src/share/vm/opto/node.hpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 835
cc80376deb0c
child 1515
7c57aead6d3e
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29
duke@435 30 class AbstractLockNode;
duke@435 31 class AddNode;
duke@435 32 class AddPNode;
duke@435 33 class AliasInfo;
duke@435 34 class AllocateArrayNode;
duke@435 35 class AllocateNode;
duke@435 36 class Block;
duke@435 37 class Block_Array;
duke@435 38 class BoolNode;
duke@435 39 class BoxLockNode;
duke@435 40 class CMoveNode;
duke@435 41 class CallDynamicJavaNode;
duke@435 42 class CallJavaNode;
duke@435 43 class CallLeafNode;
duke@435 44 class CallNode;
duke@435 45 class CallRuntimeNode;
duke@435 46 class CallStaticJavaNode;
duke@435 47 class CatchNode;
duke@435 48 class CatchProjNode;
duke@435 49 class CheckCastPPNode;
duke@435 50 class CmpNode;
duke@435 51 class CodeBuffer;
duke@435 52 class ConstraintCastNode;
duke@435 53 class ConNode;
duke@435 54 class CountedLoopNode;
duke@435 55 class CountedLoopEndNode;
kvn@603 56 class DecodeNNode;
kvn@603 57 class EncodePNode;
duke@435 58 class FastLockNode;
duke@435 59 class FastUnlockNode;
duke@435 60 class IfNode;
duke@435 61 class InitializeNode;
duke@435 62 class JVMState;
duke@435 63 class JumpNode;
duke@435 64 class JumpProjNode;
duke@435 65 class LoadNode;
duke@435 66 class LoadStoreNode;
duke@435 67 class LockNode;
duke@435 68 class LoopNode;
duke@435 69 class MachCallDynamicJavaNode;
duke@435 70 class MachCallJavaNode;
duke@435 71 class MachCallLeafNode;
duke@435 72 class MachCallNode;
duke@435 73 class MachCallRuntimeNode;
duke@435 74 class MachCallStaticJavaNode;
duke@435 75 class MachIfNode;
duke@435 76 class MachNode;
duke@435 77 class MachNullCheckNode;
duke@435 78 class MachReturnNode;
duke@435 79 class MachSafePointNode;
duke@435 80 class MachSpillCopyNode;
duke@435 81 class MachTempNode;
duke@435 82 class Matcher;
duke@435 83 class MemBarNode;
duke@435 84 class MemNode;
duke@435 85 class MergeMemNode;
duke@435 86 class MulNode;
duke@435 87 class MultiNode;
duke@435 88 class MultiBranchNode;
duke@435 89 class NeverBranchNode;
duke@435 90 class Node;
duke@435 91 class Node_Array;
duke@435 92 class Node_List;
duke@435 93 class Node_Stack;
duke@435 94 class NullCheckNode;
duke@435 95 class OopMap;
kvn@468 96 class ParmNode;
duke@435 97 class PCTableNode;
duke@435 98 class PhaseCCP;
duke@435 99 class PhaseGVN;
duke@435 100 class PhaseIterGVN;
duke@435 101 class PhaseRegAlloc;
duke@435 102 class PhaseTransform;
duke@435 103 class PhaseValues;
duke@435 104 class PhiNode;
duke@435 105 class Pipeline;
duke@435 106 class ProjNode;
duke@435 107 class RegMask;
duke@435 108 class RegionNode;
duke@435 109 class RootNode;
duke@435 110 class SafePointNode;
kvn@498 111 class SafePointScalarObjectNode;
duke@435 112 class StartNode;
duke@435 113 class State;
duke@435 114 class StoreNode;
duke@435 115 class SubNode;
duke@435 116 class Type;
duke@435 117 class TypeNode;
duke@435 118 class UnlockNode;
duke@435 119 class VectorSet;
duke@435 120 class IfTrueNode;
duke@435 121 class IfFalseNode;
duke@435 122 typedef void (*NFunc)(Node&,void*);
duke@435 123 extern "C" {
duke@435 124 typedef int (*C_sort_func_t)(const void *, const void *);
duke@435 125 }
duke@435 126
duke@435 127 // The type of all node counts and indexes.
duke@435 128 // It must hold at least 16 bits, but must also be fast to load and store.
duke@435 129 // This type, if less than 32 bits, could limit the number of possible nodes.
duke@435 130 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
duke@435 131 typedef unsigned int node_idx_t;
duke@435 132
duke@435 133
duke@435 134 #ifndef OPTO_DU_ITERATOR_ASSERT
duke@435 135 #ifdef ASSERT
duke@435 136 #define OPTO_DU_ITERATOR_ASSERT 1
duke@435 137 #else
duke@435 138 #define OPTO_DU_ITERATOR_ASSERT 0
duke@435 139 #endif
duke@435 140 #endif //OPTO_DU_ITERATOR_ASSERT
duke@435 141
duke@435 142 #if OPTO_DU_ITERATOR_ASSERT
duke@435 143 class DUIterator;
duke@435 144 class DUIterator_Fast;
duke@435 145 class DUIterator_Last;
duke@435 146 #else
duke@435 147 typedef uint DUIterator;
duke@435 148 typedef Node** DUIterator_Fast;
duke@435 149 typedef Node** DUIterator_Last;
duke@435 150 #endif
duke@435 151
duke@435 152 // Node Sentinel
duke@435 153 #define NodeSentinel (Node*)-1
duke@435 154
duke@435 155 // Unknown count frequency
duke@435 156 #define COUNT_UNKNOWN (-1.0f)
duke@435 157
duke@435 158 //------------------------------Node-------------------------------------------
duke@435 159 // Nodes define actions in the program. They create values, which have types.
duke@435 160 // They are both vertices in a directed graph and program primitives. Nodes
duke@435 161 // are labeled; the label is the "opcode", the primitive function in the lambda
duke@435 162 // calculus sense that gives meaning to the Node. Node inputs are ordered (so
duke@435 163 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to
duke@435 164 // the Node's function. These inputs also define a Type equation for the Node.
duke@435 165 // Solving these Type equations amounts to doing dataflow analysis.
duke@435 166 // Control and data are uniformly represented in the graph. Finally, Nodes
duke@435 167 // have a unique dense integer index which is used to index into side arrays
duke@435 168 // whenever I have phase-specific information.
duke@435 169
duke@435 170 class Node {
duke@435 171 // Lots of restrictions on cloning Nodes
duke@435 172 Node(const Node&); // not defined; linker error to use these
duke@435 173 Node &operator=(const Node &rhs);
duke@435 174
duke@435 175 public:
duke@435 176 friend class Compile;
duke@435 177 #if OPTO_DU_ITERATOR_ASSERT
duke@435 178 friend class DUIterator_Common;
duke@435 179 friend class DUIterator;
duke@435 180 friend class DUIterator_Fast;
duke@435 181 friend class DUIterator_Last;
duke@435 182 #endif
duke@435 183
duke@435 184 // Because Nodes come and go, I define an Arena of Node structures to pull
duke@435 185 // from. This should allow fast access to node creation & deletion. This
duke@435 186 // field is a local cache of a value defined in some "program fragment" for
duke@435 187 // which these Nodes are just a part of.
duke@435 188
duke@435 189 // New Operator that takes a Compile pointer, this will eventually
duke@435 190 // be the "new" New operator.
duke@435 191 inline void* operator new( size_t x, Compile* C) {
duke@435 192 Node* n = (Node*)C->node_arena()->Amalloc_D(x);
duke@435 193 #ifdef ASSERT
duke@435 194 n->_in = (Node**)n; // magic cookie for assertion check
duke@435 195 #endif
duke@435 196 n->_out = (Node**)C;
duke@435 197 return (void*)n;
duke@435 198 }
duke@435 199
duke@435 200 // New Operator that takes a Compile pointer, this will eventually
duke@435 201 // be the "new" New operator.
duke@435 202 inline void* operator new( size_t x, Compile* C, int y) {
duke@435 203 Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
duke@435 204 n->_in = (Node**)(((char*)n) + x);
duke@435 205 #ifdef ASSERT
duke@435 206 n->_in[y-1] = n; // magic cookie for assertion check
duke@435 207 #endif
duke@435 208 n->_out = (Node**)C;
duke@435 209 return (void*)n;
duke@435 210 }
duke@435 211
duke@435 212 // Delete is a NOP
duke@435 213 void operator delete( void *ptr ) {}
duke@435 214 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
duke@435 215 void destruct();
duke@435 216
duke@435 217 // Create a new Node. Required is the number is of inputs required for
duke@435 218 // semantic correctness.
duke@435 219 Node( uint required );
duke@435 220
duke@435 221 // Create a new Node with given input edges.
duke@435 222 // This version requires use of the "edge-count" new.
duke@435 223 // E.g. new (C,3) FooNode( C, NULL, left, right );
duke@435 224 Node( Node *n0 );
duke@435 225 Node( Node *n0, Node *n1 );
duke@435 226 Node( Node *n0, Node *n1, Node *n2 );
duke@435 227 Node( Node *n0, Node *n1, Node *n2, Node *n3 );
duke@435 228 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
duke@435 229 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
duke@435 230 Node( Node *n0, Node *n1, Node *n2, Node *n3,
duke@435 231 Node *n4, Node *n5, Node *n6 );
duke@435 232
duke@435 233 // Clone an inherited Node given only the base Node type.
duke@435 234 Node* clone() const;
duke@435 235
duke@435 236 // Clone a Node, immediately supplying one or two new edges.
