src/share/vm/opto/ifg.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 1001
91263420e1c6
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_ifg.cpp.incl"
    28 #define EXACT_PRESSURE 1
    30 //=============================================================================
    31 //------------------------------IFG--------------------------------------------
    32 PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
    33 }
    35 //------------------------------init-------------------------------------------
    36 void PhaseIFG::init( uint maxlrg ) {
    37   _maxlrg = maxlrg;
    38   _yanked = new (_arena) VectorSet(_arena);
    39   _is_square = false;
    40   // Make uninitialized adjacency lists
    41   _adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
    42   // Also make empty live range structures
    43   _lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
    44   memset(_lrgs,0,sizeof(LRG)*maxlrg);
    45   // Init all to empty
    46   for( uint i = 0; i < maxlrg; i++ ) {
    47     _adjs[i].initialize(maxlrg);
    48     _lrgs[i].Set_All();
    49   }
    50 }
    52 //------------------------------add--------------------------------------------
    53 // Add edge between vertices a & b.  These are sorted (triangular matrix),
    54 // then the smaller number is inserted in the larger numbered array.
    55 int PhaseIFG::add_edge( uint a, uint b ) {
    56   lrgs(a).invalid_degree();
    57   lrgs(b).invalid_degree();
    58   // Sort a and b, so that a is bigger
    59   assert( !_is_square, "only on triangular" );
    60   if( a < b ) { uint tmp = a; a = b; b = tmp; }
    61   return _adjs[a].insert( b );
    62 }
    64 //------------------------------add_vector-------------------------------------
    65 // Add an edge between 'a' and everything in the vector.
    66 void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
    67   // IFG is triangular, so do the inserts where 'a' < 'b'.
    68   assert( !_is_square, "only on triangular" );
    69   IndexSet *adjs_a = &_adjs[a];
    70   if( !vec->count() ) return;
    72   IndexSetIterator elements(vec);
    73   uint neighbor;
    74   while ((neighbor = elements.next()) != 0) {
    75     add_edge( a, neighbor );
    76   }
    77 }
    79 //------------------------------test-------------------------------------------
    80 // Is there an edge between a and b?
    81 int PhaseIFG::test_edge( uint a, uint b ) const {
    82   // Sort a and b, so that a is larger
    83   assert( !_is_square, "only on triangular" );
    84   if( a < b ) { uint tmp = a; a = b; b = tmp; }
    85   return _adjs[a].member(b);
    86 }
    88 //------------------------------SquareUp---------------------------------------
    89 // Convert triangular matrix to square matrix
    90 void PhaseIFG::SquareUp() {
    91   assert( !_is_square, "only on triangular" );
    93   // Simple transpose
    94   for( uint i = 0; i < _maxlrg; i++ ) {
    95     IndexSetIterator elements(&_adjs[i]);
    96     uint datum;
    97     while ((datum = elements.next()) != 0) {
    98       _adjs[datum].insert( i );
    99     }
   100   }
   101   _is_square = true;
   102 }
   104 //------------------------------Compute_Effective_Degree-----------------------
   105 // Compute effective degree in bulk
   106 void PhaseIFG::Compute_Effective_Degree() {
   107   assert( _is_square, "only on square" );
   109   for( uint i = 0; i < _maxlrg; i++ )
   110     lrgs(i).set_degree(effective_degree(i));
   111 }
   113 //------------------------------test_edge_sq-----------------------------------
   114 int PhaseIFG::test_edge_sq( uint a, uint b ) const {
   115   assert( _is_square, "only on square" );
   116   // Swap, so that 'a' has the lesser count.  Then binary search is on
   117   // the smaller of a's list and b's list.
   118   if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
   119   //return _adjs[a].unordered_member(b);
   120   return _adjs[a].member(b);
   121 }
   123 //------------------------------Union------------------------------------------
   124 // Union edges of B into A
   125 void PhaseIFG::Union( uint a, uint b ) {
   126   assert( _is_square, "only on square" );
   127   IndexSet *A = &_adjs[a];
   128   IndexSetIterator b_elements(&_adjs[b]);
   129   uint datum;
   130   while ((datum = b_elements.next()) != 0) {
   131     if(A->insert(datum)) {
   132       _adjs[datum].insert(a);
   133       lrgs(a).invalid_degree();
   134       lrgs(datum).invalid_degree();
   135     }
   136   }
   137 }
   139 //------------------------------remove_node------------------------------------
   140 // Yank a Node and all connected edges from the IFG.  Return a
   141 // list of neighbors (edges) yanked.
