src/share/vm/opto/chaitin.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 1001
91263420e1c6
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 2000-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_chaitin.cpp.incl"
    28 //=============================================================================
    30 #ifndef PRODUCT
    31 void LRG::dump( ) const {
    32   ttyLocker ttyl;
    33   tty->print("%d ",num_regs());
    34   _mask.dump();
    35   if( _msize_valid ) {
    36     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
    37     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
    38   } else {
    39     tty->print(", #?(%d) ",_mask.Size());
    40   }
    42   tty->print("EffDeg: ");
    43   if( _degree_valid ) tty->print( "%d ", _eff_degree );
    44   else tty->print("? ");
    46   if( is_multidef() ) {
    47     tty->print("MultiDef ");
    48     if (_defs != NULL) {
    49       tty->print("(");
    50       for (int i = 0; i < _defs->length(); i++) {
    51         tty->print("N%d ", _defs->at(i)->_idx);
    52       }
    53       tty->print(") ");
    54     }
    55   }
    56   else if( _def == 0 ) tty->print("Dead ");
    57   else tty->print("Def: N%d ",_def->_idx);
    59   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
    60   // Flags
    61   if( _is_oop ) tty->print("Oop ");
    62   if( _is_float ) tty->print("Float ");
    63   if( _was_spilled1 ) tty->print("Spilled ");
    64   if( _was_spilled2 ) tty->print("Spilled2 ");
    65   if( _direct_conflict ) tty->print("Direct_conflict ");
    66   if( _fat_proj ) tty->print("Fat ");
    67   if( _was_lo ) tty->print("Lo ");
    68   if( _has_copy ) tty->print("Copy ");
    69   if( _at_risk ) tty->print("Risk ");
    71   if( _must_spill ) tty->print("Must_spill ");
    72   if( _is_bound ) tty->print("Bound ");
    73   if( _msize_valid ) {
    74     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
    75   }
    77   tty->cr();
    78 }
    79 #endif
    81 //------------------------------score------------------------------------------
    82 // Compute score from cost and area.  Low score is best to spill.
    83 static double raw_score( double cost, double area ) {
    84   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
    85 }
    87 double LRG::score() const {
    88   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
    89   // Bigger area lowers score, encourages spilling this live range.
    90   // Bigger cost raise score, prevents spilling this live range.
    91   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
    92   // to turn a divide by a constant into a multiply by the reciprical).
    93   double score = raw_score( _cost, _area);
    95   // Account for area.  Basically, LRGs covering large areas are better
    96   // to spill because more other LRGs get freed up.
    97   if( _area == 0.0 )            // No area?  Then no progress to spill
    98     return 1e35;
   100   if( _was_spilled2 )           // If spilled once before, we are unlikely
   101     return score + 1e30;        // to make progress again.
   103   if( _cost >= _area*3.0 )      // Tiny area relative to cost
   104     return score + 1e17;        // Probably no progress to spill
   106   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
   107     return score + 1e10;        // Likely no progress to spill
   109   return score;
   110 }
   112 //------------------------------LRG_List---------------------------------------
   113 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
   114   memset( _lidxs, 0, sizeof(uint)*max );
   115 }
   117 void LRG_List::extend( uint nidx, uint lidx ) {
   118   _nesting.check();
   119   if( nidx >= _max ) {
   120     uint size = 16;
   121     while( size <= nidx ) size <<=1;
   122     _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
   123     _max = size;
   124   }
   125   while( _cnt <= nidx )
   126     _lidxs[_cnt++] = 0;
   127   _lidxs[nidx] = lidx;
   128 }
   130 #define NUMBUCKS 3
   132 //------------------------------Chaitin----------------------------------------
   133 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
   134   : PhaseRegAlloc(unique, cfg, matcher,
   135 #ifndef PRODUCT
   136        print_chaitin_statistics
   137 #else
   138        NULL
   139 #endif
   140        ),
   141     _names(unique), _uf_map(unique),
   142     _maxlrg(0), _live(0),
   143     _spilled_once(Thread::current()->resource_area()),
   144     _spilled_twice(Thread::current()->resource_area()),
   145     _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
   146     _oldphi(unique)
   147 #ifndef PRODUCT
   148   , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
