src/share/vm/opto/divnode.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 1003
30663ca5e8f4
child 1191
cecd04fc6f93
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_divnode.cpp.incl"
    31 #include <math.h>
    33 //----------------------magic_int_divide_constants-----------------------------
    34 // Compute magic multiplier and shift constant for converting a 32 bit divide
    35 // by constant into a multiply/shift/add series. Return false if calculations
    36 // fail.
    37 //
    38 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
    39 // minor type name and parameter changes.
    40 static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
    41   int32_t p;
    42   uint32_t ad, anc, delta, q1, r1, q2, r2, t;
    43   const uint32_t two31 = 0x80000000L;     // 2**31.
    45   ad = ABS(d);
    46   if (d == 0 || d == 1) return false;
    47   t = two31 + ((uint32_t)d >> 31);
    48   anc = t - 1 - t%ad;     // Absolute value of nc.
    49   p = 31;                 // Init. p.
    50   q1 = two31/anc;         // Init. q1 = 2**p/|nc|.
    51   r1 = two31 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
    52   q2 = two31/ad;          // Init. q2 = 2**p/|d|.
    53   r2 = two31 - q2*ad;     // Init. r2 = rem(2**p, |d|).
    54   do {
    55     p = p + 1;
    56     q1 = 2*q1;            // Update q1 = 2**p/|nc|.
    57     r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
    58     if (r1 >= anc) {      // (Must be an unsigned
    59       q1 = q1 + 1;        // comparison here).
    60       r1 = r1 - anc;
    61     }
    62     q2 = 2*q2;            // Update q2 = 2**p/|d|.
    63     r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
    64     if (r2 >= ad) {       // (Must be an unsigned
    65       q2 = q2 + 1;        // comparison here).
    66       r2 = r2 - ad;
    67     }
    68     delta = ad - r2;
    69   } while (q1 < delta || (q1 == delta && r1 == 0));
    71   M = q2 + 1;
    72   if (d < 0) M = -M;      // Magic number and
    73   s = p - 32;             // shift amount to return.
    75   return true;
    76 }
    78 //--------------------------transform_int_divide-------------------------------
    79 // Convert a division by constant divisor into an alternate Ideal graph.
    80 // Return NULL if no transformation occurs.
    81 static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {
    83   // Check for invalid divisors
    84   assert( divisor != 0 && divisor != min_jint,
    85           "bad divisor for transforming to long multiply" );
    87   bool d_pos = divisor >= 0;
    88   jint d = d_pos ? divisor : -divisor;
    89   const int N = 32;
    91   // Result
    92   Node *q = NULL;
    94   if (d == 1) {
    95     // division by +/- 1
    96     if (!d_pos) {
    97       // Just negate the value
    98       q = new (phase->C, 3) SubINode(phase->intcon(0), dividend);
    99     }
   100   } else if ( is_power_of_2(d) ) {
   101     // division by +/- a power of 2
   103     // See if we can simply do a shift without rounding
   104     bool needs_rounding = true;
   105     const Type *dt = phase->type(dividend);
   106     const TypeInt *dti = dt->isa_int();
   107     if (dti && dti->_lo >= 0) {
   108       // we don't need to round a positive dividend
   109       needs_rounding = false;
   110     } else if( dividend->Opcode() == Op_AndI ) {
   111       // An AND mask of sufficient size clears the low bits and
   112       // I can avoid rounding.
   113       const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
   114       if( andconi_t && andconi_t->is_con() ) {
   115         jint andconi = andconi_t->get_con();
   116         if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
   117           dividend = dividend->in(1);
   118           needs_rounding = false;
   119         }
   120       }
   121     }
   123     // Add rounding to the shift to handle the sign bit
   124     int l = log2_intptr(d-1)+1;
   125     if (needs_rounding) {
   126       // Divide-by-power-of-2 can be made into a shift, but you have to do
   127       // more math for the rounding.  You need to add 0 for positive
   128       // numbers, and "i-1" for negative numbers.  Example: i=4, so the
   129       // shift is by 2.  You need to add 3 to negative dividends and 0 to
   130       // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
   131       // (-2+3)>>2 becomes 0, etc.
   133       // Compute 0 or -1, based on sign bit
   134       Node *sign = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N - 1)));
   135       // Mask sign bit to the low sign bits
   136       Node *round = phase->transform(new (phase->C, 3) URShiftINode(sign, phase->intcon(N - l)));
   137       // Round up before shifting
   138       dividend = phase->transform(new (phase->C, 3) AddINode(dividend, round));
   139     }
   141     // Shift for division
   142     q = new (phase->C, 3) RShiftINode(dividend, phase->intcon(l));
   144     if (!d_pos) {
   145       q = new (phase->C, 3) SubINode(phase->intcon(0), phase->transform(q));
   146     }
   147   } else {
   148     // Attempt the jint constant divide -> multiply transform found in
   149     //   "Division by Invariant Integers using Multiplication"
   150     //     by Granlund and Montgomery
   151     // See also "Hacker's Delight", chapter 10 by Warren.
   153     jint magic_const;
   154     jint shift_const;
   155     if (magic_int_divide_constants(d, magic_const, shift_const)) {
   156       Node *magic = phase->longcon(magic_const);
   157       Node *dividend_long = phase->transform(new (phase->C, 2) ConvI2LNode(dividend));
   159       // Compute the high half of the dividend x magic multiplication
   160       Node *mul_hi = phase->transform(new (phase->C, 3) MulLNode(dividend_long, magic));
   162       if (magic_const < 0) {
   163         mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N)));
   164         mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));
   166         // The magic multiplier is too large for a 32 bit constant. We've adjusted
   167         // it down by 2^32, but have to add 1 dividend back in after the multiplication.
   168         // This handles the "overflow" case described by Granlund and Montgomery.
   169         mul_hi = phase->transform(new (phase->C, 3) AddINode(dividend, mul_hi));
   171         // Shift over the (adjusted) mulhi
   172         if (shift_const != 0) {
   173           mul_hi = phase->transform(new (phase->C, 3) RShiftINode(mul_hi, phase->intcon(shift_const)));
   174         }
   175       } else {
   176         // No add is required, we can merge the shifts together.
