src/share/vm/opto/divnode.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 1003
30663ca5e8f4
child 1191
cecd04fc6f93
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

duke@435 1 /*
twisti@1002 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 #include "incls/_precompiled.incl"
duke@435 30 #include "incls/_divnode.cpp.incl"
duke@435 31 #include <math.h>
duke@435 32
rasbold@580 33 //----------------------magic_int_divide_constants-----------------------------
rasbold@580 34 // Compute magic multiplier and shift constant for converting a 32 bit divide
rasbold@580 35 // by constant into a multiply/shift/add series. Return false if calculations
rasbold@580 36 // fail.
rasbold@580 37 //
twisti@1040 38 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
rasbold@580 39 // minor type name and parameter changes.
rasbold@580 40 static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
rasbold@580 41 int32_t p;
rasbold@580 42 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
rasbold@580 43 const uint32_t two31 = 0x80000000L; // 2**31.
rasbold@580 44
rasbold@580 45 ad = ABS(d);
rasbold@580 46 if (d == 0 || d == 1) return false;
rasbold@580 47 t = two31 + ((uint32_t)d >> 31);
rasbold@580 48 anc = t - 1 - t%ad; // Absolute value of nc.
rasbold@580 49 p = 31; // Init. p.
rasbold@580 50 q1 = two31/anc; // Init. q1 = 2**p/|nc|.
rasbold@580 51 r1 = two31 - q1*anc; // Init. r1 = rem(2**p, |nc|).
rasbold@580 52 q2 = two31/ad; // Init. q2 = 2**p/|d|.
rasbold@580 53 r2 = two31 - q2*ad; // Init. r2 = rem(2**p, |d|).
rasbold@580 54 do {
rasbold@580 55 p = p + 1;
rasbold@580 56 q1 = 2*q1; // Update q1 = 2**p/|nc|.
rasbold@580 57 r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
rasbold@580 58 if (r1 >= anc) { // (Must be an unsigned
rasbold@580 59 q1 = q1 + 1; // comparison here).
rasbold@580 60 r1 = r1 - anc;
rasbold@580 61 }
rasbold@580 62 q2 = 2*q2; // Update q2 = 2**p/|d|.
rasbold@580 63 r2 = 2*r2; // Update r2 = rem(2**p, |d|).
rasbold@580 64 if (r2 >= ad) { // (Must be an unsigned
rasbold@580 65 q2 = q2 + 1; // comparison here).
rasbold@580 66 r2 = r2 - ad;
rasbold@580 67 }
rasbold@580 68 delta = ad - r2;
rasbold@580 69 } while (q1 < delta || (q1 == delta && r1 == 0));
rasbold@580 70
rasbold@580 71 M = q2 + 1;
rasbold@580 72 if (d < 0) M = -M; // Magic number and
rasbold@580 73 s = p - 32; // shift amount to return.
rasbold@580 74
rasbold@580 75 return true;
rasbold@580 76 }
rasbold@580 77
rasbold@580 78 //--------------------------transform_int_divide-------------------------------
rasbold@580 79 // Convert a division by constant divisor into an alternate Ideal graph.
rasbold@580 80 // Return NULL if no transformation occurs.
rasbold@580 81 static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {
duke@435 82
duke@435 83 // Check for invalid divisors
rasbold@580 84 assert( divisor != 0 && divisor != min_jint,
rasbold@580 85 "bad divisor for transforming to long multiply" );
duke@435 86
duke@435 87 bool d_pos = divisor >= 0;
rasbold@580 88 jint d = d_pos ? divisor : -divisor;
duke@435 89 const int N = 32;
duke@435 90
duke@435 91 // Result
rasbold@580 92 Node *q = NULL;
duke@435 93
duke@435 94 if (d == 1) {
rasbold@580 95 // division by +/- 1
rasbold@580 96 if (!d_pos) {
rasbold@580 97 // Just negate the value
duke@435 98 q = new (phase->C, 3) SubINode(phase->intcon(0), dividend);
duke@435 99 }
rasbold@580 100 } else if ( is_power_of_2(d) ) {
rasbold@580 101 // division by +/- a power of 2
duke@435 102
duke@435 103 // See if we can simply do a shift without rounding
duke@435 104 bool needs_rounding = true;
duke@435 105 const Type *dt = phase->type(dividend);
duke@435 106 const TypeInt *dti = dt->isa_int();
rasbold@580 107 if (dti && dti->_lo >= 0) {
rasbold@580 108 // we don't need to round a positive dividend
duke@435 109 needs_rounding = false;
rasbold@580 110 } else if( dividend->Opcode() == Op_AndI ) {
rasbold@580 111 // An AND mask of sufficient size clears the low bits and
rasbold@580 112 // I can avoid rounding.
kvn@835 113 const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
kvn@835 114 if( andconi_t && andconi_t->is_con() ) {
kvn@835 115 jint andconi = andconi_t->get_con();
kvn@835 116 if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
kvn@835 117 dividend = dividend->in(1);
kvn@835 118 needs_rounding = false;
kvn@835 119 }
duke@435 120 }
duke@435 121 }
duke@435 122
duke@435 123 // Add rounding to the shift to handle the sign bit
rasbold@580 124 int l = log2_intptr(d-1)+1;
rasbold@580 125 if (needs_rounding) {
rasbold@580 126 // Divide-by-power-of-2 can be made into a shift, but you have to do
rasbold@580 127 // more math for the rounding. You need to add 0 for positive
rasbold@580 128 // numbers, and "i-1" for negative numbers. Example: i=4, so the
rasbold@580 129 // shift is by 2. You need to add 3 to negative dividends and 0 to
rasbold@580 130 // positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
rasbold@580 131 // (-2+3)>>2 becomes 0, etc.
rasbold@580 132
rasbold@580 133 // Compute 0 or -1, based on sign bit
rasbold@580 134 Node *sign = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N - 1)));
rasbold@580 135 // Mask sign bit to the low sign bits
rasbold@580 136 Node *round = phase->transform(new (phase->C, 3) URShiftINode(sign, phase->intcon(N - l)));
rasbold@580 137 // Round up before shifting
rasbold@580 138 dividend = phase->transform(new (phase->C, 3) AddINode(dividend, round));
duke@435 139 }
duke@435 140
rasbold@580 141 // Shift for division
duke@435 142 q = new (phase->C, 3) RShiftINode(dividend, phase->intcon(l));
duke@435 143
rasbold@580 144 if (!d_pos) {
duke@435 145 q = new (phase->C, 3) SubINode(phase->intcon(0), phase->transform(q));
rasbold@580 146 }
rasbold@580 147 } else {
rasbold@580 148 // Attempt the jint constant divide -> multiply transform found in
rasbold@580 149 // "Division by Invariant Integers using Multiplication"
rasbold@580 150 // by Granlund and Montgomery
rasbold@580 151 // See also "Hacker's Delight", chapter 10 by Warren.
rasbold@580 152
rasbold@580 153 jint magic_const;
rasbold@580 154 jint shift_const;
rasbold@580 155 if (magic_int_divide_constants(d, magic_const, shift_const)) {
rasbold@580 156 Node *magic = phase->longcon(magic_const);
rasbold@580 157 Node *dividend_long = phase->transform(new (phase->C, 2) ConvI2LNode(dividend));
rasbold@580 158
rasbold@580 159 // Compute the high half of the dividend x magic multiplication
rasbold@580 160 Node *mul_hi = phase->transform(new (phase->C, 3) MulLNode(dividend_long, magic));
rasbold@580 161
rasbold@580 162 if (magic_const < 0) {
rasbold@580 163 mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N)));
rasbold@580 164 mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));
rasbold@580 165
rasbold@580 166 // The magic multiplier is too large for a 32 bit constant. We've adjusted
rasbold@580 167 // it down by 2^32, but have to add 1 dividend back in after the multiplication.
rasbold@580 168 // This handles the "overflow" case described by Granlund and Montgomery.
rasbold@580 169 mul_hi = phase->transform(new (phase->C, 3) AddINode(dividend, mul_hi));
rasbold@580 170
rasbold@580 171 // Shift over the (adjusted) mulhi
rasbold@580 172 if (shift_const != 0) {
rasbold@580 173 mul_hi = phase->transform(new (phase->C, 3) RShiftINode(mul_hi, phase->intcon(shift_const)));
rasbold@580 174 }
rasbold@580 175 } else {
rasbold@580 176 // No add is required, we can merge the shifts together.