duke@435 237 // The first and second arguments, if non-null, replace in(1) and in(2),
duke@435 238 // respectively.
duke@435 239 Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
duke@435 240 Node* nn = clone();
duke@435 241 if (in1 != NULL) nn->set_req(1, in1);
duke@435 242 if (in2 != NULL) nn->set_req(2, in2);
duke@435 243 return nn;
duke@435 244 }
duke@435 245
duke@435 246 private:
duke@435 247 // Shared setup for the above constructors.
duke@435 248 // Handles all interactions with Compile::current.
duke@435 249 // Puts initial values in all Node fields except _idx.
duke@435 250 // Returns the initial value for _idx, which cannot
duke@435 251 // be initialized by assignment.
duke@435 252 inline int Init(int req, Compile* C);
duke@435 253
duke@435 254 //----------------- input edge handling
duke@435 255 protected:
duke@435 256 friend class PhaseCFG; // Access to address of _in array elements
duke@435 257 Node **_in; // Array of use-def references to Nodes
duke@435 258 Node **_out; // Array of def-use references to Nodes
duke@435 259
twisti@1040 260 // Input edges are split into two categories. Required edges are required
duke@435 261 // for semantic correctness; order is important and NULLs are allowed.
duke@435 262 // Precedence edges are used to help determine execution order and are
duke@435 263 // added, e.g., for scheduling purposes. They are unordered and not
duke@435 264 // duplicated; they have no embedded NULLs. Edges from 0 to _cnt-1
duke@435 265 // are required, from _cnt to _max-1 are precedence edges.
duke@435 266 node_idx_t _cnt; // Total number of required Node inputs.
duke@435 267
duke@435 268 node_idx_t _max; // Actual length of input array.
duke@435 269
duke@435 270 // Output edges are an unordered list of def-use edges which exactly
duke@435 271 // correspond to required input edges which point from other nodes
duke@435 272 // to this one. Thus the count of the output edges is the number of
duke@435 273 // users of this node.
duke@435 274 node_idx_t _outcnt; // Total number of Node outputs.
duke@435 275
duke@435 276 node_idx_t _outmax; // Actual length of output array.
duke@435 277
duke@435 278 // Grow the actual input array to the next larger power-of-2 bigger than len.
duke@435 279 void grow( uint len );
duke@435 280 // Grow the output array to the next larger power-of-2 bigger than len.
duke@435 281 void out_grow( uint len );
duke@435 282
duke@435 283 public:
duke@435 284 // Each Node is assigned a unique small/dense number. This number is used
duke@435 285 // to index into auxiliary arrays of data and bitvectors.
duke@435 286 // It is declared const to defend against inadvertant assignment,
duke@435 287 // since it is used by clients as a naked field.
duke@435 288 const node_idx_t _idx;
duke@435 289
duke@435 290 // Get the (read-only) number of input edges
duke@435 291 uint req() const { return _cnt; }
duke@435 292 uint len() const { return _max; }
duke@435 293 // Get the (read-only) number of output edges
duke@435 294 uint outcnt() const { return _outcnt; }
duke@435 295
duke@435 296 #if OPTO_DU_ITERATOR_ASSERT
duke@435 297 // Iterate over the out-edges of this node. Deletions are illegal.
duke@435 298 inline DUIterator outs() const;
duke@435 299 // Use this when the out array might have changed to suppress asserts.
duke@435 300 inline DUIterator& refresh_out_pos(DUIterator& i) const;
duke@435 301 // Does the node have an out at this position? (Used for iteration.)
duke@435 302 inline bool has_out(DUIterator& i) const;
duke@435 303 inline Node* out(DUIterator& i) const;
duke@435 304 // Iterate over the out-edges of this node. All changes are illegal.
duke@435 305 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
duke@435 306 inline Node* fast_out(DUIterator_Fast& i) const;
duke@435 307 // Iterate over the out-edges of this node, deleting one at a time.
duke@435 308 inline DUIterator_Last last_outs(DUIterator_Last& min) const;
duke@435 309 inline Node* last_out(DUIterator_Last& i) const;
duke@435 310 // The inline bodies of all these methods are after the iterator definitions.
duke@435 311 #else
duke@435 312 // Iterate over the out-edges of this node. Deletions are illegal.
duke@435 313 // This iteration uses integral indexes, to decouple from array reallocations.
duke@435 314 DUIterator outs() const { return 0; }
duke@435 315 // Use this when the out array might have changed to suppress asserts.
duke@435 316 DUIterator refresh_out_pos(DUIterator i) const { return i; }
duke@435 317
duke@435 318 // Reference to the i'th output Node. Error if out of bounds.
duke@435 319 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
duke@435 320 // Does the node have an out at this position? (Used for iteration.)
duke@435 321 bool has_out(DUIterator i) const { return i < _outcnt; }
duke@435 322
duke@435 323 // Iterate over the out-edges of this node. All changes are illegal.
duke@435 324 // This iteration uses a pointer internal to the out array.
duke@435 325 DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
duke@435 326 Node** out = _out;
duke@435 327 // Assign a limit pointer to the reference argument:
duke@435 328 max = out + (ptrdiff_t)_outcnt;
duke@435 329 // Return the base pointer:
duke@435 330 return out;
duke@435 331 }
duke@435 332 Node* fast_out(DUIterator_Fast i) const { return *i; }
duke@435 333 // Iterate over the out-edges of this node, deleting one at a time.
duke@435 334 // This iteration uses a pointer internal to the out array.
duke@435 335 DUIterator_Last last_outs(DUIterator_Last& min) const {
duke@435 336 Node** out = _out;
duke@435 337 // Assign a limit pointer to the reference argument:
duke@435 338 min = out;
duke@435 339 // Return the pointer to the start of the iteration:
duke@435 340 return out + (ptrdiff_t)_outcnt - 1;
duke@435 341 }
duke@435 342 Node* last_out(DUIterator_Last i) const { return *i; }
duke@435 343 #endif
duke@435 344
duke@435 345 // Reference to the i'th input Node. Error if out of bounds.
duke@435 346 Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
duke@435 347 // Reference to the i'th output Node. Error if out of bounds.
duke@435 348 // Use this accessor sparingly. We are going trying to use iterators instead.
duke@435 349 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
duke@435 350 // Return the unique out edge.
duke@435 351 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
duke@435 352 // Delete out edge at position 'i' by moving last out edge to position 'i'
duke@435 353 void raw_del_out(uint i) {
duke@435 354 assert(i < _outcnt,"oob");
duke@435 355 assert(_outcnt > 0,"oob");
duke@435 356 #if OPTO_DU_ITERATOR_ASSERT
duke@435 357 // Record that a change happened here.
duke@435 358 debug_only(_last_del = _out[i]; ++_del_tick);
duke@435 359 #endif
duke@435 360 _out[i] = _out[--_outcnt];
duke@435 361 // Smash the old edge so it can't be used accidentally.
duke@435 362 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
duke@435 363 }
duke@435 364
duke@435 365 #ifdef ASSERT
duke@435 366 bool is_dead() const;
duke@435 367 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
duke@435 368 #endif
duke@435 369
duke@435 370 // Set a required input edge, also updates corresponding output edge
duke@435 371 void add_req( Node *n ); // Append a NEW required input
duke@435 372 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
duke@435 373 void del_req( uint idx ); // Delete required edge & compact
duke@435 374 void ins_req( uint i, Node *n ); // Insert a NEW required input
duke@435 375 void set_req( uint i, Node *n ) {
duke@435 376 assert( is_not_dead(n), "can not use dead node");
duke@435 377 assert( i < _cnt, "oob");
duke@435 378 assert( !VerifyHashTableKeys || _hash_lock == 0,
duke@435 379 "remove node from hash table before modifying it");
duke@435 380 Node** p = &_in[i]; // cache this._in, across the del_out call
duke@435 381 if (*p != NULL) (*p)->del_out((Node *)this);
duke@435 382 (*p) = n;
duke@435 383 if (n != NULL) n->add_out((Node *)this);
duke@435 384 }
duke@435 385 // Light version of set_req() to init inputs after node creation.
duke@435 386 void init_req( uint i, Node *n ) {
duke@435 387 assert( i == 0 && this == n ||
duke@435 388 is_not_dead(n), "can not use dead node");
duke@435 389 assert( i < _cnt, "oob");
duke@435 390 assert( !VerifyHashTableKeys || _hash_lock == 0,
duke@435 391 "remove node from hash table before modifying it");
duke@435 392 assert( _in[i] == NULL, "sanity");
duke@435 393 _in[i] = n;
duke@435 394 if (n != NULL) n->add_out((Node *)this);
duke@435 395 }
duke@435 396 // Find first occurrence of n among my edges:
duke@435 397 int find_edge(Node* n);
duke@435 398 int replace_edge(Node* old, Node* neww);
duke@435 399 // NULL out all inputs to eliminate incoming Def-Use edges.
duke@435 400 // Return the number of edges between 'n' and 'this'
duke@435 401 int disconnect_inputs(Node *n);
duke@435 402
duke@435 403 // Quickly, return true if and only if I am Compile::current()->top().
duke@435 404 bool is_top() const {
duke@435 405 assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
duke@435 406 return (_out == NULL);
duke@435 407 }
duke@435 408 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.)
duke@435 409 void setup_is_top();
duke@435 410
duke@435 411 // Strip away casting. (It is depth-limited.)