   149 #endif
   150 {
   151   NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
   152   uint i,j;
   153   // Build a list of basic blocks, sorted by frequency
   154   _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
   155   // Experiment with sorting strategies to speed compilation
   156   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
   157   Block **buckets[NUMBUCKS];             // Array of buckets
   158   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
   159   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
   160   for( i = 0; i < NUMBUCKS; i++ ) {
   161     buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
   162     buckcnt[i] = 0;
   163     // Bump by three orders of magnitude each time
   164     cutoff *= 0.001;
   165     buckval[i] = cutoff;
   166     for( j = 0; j < _cfg._num_blocks; j++ ) {
   167       buckets[i][j] = NULL;
   168     }
   169   }
   170   // Sort blocks into buckets
   171   for( i = 0; i < _cfg._num_blocks; i++ ) {
   172     for( j = 0; j < NUMBUCKS; j++ ) {
   173       if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
   174         // Assign block to end of list for appropriate bucket
   175         buckets[j][buckcnt[j]++] = _cfg._blocks[i];
   176         break;                      // kick out of inner loop
   177       }
   178     }
   179   }
   180   // Dump buckets into final block array
   181   uint blkcnt = 0;
   182   for( i = 0; i < NUMBUCKS; i++ ) {
   183     for( j = 0; j < buckcnt[i]; j++ ) {
   184       _blks[blkcnt++] = buckets[i][j];
   185     }
   186   }
   188   assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
   189 }
   191 void PhaseChaitin::Register_Allocate() {
   193   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
   194   // slots in this area are called "arg_slots".  Above the NEW FP (and in
   195   // registers) is the outgoing argument area; above that is the spill/temp
   196   // area.  These are all "frame_slots".  Arg_slots start at the zero
   197   // stack_slots and count up to the known arg_size.  Frame_slots start at
   198   // the stack_slot #arg_size and go up.  After allocation I map stack
   199   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
   200   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
   202   _trip_cnt = 0;
   203   _alternate = 0;
   204   _matcher._allocation_started = true;
   206   ResourceArea live_arena;      // Arena for liveness & IFG info
   207   ResourceMark rm(&live_arena);
   209   // Need live-ness for the IFG; need the IFG for coalescing.  If the
   210   // liveness is JUST for coalescing, then I can get some mileage by renaming
   211   // all copy-related live ranges low and then using the max copy-related
   212   // live range as a cut-off for LIVE and the IFG.  In other words, I can
   213   // build a subset of LIVE and IFG just for copies.
   214   PhaseLive live(_cfg,_names,&live_arena);
   216   // Need IFG for coalescing and coloring
   217   PhaseIFG ifg( &live_arena );
   218   _ifg = &ifg;
   220   if (C->unique() > _names.Size())  _names.extend(C->unique()-1, 0);
   222   // Come out of SSA world to the Named world.  Assign (virtual) registers to
   223   // Nodes.  Use the same register for all inputs and the output of PhiNodes
   224   // - effectively ending SSA form.  This requires either coalescing live
   225   // ranges or inserting copies.  For the moment, we insert "virtual copies"
   226   // - we pretend there is a copy prior to each Phi in predecessor blocks.
   227   // We will attempt to coalesce such "virtual copies" before we manifest
   228   // them for real.
   229   de_ssa();
   231 #ifdef ASSERT
   232   // Veify the graph before RA.
   233   verify(&live_arena);
   234 #endif
   236   {
   237     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   238     _live = NULL;                 // Mark live as being not available
   239     rm.reset_to_mark();           // Reclaim working storage
   240     IndexSet::reset_memory(C, &live_arena);
   241     ifg.init(_maxlrg);            // Empty IFG
   242     gather_lrg_masks( false );    // Collect LRG masks
   243     live.compute( _maxlrg );      // Compute liveness
   244     _live = &live;                // Mark LIVE as being available
   245   }
   247   // Base pointers are currently "used" by instructions which define new
   248   // derived pointers.  This makes base pointers live up to the where the
   249   // derived pointer is made, but not beyond.  Really, they need to be live
   250   // across any GC point where the derived value is live.  So this code looks
   251   // at all the GC points, and "stretches" the live range of any base pointer
   252   // to the GC point.