   177         mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
   178         mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));
   179       }
   181       // Get a 0 or -1 from the sign of the dividend.
   182       Node *addend0 = mul_hi;
   183       Node *addend1 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N-1)));
   185       // If the divisor is negative, swap the order of the input addends;
   186       // this has the effect of negating the quotient.
   187       if (!d_pos) {
   188         Node *temp = addend0; addend0 = addend1; addend1 = temp;
   189       }
   191       // Adjust the final quotient by subtracting -1 (adding 1)
   192       // from the mul_hi.
   193       q = new (phase->C, 3) SubINode(addend0, addend1);
   194     }
   195   }
   197   return q;
   198 }
   200 //---------------------magic_long_divide_constants-----------------------------
   201 // Compute magic multiplier and shift constant for converting a 64 bit divide
   202 // by constant into a multiply/shift/add series. Return false if calculations
   203 // fail.
   204 //
   205 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
   206 // minor type name and parameter changes.  Adjusted to 64 bit word width.
   207 static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
   208   int64_t p;
   209   uint64_t ad, anc, delta, q1, r1, q2, r2, t;
   210   const uint64_t two63 = 0x8000000000000000LL;     // 2**63.
   212   ad = ABS(d);
   213   if (d == 0 || d == 1) return false;
   214   t = two63 + ((uint64_t)d >> 63);
   215   anc = t - 1 - t%ad;     // Absolute value of nc.
   216   p = 63;                 // Init. p.
   217   q1 = two63/anc;         // Init. q1 = 2**p/|nc|.
   218   r1 = two63 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
   219   q2 = two63/ad;          // Init. q2 = 2**p/|d|.
   220   r2 = two63 - q2*ad;     // Init. r2 = rem(2**p, |d|).
   221   do {
   222     p = p + 1;
   223     q1 = 2*q1;            // Update q1 = 2**p/|nc|.
   224     r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
   225     if (r1 >= anc) {      // (Must be an unsigned
   226       q1 = q1 + 1;        // comparison here).
   227       r1 = r1 - anc;
   228     }
   229     q2 = 2*q2;            // Update q2 = 2**p/|d|.
   230     r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
   231     if (r2 >= ad) {       // (Must be an unsigned
   232       q2 = q2 + 1;        // comparison here).
   233       r2 = r2 - ad;
   234     }
   235     delta = ad - r2;
   236   } while (q1 < delta || (q1 == delta && r1 == 0));
   238   M = q2 + 1;
   239   if (d < 0) M = -M;      // Magic number and
   240   s = p - 64;             // shift amount to return.
   242   return true;
   243 }
   245 //---------------------long_by_long_mulhi--------------------------------------
   246 // Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
   247 static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) {
   248   // If the architecture supports a 64x64 mulhi, there is
   249   // no need to synthesize it in ideal nodes.
   250   if (Matcher::has_match_rule(Op_MulHiL)) {
   251     Node* v = phase->longcon(magic_const);
   252     return new (phase->C, 3) MulHiLNode(dividend, v);
   253   }
   255   // Taken from Hacker's Delight, Fig. 8-2. Multiply high signed.
   256   // (http://www.hackersdelight.org/HDcode/mulhs.c)
   257   //
   258   // int mulhs(int u, int v) {
   259   //    unsigned u0, v0, w0;
   260   //    int u1, v1, w1, w2, t;
   261   //
   262   //    u0 = u & 0xFFFF;  u1 = u >> 16;
   263   //    v0 = v & 0xFFFF;  v1 = v >> 16;
   264   //    w0 = u0*v0;
   265   //    t  = u1*v0 + (w0 >> 16);
   266   //    w1 = t & 0xFFFF;
   267   //    w2 = t >> 16;
   268   //    w1 = u0*v1 + w1;
   269   //    return u1*v1 + w2 + (w1 >> 16);
   270   // }
   271   //
   272   // Note: The version above is for 32x32 multiplications, while the
   273   // following inline comments are adapted to 64x64.
   275   const int N = 64;
   277   // u0 = u & 0xFFFFFFFF;  u1 = u >> 32;
   278   Node* u0 = phase->transform(new (phase->C, 3) AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
   279   Node* u1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N / 2)));
   281   // v0 = v & 0xFFFFFFFF;  v1 = v >> 32;
   282   Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF);
   283   Node* v1 = phase->longcon(magic_const >> (N / 2));
   285   // w0 = u0*v0;
   286   Node* w0 = phase->transform(new (phase->C, 3) MulLNode(u0, v0));
   288   // t = u1*v0 + (w0 >> 32);
   289   Node* u1v0 = phase->transform(new (phase->C, 3) MulLNode(u1, v0));
   290   Node* temp = phase->transform(new (phase->C, 3) URShiftLNode(w0, phase->intcon(N / 2)));
   291   Node* t    = phase->transform(new (phase->C, 3) AddLNode(u1v0, temp));
   293   // w1 = t & 0xFFFFFFFF;
   294   Node* w1 = new (phase->C, 3) AndLNode(t, phase->longcon(0xFFFFFFFF));
   296   // w2 = t >> 32;
   297   Node* w2 = new (phase->C, 3) RShiftLNode(t, phase->intcon(N / 2));
   299   // 6732154: Construct both w1 and w2 before transforming, so t
   300   // doesn't go dead prematurely.
   301   w1 = phase->transform(w1);
   302   w2 = phase->transform(w2);
   304   // w1 = u0*v1 + w1;
   305   Node* u0v1 = phase->transform(new (phase->C, 3) MulLNode(u0, v1));
   306   w1         = phase->transform(new (phase->C, 3) AddLNode(u0v1, w1));
   308   // return u1*v1 + w2 + (w1 >> 32);
   309   Node* u1v1  = phase->transform(new (phase->C, 3) MulLNode(u1, v1));
   310   Node* temp1 = phase->transform(new (phase->C, 3) AddLNode(u1v1, w2));
   311   Node* temp2 = phase->transform(new (phase->C, 3) RShiftLNode(w1, phase->intcon(N / 2)));
   313   return new (phase->C, 3) AddLNode(temp1, temp2);
   314 }
   317 //--------------------------transform_long_divide------------------------------
   318 // Convert a division by constant divisor into an alternate Ideal graph.
   319 // Return NULL if no transformation occurs.