   142 IndexSet *PhaseIFG::remove_node( uint a ) {
   143   assert( _is_square, "only on square" );
   144   assert( !_yanked->test(a), "" );
   145   _yanked->set(a);
   147   // I remove the LRG from all neighbors.
   148   IndexSetIterator elements(&_adjs[a]);
   149   LRG &lrg_a = lrgs(a);
   150   uint datum;
   151   while ((datum = elements.next()) != 0) {
   152     _adjs[datum].remove(a);
   153     lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
   154   }
   155   return neighbors(a);
   156 }
   158 //------------------------------re_insert--------------------------------------
   159 // Re-insert a yanked Node.
   160 void PhaseIFG::re_insert( uint a ) {
   161   assert( _is_square, "only on square" );
   162   assert( _yanked->test(a), "" );
   163   (*_yanked) >>= a;
   165   IndexSetIterator elements(&_adjs[a]);
   166   uint datum;
   167   while ((datum = elements.next()) != 0) {
   168     _adjs[datum].insert(a);
   169     lrgs(datum).invalid_degree();
   170   }
   171 }
   173 //------------------------------compute_degree---------------------------------
   174 // Compute the degree between 2 live ranges.  If both live ranges are
   175 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
   176 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
   177 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
   178 // this is so.
   179 int LRG::compute_degree( LRG &l ) const {
   180   int tmp;
   181   int num_regs = _num_regs;
   182   int nregs = l.num_regs();
   183   tmp =  (_fat_proj || l._fat_proj)     // either is a fat-proj?
   184     ? (num_regs * nregs)                // then use product
   185     : MAX2(num_regs,nregs);             // else use max
   186   return tmp;
   187 }
   189 //------------------------------effective_degree-------------------------------
   190 // Compute effective degree for this live range.  If both live ranges are
   191 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
   192 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
   193 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
   194 // this is so.
   195 int PhaseIFG::effective_degree( uint lidx ) const {
   196   int eff = 0;
   197   int num_regs = lrgs(lidx).num_regs();
   198   int fat_proj = lrgs(lidx)._fat_proj;
   199   IndexSet *s = neighbors(lidx);
   200   IndexSetIterator elements(s);
   201   uint nidx;
   202   while((nidx = elements.next()) != 0) {
   203     LRG &lrgn = lrgs(nidx);
   204     int nregs = lrgn.num_regs();
   205     eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
   206       ? (num_regs * nregs)              // then use product
   207       : MAX2(num_regs,nregs);           // else use max
   208   }
   209   return eff;
   210 }
   213 #ifndef PRODUCT
   214 //------------------------------dump-------------------------------------------
   215 void PhaseIFG::dump() const {
   216   tty->print_cr("-- Interference Graph --%s--",
   217                 _is_square ? "square" : "triangular" );
   218   if( _is_square ) {
   219     for( uint i = 0; i < _maxlrg; i++ ) {
   220       tty->print( (*_yanked)[i] ? "XX " : "  ");
   221       tty->print("L%d: { ",i);
   222       IndexSetIterator elements(&_adjs[i]);
   223       uint datum;
   224       while ((datum = elements.next()) != 0) {
   225         tty->print("L%d ", datum);
   226       }
   227       tty->print_cr("}");
   229     }
   230     return;
   231   }
   233   // Triangular
   234   for( uint i = 0; i < _maxlrg; i++ ) {
   235     uint j;
   236     tty->print( (*_yanked)[i] ? "XX " : "  ");
   237     tty->print("L%d: { ",i);
   238     for( j = _maxlrg; j > i; j-- )
   239       if( test_edge(j - 1,i) ) {
   240         tty->print("L%d ",j - 1);
   241       }
   242     tty->print("| ");
   243     IndexSetIterator elements(&_adjs[i]);
   244     uint datum;
   245     while ((datum = elements.next()) != 0) {
   246       tty->print("L%d ", datum);
   247     }
   248     tty->print("}\n");
   249   }
   250   tty->print("\n");
   251 }
   253 //------------------------------stats------------------------------------------
   254 void PhaseIFG::stats() const {
   255   ResourceMark rm;