duke@435 412 Node* uncast() const;
duke@435 413
duke@435 414 private:
duke@435 415 static Node* uncast_helper(const Node* n);
duke@435 416
duke@435 417 // Add an output edge to the end of the list
duke@435 418 void add_out( Node *n ) {
duke@435 419 if (is_top()) return;
duke@435 420 if( _outcnt == _outmax ) out_grow(_outcnt);
duke@435 421 _out[_outcnt++] = n;
duke@435 422 }
duke@435 423 // Delete an output edge
duke@435 424 void del_out( Node *n ) {
duke@435 425 if (is_top()) return;
duke@435 426 Node** outp = &_out[_outcnt];
duke@435 427 // Find and remove n
duke@435 428 do {
duke@435 429 assert(outp > _out, "Missing Def-Use edge");
duke@435 430 } while (*--outp != n);
duke@435 431 *outp = _out[--_outcnt];
duke@435 432 // Smash the old edge so it can't be used accidentally.
duke@435 433 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
duke@435 434 // Record that a change happened here.
duke@435 435 #if OPTO_DU_ITERATOR_ASSERT
duke@435 436 debug_only(_last_del = n; ++_del_tick);
duke@435 437 #endif
duke@435 438 }
duke@435 439
duke@435 440 public:
duke@435 441 // Globally replace this node by a given new node, updating all uses.
duke@435 442 void replace_by(Node* new_node);
kvn@603 443 // Globally replace this node by a given new node, updating all uses
kvn@603 444 // and cutting input edges of old node.
kvn@603 445 void subsume_by(Node* new_node) {
kvn@603 446 replace_by(new_node);
kvn@603 447 disconnect_inputs(NULL);
kvn@603 448 }
duke@435 449 void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
duke@435 450 // Find the one non-null required input. RegionNode only
duke@435 451 Node *nonnull_req() const;
duke@435 452 // Add or remove precedence edges
duke@435 453 void add_prec( Node *n );
duke@435 454 void rm_prec( uint i );
duke@435 455 void set_prec( uint i, Node *n ) {
duke@435 456 assert( is_not_dead(n), "can not use dead node");
duke@435 457 assert( i >= _cnt, "not a precedence edge");
duke@435 458 if (_in[i] != NULL) _in[i]->del_out((Node *)this);
duke@435 459 _in[i] = n;
duke@435 460 if (n != NULL) n->add_out((Node *)this);
duke@435 461 }
duke@435 462 // Set this node's index, used by cisc_version to replace current node
duke@435 463 void set_idx(uint new_idx) {
duke@435 464 const node_idx_t* ref = &_idx;
duke@435 465 *(node_idx_t*)ref = new_idx;
duke@435 466 }
duke@435 467 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.)
duke@435 468 void swap_edges(uint i1, uint i2) {
duke@435 469 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
duke@435 470 // Def-Use info is unchanged
duke@435 471 Node* n1 = in(i1);
duke@435 472 Node* n2 = in(i2);
duke@435 473 _in[i1] = n2;
duke@435 474 _in[i2] = n1;
duke@435 475 // If this node is in the hash table, make sure it doesn't need a rehash.
duke@435 476 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
duke@435 477 }
duke@435 478
duke@435 479 // Iterators over input Nodes for a Node X are written as:
duke@435 480 // for( i = 0; i < X.req(); i++ ) ... X[i] ...
duke@435 481 // NOTE: Required edges can contain embedded NULL pointers.
duke@435 482
duke@435 483 //----------------- Other Node Properties
duke@435 484
duke@435 485 // Generate class id for some ideal nodes to avoid virtual query
duke@435 486 // methods is_<Node>().
duke@435 487 // Class id is the set of bits corresponded to the node class and all its
duke@435 488 // super classes so that queries for super classes are also valid.
duke@435 489 // Subclasses of the same super class have different assigned bit
duke@435 490 // (the third parameter in the macro DEFINE_CLASS_ID).
duke@435 491 // Classes with deeper hierarchy are declared first.
duke@435 492 // Classes with the same hierarchy depth are sorted by usage frequency.
duke@435 493 //
duke@435 494 // The query method masks the bits to cut off bits of subclasses
duke@435 495 // and then compare the result with the class id
duke@435 496 // (see the macro DEFINE_CLASS_QUERY below).
duke@435 497 //
duke@435 498 // Class_MachCall=30, ClassMask_MachCall=31
duke@435 499 // 12 8 4 0
duke@435 500 // 0 0 0 0 0 0 0 0 1 1 1 1 0
duke@435 501 // | | | |
duke@435 502 // | | | Bit_Mach=2
duke@435 503 // | | Bit_MachReturn=4
duke@435 504 // | Bit_MachSafePoint=8
duke@435 505 // Bit_MachCall=16
duke@435 506 //
duke@435 507 // Class_CountedLoop=56, ClassMask_CountedLoop=63
duke@435 508 // 12 8 4 0
duke@435 509 // 0 0 0 0 0 0 0 1 1 1 0 0 0
duke@435 510 // | | |
duke@435 511 // | | Bit_Region=8
duke@435 512 // | Bit_Loop=16
duke@435 513 // Bit_CountedLoop=32
duke@435 514
duke@435 515 #define DEFINE_CLASS_ID(cl, supcl, subn) \
duke@435 516 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
duke@435 517 Class_##cl = Class_##supcl + Bit_##cl , \
duke@435 518 ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
duke@435 519
duke@435 520 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
duke@435 521 // so that it's values fits into 16 bits.
duke@435 522 enum NodeClasses {
duke@435 523 Bit_Node = 0x0000,
duke@435 524 Class_Node = 0x0000,
duke@435 525 ClassMask_Node = 0xFFFF,
duke@435 526
duke@435 527 DEFINE_CLASS_ID(Multi, Node, 0)
duke@435 528 DEFINE_CLASS_ID(SafePoint, Multi, 0)
duke@435 529 DEFINE_CLASS_ID(Call, SafePoint, 0)
duke@435 530 DEFINE_CLASS_ID(CallJava, Call, 0)
duke@435 531 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0)
duke@435 532 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1)
duke@435 533 DEFINE_CLASS_ID(CallRuntime, Call, 1)
duke@435 534 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0)
duke@435 535 DEFINE_CLASS_ID(Allocate, Call, 2)
duke@435 536 DEFINE_CLASS_ID(AllocateArray, Allocate, 0)
duke@435 537 DEFINE_CLASS_ID(AbstractLock, Call, 3)
duke@435 538 DEFINE_CLASS_ID(Lock, AbstractLock, 0)
duke@435 539 DEFINE_CLASS_ID(Unlock, AbstractLock, 1)
duke@435 540 DEFINE_CLASS_ID(MultiBranch, Multi, 1)
duke@435 541 DEFINE_CLASS_ID(PCTable, MultiBranch, 0)
duke@435 542 DEFINE_CLASS_ID(Catch, PCTable, 0)
duke@435 543 DEFINE_CLASS_ID(Jump, PCTable, 1)
duke@435 544 DEFINE_CLASS_ID(If, MultiBranch, 1)
duke@435 545 DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
duke@435 546 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
duke@435 547 DEFINE_CLASS_ID(Start, Multi, 2)
duke@435 548 DEFINE_CLASS_ID(MemBar, Multi, 3)
duke@435 549 DEFINE_CLASS_ID(Initialize, MemBar, 0)
duke@435 550
duke@435 551 DEFINE_CLASS_ID(Mach, Node, 1)
duke@435 552 DEFINE_CLASS_ID(MachReturn, Mach, 0)
duke@435 553 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
duke@435 554 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
duke@435 555 DEFINE_CLASS_ID(MachCallJava, MachCall, 0)
duke@435 556 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0)
duke@435 557 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1)
duke@435 558 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1)
duke@435 559 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0)
duke@435 560 DEFINE_CLASS_ID(MachSpillCopy, Mach, 1)
duke@435 561 DEFINE_CLASS_ID(MachNullCheck, Mach, 2)
duke@435 562 DEFINE_CLASS_ID(MachIf, Mach, 3)
duke@435 563 DEFINE_CLASS_ID(MachTemp, Mach, 4)
duke@435 564
duke@435 565 DEFINE_CLASS_ID(Proj, Node, 2)
duke@435 566 DEFINE_CLASS_ID(CatchProj, Proj, 0)
duke@435 567 DEFINE_CLASS_ID(JumpProj, Proj, 1)
duke@435 568 DEFINE_CLASS_ID(IfTrue, Proj, 2)
duke@435 569 DEFINE_CLASS_ID(IfFalse, Proj, 3)
kvn@468 570 DEFINE_CLASS_ID(Parm, Proj, 4)
duke@435 571
duke@435 572 DEFINE_CLASS_ID(Region, Node, 3)
duke@435 573 DEFINE_CLASS_ID(Loop, Region, 0)
duke@435 574 DEFINE_CLASS_ID(Root, Loop, 0)
duke@435 575 DEFINE_CLASS_ID(CountedLoop, Loop, 1)
duke@435 576
duke@435 577 DEFINE_CLASS_ID(Sub, Node, 4)
duke@435 578 DEFINE_CLASS_ID(Cmp, Sub, 0)
duke@435 579 DEFINE_CLASS_ID(FastLock, Cmp, 0)
duke@435 580 DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
duke@435 581
duke@435 582 DEFINE_CLASS_ID(Type, Node, 5)
duke@435 583 DEFINE_CLASS_ID(Phi, Type, 0)
duke@435 584 DEFINE_CLASS_ID(ConstraintCast, Type, 1)
duke@435 585 DEFINE_CLASS_ID(CheckCastPP, Type, 2)
duke@435 586 DEFINE_CLASS_ID(CMove, Type, 3)
kvn@498 587 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
kvn@603 588 DEFINE_CLASS_ID(DecodeN, Type, 5)
kvn@603 589 DEFINE_CLASS_ID(EncodeP, Type, 6)
duke@435 590
duke@435 591 DEFINE_CLASS_ID(Mem, Node, 6)
duke@435 592 DEFINE_CLASS_ID(Load, Mem, 0)
duke@435 593 DEFINE_CLASS_ID(Store, Mem, 1)
duke@435 594 DEFINE_CLASS_ID(LoadStore, Mem, 2)
duke@435 595
duke@435 596 DEFINE_CLASS_ID(MergeMem, Node, 7)
duke@435 597 DEFINE_CLASS_ID(Bool, Node, 8)
duke@435 598 DEFINE_CLASS_ID(AddP, Node, 9)
duke@435 599 DEFINE_CLASS_ID(BoxLock, Node, 10)
duke@435 600 DEFINE_CLASS_ID(Add, Node, 11)
duke@435 601 DEFINE_CLASS_ID(Mul, Node, 12)
duke@435 602
duke@435 603 _max_classes = ClassMask_Mul
duke@435 604 };
duke@435 605 #undef DEFINE_CLASS_ID
duke@435 606
duke@435 607 // Flags are sorted by usage frequency.