rasbold@580 177 mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
rasbold@580 178 mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));
rasbold@580 179 }
rasbold@580 180
rasbold@580 181 // Get a 0 or -1 from the sign of the dividend.
rasbold@580 182 Node *addend0 = mul_hi;
rasbold@580 183 Node *addend1 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N-1)));
rasbold@580 184
rasbold@580 185 // If the divisor is negative, swap the order of the input addends;
rasbold@580 186 // this has the effect of negating the quotient.
rasbold@580 187 if (!d_pos) {
rasbold@580 188 Node *temp = addend0; addend0 = addend1; addend1 = temp;
rasbold@580 189 }
rasbold@580 190
rasbold@580 191 // Adjust the final quotient by subtracting -1 (adding 1)
rasbold@580 192 // from the mul_hi.
rasbold@580 193 q = new (phase->C, 3) SubINode(addend0, addend1);
rasbold@580 194 }
duke@435 195 }
duke@435 196
rasbold@580 197 return q;
rasbold@580 198 }
duke@435 199
rasbold@580 200 //---------------------magic_long_divide_constants-----------------------------
rasbold@580 201 // Compute magic multiplier and shift constant for converting a 64 bit divide
rasbold@580 202 // by constant into a multiply/shift/add series. Return false if calculations
rasbold@580 203 // fail.
rasbold@580 204 //
twisti@1040 205 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
rasbold@580 206 // minor type name and parameter changes. Adjusted to 64 bit word width.
rasbold@580 207 static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
rasbold@580 208 int64_t p;
rasbold@580 209 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
rasbold@580 210 const uint64_t two63 = 0x8000000000000000LL; // 2**63.
rasbold@580 211
rasbold@580 212 ad = ABS(d);
rasbold@580 213 if (d == 0 || d == 1) return false;
rasbold@580 214 t = two63 + ((uint64_t)d >> 63);
rasbold@580 215 anc = t - 1 - t%ad; // Absolute value of nc.
rasbold@580 216 p = 63; // Init. p.
rasbold@580 217 q1 = two63/anc; // Init. q1 = 2**p/|nc|.
rasbold@580 218 r1 = two63 - q1*anc; // Init. r1 = rem(2**p, |nc|).
rasbold@580 219 q2 = two63/ad; // Init. q2 = 2**p/|d|.
rasbold@580 220 r2 = two63 - q2*ad; // Init. r2 = rem(2**p, |d|).
rasbold@580 221 do {
rasbold@580 222 p = p + 1;
rasbold@580 223 q1 = 2*q1; // Update q1 = 2**p/|nc|.
rasbold@580 224 r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
rasbold@580 225 if (r1 >= anc) { // (Must be an unsigned
rasbold@580 226 q1 = q1 + 1; // comparison here).
rasbold@580 227 r1 = r1 - anc;
rasbold@580 228 }
rasbold@580 229 q2 = 2*q2; // Update q2 = 2**p/|d|.
rasbold@580 230 r2 = 2*r2; // Update r2 = rem(2**p, |d|).
rasbold@580 231 if (r2 >= ad) { // (Must be an unsigned
rasbold@580 232 q2 = q2 + 1; // comparison here).
rasbold@580 233 r2 = r2 - ad;
rasbold@580 234 }
rasbold@580 235 delta = ad - r2;
rasbold@580 236 } while (q1 < delta || (q1 == delta && r1 == 0));
rasbold@580 237
rasbold@580 238 M = q2 + 1;
rasbold@580 239 if (d < 0) M = -M; // Magic number and
rasbold@580 240 s = p - 64; // shift amount to return.
rasbold@580 241
rasbold@580 242 return true;
rasbold@580 243 }
rasbold@580 244
rasbold@580 245 //---------------------long_by_long_mulhi--------------------------------------
rasbold@580 246 // Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
twisti@1002 247 static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) {
rasbold@580 248 // If the architecture supports a 64x64 mulhi, there is
rasbold@580 249 // no need to synthesize it in ideal nodes.
rasbold@580 250 if (Matcher::has_match_rule(Op_MulHiL)) {
twisti@1002 251 Node* v = phase->longcon(magic_const);
rasbold@580 252 return new (phase->C, 3) MulHiLNode(dividend, v);
duke@435 253 }
duke@435 254
twisti@1002 255 // Taken from Hacker's Delight, Fig. 8-2. Multiply high signed.
twisti@1002 256 // (http://www.hackersdelight.org/HDcode/mulhs.c)
twisti@1002 257 //
twisti@1002 258 // int mulhs(int u, int v) {
twisti@1002 259 // unsigned u0, v0, w0;
twisti@1002 260 // int u1, v1, w1, w2, t;
twisti@1002 261 //
twisti@1002 262 // u0 = u & 0xFFFF; u1 = u >> 16;
twisti@1002 263 // v0 = v & 0xFFFF; v1 = v >> 16;
twisti@1002 264 // w0 = u0*v0;
twisti@1002 265 // t = u1*v0 + (w0 >> 16);
twisti@1002 266 // w1 = t & 0xFFFF;
twisti@1002 267 // w2 = t >> 16;
twisti@1002 268 // w1 = u0*v1 + w1;
twisti@1002 269 // return u1*v1 + w2 + (w1 >> 16);
twisti@1002 270 // }
twisti@1002 271 //
twisti@1002 272 // Note: The version above is for 32x32 multiplications, while the
twisti@1002 273 // following inline comments are adapted to 64x64.
twisti@1002 274
rasbold@580 275 const int N = 64;
duke@435 276
twisti@1002 277 // u0 = u & 0xFFFFFFFF; u1 = u >> 32;
twisti@1002 278 Node* u0 = phase->transform(new (phase->C, 3) AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
twisti@1002 279 Node* u1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N / 2)));
rasbold@580 280
twisti@1002 281 // v0 = v & 0xFFFFFFFF; v1 = v >> 32;
twisti@1002 282 Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF);
twisti@1002 283 Node* v1 = phase->longcon(magic_const >> (N / 2));
rasbold@580 284
twisti@1002 285 // w0 = u0*v0;
twisti@1002 286 Node* w0 = phase->transform(new (phase->C, 3) MulLNode(u0, v0));
rasbold@580 287
twisti@1002 288 // t = u1*v0 + (w0 >> 32);
twisti@1002 289 Node* u1v0 = phase->transform(new (phase->C, 3) MulLNode(u1, v0));
twisti@1002 290 Node* temp = phase->transform(new (phase->C, 3) URShiftLNode(w0, phase->intcon(N / 2)));
twisti@1002 291 Node* t = phase->transform(new (phase->C, 3) AddLNode(u1v0, temp));
rasbold@729 292
twisti@1002 293 // w1 = t & 0xFFFFFFFF;
twisti@1002 294 Node* w1 = new (phase->C, 3) AndLNode(t, phase->longcon(0xFFFFFFFF));
rasbold@729 295
twisti@1002 296 // w2 = t >> 32;
twisti@1002 297 Node* w2 = new (phase->C, 3) RShiftLNode(t, phase->intcon(N / 2));
rasbold@580 298
twisti@1002 299 // 6732154: Construct both w1 and w2 before transforming, so t
twisti@1002 300 // doesn't go dead prematurely.
twisti@1002 301 w1 = phase->transform(w1);
twisti@1002 302 w2 = phase->transform(w2);
twisti@1002 303
twisti@1002 304 // w1 = u0*v1 + w1;
twisti@1002 305 Node* u0v1 = phase->transform(new (phase->C, 3) MulLNode(u0, v1));
twisti@1002 306 w1 = phase->transform(new (phase->C, 3) AddLNode(u0v1, w1));
twisti@1002 307
twisti@1002 308 // return u1*v1 + w2 + (w1 >> 32);
twisti@1002 309 Node* u1v1 = phase->transform(new (phase->C, 3) MulLNode(u1, v1));
twisti@1002 310 Node* temp1 = phase->transform(new (phase->C, 3) AddLNode(u1v1, w2));
twisti@1002 311 Node* temp2 = phase->transform(new (phase->C, 3) RShiftLNode(w1, phase->intcon(N / 2)));
twisti@1002 312
twisti@1002 313 return new (phase->C, 3) AddLNode(temp1, temp2);
rasbold@580 314 }
rasbold@580 315
rasbold@580 316
rasbold@580 317 //--------------------------transform_long_divide------------------------------
rasbold@580 318 // Convert a division by constant divisor into an alternate Ideal graph.