   253   if( stretch_base_pointer_live_ranges(&live_arena) ) {
   254     NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
   255     // Since some live range stretched, I need to recompute live
   256     _live = NULL;
   257     rm.reset_to_mark();         // Reclaim working storage
   258     IndexSet::reset_memory(C, &live_arena);
   259     ifg.init(_maxlrg);
   260     gather_lrg_masks( false );
   261     live.compute( _maxlrg );
   262     _live = &live;
   263   }
   264   // Create the interference graph using virtual copies
   265   build_ifg_virtual( );  // Include stack slots this time
   267   // Aggressive (but pessimistic) copy coalescing.
   268   // This pass works on virtual copies.  Any virtual copies which are not
   269   // coalesced get manifested as actual copies
   270   {
   271     // The IFG is/was triangular.  I am 'squaring it up' so Union can run
   272     // faster.  Union requires a 'for all' operation which is slow on the
   273     // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
   274     // meaning I can visit all the Nodes neighbors less than a Node in time
   275     // O(# of neighbors), but I have to visit all the Nodes greater than a
   276     // given Node and search them for an instance, i.e., time O(#MaxLRG)).
   277     _ifg->SquareUp();
   279     PhaseAggressiveCoalesce coalesce( *this );
   280     coalesce.coalesce_driver( );
   281     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
   282     // not match the Phi itself, insert a copy.
   283     coalesce.insert_copies(_matcher);
   284   }
   286   // After aggressive coalesce, attempt a first cut at coloring.
   287   // To color, we need the IFG and for that we need LIVE.
   288   {
   289     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   290     _live = NULL;
   291     rm.reset_to_mark();           // Reclaim working storage
   292     IndexSet::reset_memory(C, &live_arena);
   293     ifg.init(_maxlrg);
   294     gather_lrg_masks( true );
   295     live.compute( _maxlrg );
   296     _live = &live;
   297   }
   299   // Build physical interference graph
   300   uint must_spill = 0;
   301   must_spill = build_ifg_physical( &live_arena );
   302   // If we have a guaranteed spill, might as well spill now
   303   if( must_spill ) {
   304     if( !_maxlrg ) return;
   305     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
   306     C->check_node_count(10*must_spill, "out of nodes before split");
   307     if (C->failing())  return;
   308     _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
   309     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   310     // or we failed to split
   311     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
   312     if (C->failing())  return;
   314     NOT_PRODUCT( C->verify_graph_edges(); )
   316     compact();                  // Compact LRGs; return new lower max lrg
   318     {
   319       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   320       _live = NULL;
   321       rm.reset_to_mark();         // Reclaim working storage
   322       IndexSet::reset_memory(C, &live_arena);
   323       ifg.init(_maxlrg);          // Build a new interference graph
   324       gather_lrg_masks( true );   // Collect intersect mask
   325       live.compute( _maxlrg );    // Compute LIVE
   326       _live = &live;
   327     }
   328     build_ifg_physical( &live_arena );
   329     _ifg->SquareUp();
   330     _ifg->Compute_Effective_Degree();
   331     // Only do conservative coalescing if requested
   332     if( OptoCoalesce ) {
   333       // Conservative (and pessimistic) copy coalescing of those spills
   334       PhaseConservativeCoalesce coalesce( *this );
   335       // If max live ranges greater than cutoff, don't color the stack.
   336       // This cutoff can be larger than below since it is only done once.
   337       coalesce.coalesce_driver( );
   338     }
   339     compress_uf_map_for_nodes();
   341 #ifdef ASSERT
   342     verify(&live_arena, true);
   343 #endif
   344   } else {
   345     ifg.SquareUp();
   346     ifg.Compute_Effective_Degree();
   347 #ifdef ASSERT
   348     set_was_low();
   349 #endif
   350   }
   352   // Prepare for Simplify & Select
   353   cache_lrg_info();           // Count degree of LRGs
   355   // Simplify the InterFerence Graph by removing LRGs of low degree.
   356   // LRGs of low degree are trivially colorable.
   357   Simplify();
   359   // Select colors by re-inserting LRGs back into the IFG in reverse order.
