A Note on Memory Ordering and Cache Coherency
   180 //
   181 // Cache coherency and memory ordering are orthogonal concepts, though they
   182 // interact.  E.g., all existing itanium machines are cache-coherent, but
   183 // the hardware can freely reorder loads wrt other loads unless it sees a
   184 // load-acquire instruction.  All existing sparc machines are cache-coherent
   185 // and, unlike itanium, TSO guarantees that the hardware orders loads wrt
   186 // loads and stores, and stores wrt to each other.
   187 //
   188 // Consider the implementation of loadload.  *If* your platform *isn't*
   189 // cache-coherent, then loadload must not only prevent hardware load
   190 // instruction reordering, but it must *also* ensure that subsequent
   191 // loads from addresses that could be written by other processors (i.e.,
   192 // that are broadcast by other processors) go all the way to the first
   193 // level of memory shared by those processors and the one issuing
   194 // the loadload.
   195 //
   196 // So if we have a MP that has, say, a per-processor D$ that doesn't see
   197 // writes by other processors, and has a shared E$ that does, the loadload
   198 // barrier would have to make sure that either
   199 //
   200 // 1. cache lines in the issuing processor's D$ that contained data from
   201 // addresses that could be written by other processors are invalidated, so
   202 // subsequent loads from those addresses go to the E$, (it could do this
   203 // by tagging such cache lines as 'shared', though how to tell the hardware
   204 // to do the tagging is an interesting problem), or
   205 //
   206 // 2. there never are such cache lines in the issuing processor's D$, which
   207 // means all references to shared data (however identified: see above)
   208 // bypass the D$ (i.e., are satisfied from the E$).
   209 //
   210 // If your machine doesn't have an E$, substitute 'main memory' for 'E$'.
   211 //
   212 // Either of these alternatives is a pain, so no current machine we know of
   213 // has incoherent caches.
   214 //
   215 // If loadload didn't have these properties, the store-release sequence for
   216 // publishing a shared data structure wouldn't work, because a processor
   217 // trying to read data newly published by another processor might go to
   218 // its own incoherent caches to satisfy the read instead of to the newly
   219 // written shared memory.
   220 //
   221 //
   222 //                NOTE WELL!!
   223 //
   224 //                A Note on MutexLocker and Friends
   225 //
   226 // See mutexLocker.hpp.  We assume throughout the VM that MutexLocker's
   227 // and friends' constructors do a fence, a lock and an acquire *in that
   228 // order*.  And that their destructors do a release and unlock, in *that*
   229 // order.  If their implementations change such that these assumptions
   230 // are violated, a whole lot of code will break.
   232 class OrderAccess : AllStatic {
   233  public:
   234   static void     loadload();
   235   static void     storestore();
   236   static void     loadstore();
   237   static void     storeload();
   239   static void     acquire();
   240   static void     release();
   241   static void     fence();
   243   static jbyte    load_acquire(volatile jbyte*   p);
   244   static jshort   load_acquire(volatile jshort*  p);
   245   static jint     load_acquire(volatile jint*    p);
   246   static jlong    load_acquire(volatile jlong*   p);
   247   static jubyte   load_acquire(volatile jubyte*  p);
   248   static jushort  load_acquire(volatile jushort* p);
   249   static juint    load_acquire(volatile juint*   p);
   250   static julong   load_acquire(volatile julong*  p);
   251   static jfloat   load_acquire(volatile jfloat*  p);
   252   static jdouble  load_acquire(volatile jdouble* p);
   254   static intptr_t load_ptr_acquire(volatile intptr_t*   p);
   255   static void*    load_ptr_acquire(volatile void*       p);
   256   static void*    load_ptr_acquire(const volatile void* p);
   258   static void     release_store(volatile jbyte*   p, jbyte   v);
   259   static void     release_store(volatile jshort*  p, jshort  v);
   260   static void     release_store(volatile jint*    p, jint    v);
   261   static void     release_store(volatile jlong*   p, jlong   v);
   262   static void     release_store(volatile jubyte*  p, jubyte  v);
   263   static void     release_store(volatile jushort* p, jushort v);
   264   static void     release_store(volatile juint*   p, juint   v);
   265   static void     release_store(volatile julong*  p, julong  v);
   266   static void     release_store(volatile jfloat*  p, jfloat  v);
   267   static void     release_store(volatile jdouble* p, jdouble v);
   269   static void     release_store_ptr(volatile intptr_t* p, intptr_t v);
   270   static void     release_store_ptr(volatile void*     p, void*    v);
   272   static void     store_fence(jbyte*   p, jbyte   v);
   273   static void     store_fence(jshort*  p, jshort  v);
   274   static void     store_fence(jint*    p, jint    v);
   275   static void     store_fence(jlong*   p, jlong   v);
   276   static void     store_fence(jubyte*  p, jubyte  v);
   277   static void     store_fence(jushort* p, jushort v);
   278   static void     store_fence(juint*   p, juint   v);
   279   static void     store_fence(julong*  p, julong  v);
   280   static void     store_fence(jfloat*  p, jfloat  v);
   281   static void     store_fence(jdouble* p, jdouble v);
   283   static void     store_ptr_fence(intptr_t* p, intptr_t v);
   284   static void     store_ptr_fence(void**    p, void*    v);
   286   static void     release_store_fence(volatile jbyte*   p, jbyte   v);
   287   static void     release_store_fence(volatile jshort*  p, jshort  v);
   288   static void     release_store_fence(volatile jint*    p, jint    v);
   289   static void     release_store_fence(volatile jlong*   p, jlong   v);
   290   static void     release_store_fence(volatile jubyte*  p, jubyte  v);
   291   static void     release_store_fence(volatile jushort* p, jushort v);
   292   static void     release_store_fence(volatile juint*   p, juint   v);
   293   static void     release_store_fence(volatile julong*  p, julong  v);
   294   static void     release_store_fence(volatile jfloat*  p, jfloat  v);
   295   static void     release_store_fence(volatile jdouble* p, jdouble v);
   297   static void     release_store_ptr_fence(volatile intptr_t* p, intptr_t v);
   298   static void     release_store_ptr_fence(volatile void*     p, void*    v);
   300   // In order to force a memory access, implementations may
   301   // need a volatile externally visible dummy variable.
   302   static volatile intptr_t dummy;
   303 };

mercurial