duke@435 608 enum NodeFlags {
duke@435 609 Flag_is_Copy = 0x01, // should be first bit to avoid shift
duke@435 610 Flag_is_Call = Flag_is_Copy << 1,
duke@435 611 Flag_rematerialize = Flag_is_Call << 1,
duke@435 612 Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
duke@435 613 Flag_is_macro = Flag_needs_anti_dependence_check << 1,
duke@435 614 Flag_is_Con = Flag_is_macro << 1,
duke@435 615 Flag_is_cisc_alternate = Flag_is_Con << 1,
duke@435 616 Flag_is_Branch = Flag_is_cisc_alternate << 1,
duke@435 617 Flag_is_block_start = Flag_is_Branch << 1,
duke@435 618 Flag_is_Goto = Flag_is_block_start << 1,
duke@435 619 Flag_is_dead_loop_safe = Flag_is_Goto << 1,
duke@435 620 Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
duke@435 621 Flag_is_safepoint_node = Flag_may_be_short_branch << 1,
duke@435 622 Flag_is_pc_relative = Flag_is_safepoint_node << 1,
duke@435 623 Flag_is_Vector = Flag_is_pc_relative << 1,
duke@435 624 _max_flags = (Flag_is_Vector << 1) - 1 // allow flags combination
duke@435 625 };
duke@435 626
duke@435 627 private:
duke@435 628 jushort _class_id;
duke@435 629 jushort _flags;
duke@435 630
duke@435 631 protected:
duke@435 632 // These methods should be called from constructors only.
duke@435 633 void init_class_id(jushort c) {
duke@435 634 assert(c <= _max_classes, "invalid node class");
duke@435 635 _class_id = c; // cast out const
duke@435 636 }
duke@435 637 void init_flags(jushort fl) {
duke@435 638 assert(fl <= _max_flags, "invalid node flag");
duke@435 639 _flags |= fl;
duke@435 640 }
duke@435 641 void clear_flag(jushort fl) {
duke@435 642 assert(fl <= _max_flags, "invalid node flag");
duke@435 643 _flags &= ~fl;
duke@435 644 }
duke@435 645
duke@435 646 public:
duke@435 647 const jushort class_id() const { return _class_id; }
duke@435 648
duke@435 649 const jushort flags() const { return _flags; }
duke@435 650
duke@435 651 // Return a dense integer opcode number
duke@435 652 virtual int Opcode() const;
duke@435 653
duke@435 654 // Virtual inherited Node size
duke@435 655 virtual uint size_of() const;
duke@435 656
duke@435 657 // Other interesting Node properties
duke@435 658
duke@435 659 // Special case: is_Call() returns true for both CallNode and MachCallNode.
duke@435 660 bool is_Call() const {
duke@435 661 return (_flags & Flag_is_Call) != 0;
duke@435 662 }
duke@435 663
duke@435 664 CallNode *as_Call() const { // Only for CallNode (not for MachCallNode)
duke@435 665 assert((_class_id & ClassMask_Call) == Class_Call, "invalid node class");
duke@435 666 return (CallNode*)this;
duke@435 667 }
duke@435 668
duke@435 669 #define DEFINE_CLASS_QUERY(type) \
duke@435 670 bool is_##type() const { \
duke@435 671 return ((_class_id & ClassMask_##type) == Class_##type); \
duke@435 672 } \
duke@435 673 type##Node *as_##type() const { \
duke@435 674 assert(is_##type(), "invalid node class"); \
duke@435 675 return (type##Node*)this; \
duke@435 676 }
duke@435 677
duke@435 678 DEFINE_CLASS_QUERY(AbstractLock)
duke@435 679 DEFINE_CLASS_QUERY(Add)
duke@435 680 DEFINE_CLASS_QUERY(AddP)
duke@435 681 DEFINE_CLASS_QUERY(Allocate)
duke@435 682 DEFINE_CLASS_QUERY(AllocateArray)
duke@435 683 DEFINE_CLASS_QUERY(Bool)
duke@435 684 DEFINE_CLASS_QUERY(BoxLock)
duke@435 685 DEFINE_CLASS_QUERY(CallDynamicJava)
duke@435 686 DEFINE_CLASS_QUERY(CallJava)
duke@435 687 DEFINE_CLASS_QUERY(CallLeaf)
duke@435 688 DEFINE_CLASS_QUERY(CallRuntime)
duke@435 689 DEFINE_CLASS_QUERY(CallStaticJava)
duke@435 690 DEFINE_CLASS_QUERY(Catch)
duke@435 691 DEFINE_CLASS_QUERY(CatchProj)
duke@435 692 DEFINE_CLASS_QUERY(CheckCastPP)
duke@435 693 DEFINE_CLASS_QUERY(ConstraintCast)
duke@435 694 DEFINE_CLASS_QUERY(CMove)
duke@435 695 DEFINE_CLASS_QUERY(Cmp)
duke@435 696 DEFINE_CLASS_QUERY(CountedLoop)
duke@435 697 DEFINE_CLASS_QUERY(CountedLoopEnd)
kvn@603 698 DEFINE_CLASS_QUERY(DecodeN)
kvn@603 699 DEFINE_CLASS_QUERY(EncodeP)
duke@435 700 DEFINE_CLASS_QUERY(FastLock)
duke@435 701 DEFINE_CLASS_QUERY(FastUnlock)
duke@435 702 DEFINE_CLASS_QUERY(If)
duke@435 703 DEFINE_CLASS_QUERY(IfFalse)
duke@435 704 DEFINE_CLASS_QUERY(IfTrue)
duke@435 705 DEFINE_CLASS_QUERY(Initialize)
duke@435 706 DEFINE_CLASS_QUERY(Jump)
duke@435 707 DEFINE_CLASS_QUERY(JumpProj)
duke@435 708 DEFINE_CLASS_QUERY(Load)
duke@435 709 DEFINE_CLASS_QUERY(LoadStore)
duke@435 710 DEFINE_CLASS_QUERY(Lock)
duke@435 711 DEFINE_CLASS_QUERY(Loop)
duke@435 712 DEFINE_CLASS_QUERY(Mach)
duke@435 713 DEFINE_CLASS_QUERY(MachCall)
duke@435 714 DEFINE_CLASS_QUERY(MachCallDynamicJava)
duke@435 715 DEFINE_CLASS_QUERY(MachCallJava)
duke@435 716 DEFINE_CLASS_QUERY(MachCallLeaf)
duke@435 717 DEFINE_CLASS_QUERY(MachCallRuntime)
duke@435 718 DEFINE_CLASS_QUERY(MachCallStaticJava)
duke@435 719 DEFINE_CLASS_QUERY(MachIf)
duke@435 720 DEFINE_CLASS_QUERY(MachNullCheck)
duke@435 721 DEFINE_CLASS_QUERY(MachReturn)
duke@435 722 DEFINE_CLASS_QUERY(MachSafePoint)
duke@435 723 DEFINE_CLASS_QUERY(MachSpillCopy)
duke@435 724 DEFINE_CLASS_QUERY(MachTemp)
duke@435 725 DEFINE_CLASS_QUERY(Mem)
duke@435 726 DEFINE_CLASS_QUERY(MemBar)
duke@435 727 DEFINE_CLASS_QUERY(MergeMem)
duke@435 728 DEFINE_CLASS_QUERY(Mul)
duke@435 729 DEFINE_CLASS_QUERY(Multi)
duke@435 730 DEFINE_CLASS_QUERY(MultiBranch)
kvn@468 731 DEFINE_CLASS_QUERY(Parm)
duke@435 732 DEFINE_CLASS_QUERY(PCTable)
duke@435 733 DEFINE_CLASS_QUERY(Phi)
duke@435 734 DEFINE_CLASS_QUERY(Proj)
duke@435 735 DEFINE_CLASS_QUERY(Region)
duke@435 736 DEFINE_CLASS_QUERY(Root)
duke@435 737 DEFINE_CLASS_QUERY(SafePoint)
kvn@498 738 DEFINE_CLASS_QUERY(SafePointScalarObject)
duke@435 739 DEFINE_CLASS_QUERY(Start)
duke@435 740 DEFINE_CLASS_QUERY(Store)
duke@435 741 DEFINE_CLASS_QUERY(Sub)
duke@435 742 DEFINE_CLASS_QUERY(Type)
duke@435 743 DEFINE_CLASS_QUERY(Unlock)
duke@435 744
duke@435 745 #undef DEFINE_CLASS_QUERY
duke@435 746
duke@435 747 // duplicate of is_MachSpillCopy()
duke@435 748 bool is_SpillCopy () const {
duke@435 749 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
duke@435 750 }
duke@435 751
duke@435 752 bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
duke@435 753 bool is_Goto() const { return (_flags & Flag_is_Goto) != 0; }
duke@435 754 // The data node which is safe to leave in dead loop during IGVN optimization.