   320 static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
   321   // Check for invalid divisors
   322   assert( divisor != 0L && divisor != min_jlong,
   323           "bad divisor for transforming to long multiply" );
   325   bool d_pos = divisor >= 0;
   326   jlong d = d_pos ? divisor : -divisor;
   327   const int N = 64;
   329   // Result
   330   Node *q = NULL;
   332   if (d == 1) {
   333     // division by +/- 1
   334     if (!d_pos) {
   335       // Just negate the value
   336       q = new (phase->C, 3) SubLNode(phase->longcon(0), dividend);
   337     }
   338   } else if ( is_power_of_2_long(d) ) {
   340     // division by +/- a power of 2
   342     // See if we can simply do a shift without rounding
   343     bool needs_rounding = true;
   344     const Type *dt = phase->type(dividend);
   345     const TypeLong *dtl = dt->isa_long();
   347     if (dtl && dtl->_lo > 0) {
   348       // we don't need to round a positive dividend
   349       needs_rounding = false;
   350     } else if( dividend->Opcode() == Op_AndL ) {
   351       // An AND mask of sufficient size clears the low bits and
   352       // I can avoid rounding.
   353       const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
   354       if( andconl_t && andconl_t->is_con() ) {
   355         jlong andconl = andconl_t->get_con();
   356         if( andconl < 0 && is_power_of_2_long(-andconl) && (-andconl) >= d ) {
   357           dividend = dividend->in(1);
   358           needs_rounding = false;
   359         }
   360       }
   361     }
   363     // Add rounding to the shift to handle the sign bit
   364     int l = log2_long(d-1)+1;
   365     if (needs_rounding) {
   366       // Divide-by-power-of-2 can be made into a shift, but you have to do
   367       // more math for the rounding.  You need to add 0 for positive
   368       // numbers, and "i-1" for negative numbers.  Example: i=4, so the
   369       // shift is by 2.  You need to add 3 to negative dividends and 0 to
   370       // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
   371       // (-2+3)>>2 becomes 0, etc.
   373       // Compute 0 or -1, based on sign bit
   374       Node *sign = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N - 1)));
   375       // Mask sign bit to the low sign bits
   376       Node *round = phase->transform(new (phase->C, 3) URShiftLNode(sign, phase->intcon(N - l)));
   377       // Round up before shifting
   378       dividend = phase->transform(new (phase->C, 3) AddLNode(dividend, round));
   379     }
   381     // Shift for division
   382     q = new (phase->C, 3) RShiftLNode(dividend, phase->intcon(l));
   384     if (!d_pos) {
   385       q = new (phase->C, 3) SubLNode(phase->longcon(0), phase->transform(q));
   386     }
   387   } else {
   388     // Attempt the jlong constant divide -> multiply transform found in
   389     //   "Division by Invariant Integers using Multiplication"
   390     //     by Granlund and Montgomery
   391     // See also "Hacker's Delight", chapter 10 by Warren.
   393     jlong magic_const;
   394     jint shift_const;
   395     if (magic_long_divide_constants(d, magic_const, shift_const)) {
   396       // Compute the high half of the dividend x magic multiplication
   397       Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));
   399       // The high half of the 128-bit multiply is computed.
   400       if (magic_const < 0) {
   401         // The magic multiplier is too large for a 64 bit constant. We've adjusted
   402         // it down by 2^64, but have to add 1 dividend back in after the multiplication.
   403         // This handles the "overflow" case described by Granlund and Montgomery.
   404         mul_hi = phase->transform(new (phase->C, 3) AddLNode(dividend, mul_hi));
   405       }
   407       // Shift over the (adjusted) mulhi
   408       if (shift_const != 0) {
   409         mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(shift_const)));
   410       }
   412       // Get a 0 or -1 from the sign of the dividend.
   413       Node *addend0 = mul_hi;
   414       Node *addend1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N-1)));
   416       // If the divisor is negative, swap the order of the input addends;
   417       // this has the effect of negating the quotient.
   418       if (!d_pos) {
   419         Node *temp = addend0; addend0 = addend1; addend1 = temp;
   420       }
   422       // Adjust the final quotient by subtracting -1 (adding 1)
   423       // from the mul_hi.
   424       q = new (phase->C, 3) SubLNode(addend0, addend1);
   425     }
   426   }
   428   return q;
   429 }
   431 //=============================================================================
   432 //------------------------------Identity---------------------------------------
   433 // If the divisor is 1, we are an identity on the dividend.
   434 Node *DivINode::Identity( PhaseTransform *phase ) {
   435   return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
   436 }
   438 //------------------------------Idealize---------------------------------------
   439 // Divides can be changed to multiplies and/or shifts
   440 Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   441   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
   442   // Don't bother trying to transform a dead node
   443   if( in(0) && in(0)->is_top() )  return NULL;
   445   const Type *t = phase->type( in(2) );
   446   if( t == TypeInt::ONE )       // Identity?
   447     return NULL;                // Skip it
   449   const TypeInt *ti = t->isa_int();
   450   if( !ti ) return NULL;
   451   if( !ti->is_con() ) return NULL;
   452   jint i = ti->get_con();       // Get divisor
   454   if (i == 0) return NULL;      // Dividing by zero constant does not idealize
   456   set_req(0,NULL);              // Dividing by a not-zero constant; no faulting
   458   // Dividing by MININT does not optimize as a power-of-2 shift.
   459   if( i == min_jint ) return NULL;
   461   return transform_int_divide( phase, in(1), i );
   462 }
   464 //------------------------------Value------------------------------------------
   465 // A DivINode divides its inputs.  The third input is a Control input, used to
   466 // prevent hoisting the divide above an unsafe test.
   467 const Type *DivINode::Value( PhaseTransform *phase ) const {
   468   // Either input is TOP ==> the result is TOP
   469   const Type *t1 = phase->type( in(1) );
   470   const Type *t2 = phase->type( in(2) );
   471   if( t1 == Type::TOP ) return Type::TOP;
   472   if( t2 == Type::TOP ) return Type::TOP;
   474   // x/x == 1 since we always generate the dynamic divisor check for 0.