rasbold@580 319 // Return NULL if no transformation occurs.
rasbold@580 320 static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
rasbold@580 321 // Check for invalid divisors
rasbold@580 322 assert( divisor != 0L && divisor != min_jlong,
rasbold@580 323 "bad divisor for transforming to long multiply" );
rasbold@580 324
rasbold@580 325 bool d_pos = divisor >= 0;
rasbold@580 326 jlong d = d_pos ? divisor : -divisor;
rasbold@580 327 const int N = 64;
rasbold@580 328
rasbold@580 329 // Result
rasbold@580 330 Node *q = NULL;
rasbold@580 331
rasbold@580 332 if (d == 1) {
rasbold@580 333 // division by +/- 1
rasbold@580 334 if (!d_pos) {
rasbold@580 335 // Just negate the value
rasbold@580 336 q = new (phase->C, 3) SubLNode(phase->longcon(0), dividend);
rasbold@580 337 }
rasbold@580 338 } else if ( is_power_of_2_long(d) ) {
rasbold@580 339
rasbold@580 340 // division by +/- a power of 2
rasbold@580 341
rasbold@580 342 // See if we can simply do a shift without rounding
rasbold@580 343 bool needs_rounding = true;
rasbold@580 344 const Type *dt = phase->type(dividend);
rasbold@580 345 const TypeLong *dtl = dt->isa_long();
rasbold@580 346
rasbold@580 347 if (dtl && dtl->_lo > 0) {
rasbold@580 348 // we don't need to round a positive dividend
rasbold@580 349 needs_rounding = false;
rasbold@580 350 } else if( dividend->Opcode() == Op_AndL ) {
rasbold@580 351 // An AND mask of sufficient size clears the low bits and
rasbold@580 352 // I can avoid rounding.
kvn@835 353 const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
kvn@835 354 if( andconl_t && andconl_t->is_con() ) {
kvn@835 355 jlong andconl = andconl_t->get_con();
kvn@835 356 if( andconl < 0 && is_power_of_2_long(-andconl) && (-andconl) >= d ) {
kvn@835 357 dividend = dividend->in(1);
kvn@835 358 needs_rounding = false;
kvn@835 359 }
rasbold@580 360 }
rasbold@580 361 }
rasbold@580 362
rasbold@580 363 // Add rounding to the shift to handle the sign bit
rasbold@580 364 int l = log2_long(d-1)+1;
rasbold@580 365 if (needs_rounding) {
rasbold@580 366 // Divide-by-power-of-2 can be made into a shift, but you have to do
rasbold@580 367 // more math for the rounding. You need to add 0 for positive
rasbold@580 368 // numbers, and "i-1" for negative numbers. Example: i=4, so the
rasbold@580 369 // shift is by 2. You need to add 3 to negative dividends and 0 to
rasbold@580 370 // positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
rasbold@580 371 // (-2+3)>>2 becomes 0, etc.
rasbold@580 372
rasbold@580 373 // Compute 0 or -1, based on sign bit
rasbold@580 374 Node *sign = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N - 1)));
rasbold@580 375 // Mask sign bit to the low sign bits
rasbold@580 376 Node *round = phase->transform(new (phase->C, 3) URShiftLNode(sign, phase->intcon(N - l)));
rasbold@580 377 // Round up before shifting
rasbold@580 378 dividend = phase->transform(new (phase->C, 3) AddLNode(dividend, round));
rasbold@580 379 }
rasbold@580 380
rasbold@580 381 // Shift for division
rasbold@580 382 q = new (phase->C, 3) RShiftLNode(dividend, phase->intcon(l));
rasbold@580 383
rasbold@580 384 if (!d_pos) {
rasbold@580 385 q = new (phase->C, 3) SubLNode(phase->longcon(0), phase->transform(q));
rasbold@580 386 }
rasbold@580 387 } else {
rasbold@580 388 // Attempt the jlong constant divide -> multiply transform found in
rasbold@580 389 // "Division by Invariant Integers using Multiplication"
rasbold@580 390 // by Granlund and Montgomery
rasbold@580 391 // See also "Hacker's Delight", chapter 10 by Warren.
rasbold@580 392
rasbold@580 393 jlong magic_const;
rasbold@580 394 jint shift_const;
rasbold@580 395 if (magic_long_divide_constants(d, magic_const, shift_const)) {
rasbold@580 396 // Compute the high half of the dividend x magic multiplication
rasbold@580 397 Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));
rasbold@580 398
rasbold@580 399 // The high half of the 128-bit multiply is computed.
rasbold@580 400 if (magic_const < 0) {
rasbold@580 401 // The magic multiplier is too large for a 64 bit constant. We've adjusted
rasbold@580 402 // it down by 2^64, but have to add 1 dividend back in after the multiplication.
rasbold@580 403 // This handles the "overflow" case described by Granlund and Montgomery.
rasbold@580 404 mul_hi = phase->transform(new (phase->C, 3) AddLNode(dividend, mul_hi));
rasbold@580 405 }
rasbold@580 406
rasbold@580 407 // Shift over the (adjusted) mulhi
rasbold@580 408 if (shift_const != 0) {
rasbold@580 409 mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(shift_const)));
rasbold@580 410 }
rasbold@580 411
rasbold@580 412 // Get a 0 or -1 from the sign of the dividend.
rasbold@580 413 Node *addend0 = mul_hi;
rasbold@580 414 Node *addend1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N-1)));
rasbold@580 415
rasbold@580 416 // If the divisor is negative, swap the order of the input addends;
rasbold@580 417 // this has the effect of negating the quotient.
rasbold@580 418 if (!d_pos) {
rasbold@580 419 Node *temp = addend0; addend0 = addend1; addend1 = temp;
rasbold@580 420 }
rasbold@580 421
rasbold@580 422 // Adjust the final quotient by subtracting -1 (adding 1)
rasbold@580 423 // from the mul_hi.
rasbold@580 424 q = new (phase->C, 3) SubLNode(addend0, addend1);
rasbold@580 425 }
duke@435 426 }
duke@435 427
rasbold@580 428 return q;
duke@435 429 }
duke@435 430
duke@435 431 //=============================================================================
duke@435 432 //------------------------------Identity---------------------------------------
duke@435 433 // If the divisor is 1, we are an identity on the dividend.
duke@435 434 Node *DivINode::Identity( PhaseTransform *phase ) {
duke@435 435 return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
duke@435 436 }
duke@435 437
duke@435 438 //------------------------------Idealize---------------------------------------
duke@435 439 // Divides can be changed to multiplies and/or shifts
duke@435 440 Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 441 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
kvn@740 442 // Don't bother trying to transform a dead node
kvn@740 443 if( in(0) && in(0)->is_top() ) return NULL;
duke@435 444
duke@435 445 const Type *t = phase->type( in(2) );
duke@435 446 if( t == TypeInt::ONE ) // Identity?
duke@435 447 return NULL; // Skip it
duke@435 448
duke@435 449 const TypeInt *ti = t->isa_int();
duke@435 450 if( !ti ) return NULL;
duke@435 451 if( !ti->is_con() ) return NULL;
rasbold@580 452 jint i = ti->get_con(); // Get divisor
duke@435 453
duke@435 454 if (i == 0) return NULL; // Dividing by zero constant does not idealize
duke@435 455
duke@435 456 set_req(0,NULL); // Dividing by a not-zero constant; no faulting
duke@435 457
duke@435 458 // Dividing by MININT does not optimize as a power-of-2 shift.
duke@435 459 if( i == min_jint ) return NULL;
duke@435 460
rasbold@580 461 return transform_int_divide( phase, in(1), i );
duke@435 462 }
duke@435 463
duke@435 464 //------------------------------Value------------------------------------------
duke@435 465 // A DivINode divides its inputs. The third input is a Control input, used to
duke@435 466 // prevent hoisting the divide above an unsafe test.