duke@435 755 bool is_dead_loop_safe() const {
kvn@561 756 return is_Phi() || (is_Proj() && in(0) == NULL) ||
kvn@561 757 ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
kvn@561 758 (!is_Proj() || !in(0)->is_Allocate()));
duke@435 759 }
duke@435 760
duke@435 761 // is_Copy() returns copied edge index (0 or 1)
duke@435 762 uint is_Copy() const { return (_flags & Flag_is_Copy); }
duke@435 763
duke@435 764 virtual bool is_CFG() const { return false; }
duke@435 765
duke@435 766 // If this node is control-dependent on a test, can it be
duke@435 767 // rerouted to a dominating equivalent test? This is usually
duke@435 768 // true of non-CFG nodes, but can be false for operations which
duke@435 769 // depend for their correct sequencing on more than one test.
duke@435 770 // (In that case, hoisting to a dominating test may silently
duke@435 771 // skip some other important test.)
duke@435 772 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
duke@435 773
duke@435 774 // defined for MachNodes that match 'If' | 'Goto' | 'CountedLoopEnd'
duke@435 775 bool is_Branch() const { return (_flags & Flag_is_Branch) != 0; }
duke@435 776
duke@435 777 // When building basic blocks, I need to have a notion of block beginning
duke@435 778 // Nodes, next block selector Nodes (block enders), and next block
duke@435 779 // projections. These calls need to work on their machine equivalents. The
duke@435 780 // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
duke@435 781 bool is_block_start() const {
duke@435 782 if ( is_Region() )
duke@435 783 return this == (const Node*)in(0);
duke@435 784 else
duke@435 785 return (_flags & Flag_is_block_start) != 0;
duke@435 786 }
duke@435 787
duke@435 788 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
duke@435 789 // Goto and Return. This call also returns the block ending Node.
duke@435 790 virtual const Node *is_block_proj() const;
duke@435 791
duke@435 792 // The node is a "macro" node which needs to be expanded before matching
duke@435 793 bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
duke@435 794
duke@435 795 // Value is a vector of primitive values
duke@435 796 bool is_Vector() const { return (_flags & Flag_is_Vector) != 0; }
duke@435 797
duke@435 798 //----------------- Optimization
duke@435 799
duke@435 800 // Get the worst-case Type output for this Node.
duke@435 801 virtual const class Type *bottom_type() const;
duke@435 802
duke@435 803 // If we find a better type for a node, try to record it permanently.
duke@435 804 // Return true if this node actually changed.
duke@435 805 // Be sure to do the hash_delete game in the "rehash" variant.
duke@435 806 void raise_bottom_type(const Type* new_type);
duke@435 807
duke@435 808 // Get the address type with which this node uses and/or defs memory,
duke@435 809 // or NULL if none. The address type is conservatively wide.
duke@435 810 // Returns non-null for calls, membars, loads, stores, etc.
duke@435 811 // Returns TypePtr::BOTTOM if the node touches memory "broadly".
duke@435 812 virtual const class TypePtr *adr_type() const { return NULL; }
duke@435 813
duke@435 814 // Return an existing node which computes the same function as this node.
duke@435 815 // The optimistic combined algorithm requires this to return a Node which
duke@435 816 // is a small number of steps away (e.g., one of my inputs).
duke@435 817 virtual Node *Identity( PhaseTransform *phase );
duke@435 818
duke@435 819 // Return the set of values this Node can take on at runtime.
duke@435 820 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 821
duke@435 822 // Return a node which is more "ideal" than the current node.
duke@435 823 // The invariants on this call are subtle. If in doubt, read the
duke@435 824 // treatise in node.cpp above the default implemention AND TEST WITH
duke@435 825 // +VerifyIterativeGVN!
duke@435 826 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 827
duke@435 828 // Some nodes have specific Ideal subgraph transformations only if they are
duke@435 829 // unique users of specific nodes. Such nodes should be put on IGVN worklist
duke@435 830 // for the transformations to happen.
duke@435 831 bool has_special_unique_user() const;
duke@435 832
kvn@554 833 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
kvn@554 834 Node* find_exact_control(Node* ctrl);
kvn@554 835
kvn@554 836 // Check if 'this' node dominates or equal to 'sub'.
kvn@554 837 bool dominates(Node* sub, Node_List &nlist);
kvn@554 838
duke@435 839 protected:
duke@435 840 bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
duke@435 841 public:
duke@435 842
duke@435 843 // Idealize graph, using DU info. Done after constant propagation
duke@435 844 virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
duke@435 845
duke@435 846 // See if there is valid pipeline info
duke@435 847 static const Pipeline *pipeline_class();
duke@435 848 virtual const Pipeline *pipeline() const;
duke@435 849
duke@435 850 // Compute the latency from the def to this instruction of the ith input node
duke@435 851 uint latency(uint i);
duke@435 852
duke@435 853 // Hash & compare functions, for pessimistic value numbering
duke@435 854
duke@435 855 // If the hash function returns the special sentinel value NO_HASH,
duke@435 856 // the node is guaranteed never to compare equal to any other node.
twisti@1040 857 // If we accidentally generate a hash with value NO_HASH the node
duke@435 858 // won't go into the table and we'll lose a little optimization.
duke@435 859 enum { NO_HASH = 0 };
duke@435 860 virtual uint hash() const;
duke@435 861 virtual uint cmp( const Node &n ) const;
duke@435 862
duke@435 863 // Operation appears to be iteratively computed (such as an induction variable)
duke@435 864 // It is possible for this operation to return false for a loop-varying
duke@435 865 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
duke@435 866 bool is_iteratively_computed();
duke@435 867
duke@435 868 // Determine if a node is Counted loop induction variable.
duke@435 869 // The method is defined in loopnode.cpp.
duke@435 870 const Node* is_loop_iv() const;
duke@435 871
duke@435 872 // Return a node with opcode "opc" and same inputs as "this" if one can
duke@435 873 // be found; Otherwise return NULL;
duke@435 874 Node* find_similar(int opc);
duke@435 875
duke@435 876 // Return the unique control out if only one. Null if none or more than one.
duke@435 877 Node* unique_ctrl_out();
duke@435 878
duke@435 879 //----------------- Code Generation
duke@435 880
duke@435 881 // Ideal register class for Matching. Zero means unmatched instruction
duke@435 882 // (these are cloned instead of converted to machine nodes).
duke@435 883 virtual uint ideal_reg() const;
duke@435 884
duke@435 885 static const uint NotAMachineReg; // must be > max. machine register
duke@435 886
duke@435 887 // Do we Match on this edge index or not? Generally false for Control
duke@435 888 // and true for everything else. Weird for calls & returns.
duke@435 889 virtual uint match_edge(uint idx) const;
duke@435 890
duke@435 891 // Register class output is returned in
duke@435 892 virtual const RegMask &out_RegMask() const;
duke@435 893 // Register class input is expected in
duke@435 894 virtual const RegMask &in_RegMask(uint) const;
duke@435 895 // Should we clone rather than spill this instruction?
duke@435 896 bool rematerialize() const;
duke@435 897
duke@435 898 // Return JVM State Object if this Node carries debug info, or NULL otherwise
duke@435 899 virtual JVMState* jvms() const;
duke@435 900
duke@435 901 // Print as assembly
duke@435 902 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
duke@435 903 // Emit bytes starting at parameter 'ptr'
duke@435 904 // Bump 'ptr' by the number of output bytes
duke@435 905 virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
duke@435 906 // Size of instruction in bytes
duke@435 907 virtual uint size(PhaseRegAlloc *ra_) const;
duke@435 908
duke@435 909 // Convenience function to extract an integer constant from a node.
duke@435 910 // If it is not an integer constant (either Con, CastII, or Mach),
duke@435 911 // return value_if_unknown.
duke@435 912 jint find_int_con(jint value_if_unknown) const {
duke@435 913 const TypeInt* t = find_int_type();
duke@435 914 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
duke@435 915 }
duke@435 916 // Return the constant, knowing it is an integer constant already
duke@435 917 jint get_int() const {
duke@435 918 const TypeInt* t = find_int_type();
duke@435 919 guarantee(t != NULL, "must be con");
duke@435 920 return t->get_con();
duke@435 921 }
duke@435 922 // Here's where the work is done. Can produce non-constant int types too.