   475   if( phase->eqv( in(1), in(2) ) )
   476     return TypeInt::ONE;
   478   // Either input is BOTTOM ==> the result is the local BOTTOM
   479   const Type *bot = bottom_type();
   480   if( (t1 == bot) || (t2 == bot) ||
   481       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   482     return bot;
   484   // Divide the two numbers.  We approximate.
   485   // If divisor is a constant and not zero
   486   const TypeInt *i1 = t1->is_int();
   487   const TypeInt *i2 = t2->is_int();
   488   int widen = MAX2(i1->_widen, i2->_widen);
   490   if( i2->is_con() && i2->get_con() != 0 ) {
   491     int32 d = i2->get_con(); // Divisor
   492     jint lo, hi;
   493     if( d >= 0 ) {
   494       lo = i1->_lo/d;
   495       hi = i1->_hi/d;
   496     } else {
   497       if( d == -1 && i1->_lo == min_jint ) {
   498         // 'min_jint/-1' throws arithmetic exception during compilation
   499         lo = min_jint;
   500         // do not support holes, 'hi' must go to either min_jint or max_jint:
   501         // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
   502         hi = i1->_hi == min_jint ? min_jint : max_jint;
   503       } else {
   504         lo = i1->_hi/d;
   505         hi = i1->_lo/d;
   506       }
   507     }
   508     return TypeInt::make(lo, hi, widen);
   509   }
   511   // If the dividend is a constant
   512   if( i1->is_con() ) {
   513     int32 d = i1->get_con();
   514     if( d < 0 ) {
   515       if( d == min_jint ) {
   516         //  (-min_jint) == min_jint == (min_jint / -1)
   517         return TypeInt::make(min_jint, max_jint/2 + 1, widen);
   518       } else {
   519         return TypeInt::make(d, -d, widen);
   520       }
   521     }
   522     return TypeInt::make(-d, d, widen);
   523   }
   525   // Otherwise we give up all hope
   526   return TypeInt::INT;
   527 }
   530 //=============================================================================
   531 //------------------------------Identity---------------------------------------
   532 // If the divisor is 1, we are an identity on the dividend.
   533 Node *DivLNode::Identity( PhaseTransform *phase ) {
   534   return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
   535 }
   537 //------------------------------Idealize---------------------------------------
   538 // Dividing by a power of 2 is a shift.
   539 Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
   540   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
   541   // Don't bother trying to transform a dead node
   542   if( in(0) && in(0)->is_top() )  return NULL;
   544   const Type *t = phase->type( in(2) );
   545   if( t == TypeLong::ONE )      // Identity?
   546     return NULL;                // Skip it
   548   const TypeLong *tl = t->isa_long();
   549   if( !tl ) return NULL;
   550   if( !tl->is_con() ) return NULL;
   551   jlong l = tl->get_con();      // Get divisor
   553   if (l == 0) return NULL;      // Dividing by zero constant does not idealize
   555   set_req(0,NULL);              // Dividing by a not-zero constant; no faulting
   557   // Dividing by MININT does not optimize as a power-of-2 shift.
   558   if( l == min_jlong ) return NULL;
   560   return transform_long_divide( phase, in(1), l );
   561 }
   563 //------------------------------Value------------------------------------------
   564 // A DivLNode divides its inputs.  The third input is a Control input, used to
   565 // prevent hoisting the divide above an unsafe test.
   566 const Type *DivLNode::Value( PhaseTransform *phase ) const {
   567   // Either input is TOP ==> the result is TOP
   568   const Type *t1 = phase->type( in(1) );
   569   const Type *t2 = phase->type( in(2) );
   570   if( t1 == Type::TOP ) return Type::TOP;
   571   if( t2 == Type::TOP ) return Type::TOP;
   573   // x/x == 1 since we always generate the dynamic divisor check for 0.
   574   if( phase->eqv( in(1), in(2) ) )
   575     return TypeLong::ONE;
   577   // Either input is BOTTOM ==> the result is the local BOTTOM
   578   const Type *bot = bottom_type();
   579   if( (t1 == bot) || (t2 == bot) ||
   580       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   581     return bot;
   583   // Divide the two numbers.  We approximate.
   584   // If divisor is a constant and not zero
   585   const TypeLong *i1 = t1->is_long();
   586   const TypeLong *i2 = t2->is_long();
   587   int widen = MAX2(i1->_widen, i2->_widen);
   589   if( i2->is_con() && i2->get_con() != 0 ) {
   590     jlong d = i2->get_con();    // Divisor
   591     jlong lo, hi;
   592     if( d >= 0 ) {
   593       lo = i1->_lo/d;
   594       hi = i1->_hi/d;
   595     } else {
   596       if( d == CONST64(-1) && i1->_lo == min_jlong ) {
   597         // 'min_jlong/-1' throws arithmetic exception during compilation
   598         lo = min_jlong;
   599         // do not support holes, 'hi' must go to either min_jlong or max_jlong:
   600         // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
   601         hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
   602       } else {
   603         lo = i1->_hi/d;
   604         hi = i1->_lo/d;
   605       }
   606     }
   607     return TypeLong::make(lo, hi, widen);
   608   }
   610   // If the dividend is a constant
   611   if( i1->is_con() ) {
   612     jlong d = i1->get_con();
   613     if( d < 0 ) {
   614       if( d == min_jlong ) {
   615         //  (-min_jlong) == min_jlong == (min_jlong / -1)
   616         return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
   617       } else {
   618         return TypeLong::make(d, -d, widen);
   619       }
   620     }
   621     return TypeLong::make(-d, d, widen);
   622   }
   624   // Otherwise we give up all hope
   625   return TypeLong::LONG;
   626 }
   629 //=============================================================================
   630 //------------------------------Value------------------------------------------
   631 // An DivFNode divides its inputs.  The third input is a Control input, used to
   632 // prevent hoisting the divide above an unsafe test.
   633 const Type *DivFNode::Value( PhaseTransform *phase ) const {
   634   // Either input is TOP ==> the result is TOP
   635   const Type *t1 = phase->type( in(1) );
   636   const Type *t2 = phase->type( in(2) );
   637   if( t1 == Type::TOP ) return Type::TOP;
   638   if( t2 == Type::TOP ) return Type::TOP;
   640   // Either input is BOTTOM ==> the result is the local BOTTOM
   641   const Type *bot = bottom_type();
   642   if( (t1 == bot) || (t2 == bot) ||
   643       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   644     return bot;
   646   // x/x == 1, we ignore 0/0.