   360   // Return whether or not something spills.
   361   uint spills = Select( );
   363   // If we spill, split and recycle the entire thing
   364   while( spills ) {
   365     if( _trip_cnt++ > 24 ) {
   366       DEBUG_ONLY( dump_for_spill_split_recycle(); )
   367       if( _trip_cnt > 27 ) {
   368         C->record_method_not_compilable("failed spill-split-recycle sanity check");
   369         return;
   370       }
   371     }
   373     if( !_maxlrg ) return;
   374     _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
   375     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   376     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
   377     if (C->failing())  return;
   379     compact();                  // Compact LRGs; return new lower max lrg
   381     // Nuke the live-ness and interference graph and LiveRanGe info
   382     {
   383       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   384       _live = NULL;
   385       rm.reset_to_mark();         // Reclaim working storage
   386       IndexSet::reset_memory(C, &live_arena);
   387       ifg.init(_maxlrg);
   389       // Create LiveRanGe array.
   390       // Intersect register masks for all USEs and DEFs
   391       gather_lrg_masks( true );
   392       live.compute( _maxlrg );
   393       _live = &live;
   394     }
   395     must_spill = build_ifg_physical( &live_arena );
   396     _ifg->SquareUp();
   397     _ifg->Compute_Effective_Degree();
   399     // Only do conservative coalescing if requested
   400     if( OptoCoalesce ) {
   401       // Conservative (and pessimistic) copy coalescing
   402       PhaseConservativeCoalesce coalesce( *this );
   403       // Check for few live ranges determines how aggressive coalesce is.
   404       coalesce.coalesce_driver( );
   405     }
   406     compress_uf_map_for_nodes();
   407 #ifdef ASSERT
   408     verify(&live_arena, true);
   409 #endif
   410     cache_lrg_info();           // Count degree of LRGs
   412     // Simplify the InterFerence Graph by removing LRGs of low degree.
   413     // LRGs of low degree are trivially colorable.
   414     Simplify();
   416     // Select colors by re-inserting LRGs back into the IFG in reverse order.
   417     // Return whether or not something spills.
   418     spills = Select( );
   419   }
   421   // Count number of Simplify-Select trips per coloring success.
   422   _allocator_attempts += _trip_cnt + 1;
   423   _allocator_successes += 1;
   425   // Peephole remove copies
   426   post_allocate_copy_removal();
   428 #ifdef ASSERT
   429   // Veify the graph after RA.
   430   verify(&live_arena);
   431 #endif
   433   // max_reg is past the largest *register* used.
   434   // Convert that to a frame_slot number.
   435   if( _max_reg <= _matcher._new_SP )
   436     _framesize = C->out_preserve_stack_slots();
   437   else _framesize = _max_reg -_matcher._new_SP;
   438   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
   440   // This frame must preserve the required fp alignment
   441   _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
   442   assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
   443 #ifndef PRODUCT
   444   _total_framesize += _framesize;
   445   if( (int)_framesize > _max_framesize )
   446     _max_framesize = _framesize;
   447 #endif
   449   // Convert CISC spills
   450   fixup_spills();
   452   // Log regalloc results
   453   CompileLog* log = Compile::current()->log();
   454   if (log != NULL) {
   455     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
   456   }
   458   if (C->failing())  return;
   460   NOT_PRODUCT( C->verify_graph_edges(); )
   462   // Move important info out of the live_arena to longer lasting storage.
   463   alloc_node_regs(_names.Size());
   464   for( uint i=0; i < _names.Size(); i++ ) {
   465     if( _names[i] ) {           // Live range associated with Node?
   466       LRG &lrg = lrgs( _names[i] );
   467       if( lrg.num_regs() == 1 ) {
   468         _node_regs[i].set1( lrg.reg() );
   469       } else {                  // Must be a register-pair
   470         if( !lrg._fat_proj ) {  // Must be aligned adjacent register pair
   471           // Live ranges record the highest register in their mask.
   472           // We want the low register for the AD file writer's convenience.