   256   int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
   257   memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
   258   uint i;
   259   for( i = 0; i < _maxlrg; i++ ) {
   260     h_cnt[neighbor_cnt(i)]++;
   261   }
   262   tty->print_cr("--Histogram of counts--");
   263   for( i = 0; i < _maxlrg*2; i++ )
   264     if( h_cnt[i] )
   265       tty->print("%d/%d ",i,h_cnt[i]);
   266   tty->print_cr("");
   267 }
   269 //------------------------------verify-----------------------------------------
   270 void PhaseIFG::verify( const PhaseChaitin *pc ) const {
   271   // IFG is square, sorted and no need for Find
   272   for( uint i = 0; i < _maxlrg; i++ ) {
   273     assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
   274     IndexSet *set = &_adjs[i];
   275     IndexSetIterator elements(set);
   276     uint idx;
   277     uint last = 0;
   278     while ((idx = elements.next()) != 0) {
   279       assert( idx != i, "Must have empty diagonal");
   280       assert( pc->Find_const(idx) == idx, "Must not need Find" );
   281       assert( _adjs[idx].member(i), "IFG not square" );
   282       assert( !(*_yanked)[idx], "No yanked neighbors" );
   283       assert( last < idx, "not sorted increasing");
   284       last = idx;
   285     }
   286     assert( !lrgs(i)._degree_valid ||
   287             effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong" );
   288   }
   289 }
   290 #endif
   292 //------------------------------interfere_with_live----------------------------
   293 // Interfere this register with everything currently live.  Use the RegMasks
   294 // to trim the set of possible interferences. Return a count of register-only
   295 // interferences as an estimate of register pressure.
   296 void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
   297   uint retval = 0;
   298   // Interfere with everything live.
   299   const RegMask &rm = lrgs(r).mask();
   300   // Check for interference by checking overlap of regmasks.
   301   // Only interfere if acceptable register masks overlap.
   302   IndexSetIterator elements(liveout);
   303   uint l;
   304   while( (l = elements.next()) != 0 )
   305     if( rm.overlap( lrgs(l).mask() ) )
   306       _ifg->add_edge( r, l );
   307 }
   309 //------------------------------build_ifg_virtual------------------------------
   310 // Actually build the interference graph.  Uses virtual registers only, no
   311 // physical register masks.  This allows me to be very aggressive when
   312 // coalescing copies.  Some of this aggressiveness will have to be undone
   313 // later, but I'd rather get all the copies I can now (since unremoved copies
   314 // at this point can end up in bad places).  Copies I re-insert later I have
   315 // more opportunity to insert them in low-frequency locations.
   316 void PhaseChaitin::build_ifg_virtual( ) {
   318   // For all blocks (in any order) do...
   319   for( uint i=0; i<_cfg._num_blocks; i++ ) {
   320     Block *b = _cfg._blocks[i];
   321     IndexSet *liveout = _live->live(b);
   323     // The IFG is built by a single reverse pass over each basic block.
   324     // Starting with the known live-out set, we remove things that get
   325     // defined and add things that become live (essentially executing one
   326     // pass of a standard LIVE analysis). Just before a Node defines a value
   327     // (and removes it from the live-ness set) that value is certainly live.
   328     // The defined value interferes with everything currently live.  The
   329     // value is then removed from the live-ness set and it's inputs are
   330     // added to the live-ness set.
   331     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
   332       Node *n = b->_nodes[j-1];
   334       // Get value being defined
   335       uint r = n2lidx(n);
   337       // Some special values do not allocate
   338       if( r ) {
   340         // Remove from live-out set
   341         liveout->remove(r);
   343         // Copies do not define a new value and so do not interfere.
   344         // Remove the copies source from the liveout set before interfering.