   647   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
   648   // Does not work for variables because of NaN's
   649   if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
   650     if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
   651       return TypeF::ONE;
   653   if( t2 == TypeF::ONE )
   654     return t1;
   656   // If divisor is a constant and not zero, divide them numbers
   657   if( t1->base() == Type::FloatCon &&
   658       t2->base() == Type::FloatCon &&
   659       t2->getf() != 0.0 ) // could be negative zero
   660     return TypeF::make( t1->getf()/t2->getf() );
   662   // If the dividend is a constant zero
   663   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
   664   // Test TypeF::ZERO is not sufficient as it could be negative zero
   666   if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
   667     return TypeF::ZERO;
   669   // Otherwise we give up all hope
   670   return Type::FLOAT;
   671 }
   673 //------------------------------isA_Copy---------------------------------------
   674 // Dividing by self is 1.
   675 // If the divisor is 1, we are an identity on the dividend.
   676 Node *DivFNode::Identity( PhaseTransform *phase ) {
   677   return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
   678 }
   681 //------------------------------Idealize---------------------------------------
   682 Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   683   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
   684   // Don't bother trying to transform a dead node
   685   if( in(0) && in(0)->is_top() )  return NULL;
   687   const Type *t2 = phase->type( in(2) );
   688   if( t2 == TypeF::ONE )         // Identity?
   689     return NULL;                // Skip it
   691   const TypeF *tf = t2->isa_float_constant();
   692   if( !tf ) return NULL;
   693   if( tf->base() != Type::FloatCon ) return NULL;
   695   // Check for out of range values
   696   if( tf->is_nan() || !tf->is_finite() ) return NULL;
   698   // Get the value
   699   float f = tf->getf();
   700   int exp;
   702   // Only for special case of dividing by a power of 2
   703   if( frexp((double)f, &exp) != 0.5 ) return NULL;
   705   // Limit the range of acceptable exponents
   706   if( exp < -126 || exp > 126 ) return NULL;
   708   // Compute the reciprocal
   709   float reciprocal = ((float)1.0) / f;
   711   assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
   713   // return multiplication by the reciprocal
   714   return (new (phase->C, 3) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
   715 }
   717 //=============================================================================
   718 //------------------------------Value------------------------------------------
   719 // An DivDNode divides its inputs.  The third input is a Control input, used to
   720 // prevent hoisting the divide above an unsafe test.
   721 const Type *DivDNode::Value( PhaseTransform *phase ) const {
   722   // Either input is TOP ==> the result is TOP
   723   const Type *t1 = phase->type( in(1) );
   724   const Type *t2 = phase->type( in(2) );
   725   if( t1 == Type::TOP ) return Type::TOP;
   726   if( t2 == Type::TOP ) return Type::TOP;
   728   // Either input is BOTTOM ==> the result is the local BOTTOM
   729   const Type *bot = bottom_type();
   730   if( (t1 == bot) || (t2 == bot) ||
   731       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   732     return bot;
   734   // x/x == 1, we ignore 0/0.
   735   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
   736   // Does not work for variables because of NaN's
   737   if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon)
   738     if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN
   739       return TypeD::ONE;
   741   if( t2 == TypeD::ONE )
   742     return t1;
   744 #if defined(IA32)
   745   if (!phase->C->method()->is_strict())
   746     // Can't trust native compilers to properly fold strict double
   747     // division with round-to-zero on this platform.
   748 #endif
   749     {
   750       // If divisor is a constant and not zero, divide them numbers
   751       if( t1->base() == Type::DoubleCon &&
   752           t2->base() == Type::DoubleCon &&
   753           t2->getd() != 0.0 ) // could be negative zero
   754         return TypeD::make( t1->getd()/t2->getd() );
   755     }
   757   // If the dividend is a constant zero
   758   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
   759   // Test TypeF::ZERO is not sufficient as it could be negative zero
   760   if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
   761     return TypeD::ZERO;
   763   // Otherwise we give up all hope
   764   return Type::DOUBLE;
   765 }
   768 //------------------------------isA_Copy---------------------------------------
   769 // Dividing by self is 1.
   770 // If the divisor is 1, we are an identity on the dividend.
   771 Node *DivDNode::Identity( PhaseTransform *phase ) {
   772   return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
   773 }
   775 //------------------------------Idealize---------------------------------------
   776 Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   777   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
   778   // Don't bother trying to transform a dead node
   779   if( in(0) && in(0)->is_top() )  return NULL;
   781   const Type *t2 = phase->type( in(2) );
   782   if( t2 == TypeD::ONE )         // Identity?
   783     return NULL;                // Skip it
   785   const TypeD *td = t2->isa_double_constant();
   786   if( !td ) return NULL;
   787   if( td->base() != Type::DoubleCon ) return NULL;
   789   // Check for out of range values
   790   if( td->is_nan() || !td->is_finite() ) return NULL;
   792   // Get the value
   793   double d = td->getd();
   794   int exp;
   796   // Only for special case of dividing by a power of 2
   797   if( frexp(d, &exp) != 0.5 ) return NULL;
   799   // Limit the range of acceptable exponents
   800   if( exp < -1021 || exp > 1022 ) return NULL;
   802   // Compute the reciprocal
   803   double reciprocal = 1.0 / d;
   805   assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
   807   // return multiplication by the reciprocal
   808   return (new (phase->C, 3) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
   809 }
   811 //=============================================================================
   812 //------------------------------Idealize---------------------------------------
   813 Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   814   // Check for dead control input
   815   if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
   816   // Don't bother trying to transform a dead node
   817   if( in(0) && in(0)->is_top() )  return NULL;
   819   // Get the modulus
   820   const Type *t = phase->type( in(2) );
   821   if( t == Type::TOP ) return NULL;
   822   const TypeInt *ti = t->is_int();
   824   // Check for useless control input
   825   // Check for excluding mod-zero case
   826   if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
   827     set_req(0, NULL);        // Yank control input
   828     return this;
   829   }
   831   // See if we are MOD'ing by 2^k or 2^k-1.