duke@435 923 const TypeInt* find_int_type() const;
duke@435 924
duke@435 925 // Same thing for long (and intptr_t, via type.hpp):
duke@435 926 jlong get_long() const {
duke@435 927 const TypeLong* t = find_long_type();
duke@435 928 guarantee(t != NULL, "must be con");
duke@435 929 return t->get_con();
duke@435 930 }
duke@435 931 jlong find_long_con(jint value_if_unknown) const {
duke@435 932 const TypeLong* t = find_long_type();
duke@435 933 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
duke@435 934 }
duke@435 935 const TypeLong* find_long_type() const;
duke@435 936
duke@435 937 // These guys are called by code generated by ADLC:
duke@435 938 intptr_t get_ptr() const;
coleenp@548 939 intptr_t get_narrowcon() const;
duke@435 940 jdouble getd() const;
duke@435 941 jfloat getf() const;
duke@435 942
duke@435 943 // Nodes which are pinned into basic blocks
duke@435 944 virtual bool pinned() const { return false; }
duke@435 945
duke@435 946 // Nodes which use memory without consuming it, hence need antidependences
duke@435 947 // More specifically, needs_anti_dependence_check returns true iff the node
duke@435 948 // (a) does a load, and (b) does not perform a store (except perhaps to a
duke@435 949 // stack slot or some other unaliased location).
duke@435 950 bool needs_anti_dependence_check() const;
duke@435 951
duke@435 952 // Return which operand this instruction may cisc-spill. In other words,
duke@435 953 // return operand position that can convert from reg to memory access
duke@435 954 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
duke@435 955 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
duke@435 956
duke@435 957 //----------------- Graph walking
duke@435 958 public:
duke@435 959 // Walk and apply member functions recursively.
duke@435 960 // Supplied (this) pointer is root.
duke@435 961 void walk(NFunc pre, NFunc post, void *env);
duke@435 962 static void nop(Node &, void*); // Dummy empty function
duke@435 963 static void packregion( Node &n, void* );
duke@435 964 private:
duke@435 965 void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
duke@435 966
duke@435 967 //----------------- Printing, etc
duke@435 968 public:
duke@435 969 #ifndef PRODUCT
duke@435 970 Node* find(int idx) const; // Search the graph for the given idx.
duke@435 971 Node* find_ctrl(int idx) const; // Search control ancestors for the given idx.
duke@435 972 void dump() const; // Print this node,
duke@435 973 void dump(int depth) const; // Print this node, recursively to depth d
duke@435 974 void dump_ctrl(int depth) const; // Print control nodes, to depth d
duke@435 975 virtual void dump_req() const; // Print required-edge info
duke@435 976 virtual void dump_prec() const; // Print precedence-edge info
duke@435 977 virtual void dump_out() const; // Print the output edge info
duke@435 978 virtual void dump_spec(outputStream *st) const {}; // Print per-node info
duke@435 979 void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
duke@435 980 void verify() const; // Check Def-Use info for my subgraph
duke@435 981 static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
duke@435 982
duke@435 983 // This call defines a class-unique string used to identify class instances
duke@435 984 virtual const char *Name() const;
duke@435 985
duke@435 986 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
duke@435 987 // RegMask Print Functions
duke@435 988 void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
duke@435 989 void dump_out_regmask() { out_RegMask().dump(); }
duke@435 990 static int _in_dump_cnt;
duke@435 991 static bool in_dump() { return _in_dump_cnt > 0; }
duke@435 992 void fast_dump() const {
duke@435 993 tty->print("%4d: %-17s", _idx, Name());
duke@435 994 for (uint i = 0; i < len(); i++)
duke@435 995 if (in(i))
duke@435 996 tty->print(" %4d", in(i)->_idx);
duke@435 997 else
duke@435 998 tty->print(" NULL");
duke@435 999 tty->print("\n");
duke@435 1000 }
duke@435 1001 #endif
duke@435 1002 #ifdef ASSERT
duke@435 1003 void verify_construction();
duke@435 1004 bool verify_jvms(const JVMState* jvms) const;
duke@435 1005 int _debug_idx; // Unique value assigned to every node.
duke@435 1006 int debug_idx() const { return _debug_idx; }
duke@435 1007 void set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
duke@435 1008
duke@435 1009 Node* _debug_orig; // Original version of this, if any.
duke@435 1010 Node* debug_orig() const { return _debug_orig; }
duke@435 1011 void set_debug_orig(Node* orig); // _debug_orig = orig
duke@435 1012
duke@435 1013 int _hash_lock; // Barrier to modifications of nodes in the hash table
duke@435 1014 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
duke@435 1015 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
duke@435 1016
duke@435 1017 static void init_NodeProperty();
duke@435 1018
duke@435 1019 #if OPTO_DU_ITERATOR_ASSERT
duke@435 1020 const Node* _last_del; // The last deleted node.
duke@435 1021 uint _del_tick; // Bumped when a deletion happens..
duke@435 1022 #endif
duke@435 1023 #endif
duke@435 1024 };
duke@435 1025
duke@435 1026 //-----------------------------------------------------------------------------
duke@435 1027 // Iterators over DU info, and associated Node functions.
duke@435 1028
duke@435 1029 #if OPTO_DU_ITERATOR_ASSERT
duke@435 1030
duke@435 1031 // Common code for assertion checking on DU iterators.
duke@435 1032 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
duke@435 1033 #ifdef ASSERT
duke@435 1034 protected:
duke@435 1035 bool _vdui; // cached value of VerifyDUIterators
duke@435 1036 const Node* _node; // the node containing the _out array
duke@435 1037 uint _outcnt; // cached node->_outcnt
duke@435 1038 uint _del_tick; // cached node->_del_tick
duke@435 1039 Node* _last; // last value produced by the iterator
duke@435 1040
duke@435 1041 void sample(const Node* node); // used by c'tor to set up for verifies
duke@435 1042 void verify(const Node* node, bool at_end_ok = false);
duke@435 1043 void verify_resync();
duke@435 1044 void reset(const DUIterator_Common& that);
duke@435 1045
duke@435 1046 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
duke@435 1047 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
duke@435 1048 #else
duke@435 1049 #define I_VDUI_ONLY(i,x) { }
duke@435 1050 #endif //ASSERT
duke@435 1051 };
duke@435 1052
duke@435 1053 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x)
duke@435 1054
duke@435 1055 // Default DU iterator. Allows appends onto the out array.
duke@435 1056 // Allows deletion from the out array only at the current point.
duke@435 1057 // Usage:
duke@435 1058 // for (DUIterator i = x->outs(); x->has_out(i); i++) {
duke@435 1059 // Node* y = x->out(i);
duke@435 1060 // ...
duke@435 1061 // }
duke@435 1062 // Compiles in product mode to a unsigned integer index, which indexes
duke@435 1063 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate
duke@435 1064 // also reloads x->_outcnt. If you delete, you must perform "--i" just
duke@435 1065 // before continuing the loop. You must delete only the last-produced
duke@435 1066 // edge. You must delete only a single copy of the last-produced edge,
duke@435 1067 // or else you must delete all copies at once (the first time the edge
duke@435 1068 // is produced by the iterator).
duke@435 1069 class DUIterator : public DUIterator_Common {
duke@435 1070 friend class Node;
duke@435 1071
duke@435 1072 // This is the index which provides the product-mode behavior.
duke@435 1073 // Whatever the product-mode version of the system does to the
duke@435 1074 // DUI index is done to this index. All other fields in
duke@435 1075 // this class are used only for assertion checking.
duke@435 1076 uint _idx;
duke@435 1077
duke@435 1078 #ifdef ASSERT
duke@435 1079 uint _refresh_tick; // Records the refresh activity.
duke@435 1080
duke@435 1081 void sample(const Node* node); // Initialize _refresh_tick etc.
duke@435 1082 void verify(const Node* node, bool at_end_ok = false);
duke@435 1083 void verify_increment(); // Verify an increment operation.
duke@435 1084 void verify_resync(); // Verify that we can back up over a deletion.
duke@435 1085 void verify_finish(); // Verify that the loop terminated properly.
duke@435 1086 void refresh(); // Resample verification info.
duke@435 1087 void reset(const DUIterator& that); // Resample after assignment.
duke@435 1088 #endif
duke@435 1089
duke@435 1090 DUIterator(const Node* node, int dummy_to_avoid_conversion)
duke@435 1091 { _idx = 0; debug_only(sample(node)); }
duke@435 1092
duke@435 1093 public:
duke@435 1094 // initialize to garbage; clear _vdui to disable asserts
duke@435 1095 DUIterator()
duke@435 1096 { /*initialize to garbage*/ debug_only(_vdui = false); }
duke@435 1097
duke@435 1098 void operator++(int dummy_to_specify_postfix_op)
duke@435 1099 { _idx++; VDUI_ONLY(verify_increment()); }
duke@435 1100
duke@435 1101 void operator--()
duke@435 1102 { VDUI_ONLY(verify_resync()); --_idx; }
duke@435 1103
duke@435 1104 ~DUIterator()
duke@435 1105 { VDUI_ONLY(verify_finish()); }
duke@435 1106
duke@435 1107 void operator=(const DUIterator& that)
duke@435 1108 { _idx = that._idx; debug_only(reset(that)); }
duke@435 1109 };
duke@435 1110
duke@435 1111 DUIterator Node::outs() const
duke@435 1112 { return DUIterator(this, 0); }
duke@435 1113 DUIterator& Node::refresh_out_pos(DUIterator& i) const
duke@435 1114 { I_VDUI_ONLY(i, i.refresh()); return i; }
duke@435 1115 bool Node::has_out(DUIterator& i) const
duke@435 1116 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
duke@435 1117 Node* Node::out(DUIterator& i) const
duke@435 1118 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; }
duke@435 1119
duke@435 1120
duke@435 1121 // Faster DU iterator. Disallows insertions into the out array.