   345         uint idx = n->is_Copy();
   346         if( idx ) liveout->remove( n2lidx(n->in(idx)) );
   348         // Interfere with everything live
   349         interfere_with_live( r, liveout );
   350       }
   352       // Make all inputs live
   353       if( !n->is_Phi() ) {      // Phi function uses come from prior block
   354         for( uint k = 1; k < n->req(); k++ )
   355           liveout->insert( n2lidx(n->in(k)) );
   356       }
   358       // 2-address instructions always have the defined value live
   359       // on entry to the instruction, even though it is being defined
   360       // by the instruction.  We pretend a virtual copy sits just prior
   361       // to the instruction and kills the src-def'd register.
   362       // In other words, for 2-address instructions the defined value
   363       // interferes with all inputs.
   364       uint idx;
   365       if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
   366         const MachNode *mach = n->as_Mach();
   367         // Sometimes my 2-address ADDs are commuted in a bad way.
   368         // We generally want the USE-DEF register to refer to the
   369         // loop-varying quantity, to avoid a copy.
   370         uint op = mach->ideal_Opcode();
   371         // Check that mach->num_opnds() == 3 to ensure instruction is
   372         // not subsuming constants, effectively excludes addI_cin_imm
   373         // Can NOT swap for instructions like addI_cin_imm since it
   374         // is adding zero to yhi + carry and the second ideal-input
   375         // points to the result of adding low-halves.
   376         // Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
   377         if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
   378             n->in(1)->bottom_type()->base() == Type::Int &&
   379             // See if the ADD is involved in a tight data loop the wrong way
   380             n->in(2)->is_Phi() &&
   381             n->in(2)->in(2) == n ) {
   382           Node *tmp = n->in(1);
   383           n->set_req( 1, n->in(2) );
   384           n->set_req( 2, tmp );
   385         }
   386         // Defined value interferes with all inputs
   387         uint lidx = n2lidx(n->in(idx));
   388         for( uint k = 1; k < n->req(); k++ ) {
   389           uint kidx = n2lidx(n->in(k));
   390           if( kidx != lidx )
   391             _ifg->add_edge( r, kidx );
   392         }
   393       }
   394     } // End of forall instructions in block
   395   } // End of forall blocks
   396 }
   398 //------------------------------count_int_pressure-----------------------------
   399 uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
   400   IndexSetIterator elements(liveout);
   401   uint lidx;
   402   uint cnt = 0;
   403   while ((lidx = elements.next()) != 0) {
   404     if( lrgs(lidx).mask().is_UP() &&
   405         lrgs(lidx).mask_size() &&
   406         !lrgs(lidx)._is_float &&
   407         lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) )
   408       cnt += lrgs(lidx).reg_pressure();
   409   }
   410   return cnt;
   411 }
   413 //------------------------------count_float_pressure---------------------------
   414 uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
   415   IndexSetIterator elements(liveout);
   416   uint lidx;
   417   uint cnt = 0;
   418   while ((lidx = elements.next()) != 0) {
   419     if( lrgs(lidx).mask().is_UP() &&
   420         lrgs(lidx).mask_size() &&
   421         lrgs(lidx)._is_float )
   422       cnt += lrgs(lidx).reg_pressure();
   423   }
   424   return cnt;
   425 }
   427 //------------------------------lower_pressure---------------------------------
   428 // Adjust register pressure down by 1.  Capture last hi-to-low transition,
   429 static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
   430   if( lrg->mask().is_UP() && lrg->mask_size() ) {
   431     if( lrg->_is_float ) {
   432       pressure[1] -= lrg->reg_pressure();
   433       if( pressure[1] == (uint)FLOATPRESSURE ) {
   434         hrp_index[1] = where;
   435 #ifdef EXACT_PRESSURE
   436       if( pressure[1] > b->_freg_pressure )
   437         b->_freg_pressure = pressure[1]+1;
   438 #else
   439         b->_freg_pressure = (uint)FLOATPRESSURE+1;
   440 #endif
   441       }
   442     } else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
   443       pressure[0] -= lrg->reg_pressure();
   444       if( pressure[0] == (uint)INTPRESSURE   ) {
   445         hrp_index[0] = where;
   446 #ifdef EXACT_PRESSURE
   447       if( pressure[0] > b->_reg_pressure )
   448         b->_reg_pressure = pressure[0]+1;
   449 #else
   450         b->_reg_pressure = (uint)INTPRESSURE+1;
   451 #endif
   452       }
   453     }
   454   }
   455 }
   457 //------------------------------build_ifg_physical-----------------------------
   458 // Build the interference graph using physical registers when available.