   832   if( !ti->is_con() ) return NULL;
   833   jint con = ti->get_con();
   835   Node *hook = new (phase->C, 1) Node(1);
   837   // First, special check for modulo 2^k-1
   838   if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
   839     uint k = exact_log2(con+1);  // Extract k
   841     // Basic algorithm by David Detlefs.  See fastmod_int.java for gory details.
   842     static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
   843     int trip_count = 1;
   844     if( k < ARRAY_SIZE(unroll_factor))  trip_count = unroll_factor[k];
   846     // If the unroll factor is not too large, and if conditional moves are
   847     // ok, then use this case
   848     if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
   849       Node *x = in(1);            // Value being mod'd
   850       Node *divisor = in(2);      // Also is mask
   852       hook->init_req(0, x);       // Add a use to x to prevent him from dying
   853       // Generate code to reduce X rapidly to nearly 2^k-1.
   854       for( int i = 0; i < trip_count; i++ ) {
   855         Node *xl = phase->transform( new (phase->C, 3) AndINode(x,divisor) );
   856         Node *xh = phase->transform( new (phase->C, 3) RShiftINode(x,phase->intcon(k)) ); // Must be signed
   857         x = phase->transform( new (phase->C, 3) AddINode(xh,xl) );
   858         hook->set_req(0, x);
   859       }
   861       // Generate sign-fixup code.  Was original value positive?
   862       // int hack_res = (i >= 0) ? divisor : 1;
   863       Node *cmp1 = phase->transform( new (phase->C, 3) CmpINode( in(1), phase->intcon(0) ) );
   864       Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
   865       Node *cmov1= phase->transform( new (phase->C, 4) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
   866       // if( x >= hack_res ) x -= divisor;
   867       Node *sub  = phase->transform( new (phase->C, 3) SubINode( x, divisor ) );
   868       Node *cmp2 = phase->transform( new (phase->C, 3) CmpINode( x, cmov1 ) );
   869       Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
   870       // Convention is to not transform the return value of an Ideal
   871       // since Ideal is expected to return a modified 'this' or a new node.
   872       Node *cmov2= new (phase->C, 4) CMoveINode(bol2, x, sub, TypeInt::INT);
   873       // cmov2 is now the mod
   875       // Now remove the bogus extra edges used to keep things alive
   876       if (can_reshape) {
   877         phase->is_IterGVN()->remove_dead_node(hook);
   878       } else {
   879         hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
   880       }
   881       return cmov2;
   882     }
   883   }
   885   // Fell thru, the unroll case is not appropriate. Transform the modulo
   886   // into a long multiply/int multiply/subtract case
   888   // Cannot handle mod 0, and min_jint isn't handled by the transform
   889   if( con == 0 || con == min_jint ) return NULL;
   891   // Get the absolute value of the constant; at this point, we can use this
   892   jint pos_con = (con >= 0) ? con : -con;
   894   // integer Mod 1 is always 0
   895   if( pos_con == 1 ) return new (phase->C, 1) ConINode(TypeInt::ZERO);
   897   int log2_con = -1;
   899   // If this is a power of two, they maybe we can mask it
   900   if( is_power_of_2(pos_con) ) {
   901     log2_con = log2_intptr((intptr_t)pos_con);
   903     const Type *dt = phase->type(in(1));
   904     const TypeInt *dti = dt->isa_int();
   906     // See if this can be masked, if the dividend is non-negative
   907     if( dti && dti->_lo >= 0 )
   908       return ( new (phase->C, 3) AndINode( in(1), phase->intcon( pos_con-1 ) ) );
   909   }
   911   // Save in(1) so that it cannot be changed or deleted
   912   hook->init_req(0, in(1));
   914   // Divide using the transform from DivI to MulL
   915   Node *result = transform_int_divide( phase, in(1), pos_con );
   916   if (result != NULL) {
   917     Node *divide = phase->transform(result);
   919     // Re-multiply, using a shift if this is a power of two
   920     Node *mult = NULL;
   922     if( log2_con >= 0 )
   923       mult = phase->transform( new (phase->C, 3) LShiftINode( divide, phase->intcon( log2_con ) ) );
   924     else
   925       mult = phase->transform( new (phase->C, 3) MulINode( divide, phase->intcon( pos_con ) ) );
   927     // Finally, subtract the multiplied divided value from the original
   928     result = new (phase->C, 3) SubINode( in(1), mult );
   929   }
   931   // Now remove the bogus extra edges used to keep things alive
   932   if (can_reshape) {
   933     phase->is_IterGVN()->remove_dead_node(hook);
   934   } else {
   935     hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
   936   }
   938   // return the value
   939   return result;
   940 }
   942 //------------------------------Value------------------------------------------
   943 const Type *ModINode::Value( PhaseTransform *phase ) const {
   944   // Either input is TOP ==> the result is TOP
   945   const Type *t1 = phase->type( in(1) );
   946   const Type *t2 = phase->type( in(2) );
   947   if( t1 == Type::TOP ) return Type::TOP;
   948   if( t2 == Type::TOP ) return Type::TOP;
   950   // We always generate the dynamic check for 0.
   951   // 0 MOD X is 0
   952   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
   953   // X MOD X is 0
   954   if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO;
   956   // Either input is BOTTOM ==> the result is the local BOTTOM
   957   const Type *bot = bottom_type();
   958   if( (t1 == bot) || (t2 == bot) ||
   959       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   960     return bot;
   962   const TypeInt *i1 = t1->is_int();
   963   const TypeInt *i2 = t2->is_int();
   964   if( !i1->is_con() || !i2->is_con() ) {
   965     if( i1->_lo >= 0 && i2->_lo >= 0 )
   966       return TypeInt::POS;
   967     // If both numbers are not constants, we know little.
   968     return TypeInt::INT;
   969   }
   970   // Mod by zero?  Throw exception at runtime!
   971   if( !i2->get_con() ) return TypeInt::POS;
   973   // We must be modulo'ing 2 float constants.
   974   // Check for min_jint % '-1', result is defined to be '0'.