   473           _node_regs[i].set2( OptoReg::add(lrg.reg(),-1) );
   474         } else {                // Misaligned; extract 2 bits
   475           OptoReg::Name hi = lrg.reg(); // Get hi register
   476           lrg.Remove(hi);       // Yank from mask
   477           int lo = lrg.mask().find_first_elem(); // Find lo
   478           _node_regs[i].set_pair( hi, lo );
   479         }
   480       }
   481       if( lrg._is_oop ) _node_oops.set(i);
   482     } else {
   483       _node_regs[i].set_bad();
   484     }
   485   }
   487   // Done!
   488   _live = NULL;
   489   _ifg = NULL;
   490   C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
   491 }
   493 //------------------------------de_ssa-----------------------------------------
   494 void PhaseChaitin::de_ssa() {
   495   // Set initial Names for all Nodes.  Most Nodes get the virtual register
   496   // number.  A few get the ZERO live range number.  These do not
   497   // get allocated, but instead rely on correct scheduling to ensure that
   498   // only one instance is simultaneously live at a time.
   499   uint lr_counter = 1;
   500   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   501     Block *b = _cfg._blocks[i];
   502     uint cnt = b->_nodes.size();
   504     // Handle all the normal Nodes in the block
   505     for( uint j = 0; j < cnt; j++ ) {
   506       Node *n = b->_nodes[j];
   507       // Pre-color to the zero live range, or pick virtual register
   508       const RegMask &rm = n->out_RegMask();
   509       _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
   510     }
   511   }
   512   // Reset the Union-Find mapping to be identity
   513   reset_uf_map(lr_counter);
   514 }
   517 //------------------------------gather_lrg_masks-------------------------------
   518 // Gather LiveRanGe information, including register masks.  Modification of
   519 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
   520 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
   522   // Nail down the frame pointer live range
   523   uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
   524   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
   526   // For all blocks
   527   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   528     Block *b = _cfg._blocks[i];
   530     // For all instructions
   531     for( uint j = 1; j < b->_nodes.size(); j++ ) {
   532       Node *n = b->_nodes[j];
   533       uint input_edge_start =1; // Skip control most nodes
   534       if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
   535       uint idx = n->is_Copy();
   537       // Get virtual register number, same as LiveRanGe index
   538       uint vreg = n2lidx(n);
   539       LRG &lrg = lrgs(vreg);
   540       if( vreg ) {              // No vreg means un-allocable (e.g. memory)
   542         // Collect has-copy bit
   543         if( idx ) {
   544           lrg._has_copy = 1;
   545           uint clidx = n2lidx(n->in(idx));
   546           LRG &copy_src = lrgs(clidx);
   547           copy_src._has_copy = 1;
   548         }
   550         // Check for float-vs-int live range (used in register-pressure
   551         // calculations)
   552         const Type *n_type = n->bottom_type();
   553         if( n_type->is_floatingpoint() )
   554           lrg._is_float = 1;
   556         // Check for twice prior spilling.  Once prior spilling might have
   557         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
   558         // further spilling is unlikely to make progress.
   559         if( _spilled_once.test(n->_idx) ) {
   560           lrg._was_spilled1 = 1;
   561           if( _spilled_twice.test(n->_idx) )
   562             lrg._was_spilled2 = 1;
   563         }
   565 #ifndef PRODUCT
   566         if (trace_spilling() && lrg._def != NULL) {
   567           // collect defs for MultiDef printing
   568           if (lrg._defs == NULL) {
   569             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>();
   570             lrg._defs->append(lrg._def);
   571           }
   572           lrg._defs->append(n);
   573         }
   574 #endif
   576         // Check for a single def LRG; these can spill nicely
   577         // via rematerialization.  Flag as NULL for no def found
   578         // yet, or 'n' for single def or -1 for many defs.