duke@435 467 const Type *DivINode::Value( PhaseTransform *phase ) const {
duke@435 468 // Either input is TOP ==> the result is TOP
duke@435 469 const Type *t1 = phase->type( in(1) );
duke@435 470 const Type *t2 = phase->type( in(2) );
duke@435 471 if( t1 == Type::TOP ) return Type::TOP;
duke@435 472 if( t2 == Type::TOP ) return Type::TOP;
duke@435 473
duke@435 474 // x/x == 1 since we always generate the dynamic divisor check for 0.
duke@435 475 if( phase->eqv( in(1), in(2) ) )
duke@435 476 return TypeInt::ONE;
duke@435 477
duke@435 478 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 479 const Type *bot = bottom_type();
duke@435 480 if( (t1 == bot) || (t2 == bot) ||
duke@435 481 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 482 return bot;
duke@435 483
duke@435 484 // Divide the two numbers. We approximate.
duke@435 485 // If divisor is a constant and not zero
duke@435 486 const TypeInt *i1 = t1->is_int();
duke@435 487 const TypeInt *i2 = t2->is_int();
duke@435 488 int widen = MAX2(i1->_widen, i2->_widen);
duke@435 489
duke@435 490 if( i2->is_con() && i2->get_con() != 0 ) {
duke@435 491 int32 d = i2->get_con(); // Divisor
duke@435 492 jint lo, hi;
duke@435 493 if( d >= 0 ) {
duke@435 494 lo = i1->_lo/d;
duke@435 495 hi = i1->_hi/d;
duke@435 496 } else {
duke@435 497 if( d == -1 && i1->_lo == min_jint ) {
duke@435 498 // 'min_jint/-1' throws arithmetic exception during compilation
duke@435 499 lo = min_jint;
duke@435 500 // do not support holes, 'hi' must go to either min_jint or max_jint:
duke@435 501 // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
duke@435 502 hi = i1->_hi == min_jint ? min_jint : max_jint;
duke@435 503 } else {
duke@435 504 lo = i1->_hi/d;
duke@435 505 hi = i1->_lo/d;
duke@435 506 }
duke@435 507 }
duke@435 508 return TypeInt::make(lo, hi, widen);
duke@435 509 }
duke@435 510
duke@435 511 // If the dividend is a constant
duke@435 512 if( i1->is_con() ) {
duke@435 513 int32 d = i1->get_con();
duke@435 514 if( d < 0 ) {
duke@435 515 if( d == min_jint ) {
duke@435 516 // (-min_jint) == min_jint == (min_jint / -1)
duke@435 517 return TypeInt::make(min_jint, max_jint/2 + 1, widen);
duke@435 518 } else {
duke@435 519 return TypeInt::make(d, -d, widen);
duke@435 520 }
duke@435 521 }
duke@435 522 return TypeInt::make(-d, d, widen);
duke@435 523 }
duke@435 524
duke@435 525 // Otherwise we give up all hope
duke@435 526 return TypeInt::INT;
duke@435 527 }
duke@435 528
duke@435 529
duke@435 530 //=============================================================================
duke@435 531 //------------------------------Identity---------------------------------------
duke@435 532 // If the divisor is 1, we are an identity on the dividend.
duke@435 533 Node *DivLNode::Identity( PhaseTransform *phase ) {
duke@435 534 return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
duke@435 535 }
duke@435 536
duke@435 537 //------------------------------Idealize---------------------------------------
duke@435 538 // Dividing by a power of 2 is a shift.
duke@435 539 Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
duke@435 540 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
kvn@740 541 // Don't bother trying to transform a dead node
kvn@740 542 if( in(0) && in(0)->is_top() ) return NULL;
duke@435 543
duke@435 544 const Type *t = phase->type( in(2) );
rasbold@580 545 if( t == TypeLong::ONE ) // Identity?
duke@435 546 return NULL; // Skip it
duke@435 547
rasbold@580 548 const TypeLong *tl = t->isa_long();
rasbold@580 549 if( !tl ) return NULL;
rasbold@580 550 if( !tl->is_con() ) return NULL;
rasbold@580 551 jlong l = tl->get_con(); // Get divisor
rasbold@580 552
rasbold@580 553 if (l == 0) return NULL; // Dividing by zero constant does not idealize
rasbold@580 554
rasbold@580 555 set_req(0,NULL); // Dividing by a not-zero constant; no faulting
duke@435 556
duke@435 557 // Dividing by MININT does not optimize as a power-of-2 shift.
rasbold@580 558 if( l == min_jlong ) return NULL;
duke@435 559
rasbold@580 560 return transform_long_divide( phase, in(1), l );
duke@435 561 }
duke@435 562
duke@435 563 //------------------------------Value------------------------------------------
duke@435 564 // A DivLNode divides its inputs. The third input is a Control input, used to
duke@435 565 // prevent hoisting the divide above an unsafe test.
duke@435 566 const Type *DivLNode::Value( PhaseTransform *phase ) const {
duke@435 567 // Either input is TOP ==> the result is TOP
duke@435 568 const Type *t1 = phase->type( in(1) );
duke@435 569 const Type *t2 = phase->type( in(2) );
duke@435 570 if( t1 == Type::TOP ) return Type::TOP;
duke@435 571 if( t2 == Type::TOP ) return Type::TOP;
duke@435 572
duke@435 573 // x/x == 1 since we always generate the dynamic divisor check for 0.
duke@435 574 if( phase->eqv( in(1), in(2) ) )
duke@435 575 return TypeLong::ONE;
duke@435 576
duke@435 577 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 578 const Type *bot = bottom_type();
duke@435 579 if( (t1 == bot) || (t2 == bot) ||
duke@435 580 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 581 return bot;
duke@435 582
duke@435 583 // Divide the two numbers. We approximate.
duke@435 584 // If divisor is a constant and not zero
duke@435 585 const TypeLong *i1 = t1->is_long();
duke@435 586 const TypeLong *i2 = t2->is_long();
duke@435 587 int widen = MAX2(i1->_widen, i2->_widen);
duke@435 588
duke@435 589 if( i2->is_con() && i2->get_con() != 0 ) {
duke@435 590 jlong d = i2->get_con(); // Divisor
duke@435 591 jlong lo, hi;
duke@435 592 if( d >= 0 ) {
duke@435 593 lo = i1->_lo/d;
duke@435 594 hi = i1->_hi/d;
duke@435 595 } else {
duke@435 596 if( d == CONST64(-1) && i1->_lo == min_jlong ) {
duke@435 597 // 'min_jlong/-1' throws arithmetic exception during compilation
duke@435 598 lo = min_jlong;
duke@435 599 // do not support holes, 'hi' must go to either min_jlong or max_jlong:
duke@435 600 // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
duke@435 601 hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
duke@435 602 } else {
duke@435 603 lo = i1->_hi/d;
duke@435 604 hi = i1->_lo/d;
duke@435 605 }
duke@435 606 }
duke@435 607 return TypeLong::make(lo, hi, widen);
duke@435 608 }
duke@435 609
duke@435 610 // If the dividend is a constant
duke@435 611 if( i1->is_con() ) {
duke@435 612 jlong d = i1->get_con();
duke@435 613 if( d < 0 ) {
duke@435 614 if( d == min_jlong ) {
duke@435 615 // (-min_jlong) == min_jlong == (min_jlong / -1)
duke@435 616 return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
duke@435 617 } else {
duke@435 618 return TypeLong::make(d, -d, widen);
duke@435 619 }
duke@435 620 }
duke@435 621 return TypeLong::make(-d, d, widen);
duke@435 622 }
duke@435 623
duke@435 624 // Otherwise we give up all hope
duke@435 625 return TypeLong::LONG;
duke@435 626 }
duke@435 627
duke@435 628
duke@435 629 //=============================================================================
duke@435 630 //------------------------------Value------------------------------------------
duke@435 631 // An DivFNode divides its inputs. The third input is a Control input, used to
duke@435 632 // prevent hoisting the divide above an unsafe test.