   459 // That is, if 2 live ranges are simultaneously alive but in their acceptable
   460 // register sets do not overlap, then they do not interfere.
   461 uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
   462   NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
   464   uint spill_reg = LRG::SPILL_REG;
   465   uint must_spill = 0;
   467   // For all blocks (in any order) do...
   468   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   469     Block *b = _cfg._blocks[i];
   470     // Clone (rather than smash in place) the liveout info, so it is alive
   471     // for the "collect_gc_info" phase later.
   472     IndexSet liveout(_live->live(b));
   473     uint last_inst = b->end_idx();
   474     // Compute first nonphi node index
   475     uint first_inst;
   476     for( first_inst = 1; first_inst < last_inst; first_inst++ )
   477       if( !b->_nodes[first_inst]->is_Phi() )
   478         break;
   480     // Spills could be inserted before CreateEx node which should be
   481     // first instruction in block after Phis. Move CreateEx up.
   482     for( uint insidx = first_inst; insidx < last_inst; insidx++ ) {
   483       Node *ex = b->_nodes[insidx];
   484       if( ex->is_SpillCopy() ) continue;
   485       if( insidx > first_inst && ex->is_Mach() &&
   486           ex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
   487         // If the CreateEx isn't above all the MachSpillCopies
   488         // then move it to the top.
   489         b->_nodes.remove(insidx);
   490         b->_nodes.insert(first_inst, ex);
   491       }
   492       // Stop once a CreateEx or any other node is found
   493       break;
   494     }
   496     // Reset block's register pressure values for each ifg construction
   497     uint pressure[2], hrp_index[2];
   498     pressure[0] = pressure[1] = 0;
   499     hrp_index[0] = hrp_index[1] = last_inst+1;
   500     b->_reg_pressure = b->_freg_pressure = 0;
   501     // Liveout things are presumed live for the whole block.  We accumulate
   502     // 'area' accordingly.  If they get killed in the block, we'll subtract
   503     // the unused part of the block from the area.
   504     int inst_count = last_inst - first_inst;
   505     double cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
   506     assert(!(cost < 0.0), "negative spill cost" );
   507     IndexSetIterator elements(&liveout);
   508     uint lidx;
   509     while ((lidx = elements.next()) != 0) {
   510       LRG &lrg = lrgs(lidx);
   511       lrg._area += cost;
   512       // Compute initial register pressure
   513       if( lrg.mask().is_UP() && lrg.mask_size() ) {
   514         if( lrg._is_float ) {   // Count float pressure
   515           pressure[1] += lrg.reg_pressure();
   516 #ifdef EXACT_PRESSURE
   517           if( pressure[1] > b->_freg_pressure )
   518             b->_freg_pressure = pressure[1];
   519 #endif
   520           // Count int pressure, but do not count the SP, flags
   521         } else if( lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
   522           pressure[0] += lrg.reg_pressure();
   523 #ifdef EXACT_PRESSURE
   524           if( pressure[0] > b->_reg_pressure )
   525             b->_reg_pressure = pressure[0];
   526 #endif
   527         }
   528       }
   529     }
   530     assert( pressure[0] == count_int_pressure  (&liveout), "" );
   531     assert( pressure[1] == count_float_pressure(&liveout), "" );
   533     // The IFG is built by a single reverse pass over each basic block.
   534     // Starting with the known live-out set, we remove things that get
   535     // defined and add things that become live (essentially executing one
   536     // pass of a standard LIVE analysis).  Just before a Node defines a value
   537     // (and removes it from the live-ness set) that value is certainly live.
   538     // The defined value interferes with everything currently live.  The
   539     // value is then removed from the live-ness set and it's inputs are added
   540     // to the live-ness set.