   975   if( i1->get_con() == min_jint && i2->get_con() == -1 )
   976     return TypeInt::ZERO;
   978   return TypeInt::make( i1->get_con() % i2->get_con() );
   979 }
   982 //=============================================================================
   983 //------------------------------Idealize---------------------------------------
   984 Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   985   // Check for dead control input
   986   if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
   987   // Don't bother trying to transform a dead node
   988   if( in(0) && in(0)->is_top() )  return NULL;
   990   // Get the modulus
   991   const Type *t = phase->type( in(2) );
   992   if( t == Type::TOP ) return NULL;
   993   const TypeLong *tl = t->is_long();
   995   // Check for useless control input
   996   // Check for excluding mod-zero case
   997   if( in(0) && (tl->_hi < 0 || tl->_lo > 0) ) {
   998     set_req(0, NULL);        // Yank control input
   999     return this;
  1002   // See if we are MOD'ing by 2^k or 2^k-1.
  1003   if( !tl->is_con() ) return NULL;
  1004   jlong con = tl->get_con();
  1006   Node *hook = new (phase->C, 1) Node(1);
  1008   // Expand mod
  1009   if( con >= 0 && con < max_jlong && is_power_of_2_long(con+1) ) {
  1010     uint k = exact_log2_long(con+1);  // Extract k
  1012     // Basic algorithm by David Detlefs.  See fastmod_long.java for gory details.
  1013     // Used to help a popular random number generator which does a long-mod
  1014     // of 2^31-1 and shows up in SpecJBB and SciMark.
  1015     static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
  1016     int trip_count = 1;
  1017     if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
  1019     // If the unroll factor is not too large, and if conditional moves are
  1020     // ok, then use this case
  1021     if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
  1022       Node *x = in(1);            // Value being mod'd
  1023       Node *divisor = in(2);      // Also is mask
  1025       hook->init_req(0, x);       // Add a use to x to prevent him from dying
  1026       // Generate code to reduce X rapidly to nearly 2^k-1.
  1027       for( int i = 0; i < trip_count; i++ ) {
  1028         Node *xl = phase->transform( new (phase->C, 3) AndLNode(x,divisor) );
  1029         Node *xh = phase->transform( new (phase->C, 3) RShiftLNode(x,phase->intcon(k)) ); // Must be signed
  1030         x = phase->transform( new (phase->C, 3) AddLNode(xh,xl) );
  1031         hook->set_req(0, x);    // Add a use to x to prevent him from dying
  1034       // Generate sign-fixup code.  Was original value positive?
  1035       // long hack_res = (i >= 0) ? divisor : CONST64(1);
  1036       Node *cmp1 = phase->transform( new (phase->C, 3) CmpLNode( in(1), phase->longcon(0) ) );
  1037       Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
  1038       Node *cmov1= phase->transform( new (phase->C, 4) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
  1039       // if( x >= hack_res ) x -= divisor;
  1040       Node *sub  = phase->transform( new (phase->C, 3) SubLNode( x, divisor ) );
  1041       Node *cmp2 = phase->transform( new (phase->C, 3) CmpLNode( x, cmov1 ) );
  1042       Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
  1043       // Convention is to not transform the return value of an Ideal
  1044       // since Ideal is expected to return a modified 'this' or a new node.
  1045       Node *cmov2= new (phase->C, 4) CMoveLNode(bol2, x, sub, TypeLong::LONG);
  1046       // cmov2 is now the mod
  1048       // Now remove the bogus extra edges used to keep things alive
  1049       if (can_reshape) {
  1050         phase->is_IterGVN()->remove_dead_node(hook);
  1051       } else {
  1052         hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
  1054       return cmov2;
  1058   // Fell thru, the unroll case is not appropriate. Transform the modulo
  1059   // into a long multiply/int multiply/subtract case
  1061   // Cannot handle mod 0, and min_jint isn't handled by the transform
  1062   if( con == 0 || con == min_jlong ) return NULL;
  1064   // Get the absolute value of the constant; at this point, we can use this
  1065   jlong pos_con = (con >= 0) ? con : -con;
  1067   // integer Mod 1 is always 0
  1068   if( pos_con == 1 ) return new (phase->C, 1) ConLNode(TypeLong::ZERO);
  1070   int log2_con = -1;
  1072   // If this is a power of two, then maybe we can mask it
  1073   if( is_power_of_2_long(pos_con) ) {
  1074     log2_con = log2_long(pos_con);
  1076     const Type *dt = phase->type(in(1));
  1077     const TypeLong *dtl = dt->isa_long();
  1079     // See if this can be masked, if the dividend is non-negative
  1080     if( dtl && dtl->_lo >= 0 )
  1081       return ( new (phase->C, 3) AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
  1084   // Save in(1) so that it cannot be changed or deleted
  1085   hook->init_req(0, in(1));
  1087   // Divide using the transform from DivI to MulL
  1088   Node *result = transform_long_divide( phase, in(1), pos_con );
  1089   if (result != NULL) {
  1090     Node *divide = phase->transform(result);
  1092     // Re-multiply, using a shift if this is a power of two
  1093     Node *mult = NULL;
  1095     if( log2_con >= 0 )
  1096       mult = phase->transform( new (phase->C, 3) LShiftLNode( divide, phase->intcon( log2_con ) ) );
  1097     else
  1098       mult = phase->transform( new (phase->C, 3) MulLNode( divide, phase->longcon( pos_con ) ) );
  1100     // Finally, subtract the multiplied divided value from the original
  1101     result = new (phase->C, 3) SubLNode( in(1), mult );
  1104   // Now remove the bogus extra edges used to keep things alive
  1105   if (can_reshape) {
  1106     phase->is_IterGVN()->remove_dead_node(hook);
  1107   } else {
  1108     hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
  1111   // return the value
  1112   return result;
  1115 //------------------------------Value------------------------------------------
  1116 const Type *ModLNode::Value( PhaseTransform *phase ) const {
  1117   // Either input is TOP ==> the result is TOP
  1118   const Type *t1 = phase->type( in(1) );
  1119   const Type *t2 = phase->type( in(2) );
  1120   if( t1 == Type::TOP ) return Type::TOP;
  1121   if( t2 == Type::TOP ) return Type::TOP;
  1123   // We always generate the dynamic check for 0.