duke@435 633 const Type *DivFNode::Value( PhaseTransform *phase ) const {
duke@435 634 // Either input is TOP ==> the result is TOP
duke@435 635 const Type *t1 = phase->type( in(1) );
duke@435 636 const Type *t2 = phase->type( in(2) );
duke@435 637 if( t1 == Type::TOP ) return Type::TOP;
duke@435 638 if( t2 == Type::TOP ) return Type::TOP;
duke@435 639
duke@435 640 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 641 const Type *bot = bottom_type();
duke@435 642 if( (t1 == bot) || (t2 == bot) ||
duke@435 643 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 644 return bot;
duke@435 645
duke@435 646 // x/x == 1, we ignore 0/0.
duke@435 647 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
jrose@566 648 // Does not work for variables because of NaN's
duke@435 649 if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
duke@435 650 if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
duke@435 651 return TypeF::ONE;
duke@435 652
duke@435 653 if( t2 == TypeF::ONE )
duke@435 654 return t1;
duke@435 655
duke@435 656 // If divisor is a constant and not zero, divide them numbers
duke@435 657 if( t1->base() == Type::FloatCon &&
duke@435 658 t2->base() == Type::FloatCon &&
duke@435 659 t2->getf() != 0.0 ) // could be negative zero
duke@435 660 return TypeF::make( t1->getf()/t2->getf() );
duke@435 661
duke@435 662 // If the dividend is a constant zero
duke@435 663 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
duke@435 664 // Test TypeF::ZERO is not sufficient as it could be negative zero
duke@435 665
duke@435 666 if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
duke@435 667 return TypeF::ZERO;
duke@435 668
duke@435 669 // Otherwise we give up all hope
duke@435 670 return Type::FLOAT;
duke@435 671 }
duke@435 672
duke@435 673 //------------------------------isA_Copy---------------------------------------
duke@435 674 // Dividing by self is 1.
duke@435 675 // If the divisor is 1, we are an identity on the dividend.
duke@435 676 Node *DivFNode::Identity( PhaseTransform *phase ) {
duke@435 677 return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
duke@435 678 }
duke@435 679
duke@435 680
duke@435 681 //------------------------------Idealize---------------------------------------
duke@435 682 Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 683 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
kvn@740 684 // Don't bother trying to transform a dead node
kvn@740 685 if( in(0) && in(0)->is_top() ) return NULL;
duke@435 686
duke@435 687 const Type *t2 = phase->type( in(2) );
duke@435 688 if( t2 == TypeF::ONE ) // Identity?
duke@435 689 return NULL; // Skip it
duke@435 690
duke@435 691 const TypeF *tf = t2->isa_float_constant();
duke@435 692 if( !tf ) return NULL;
duke@435 693 if( tf->base() != Type::FloatCon ) return NULL;
duke@435 694
duke@435 695 // Check for out of range values
duke@435 696 if( tf->is_nan() || !tf->is_finite() ) return NULL;
duke@435 697
duke@435 698 // Get the value
duke@435 699 float f = tf->getf();
duke@435 700 int exp;
duke@435 701
duke@435 702 // Only for special case of dividing by a power of 2
duke@435 703 if( frexp((double)f, &exp) != 0.5 ) return NULL;
duke@435 704
duke@435 705 // Limit the range of acceptable exponents
duke@435 706 if( exp < -126 || exp > 126 ) return NULL;
duke@435 707
duke@435 708 // Compute the reciprocal
duke@435 709 float reciprocal = ((float)1.0) / f;
duke@435 710
duke@435 711 assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
duke@435 712
duke@435 713 // return multiplication by the reciprocal
duke@435 714 return (new (phase->C, 3) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
duke@435 715 }
duke@435 716
duke@435 717 //=============================================================================
duke@435 718 //------------------------------Value------------------------------------------
duke@435 719 // An DivDNode divides its inputs. The third input is a Control input, used to
jrose@566 720 // prevent hoisting the divide above an unsafe test.
duke@435 721 const Type *DivDNode::Value( PhaseTransform *phase ) const {
duke@435 722 // Either input is TOP ==> the result is TOP
duke@435 723 const Type *t1 = phase->type( in(1) );
duke@435 724 const Type *t2 = phase->type( in(2) );
duke@435 725 if( t1 == Type::TOP ) return Type::TOP;
duke@435 726 if( t2 == Type::TOP ) return Type::TOP;
duke@435 727
duke@435 728 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 729 const Type *bot = bottom_type();
duke@435 730 if( (t1 == bot) || (t2 == bot) ||
duke@435 731 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 732 return bot;
duke@435 733
duke@435 734 // x/x == 1, we ignore 0/0.
duke@435 735 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
duke@435 736 // Does not work for variables because of NaN's
duke@435 737 if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon)
duke@435 738 if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN
duke@435 739 return TypeD::ONE;
duke@435 740
duke@435 741 if( t2 == TypeD::ONE )
duke@435 742 return t1;
duke@435 743
rasbold@839 744 #if defined(IA32)
rasbold@839 745 if (!phase->C->method()->is_strict())
rasbold@839 746 // Can't trust native compilers to properly fold strict double
rasbold@839 747 // division with round-to-zero on this platform.
rasbold@839 748 #endif
rasbold@839 749 {
rasbold@839 750 // If divisor is a constant and not zero, divide them numbers
rasbold@839 751 if( t1->base() == Type::DoubleCon &&
rasbold@839 752 t2->base() == Type::DoubleCon &&
rasbold@839 753 t2->getd() != 0.0 ) // could be negative zero
rasbold@839 754 return TypeD::make( t1->getd()/t2->getd() );
rasbold@839 755 }
duke@435 756
duke@435 757 // If the dividend is a constant zero
duke@435 758 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
duke@435 759 // Test TypeF::ZERO is not sufficient as it could be negative zero
duke@435 760 if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
duke@435 761 return TypeD::ZERO;
duke@435 762
duke@435 763 // Otherwise we give up all hope
duke@435 764 return Type::DOUBLE;
duke@435 765 }
duke@435 766
duke@435 767
duke@435 768 //------------------------------isA_Copy---------------------------------------
duke@435 769 // Dividing by self is 1.
duke@435 770 // If the divisor is 1, we are an identity on the dividend.
duke@435 771 Node *DivDNode::Identity( PhaseTransform *phase ) {
duke@435 772 return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
duke@435 773 }
duke@435 774
duke@435 775 //------------------------------Idealize---------------------------------------
duke@435 776 Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 777 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
kvn@740 778 // Don't bother trying to transform a dead node
kvn@740 779 if( in(0) && in(0)->is_top() ) return NULL;
duke@435 780
duke@435 781 const Type *t2 = phase->type( in(2) );
duke@435 782 if( t2 == TypeD::ONE ) // Identity?
duke@435 783 return NULL; // Skip it
duke@435 784
duke@435 785 const TypeD *td = t2->isa_double_constant();
duke@435 786 if( !td ) return NULL;
duke@435 787 if( td->base() != Type::DoubleCon ) return NULL;
duke@435 788
duke@435 789 // Check for out of range values
duke@435 790 if( td->is_nan() || !td->is_finite() ) return NULL;
duke@435 791
duke@435 792 // Get the value
duke@435 793 double d = td->getd();
duke@435 794 int exp;
duke@435 795
duke@435 796 // Only for special case of dividing by a power of 2
duke@435 797 if( frexp(d, &exp) != 0.5 ) return NULL;
duke@435 798
duke@435 799 // Limit the range of acceptable exponents
duke@435 800 if( exp < -1021 || exp > 1022 ) return NULL;
duke@435 801
duke@435 802 // Compute the reciprocal
duke@435 803 double reciprocal = 1.0 / d;
duke@435 804
duke@435 805 assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
duke@435 806
duke@435 807 // return multiplication by the reciprocal
duke@435 808 return (new (phase->C, 3) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
duke@435 809 }
duke@435 810
duke@435 811 //=============================================================================
duke@435 812 //------------------------------Idealize---------------------------------------
duke@435 813 Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 814 // Check for dead control input
kvn@740 815 if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
kvn@740 816 // Don't bother trying to transform a dead node
kvn@740 817 if( in(0) && in(0)->is_top() ) return NULL;
duke@435 818
duke@435 819 // Get the modulus
duke@435 820 const Type *t = phase->type( in(2) );
duke@435 821 if( t == Type::TOP ) return NULL;
duke@435 822 const TypeInt *ti = t->is_int();
duke@435 823
duke@435 824 // Check for useless control input
duke@435 825 // Check for excluding mod-zero case
duke@435 826 if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
duke@435 827 set_req(0, NULL); // Yank control input
duke@435 828 return this;
duke@435 829 }
duke@435 830
duke@435 831 // See if we are MOD'ing by 2^k or 2^k-1.