   541     uint j;
   542     for( j = last_inst + 1; j > 1; j-- ) {
   543       Node *n = b->_nodes[j - 1];
   545       // Get value being defined
   546       uint r = n2lidx(n);
   548       // Some special values do not allocate
   549       if( r ) {
   550         // A DEF normally costs block frequency; rematerialized values are
   551         // removed from the DEF sight, so LOWER costs here.
   552         lrgs(r)._cost += n->rematerialize() ? 0 : b->_freq;
   554         // If it is not live, then this instruction is dead.  Probably caused
   555         // by spilling and rematerialization.  Who cares why, yank this baby.
   556         if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) {
   557           Node *def = n->in(0);
   558           if( !n->is_Proj() ||
   559               // Could also be a flags-projection of a dead ADD or such.
   560               (n2lidx(def) && !liveout.member(n2lidx(def)) ) ) {
   561             b->_nodes.remove(j - 1);
   562             if( lrgs(r)._def == n ) lrgs(r)._def = 0;
   563             n->disconnect_inputs(NULL);
   564             _cfg._bbs.map(n->_idx,NULL);
   565             n->replace_by(C->top());
   566             // Since yanking a Node from block, high pressure moves up one
   567             hrp_index[0]--;
   568             hrp_index[1]--;
   569             continue;
   570           }
   572           // Fat-projections kill many registers which cannot be used to
   573           // hold live ranges.
   574           if( lrgs(r)._fat_proj ) {
   575             // Count the int-only registers
   576             RegMask itmp = lrgs(r).mask();
   577             itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
   578             int iregs = itmp.Size();
   579 #ifdef EXACT_PRESSURE
   580             if( pressure[0]+iregs > b->_reg_pressure )
   581               b->_reg_pressure = pressure[0]+iregs;
   582 #endif
   583             if( pressure[0]       <= (uint)INTPRESSURE &&
   584                 pressure[0]+iregs >  (uint)INTPRESSURE ) {
   585 #ifndef EXACT_PRESSURE
   586               b->_reg_pressure = (uint)INTPRESSURE+1;
   587 #endif
   588               hrp_index[0] = j-1;
   589             }
   590             // Count the float-only registers
   591             RegMask ftmp = lrgs(r).mask();
   592             ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
   593             int fregs = ftmp.Size();
   594 #ifdef EXACT_PRESSURE
   595             if( pressure[1]+fregs > b->_freg_pressure )
   596               b->_freg_pressure = pressure[1]+fregs;
   597 #endif
   598             if( pressure[1]       <= (uint)FLOATPRESSURE &&
   599                 pressure[1]+fregs >  (uint)FLOATPRESSURE ) {
   600 #ifndef EXACT_PRESSURE
   601               b->_freg_pressure = (uint)FLOATPRESSURE+1;
   602 #endif
   603               hrp_index[1] = j-1;
   604             }
   605           }
   607         } else {                // Else it is live
   608           // A DEF also ends 'area' partway through the block.
   609           lrgs(r)._area -= cost;
   610           assert(!(lrgs(r)._area < 0.0), "negative spill area" );
   612           // Insure high score for immediate-use spill copies so they get a color
   613           if( n->is_SpillCopy()
   614               && lrgs(r).is_singledef()        // MultiDef live range can still split
   615               && n->outcnt() == 1              // and use must be in this block
   616               && _cfg._bbs[n->unique_out()->_idx] == b ) {
   617             // All single-use MachSpillCopy(s) that immediately precede their
   618             // use must color early.  If a longer live range steals their
   619             // color, the spill copy will split and may push another spill copy
   620             // further away resulting in an infinite spill-split-retry cycle.
   621             // Assigning a zero area results in a high score() and a good
   622             // location in the simplify list.
   623             //
   625             Node *single_use = n->unique_out();
   626             assert( b->find_node(single_use) >= j, "Use must be later in block");
   627             // Use can be earlier in block if it is a Phi, but then I should be a MultiDef
   629             // Find first non SpillCopy 'm' that follows the current instruction
   630             // (j - 1) is index for current instruction 'n'
   631             Node *m = n;
   632             for( uint i = j; i <= last_inst && m->is_SpillCopy(); ++i ) { m = b->_nodes[i]; }
   633             if( m == single_use ) {
   634               lrgs(r)._area = 0.0;
   635             }
   636           }
   638           // Remove from live-out set
   639           if( liveout.remove(r) ) {
   640             // Adjust register pressure.