  1124   // 0 MOD X is 0
  1125   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  1126   // X MOD X is 0
  1127   if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO;
  1129   // Either input is BOTTOM ==> the result is the local BOTTOM
  1130   const Type *bot = bottom_type();
  1131   if( (t1 == bot) || (t2 == bot) ||
  1132       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
  1133     return bot;
  1135   const TypeLong *i1 = t1->is_long();
  1136   const TypeLong *i2 = t2->is_long();
  1137   if( !i1->is_con() || !i2->is_con() ) {
  1138     if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
  1139       return TypeLong::POS;
  1140     // If both numbers are not constants, we know little.
  1141     return TypeLong::LONG;
  1143   // Mod by zero?  Throw exception at runtime!
  1144   if( !i2->get_con() ) return TypeLong::POS;
  1146   // We must be modulo'ing 2 float constants.
  1147   // Check for min_jint % '-1', result is defined to be '0'.
  1148   if( i1->get_con() == min_jlong && i2->get_con() == -1 )
  1149     return TypeLong::ZERO;
  1151   return TypeLong::make( i1->get_con() % i2->get_con() );
  1155 //=============================================================================
  1156 //------------------------------Value------------------------------------------
  1157 const Type *ModFNode::Value( PhaseTransform *phase ) const {
  1158   // Either input is TOP ==> the result is TOP
  1159   const Type *t1 = phase->type( in(1) );
  1160   const Type *t2 = phase->type( in(2) );
  1161   if( t1 == Type::TOP ) return Type::TOP;
  1162   if( t2 == Type::TOP ) return Type::TOP;
  1164   // Either input is BOTTOM ==> the result is the local BOTTOM
  1165   const Type *bot = bottom_type();
  1166   if( (t1 == bot) || (t2 == bot) ||
  1167       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
  1168     return bot;
  1170   // If either number is not a constant, we know nothing.
  1171   if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) {
  1172     return Type::FLOAT;         // note: x%x can be either NaN or 0
  1175   float f1 = t1->getf();
  1176   float f2 = t2->getf();
  1177   jint  x1 = jint_cast(f1);     // note:  *(int*)&f1, not just (int)f1
  1178   jint  x2 = jint_cast(f2);
  1180   // If either is a NaN, return an input NaN
  1181   if (g_isnan(f1))    return t1;
  1182   if (g_isnan(f2))    return t2;
  1184   // If an operand is infinity or the divisor is +/- zero, punt.
  1185   if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint)
  1186     return Type::FLOAT;
  1188   // We must be modulo'ing 2 float constants.
  1189   // Make sure that the sign of the fmod is equal to the sign of the dividend
  1190   jint xr = jint_cast(fmod(f1, f2));
  1191   if ((x1 ^ xr) < 0) {
  1192     xr ^= min_jint;
  1195   return TypeF::make(jfloat_cast(xr));
  1199 //=============================================================================
  1200 //------------------------------Value------------------------------------------
  1201 const Type *ModDNode::Value( PhaseTransform *phase ) const {
  1202   // Either input is TOP ==> the result is TOP
  1203   const Type *t1 = phase->type( in(1) );
  1204   const Type *t2 = phase->type( in(2) );
  1205   if( t1 == Type::TOP ) return Type::TOP;
  1206   if( t2 == Type::TOP ) return Type::TOP;
  1208   // Either input is BOTTOM ==> the result is the local BOTTOM
  1209   const Type *bot = bottom_type();
  1210   if( (t1 == bot) || (t2 == bot) ||
  1211       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
  1212     return bot;
  1214   // If either number is not a constant, we know nothing.
  1215   if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) {
  1216     return Type::DOUBLE;        // note: x%x can be either NaN or 0
  1219   double f1 = t1->getd();
  1220   double f2 = t2->getd();
  1221   jlong  x1 = jlong_cast(f1);   // note:  *(long*)&f1, not just (long)f1
  1222   jlong  x2 = jlong_cast(f2);
  1224   // If either is a NaN, return an input NaN
  1225   if (g_isnan(f1))    return t1;
  1226   if (g_isnan(f2))    return t2;
  1228   // If an operand is infinity or the divisor is +/- zero, punt.
  1229   if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong)
  1230     return Type::DOUBLE;
  1232   // We must be modulo'ing 2 double constants.
  1233   // Make sure that the sign of the fmod is equal to the sign of the dividend
  1234   jlong xr = jlong_cast(fmod(f1, f2));
  1235   if ((x1 ^ xr) < 0) {
  1236     xr ^= min_jlong;
  1239   return TypeD::make(jdouble_cast(xr));
  1242 //=============================================================================
  1244 DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
  1245   init_req(0, c);
  1246   init_req(1, dividend);
  1247   init_req(2, divisor);
  1250 //------------------------------make------------------------------------------
  1251 DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) {
  1252   Node* n = div_or_mod;
  1253   assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
  1254          "only div or mod input pattern accepted");
  1256   DivModINode* divmod = new (C, 3) DivModINode(n->in(0), n->in(1), n->in(2));
  1257   Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
  1258   Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
  1259   return divmod;
  1262 //------------------------------make------------------------------------------
  1263 DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) {
  1264   Node* n = div_or_mod;
  1265   assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
  1266          "only div or mod input pattern accepted");
  1268   DivModLNode* divmod = new (C, 3) DivModLNode(n->in(0), n->in(1), n->in(2));
  1269   Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
  1270   Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
  1271   return divmod;
  1274 //------------------------------match------------------------------------------
  1275 // return result(s) along with their RegMask info
  1276 Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
  1277   uint ideal_reg = proj->ideal_reg();
  1278   RegMask rm;
  1279   if (proj->_con == div_proj_num) {
  1280     rm = match->divI_proj_mask();
  1281   } else {
  1282     assert(proj->_con == mod_proj_num, "must be div or mod projection");
  1283     rm = match->modI_proj_mask();
  1285   return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
  1289 //------------------------------match------------------------------------------
  1290 // return result(s) along with their RegMask info
  1291 Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
  1292   uint ideal_reg = proj->ideal_reg();
  1293   RegMask rm;
  1294   if (proj->_con == div_proj_num) {
  1295     rm = match->divL_proj_mask();
  1296   } else {
  1297     assert(proj->_con == mod_proj_num, "must be div or mod projection");
  1298     rm = match->modL_proj_mask();
  1300   return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);

mercurial