duke@435 832 if( !ti->is_con() ) return NULL;
duke@435 833 jint con = ti->get_con();
duke@435 834
duke@435 835 Node *hook = new (phase->C, 1) Node(1);
duke@435 836
duke@435 837 // First, special check for modulo 2^k-1
duke@435 838 if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
duke@435 839 uint k = exact_log2(con+1); // Extract k
duke@435 840
duke@435 841 // Basic algorithm by David Detlefs. See fastmod_int.java for gory details.
duke@435 842 static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
duke@435 843 int trip_count = 1;
duke@435 844 if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
duke@435 845
duke@435 846 // If the unroll factor is not too large, and if conditional moves are
duke@435 847 // ok, then use this case
duke@435 848 if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
duke@435 849 Node *x = in(1); // Value being mod'd
duke@435 850 Node *divisor = in(2); // Also is mask
duke@435 851
duke@435 852 hook->init_req(0, x); // Add a use to x to prevent him from dying
duke@435 853 // Generate code to reduce X rapidly to nearly 2^k-1.
duke@435 854 for( int i = 0; i < trip_count; i++ ) {
rasbold@580 855 Node *xl = phase->transform( new (phase->C, 3) AndINode(x,divisor) );
rasbold@580 856 Node *xh = phase->transform( new (phase->C, 3) RShiftINode(x,phase->intcon(k)) ); // Must be signed
rasbold@580 857 x = phase->transform( new (phase->C, 3) AddINode(xh,xl) );
rasbold@580 858 hook->set_req(0, x);
duke@435 859 }
duke@435 860
duke@435 861 // Generate sign-fixup code. Was original value positive?
duke@435 862 // int hack_res = (i >= 0) ? divisor : 1;
duke@435 863 Node *cmp1 = phase->transform( new (phase->C, 3) CmpINode( in(1), phase->intcon(0) ) );
duke@435 864 Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
duke@435 865 Node *cmov1= phase->transform( new (phase->C, 4) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
duke@435 866 // if( x >= hack_res ) x -= divisor;
duke@435 867 Node *sub = phase->transform( new (phase->C, 3) SubINode( x, divisor ) );
duke@435 868 Node *cmp2 = phase->transform( new (phase->C, 3) CmpINode( x, cmov1 ) );
duke@435 869 Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
duke@435 870 // Convention is to not transform the return value of an Ideal
duke@435 871 // since Ideal is expected to return a modified 'this' or a new node.
duke@435 872 Node *cmov2= new (phase->C, 4) CMoveINode(bol2, x, sub, TypeInt::INT);
duke@435 873 // cmov2 is now the mod
duke@435 874
duke@435 875 // Now remove the bogus extra edges used to keep things alive
duke@435 876 if (can_reshape) {
duke@435 877 phase->is_IterGVN()->remove_dead_node(hook);
duke@435 878 } else {
duke@435 879 hook->set_req(0, NULL); // Just yank bogus edge during Parse phase
duke@435 880 }
duke@435 881 return cmov2;
duke@435 882 }
duke@435 883 }
duke@435 884
duke@435 885 // Fell thru, the unroll case is not appropriate. Transform the modulo
duke@435 886 // into a long multiply/int multiply/subtract case
duke@435 887
duke@435 888 // Cannot handle mod 0, and min_jint isn't handled by the transform
duke@435 889 if( con == 0 || con == min_jint ) return NULL;
duke@435 890
duke@435 891 // Get the absolute value of the constant; at this point, we can use this
duke@435 892 jint pos_con = (con >= 0) ? con : -con;
duke@435 893
duke@435 894 // integer Mod 1 is always 0
duke@435 895 if( pos_con == 1 ) return new (phase->C, 1) ConINode(TypeInt::ZERO);
duke@435 896
duke@435 897 int log2_con = -1;
duke@435 898
duke@435 899 // If this is a power of two, they maybe we can mask it
duke@435 900 if( is_power_of_2(pos_con) ) {
duke@435 901 log2_con = log2_intptr((intptr_t)pos_con);
duke@435 902
duke@435 903 const Type *dt = phase->type(in(1));
duke@435 904 const TypeInt *dti = dt->isa_int();
duke@435 905
duke@435 906 // See if this can be masked, if the dividend is non-negative
duke@435 907 if( dti && dti->_lo >= 0 )
duke@435 908 return ( new (phase->C, 3) AndINode( in(1), phase->intcon( pos_con-1 ) ) );
duke@435 909 }
duke@435 910
duke@435 911 // Save in(1) so that it cannot be changed or deleted
duke@435 912 hook->init_req(0, in(1));
duke@435 913
duke@435 914 // Divide using the transform from DivI to MulL
rasbold@580 915 Node *result = transform_int_divide( phase, in(1), pos_con );
rasbold@580 916 if (result != NULL) {
rasbold@580 917 Node *divide = phase->transform(result);
duke@435 918
rasbold@580 919 // Re-multiply, using a shift if this is a power of two
rasbold@580 920 Node *mult = NULL;
duke@435 921
rasbold@580 922 if( log2_con >= 0 )
rasbold@580 923 mult = phase->transform( new (phase->C, 3) LShiftINode( divide, phase->intcon( log2_con ) ) );
rasbold@580 924 else
rasbold@580 925 mult = phase->transform( new (phase->C, 3) MulINode( divide, phase->intcon( pos_con ) ) );
duke@435 926
rasbold@580 927 // Finally, subtract the multiplied divided value from the original
rasbold@580 928 result = new (phase->C, 3) SubINode( in(1), mult );
rasbold@580 929 }
duke@435 930
duke@435 931 // Now remove the bogus extra edges used to keep things alive
duke@435 932 if (can_reshape) {
duke@435 933 phase->is_IterGVN()->remove_dead_node(hook);
duke@435 934 } else {
duke@435 935 hook->set_req(0, NULL); // Just yank bogus edge during Parse phase
duke@435 936 }
duke@435 937
duke@435 938 // return the value
duke@435 939 return result;
duke@435 940 }
duke@435 941
duke@435 942 //------------------------------Value------------------------------------------
duke@435 943 const Type *ModINode::Value( PhaseTransform *phase ) const {
duke@435 944 // Either input is TOP ==> the result is TOP
duke@435 945 const Type *t1 = phase->type( in(1) );
duke@435 946 const Type *t2 = phase->type( in(2) );
duke@435 947 if( t1 == Type::TOP ) return Type::TOP;
duke@435 948 if( t2 == Type::TOP ) return Type::TOP;
duke@435 949
duke@435 950 // We always generate the dynamic check for 0.
duke@435 951 // 0 MOD X is 0
duke@435 952 if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
duke@435 953 // X MOD X is 0
duke@435 954 if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO;
duke@435 955
duke@435 956 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 957 const Type *bot = bottom_type();
duke@435 958 if( (t1 == bot) || (t2 == bot) ||
duke@435 959 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 960 return bot;
duke@435 961
duke@435 962 const TypeInt *i1 = t1->is_int();
duke@435 963 const TypeInt *i2 = t2->is_int();
duke@435 964 if( !i1->is_con() || !i2->is_con() ) {
duke@435 965 if( i1->_lo >= 0 && i2->_lo >= 0 )
duke@435 966 return TypeInt::POS;
duke@435 967 // If both numbers are not constants, we know little.
duke@435 968 return TypeInt::INT;
duke@435 969 }
duke@435 970 // Mod by zero? Throw exception at runtime!
duke@435 971 if( !i2->get_con() ) return TypeInt::POS;
duke@435 972
duke@435 973 // We must be modulo'ing 2 float constants.
duke@435 974 // Check for min_jint % '-1', result is defined to be '0'.