duke@435 1122 // Allows deletion from the out array only at the current point.
duke@435 1123 // Usage:
duke@435 1124 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
duke@435 1125 // Node* y = x->fast_out(i);
duke@435 1126 // ...
duke@435 1127 // }
duke@435 1128 // Compiles in product mode to raw Node** pointer arithmetic, with
duke@435 1129 // no reloading of pointers from the original node x. If you delete,
duke@435 1130 // you must perform "--i; --imax" just before continuing the loop.
duke@435 1131 // If you delete multiple copies of the same edge, you must decrement
duke@435 1132 // imax, but not i, multiple times: "--i, imax -= num_edges".
duke@435 1133 class DUIterator_Fast : public DUIterator_Common {
duke@435 1134 friend class Node;
duke@435 1135 friend class DUIterator_Last;
duke@435 1136
duke@435 1137 // This is the pointer which provides the product-mode behavior.
duke@435 1138 // Whatever the product-mode version of the system does to the
duke@435 1139 // DUI pointer is done to this pointer. All other fields in
duke@435 1140 // this class are used only for assertion checking.
duke@435 1141 Node** _outp;
duke@435 1142
duke@435 1143 #ifdef ASSERT
duke@435 1144 void verify(const Node* node, bool at_end_ok = false);
duke@435 1145 void verify_limit();
duke@435 1146 void verify_resync();
duke@435 1147 void verify_relimit(uint n);
duke@435 1148 void reset(const DUIterator_Fast& that);
duke@435 1149 #endif
duke@435 1150
duke@435 1151 // Note: offset must be signed, since -1 is sometimes passed
duke@435 1152 DUIterator_Fast(const Node* node, ptrdiff_t offset)
duke@435 1153 { _outp = node->_out + offset; debug_only(sample(node)); }
duke@435 1154
duke@435 1155 public:
duke@435 1156 // initialize to garbage; clear _vdui to disable asserts
duke@435 1157 DUIterator_Fast()
duke@435 1158 { /*initialize to garbage*/ debug_only(_vdui = false); }
duke@435 1159
duke@435 1160 void operator++(int dummy_to_specify_postfix_op)
duke@435 1161 { _outp++; VDUI_ONLY(verify(_node, true)); }
duke@435 1162
duke@435 1163 void operator--()
duke@435 1164 { VDUI_ONLY(verify_resync()); --_outp; }
duke@435 1165
duke@435 1166 void operator-=(uint n) // applied to the limit only
duke@435 1167 { _outp -= n; VDUI_ONLY(verify_relimit(n)); }
duke@435 1168
duke@435 1169 bool operator<(DUIterator_Fast& limit) {
duke@435 1170 I_VDUI_ONLY(*this, this->verify(_node, true));
duke@435 1171 I_VDUI_ONLY(limit, limit.verify_limit());
duke@435 1172 return _outp < limit._outp;
duke@435 1173 }
duke@435 1174
duke@435 1175 void operator=(const DUIterator_Fast& that)
duke@435 1176 { _outp = that._outp; debug_only(reset(that)); }
duke@435 1177 };
duke@435 1178
duke@435 1179 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
duke@435 1180 // Assign a limit pointer to the reference argument:
duke@435 1181 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
duke@435 1182 // Return the base pointer:
duke@435 1183 return DUIterator_Fast(this, 0);
duke@435 1184 }
duke@435 1185 Node* Node::fast_out(DUIterator_Fast& i) const {
duke@435 1186 I_VDUI_ONLY(i, i.verify(this));
duke@435 1187 return debug_only(i._last=) *i._outp;
duke@435 1188 }
duke@435 1189
duke@435 1190
duke@435 1191 // Faster DU iterator. Requires each successive edge to be removed.
duke@435 1192 // Does not allow insertion of any edges.
duke@435 1193 // Usage:
duke@435 1194 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
duke@435 1195 // Node* y = x->last_out(i);
duke@435 1196 // ...
duke@435 1197 // }
duke@435 1198 // Compiles in product mode to raw Node** pointer arithmetic, with
duke@435 1199 // no reloading of pointers from the original node x.
duke@435 1200 class DUIterator_Last : private DUIterator_Fast {
duke@435 1201 friend class Node;
duke@435 1202
duke@435 1203 #ifdef ASSERT
duke@435 1204 void verify(const Node* node, bool at_end_ok = false);
duke@435 1205 void verify_limit();
duke@435 1206 void verify_step(uint num_edges);
duke@435 1207 #endif
duke@435 1208
duke@435 1209 // Note: offset must be signed, since -1 is sometimes passed
duke@435 1210 DUIterator_Last(const Node* node, ptrdiff_t offset)
duke@435 1211 : DUIterator_Fast(node, offset) { }
duke@435 1212
duke@435 1213 void operator++(int dummy_to_specify_postfix_op) {} // do not use
duke@435 1214 void operator<(int) {} // do not use
duke@435 1215
duke@435 1216 public:
duke@435 1217 DUIterator_Last() { }
duke@435 1218 // initialize to garbage
duke@435 1219
duke@435 1220 void operator--()
duke@435 1221 { _outp--; VDUI_ONLY(verify_step(1)); }
duke@435 1222
duke@435 1223 void operator-=(uint n)
duke@435 1224 { _outp -= n; VDUI_ONLY(verify_step(n)); }
duke@435 1225
duke@435 1226 bool operator>=(DUIterator_Last& limit) {
duke@435 1227 I_VDUI_ONLY(*this, this->verify(_node, true));
duke@435 1228 I_VDUI_ONLY(limit, limit.verify_limit());
duke@435 1229 return _outp >= limit._outp;
duke@435 1230 }
duke@435 1231
duke@435 1232 void operator=(const DUIterator_Last& that)
duke@435 1233 { DUIterator_Fast::operator=(that); }
duke@435 1234 };
duke@435 1235
duke@435 1236 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
duke@435 1237 // Assign a limit pointer to the reference argument:
duke@435 1238 imin = DUIterator_Last(this, 0);
duke@435 1239 // Return the initial pointer:
duke@435 1240 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
duke@435 1241 }
duke@435 1242 Node* Node::last_out(DUIterator_Last& i) const {
duke@435 1243 I_VDUI_ONLY(i, i.verify(this));
duke@435 1244 return debug_only(i._last=) *i._outp;
duke@435 1245 }
duke@435 1246
duke@435 1247 #endif //OPTO_DU_ITERATOR_ASSERT
duke@435 1248
duke@435 1249 #undef I_VDUI_ONLY
duke@435 1250 #undef VDUI_ONLY
duke@435 1251
duke@435 1252
duke@435 1253 //-----------------------------------------------------------------------------
duke@435 1254 // Map dense integer indices to Nodes. Uses classic doubling-array trick.
duke@435 1255 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
duke@435 1256 // Note that the constructor just zeros things, and since I use Arena
duke@435 1257 // allocation I do not need a destructor to reclaim storage.
duke@435 1258 class Node_Array : public ResourceObj {
duke@435 1259 protected:
duke@435 1260 Arena *_a; // Arena to allocate in
duke@435 1261 uint _max;
duke@435 1262 Node **_nodes;
duke@435 1263 void grow( uint i ); // Grow array node to fit
duke@435 1264 public:
duke@435 1265 Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
duke@435 1266 _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
duke@435 1267 for( int i = 0; i < OptoNodeListSize; i++ ) {
duke@435 1268 _nodes[i] = NULL;
duke@435 1269 }
duke@435 1270 }
duke@435 1271
duke@435 1272 Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
duke@435 1273 Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
duke@435 1274 { return (i<_max) ? _nodes[i] : (Node*)NULL; }
duke@435 1275 Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
duke@435 1276 Node **adr() { return _nodes; }
duke@435 1277 // Extend the mapping: index i maps to Node *n.