   641             // Capture last hi-to-lo pressure transition
   642             lower_pressure( &lrgs(r), j-1, b, pressure, hrp_index );
   643             assert( pressure[0] == count_int_pressure  (&liveout), "" );
   644             assert( pressure[1] == count_float_pressure(&liveout), "" );
   645           }
   647           // Copies do not define a new value and so do not interfere.
   648           // Remove the copies source from the liveout set before interfering.
   649           uint idx = n->is_Copy();
   650           if( idx ) {
   651             uint x = n2lidx(n->in(idx));
   652             if( liveout.remove( x ) ) {
   653               lrgs(x)._area -= cost;
   654               // Adjust register pressure.
   655               lower_pressure( &lrgs(x), j-1, b, pressure, hrp_index );
   656               assert( pressure[0] == count_int_pressure  (&liveout), "" );
   657               assert( pressure[1] == count_float_pressure(&liveout), "" );
   658             }
   659           }
   660         } // End of if live or not
   662         // Interfere with everything live.  If the defined value must
   663         // go in a particular register, just remove that register from
   664         // all conflicting parties and avoid the interference.
   666         // Make exclusions for rematerializable defs.  Since rematerializable
   667         // DEFs are not bound but the live range is, some uses must be bound.
   668         // If we spill live range 'r', it can rematerialize at each use site
   669         // according to its bindings.
   670         const RegMask &rmask = lrgs(r).mask();
   671         if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) {
   672           // Smear odd bits; leave only aligned pairs of bits.
   673           RegMask r2mask = rmask;
   674           r2mask.SmearToPairs();
   675           // Check for common case
   676           int r_size = lrgs(r).num_regs();
   677           OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical;
   679           IndexSetIterator elements(&liveout);
   680           uint l;
   681           while ((l = elements.next()) != 0) {
   682             LRG &lrg = lrgs(l);
   683             // If 'l' must spill already, do not further hack his bits.
   684             // He'll get some interferences and be forced to spill later.
   685             if( lrg._must_spill ) continue;
   686             // Remove bound register(s) from 'l's choices
   687             RegMask old = lrg.mask();
   688             uint old_size = lrg.mask_size();
   689             // Remove the bits from LRG 'r' from LRG 'l' so 'l' no
   690             // longer interferes with 'r'.  If 'l' requires aligned
   691             // adjacent pairs, subtract out bit pairs.
   692             if( lrg.num_regs() == 2 && !lrg._fat_proj ) {
   693               lrg.SUBTRACT( r2mask );
   694               lrg.compute_set_mask_size();
   695             } else if( r_size != 1 ) {
   696               lrg.SUBTRACT( rmask );
   697               lrg.compute_set_mask_size();
   698             } else {            // Common case: size 1 bound removal
   699               if( lrg.mask().Member(r_reg) ) {
   700                 lrg.Remove(r_reg);
   701                 lrg.set_mask_size(lrg.mask().is_AllStack() ? 65535:old_size-1);
   702               }
   703             }
   704             // If 'l' goes completely dry, it must spill.
   705             if( lrg.not_free() ) {
   706               // Give 'l' some kind of reasonable mask, so he picks up
   707               // interferences (and will spill later).
   708               lrg.set_mask( old );
   709               lrg.set_mask_size(old_size);
   710               must_spill++;
   711               lrg._must_spill = 1;
   712               lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
   713             }
   714           }
   715         } // End of if bound
   717         // Now interference with everything that is live and has
   718         // compatible register sets.
   719         interfere_with_live(r,&liveout);
   721       } // End of if normal register-allocated value
   723       // Area remaining in the block
   724       inst_count--;
   725       cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
   727       // Make all inputs live
   728       if( !n->is_Phi() ) {      // Phi function uses come from prior block
   729         JVMState* jvms = n->jvms();
   730         uint debug_start = jvms ? jvms->debug_start() : 999999;
   731         // Start loop at 1 (skip control edge) for most Nodes.