duke@435 975 if( i1->get_con() == min_jint && i2->get_con() == -1 )
duke@435 976 return TypeInt::ZERO;
duke@435 977
duke@435 978 return TypeInt::make( i1->get_con() % i2->get_con() );
duke@435 979 }
duke@435 980
duke@435 981
duke@435 982 //=============================================================================
duke@435 983 //------------------------------Idealize---------------------------------------
duke@435 984 Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 985 // Check for dead control input
kvn@740 986 if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
kvn@740 987 // Don't bother trying to transform a dead node
kvn@740 988 if( in(0) && in(0)->is_top() ) return NULL;
duke@435 989
duke@435 990 // Get the modulus
duke@435 991 const Type *t = phase->type( in(2) );
duke@435 992 if( t == Type::TOP ) return NULL;
rasbold@580 993 const TypeLong *tl = t->is_long();
duke@435 994
duke@435 995 // Check for useless control input
duke@435 996 // Check for excluding mod-zero case
rasbold@580 997 if( in(0) && (tl->_hi < 0 || tl->_lo > 0) ) {
duke@435 998 set_req(0, NULL); // Yank control input
duke@435 999 return this;
duke@435 1000 }
duke@435 1001
duke@435 1002 // See if we are MOD'ing by 2^k or 2^k-1.
rasbold@580 1003 if( !tl->is_con() ) return NULL;
rasbold@580 1004 jlong con = tl->get_con();
rasbold@580 1005
rasbold@580 1006 Node *hook = new (phase->C, 1) Node(1);
duke@435 1007
duke@435 1008 // Expand mod
rasbold@580 1009 if( con >= 0 && con < max_jlong && is_power_of_2_long(con+1) ) {
twisti@1003 1010 uint k = exact_log2_long(con+1); // Extract k
rasbold@580 1011
duke@435 1012 // Basic algorithm by David Detlefs. See fastmod_long.java for gory details.
duke@435 1013 // Used to help a popular random number generator which does a long-mod
duke@435 1014 // of 2^31-1 and shows up in SpecJBB and SciMark.
duke@435 1015 static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
duke@435 1016 int trip_count = 1;
duke@435 1017 if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
duke@435 1018
rasbold@580 1019 // If the unroll factor is not too large, and if conditional moves are
rasbold@580 1020 // ok, then use this case
rasbold@580 1021 if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
rasbold@580 1022 Node *x = in(1); // Value being mod'd
rasbold@580 1023 Node *divisor = in(2); // Also is mask
duke@435 1024
rasbold@580 1025 hook->init_req(0, x); // Add a use to x to prevent him from dying
rasbold@580 1026 // Generate code to reduce X rapidly to nearly 2^k-1.
rasbold@580 1027 for( int i = 0; i < trip_count; i++ ) {
duke@435 1028 Node *xl = phase->transform( new (phase->C, 3) AndLNode(x,divisor) );
duke@435 1029 Node *xh = phase->transform( new (phase->C, 3) RShiftLNode(x,phase->intcon(k)) ); // Must be signed
duke@435 1030 x = phase->transform( new (phase->C, 3) AddLNode(xh,xl) );
duke@435 1031 hook->set_req(0, x); // Add a use to x to prevent him from dying
rasbold@580 1032 }
rasbold@580 1033
rasbold@580 1034 // Generate sign-fixup code. Was original value positive?
rasbold@580 1035 // long hack_res = (i >= 0) ? divisor : CONST64(1);
rasbold@580 1036 Node *cmp1 = phase->transform( new (phase->C, 3) CmpLNode( in(1), phase->longcon(0) ) );
rasbold@580 1037 Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
rasbold@580 1038 Node *cmov1= phase->transform( new (phase->C, 4) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
rasbold@580 1039 // if( x >= hack_res ) x -= divisor;
rasbold@580 1040 Node *sub = phase->transform( new (phase->C, 3) SubLNode( x, divisor ) );
rasbold@580 1041 Node *cmp2 = phase->transform( new (phase->C, 3) CmpLNode( x, cmov1 ) );
rasbold@580 1042 Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
rasbold@580 1043 // Convention is to not transform the return value of an Ideal
rasbold@580 1044 // since Ideal is expected to return a modified 'this' or a new node.
rasbold@580 1045 Node *cmov2= new (phase->C, 4) CMoveLNode(bol2, x, sub, TypeLong::LONG);
rasbold@580 1046 // cmov2 is now the mod
rasbold@580 1047
rasbold@580 1048 // Now remove the bogus extra edges used to keep things alive
rasbold@580 1049 if (can_reshape) {
rasbold@580 1050 phase->is_IterGVN()->remove_dead_node(hook);
rasbold@580 1051 } else {
rasbold@580 1052 hook->set_req(0, NULL); // Just yank bogus edge during Parse phase
rasbold@580 1053 }
rasbold@580 1054 return cmov2;
duke@435 1055 }
rasbold@580 1056 }
duke@435 1057
rasbold@580 1058 // Fell thru, the unroll case is not appropriate. Transform the modulo
rasbold@580 1059 // into a long multiply/int multiply/subtract case
rasbold@580 1060
rasbold@580 1061 // Cannot handle mod 0, and min_jint isn't handled by the transform
rasbold@580 1062 if( con == 0 || con == min_jlong ) return NULL;
rasbold@580 1063
rasbold@580 1064 // Get the absolute value of the constant; at this point, we can use this
rasbold@580 1065 jlong pos_con = (con >= 0) ? con : -con;
rasbold@580 1066
rasbold@580 1067 // integer Mod 1 is always 0
rasbold@580 1068 if( pos_con == 1 ) return new (phase->C, 1) ConLNode(TypeLong::ZERO);
rasbold@580 1069
rasbold@580 1070 int log2_con = -1;
rasbold@580 1071
twisti@1040 1072 // If this is a power of two, then maybe we can mask it
rasbold@580 1073 if( is_power_of_2_long(pos_con) ) {
rasbold@580 1074 log2_con = log2_long(pos_con);
rasbold@580 1075
rasbold@580 1076 const Type *dt = phase->type(in(1));
rasbold@580 1077 const TypeLong *dtl = dt->isa_long();
rasbold@580 1078
rasbold@580 1079 // See if this can be masked, if the dividend is non-negative
rasbold@580 1080 if( dtl && dtl->_lo >= 0 )
rasbold@580 1081 return ( new (phase->C, 3) AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
duke@435 1082 }
rasbold@580 1083
rasbold@580 1084 // Save in(1) so that it cannot be changed or deleted
rasbold@580 1085 hook->init_req(0, in(1));
rasbold@580 1086
rasbold@580 1087 // Divide using the transform from DivI to MulL
rasbold@580 1088 Node *result = transform_long_divide( phase, in(1), pos_con );
rasbold@580 1089 if (result != NULL) {
rasbold@580 1090 Node *divide = phase->transform(result);
rasbold@580 1091
rasbold@580 1092 // Re-multiply, using a shift if this is a power of two
rasbold@580 1093 Node *mult = NULL;
rasbold@580 1094
rasbold@580 1095 if( log2_con >= 0 )
rasbold@580 1096 mult = phase->transform( new (phase->C, 3) LShiftLNode( divide, phase->intcon( log2_con ) ) );
rasbold@580 1097 else
rasbold@580 1098 mult = phase->transform( new (phase->C, 3) MulLNode( divide, phase->longcon( pos_con ) ) );
rasbold@580 1099
rasbold@580 1100 // Finally, subtract the multiplied divided value from the original
rasbold@580 1101 result = new (phase->C, 3) SubLNode( in(1), mult );
rasbold@580 1102 }
rasbold@580 1103
rasbold@580 1104 // Now remove the bogus extra edges used to keep things alive
rasbold@580 1105 if (can_reshape) {
rasbold@580 1106 phase->is_IterGVN()->remove_dead_node(hook);
rasbold@580 1107 } else {
rasbold@580 1108 hook->set_req(0, NULL); // Just yank bogus edge during Parse phase
rasbold@580 1109 }
rasbold@580 1110
rasbold@580 1111 // return the value
rasbold@580 1112 return result;
duke@435 1113 }
duke@435 1114
duke@435 1115 //------------------------------Value------------------------------------------
duke@435 1116 const Type *ModLNode::Value( PhaseTransform *phase ) const {
duke@435 1117 // Either input is TOP ==> the result is TOP
duke@435 1118 const Type *t1 = phase->type( in(1) );
duke@435 1119 const Type *t2 = phase->type( in(2) );
duke@435 1120 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1121 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1122
duke@435 1123 // We always generate the dynamic check for 0.