duke@435 1278 void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
duke@435 1279 void insert( uint i, Node *n );
duke@435 1280 void remove( uint i ); // Remove, preserving order
duke@435 1281 void sort( C_sort_func_t func);
duke@435 1282 void reset( Arena *new_a ); // Zap mapping to empty; reclaim storage
duke@435 1283 void clear(); // Set all entries to NULL, keep storage
duke@435 1284 uint Size() const { return _max; }
duke@435 1285 void dump() const;
duke@435 1286 };
duke@435 1287
duke@435 1288 class Node_List : public Node_Array {
duke@435 1289 uint _cnt;
duke@435 1290 public:
duke@435 1291 Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
duke@435 1292 Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
duke@435 1293 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
duke@435 1294 void remove( uint i ) { Node_Array::remove(i); _cnt--; }
duke@435 1295 void push( Node *b ) { map(_cnt++,b); }
duke@435 1296 void yank( Node *n ); // Find and remove
duke@435 1297 Node *pop() { return _nodes[--_cnt]; }
duke@435 1298 Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
duke@435 1299 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
duke@435 1300 uint size() const { return _cnt; }
duke@435 1301 void dump() const;
duke@435 1302 };
duke@435 1303
duke@435 1304 //------------------------------Unique_Node_List-------------------------------
duke@435 1305 class Unique_Node_List : public Node_List {
duke@435 1306 VectorSet _in_worklist;
duke@435 1307 uint _clock_index; // Index in list where to pop from next
duke@435 1308 public:
duke@435 1309 Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
duke@435 1310 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
duke@435 1311
duke@435 1312 void remove( Node *n );
duke@435 1313 bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
duke@435 1314 VectorSet &member_set(){ return _in_worklist; }
duke@435 1315
duke@435 1316 void push( Node *b ) {
duke@435 1317 if( !_in_worklist.test_set(b->_idx) )
duke@435 1318 Node_List::push(b);
duke@435 1319 }
duke@435 1320 Node *pop() {
duke@435 1321 if( _clock_index >= size() ) _clock_index = 0;
duke@435 1322 Node *b = at(_clock_index);
kvn@835 1323 map( _clock_index, Node_List::pop());
kvn@835 1324 if (size() != 0) _clock_index++; // Always start from 0
duke@435 1325 _in_worklist >>= b->_idx;
duke@435 1326 return b;
duke@435 1327 }
duke@435 1328 Node *remove( uint i ) {
duke@435 1329 Node *b = Node_List::at(i);
duke@435 1330 _in_worklist >>= b->_idx;
duke@435 1331 map(i,Node_List::pop());
duke@435 1332 return b;
duke@435 1333 }
duke@435 1334 void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
duke@435 1335 void clear() {
duke@435 1336 _in_worklist.Clear(); // Discards storage but grows automatically
duke@435 1337 Node_List::clear();
duke@435 1338 _clock_index = 0;
duke@435 1339 }
duke@435 1340
duke@435 1341 // Used after parsing to remove useless nodes before Iterative GVN
duke@435 1342 void remove_useless_nodes(VectorSet &useful);
duke@435 1343
duke@435 1344 #ifndef PRODUCT
duke@435 1345 void print_set() const { _in_worklist.print(); }
duke@435 1346 #endif
duke@435 1347 };
duke@435 1348
duke@435 1349 // Inline definition of Compile::record_for_igvn must be deferred to this point.
duke@435 1350 inline void Compile::record_for_igvn(Node* n) {
duke@435 1351 _for_igvn->push(n);
duke@435 1352 }
duke@435 1353
duke@435 1354 //------------------------------Node_Stack-------------------------------------
duke@435 1355 class Node_Stack {
duke@435 1356 protected:
duke@435 1357 struct INode {
duke@435 1358 Node *node; // Processed node
duke@435 1359 uint indx; // Index of next node's child
duke@435 1360 };
duke@435 1361 INode *_inode_top; // tos, stack grows up
duke@435 1362 INode *_inode_max; // End of _inodes == _inodes + _max
duke@435 1363 INode *_inodes; // Array storage for the stack
duke@435 1364 Arena *_a; // Arena to allocate in
duke@435 1365 void grow();
duke@435 1366 public:
duke@435 1367 Node_Stack(int size) {
duke@435 1368 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
duke@435 1369 _a = Thread::current()->resource_area();
duke@435 1370 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
duke@435 1371 _inode_max = _inodes + max;
duke@435 1372 _inode_top = _inodes - 1; // stack is empty
duke@435 1373 }
duke@435 1374
duke@435 1375 Node_Stack(Arena *a, int size) : _a(a) {
duke@435 1376 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
duke@435 1377 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
duke@435 1378 _inode_max = _inodes + max;
duke@435 1379 _inode_top = _inodes - 1; // stack is empty
duke@435 1380 }
duke@435 1381
duke@435 1382 void pop() {
duke@435 1383 assert(_inode_top >= _inodes, "node stack underflow");
duke@435 1384 --_inode_top;
duke@435 1385 }
duke@435 1386 void push(Node *n, uint i) {
duke@435 1387 ++_inode_top;
duke@435 1388 if (_inode_top >= _inode_max) grow();
duke@435 1389 INode *top = _inode_top; // optimization
duke@435 1390 top->node = n;
duke@435 1391 top->indx = i;
duke@435 1392 }
duke@435 1393 Node *node() const {
duke@435 1394 return _inode_top->node;
duke@435 1395 }
duke@435 1396 Node* node_at(uint i) const {
duke@435 1397 assert(_inodes + i <= _inode_top, "in range");
duke@435 1398 return _inodes[i].node;
duke@435 1399 }
duke@435 1400 uint index() const {
duke@435 1401 return _inode_top->indx;
duke@435 1402 }
kvn@682 1403 uint index_at(uint i) const {
kvn@682 1404 assert(_inodes + i <= _inode_top, "in range");
kvn@682 1405 return _inodes[i].indx;
kvn@682 1406 }
duke@435 1407 void set_node(Node *n) {
duke@435 1408 _inode_top->node = n;
duke@435 1409 }
duke@435 1410 void set_index(uint i) {
duke@435 1411 _inode_top->indx = i;
duke@435 1412 }
duke@435 1413 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size
kvn@475 1414 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size
duke@435 1415 bool is_nonempty() const { return (_inode_top >= _inodes); }
duke@435 1416 bool is_empty() const { return (_inode_top < _inodes); }
duke@435 1417 void clear() { _inode_top = _inodes - 1; } // retain storage
duke@435 1418 };
duke@435 1419
duke@435 1420
duke@435 1421 //-----------------------------Node_Notes--------------------------------------
duke@435 1422 // Debugging or profiling annotations loosely and sparsely associated
duke@435 1423 // with some nodes. See Compile::node_notes_at for the accessor.
duke@435 1424 class Node_Notes VALUE_OBJ_CLASS_SPEC {
duke@435 1425 JVMState* _jvms;
duke@435 1426
duke@435 1427 public:
duke@435 1428 Node_Notes(JVMState* jvms = NULL) {
duke@435 1429 _jvms = jvms;
duke@435 1430 }
duke@435 1431
duke@435 1432 JVMState* jvms() { return _jvms; }
duke@435 1433 void set_jvms(JVMState* x) { _jvms = x; }
duke@435 1434
duke@435 1435 // True if there is nothing here.
duke@435 1436 bool is_clear() {
duke@435 1437 return (_jvms == NULL);
duke@435 1438 }
duke@435 1439
duke@435 1440 // Make there be nothing here.
duke@435 1441 void clear() {
duke@435 1442 _jvms = NULL;
duke@435 1443 }
duke@435 1444
duke@435 1445 // Make a new, clean node notes.
duke@435 1446 static Node_Notes* make(Compile* C) {
duke@435 1447 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
duke@435 1448 nn->clear();
duke@435 1449 return nn;
duke@435 1450 }
duke@435 1451
duke@435 1452 Node_Notes* clone(Compile* C) {
duke@435 1453 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
duke@435 1454 (*nn) = (*this);
duke@435 1455 return nn;
duke@435 1456 }
duke@435 1457
duke@435 1458 // Absorb any information from source.
duke@435 1459 bool update_from(Node_Notes* source) {
duke@435 1460 bool changed = false;
duke@435 1461 if (source != NULL) {
duke@435 1462 if (source->jvms() != NULL) {
duke@435 1463 set_jvms(source->jvms());
duke@435 1464 changed = true;
duke@435 1465 }
duke@435 1466 }
duke@435 1467 return changed;
duke@435 1468 }
duke@435 1469 };
duke@435 1470
duke@435 1471 // Inlined accessors for Compile::node_nodes that require the preceding class:
duke@435 1472 inline Node_Notes*
duke@435 1473 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
duke@435 1474 int idx, bool can_grow) {
duke@435 1475 assert(idx >= 0, "oob");
duke@435 1476 int block_idx = (idx >> _log2_node_notes_block_size);
duke@435 1477 int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
duke@435 1478 if (grow_by >= 0) {
duke@435 1479 if (!can_grow) return NULL;
duke@435 1480 grow_node_notes(arr, grow_by + 1);
duke@435 1481 }
duke@435 1482 // (Every element of arr is a sub-array of length _node_notes_block_size.)
duke@435 1483 return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
duke@435 1484 }
duke@435 1485
duke@435 1486 inline bool
duke@435 1487 Compile::set_node_notes_at(int idx, Node_Notes* value) {
duke@435 1488 if (value == NULL || value->is_clear())
duke@435 1489 return false; // nothing to write => write nothing
duke@435 1490 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
duke@435 1491 assert(loc != NULL, "");
duke@435 1492 return loc->update_from(value);
duke@435 1493 }
duke@435 1494
duke@435 1495
duke@435 1496 //------------------------------TypeNode---------------------------------------
duke@435 1497 // Node with a Type constant.
duke@435 1498 class TypeNode : public Node {
duke@435 1499 protected:
duke@435 1500 virtual uint hash() const; // Check the type
duke@435 1501 virtual uint cmp( const Node &n ) const;
duke@435 1502 virtual uint size_of() const; // Size is bigger
duke@435 1503 const Type* const _type;
duke@435 1504 public:
duke@435 1505 void set_type(const Type* t) {
duke@435 1506 assert(t != NULL, "sanity");
duke@435 1507 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
duke@435 1508 *(const Type**)&_type = t; // cast away const-ness
duke@435 1509 // If this node is in the hash table, make sure it doesn't need a rehash.
duke@435 1510 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
duke@435 1511 }
duke@435 1512 const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
duke@435 1513 TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
duke@435 1514 init_class_id(Class_Type);
duke@435 1515 }
duke@435 1516 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 1517 virtual const Type *bottom_type() const;
duke@435 1518 virtual uint ideal_reg() const;
duke@435 1519 #ifndef PRODUCT
duke@435 1520 virtual void dump_spec(outputStream *st) const;
duke@435 1521 #endif
duke@435 1522 };

mercurial