   732         // SCMemProj's might be the sole use of a StoreLConditional.
   733         // While StoreLConditionals set memory (the SCMemProj use)
   734         // they also def flags; if that flag def is unused the
   735         // allocator sees a flag-setting instruction with no use of
   736         // the flags and assumes it's dead.  This keeps the (useless)
   737         // flag-setting behavior alive while also keeping the (useful)
   738         // memory update effect.
   739         for( uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++ ) {
   740           Node *def = n->in(k);
   741           uint x = n2lidx(def);
   742           if( !x ) continue;
   743           LRG &lrg = lrgs(x);
   744           // No use-side cost for spilling debug info
   745           if( k < debug_start )
   746             // A USE costs twice block frequency (once for the Load, once
   747             // for a Load-delay).  Rematerialized uses only cost once.
   748             lrg._cost += (def->rematerialize() ? b->_freq : (b->_freq + b->_freq));
   749           // It is live now
   750           if( liveout.insert( x ) ) {
   751             // Newly live things assumed live from here to top of block
   752             lrg._area += cost;
   753             // Adjust register pressure
   754             if( lrg.mask().is_UP() && lrg.mask_size() ) {
   755               if( lrg._is_float ) {
   756                 pressure[1] += lrg.reg_pressure();
   757 #ifdef EXACT_PRESSURE
   758                 if( pressure[1] > b->_freg_pressure )
   759                   b->_freg_pressure = pressure[1];
   760 #endif
   761               } else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
   762                 pressure[0] += lrg.reg_pressure();
   763 #ifdef EXACT_PRESSURE
   764                 if( pressure[0] > b->_reg_pressure )
   765                   b->_reg_pressure = pressure[0];
   766 #endif
   767               }
   768             }
   769             assert( pressure[0] == count_int_pressure  (&liveout), "" );
   770             assert( pressure[1] == count_float_pressure(&liveout), "" );
   771           }
   772           assert(!(lrg._area < 0.0), "negative spill area" );
   773         }
   774       }
   775     } // End of reverse pass over all instructions in block
   777     // If we run off the top of the block with high pressure and
   778     // never see a hi-to-low pressure transition, just record that
   779     // the whole block is high pressure.
   780     if( pressure[0] > (uint)INTPRESSURE   ) {
   781       hrp_index[0] = 0;
   782 #ifdef EXACT_PRESSURE
   783       if( pressure[0] > b->_reg_pressure )
   784         b->_reg_pressure = pressure[0];
   785 #else
   786       b->_reg_pressure = (uint)INTPRESSURE+1;
   787 #endif
   788     }
   789     if( pressure[1] > (uint)FLOATPRESSURE ) {
   790       hrp_index[1] = 0;
   791 #ifdef EXACT_PRESSURE
   792       if( pressure[1] > b->_freg_pressure )
   793         b->_freg_pressure = pressure[1];
   794 #else
   795       b->_freg_pressure = (uint)FLOATPRESSURE+1;
   796 #endif
   797     }
   799     // Compute high pressure indice; avoid landing in the middle of projnodes
   800     j = hrp_index[0];
   801     if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
   802       Node *cur = b->_nodes[j];
   803       while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
   804         j--;
   805         cur = b->_nodes[j];
   806       }
   807     }
   808     b->_ihrp_index = j;
   809     j = hrp_index[1];
   810     if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
   811       Node *cur = b->_nodes[j];
   812       while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
   813         j--;
   814         cur = b->_nodes[j];
   815       }
   816     }
   817     b->_fhrp_index = j;
   819 #ifndef PRODUCT
   820     // Gather Register Pressure Statistics
   821     if( PrintOptoStatistics ) {
   822       if( b->_reg_pressure > (uint)INTPRESSURE || b->_freg_pressure > (uint)FLOATPRESSURE )
   823         _high_pressure++;
   824       else
   825         _low_pressure++;
   826     }
   827 #endif
   828   } // End of for all blocks
   830   return must_spill;
   831 }

mercurial