duke@435 1124 // 0 MOD X is 0
duke@435 1125 if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
duke@435 1126 // X MOD X is 0
duke@435 1127 if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO;
duke@435 1128
duke@435 1129 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 1130 const Type *bot = bottom_type();
duke@435 1131 if( (t1 == bot) || (t2 == bot) ||
duke@435 1132 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 1133 return bot;
duke@435 1134
duke@435 1135 const TypeLong *i1 = t1->is_long();
duke@435 1136 const TypeLong *i2 = t2->is_long();
duke@435 1137 if( !i1->is_con() || !i2->is_con() ) {
duke@435 1138 if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
duke@435 1139 return TypeLong::POS;
duke@435 1140 // If both numbers are not constants, we know little.
duke@435 1141 return TypeLong::LONG;
duke@435 1142 }
duke@435 1143 // Mod by zero? Throw exception at runtime!
duke@435 1144 if( !i2->get_con() ) return TypeLong::POS;
duke@435 1145
duke@435 1146 // We must be modulo'ing 2 float constants.
duke@435 1147 // Check for min_jint % '-1', result is defined to be '0'.
duke@435 1148 if( i1->get_con() == min_jlong && i2->get_con() == -1 )
duke@435 1149 return TypeLong::ZERO;
duke@435 1150
duke@435 1151 return TypeLong::make( i1->get_con() % i2->get_con() );
duke@435 1152 }
duke@435 1153
duke@435 1154
duke@435 1155 //=============================================================================
duke@435 1156 //------------------------------Value------------------------------------------
duke@435 1157 const Type *ModFNode::Value( PhaseTransform *phase ) const {
duke@435 1158 // Either input is TOP ==> the result is TOP
duke@435 1159 const Type *t1 = phase->type( in(1) );
duke@435 1160 const Type *t2 = phase->type( in(2) );
duke@435 1161 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1162 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1163
duke@435 1164 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 1165 const Type *bot = bottom_type();
duke@435 1166 if( (t1 == bot) || (t2 == bot) ||
duke@435 1167 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 1168 return bot;
duke@435 1169
jrose@566 1170 // If either number is not a constant, we know nothing.
jrose@566 1171 if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) {
jrose@566 1172 return Type::FLOAT; // note: x%x can be either NaN or 0
jrose@566 1173 }
jrose@566 1174
jrose@566 1175 float f1 = t1->getf();
jrose@566 1176 float f2 = t2->getf();
jrose@566 1177 jint x1 = jint_cast(f1); // note: *(int*)&f1, not just (int)f1
jrose@566 1178 jint x2 = jint_cast(f2);
jrose@566 1179
duke@435 1180 // If either is a NaN, return an input NaN
jrose@566 1181 if (g_isnan(f1)) return t1;
jrose@566 1182 if (g_isnan(f2)) return t2;
duke@435 1183
jrose@566 1184 // If an operand is infinity or the divisor is +/- zero, punt.
jrose@566 1185 if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint)
duke@435 1186 return Type::FLOAT;
duke@435 1187
duke@435 1188 // We must be modulo'ing 2 float constants.
duke@435 1189 // Make sure that the sign of the fmod is equal to the sign of the dividend
jrose@566 1190 jint xr = jint_cast(fmod(f1, f2));
jrose@566 1191 if ((x1 ^ xr) < 0) {
jrose@566 1192 xr ^= min_jint;
duke@435 1193 }
jrose@566 1194
jrose@566 1195 return TypeF::make(jfloat_cast(xr));
duke@435 1196 }
duke@435 1197
duke@435 1198
duke@435 1199 //=============================================================================
duke@435 1200 //------------------------------Value------------------------------------------
duke@435 1201 const Type *ModDNode::Value( PhaseTransform *phase ) const {
duke@435 1202 // Either input is TOP ==> the result is TOP
duke@435 1203 const Type *t1 = phase->type( in(1) );
duke@435 1204 const Type *t2 = phase->type( in(2) );
duke@435 1205 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1206 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1207
duke@435 1208 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 1209 const Type *bot = bottom_type();
duke@435 1210 if( (t1 == bot) || (t2 == bot) ||
duke@435 1211 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 1212 return bot;
duke@435 1213
jrose@566 1214 // If either number is not a constant, we know nothing.
jrose@566 1215 if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) {
jrose@566 1216 return Type::DOUBLE; // note: x%x can be either NaN or 0
duke@435 1217 }
duke@435 1218
jrose@566 1219 double f1 = t1->getd();
jrose@566 1220 double f2 = t2->getd();
jrose@566 1221 jlong x1 = jlong_cast(f1); // note: *(long*)&f1, not just (long)f1
jrose@566 1222 jlong x2 = jlong_cast(f2);
duke@435 1223
jrose@566 1224 // If either is a NaN, return an input NaN
jrose@566 1225 if (g_isnan(f1)) return t1;
jrose@566 1226 if (g_isnan(f2)) return t2;
duke@435 1227
jrose@566 1228 // If an operand is infinity or the divisor is +/- zero, punt.
jrose@566 1229 if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong)
duke@435 1230 return Type::DOUBLE;
duke@435 1231
duke@435 1232 // We must be modulo'ing 2 double constants.
jrose@566 1233 // Make sure that the sign of the fmod is equal to the sign of the dividend
jrose@566 1234 jlong xr = jlong_cast(fmod(f1, f2));
jrose@566 1235 if ((x1 ^ xr) < 0) {
jrose@566 1236 xr ^= min_jlong;
jrose@566 1237 }
jrose@566 1238
jrose@566 1239 return TypeD::make(jdouble_cast(xr));
duke@435 1240 }
duke@435 1241
duke@435 1242 //=============================================================================
duke@435 1243
duke@435 1244 DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
duke@435 1245 init_req(0, c);
duke@435 1246 init_req(1, dividend);
duke@435 1247 init_req(2, divisor);
duke@435 1248 }
duke@435 1249
duke@435 1250 //------------------------------make------------------------------------------
duke@435 1251 DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) {
duke@435 1252 Node* n = div_or_mod;
duke@435 1253 assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
duke@435 1254 "only div or mod input pattern accepted");
duke@435 1255
duke@435 1256 DivModINode* divmod = new (C, 3) DivModINode(n->in(0), n->in(1), n->in(2));
duke@435 1257 Node* dproj = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
duke@435 1258 Node* mproj = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
duke@435 1259 return divmod;
duke@435 1260 }
duke@435 1261
duke@435 1262 //------------------------------make------------------------------------------
duke@435 1263 DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) {
duke@435 1264 Node* n = div_or_mod;
duke@435 1265 assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
duke@435 1266 "only div or mod input pattern accepted");
duke@435 1267
duke@435 1268 DivModLNode* divmod = new (C, 3) DivModLNode(n->in(0), n->in(1), n->in(2));
duke@435 1269 Node* dproj = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
duke@435 1270 Node* mproj = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
duke@435 1271 return divmod;
duke@435 1272 }
duke@435 1273
duke@435 1274 //------------------------------match------------------------------------------
duke@435 1275 // return result(s) along with their RegMask info
duke@435 1276 Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
duke@435 1277 uint ideal_reg = proj->ideal_reg();
duke@435 1278 RegMask rm;
duke@435 1279 if (proj->_con == div_proj_num) {
duke@435 1280 rm = match->divI_proj_mask();
duke@435 1281 } else {
duke@435 1282 assert(proj->_con == mod_proj_num, "must be div or mod projection");
duke@435 1283 rm = match->modI_proj_mask();
duke@435 1284 }
duke@435 1285 return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
duke@435 1286 }
duke@435 1287
duke@435 1288
duke@435 1289 //------------------------------match------------------------------------------
duke@435 1290 // return result(s) along with their RegMask info
duke@435 1291 Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
duke@435 1292 uint ideal_reg = proj->ideal_reg();
duke@435 1293 RegMask rm;
duke@435 1294 if (proj->_con == div_proj_num) {
duke@435 1295 rm = match->divL_proj_mask();
duke@435 1296 } else {
duke@435 1297 assert(proj->_con == mod_proj_num, "must be div or mod projection");
duke@435 1298 rm = match->modL_proj_mask();
duke@435 1299 }
duke@435 1300 return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
duke@435 1301 }

mercurial