   579         lrg._def = lrg._def ? NodeSentinel : n;
   581         // Limit result register mask to acceptable registers
   582         const RegMask &rm = n->out_RegMask();
   583         lrg.AND( rm );
   584         // Check for bound register masks
   585         const RegMask &lrgmask = lrg.mask();
   586         if( lrgmask.is_bound1() || lrgmask.is_bound2() )
   587           lrg._is_bound = 1;
   589         // Check for maximum frequency value
   590         if( lrg._maxfreq < b->_freq )
   591           lrg._maxfreq = b->_freq;
   593         int ireg = n->ideal_reg();
   594         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
   595                 "oops must be in Op_RegP's" );
   596         // Check for oop-iness, or long/double
   597         // Check for multi-kill projection
   598         switch( ireg ) {
   599         case MachProjNode::fat_proj:
   600           // Fat projections have size equal to number of registers killed
   601           lrg.set_num_regs(rm.Size());
   602           lrg.set_reg_pressure(lrg.num_regs());
   603           lrg._fat_proj = 1;
   604           lrg._is_bound = 1;
   605           break;
   606         case Op_RegP:
   607 #ifdef _LP64
   608           lrg.set_num_regs(2);  // Size is 2 stack words
   609 #else
   610           lrg.set_num_regs(1);  // Size is 1 stack word
   611 #endif
   612           // Register pressure is tracked relative to the maximum values
   613           // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
   614           // and relative to other types which compete for the same regs.
   615           //
   616           // The following table contains suggested values based on the
   617           // architectures as defined in each .ad file.
   618           // INTPRESSURE and FLOATPRESSURE may be tuned differently for
   619           // compile-speed or performance.
   620           // Note1:
   621           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
   622           // since .ad registers are defined as high and low halves.
   623           // These reg_pressure values remain compatible with the code
   624           // in is_high_pressure() which relates get_invalid_mask_size(),
   625           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
   626           // Note2:
   627           // SPARC -d32 has 24 registers available for integral values,
   628           // but only 10 of these are safe for 64-bit longs.
   629           // Using set_reg_pressure(2) for both int and long means
   630           // the allocator will believe it can fit 26 longs into
   631           // registers.  Using 2 for longs and 1 for ints means the
   632           // allocator will attempt to put 52 integers into registers.
   633           // The settings below limit this problem to methods with
   634           // many long values which are being run on 32-bit SPARC.
   635           //
   636           // ------------------- reg_pressure --------------------
   637           // Each entry is reg_pressure_per_value,number_of_regs
   638           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
   639           // IA32     2     1     1          1    1          6           6
   640           // IA64     1     1     1          1    1         50          41
   641           // SPARC    2     2     2          2    2         48 (24)     52 (26)
   642           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
   643           // AMD64    1     1     1          1    1         14          15
   644           // -----------------------------------------------------
   645 #if defined(SPARC)
   646           lrg.set_reg_pressure(2);  // use for v9 as well
   647 #else
   648           lrg.set_reg_pressure(1);  // normally one value per register
   649 #endif
   650           if( n_type->isa_oop_ptr() ) {
   651             lrg._is_oop = 1;
   652           }
   653           break;
   654         case Op_RegL:           // Check for long or double
   655         case Op_RegD:
   656           lrg.set_num_regs(2);
   657           // Define platform specific register pressure
   658 #ifdef SPARC
   659           lrg.set_reg_pressure(2);
   660 #elif defined(IA32)
   661           if( ireg == Op_RegL ) {
   662             lrg.set_reg_pressure(2);
   663           } else {
   664             lrg.set_reg_pressure(1);
   665           }
   666 #else
   667           lrg.set_reg_pressure(1);  // normally one value per register
   668 #endif
   669           // If this def of a double forces a mis-aligned double,
   670           // flag as '_fat_proj' - really flag as allowing misalignment
   671           // AND changes how we count interferences.  A mis-aligned
   672           // double can interfere with TWO aligned pairs, or effectively
   673           // FOUR registers!
   674           if( rm.is_misaligned_Pair() ) {
   675             lrg._fat_proj = 1;
   676             lrg._is_bound = 1;
   677           }
   678           break;
   679         case Op_RegF:
   680         case Op_RegI:
   681         case Op_RegN:
   682         case Op_RegFlags:
   683         case 0:                 // not an ideal register
   684           lrg.set_num_regs(1);
   685 #ifdef SPARC
   686           lrg.set_reg_pressure(2);
   687 #else
   688           lrg.set_reg_pressure(1);
   689 #endif
   690           break;
   691         default:
   692           ShouldNotReachHere();
   693         }
   694       }
   696       // Now do the same for inputs
   697       uint cnt = n->req();
   698       // Setup for CISC SPILLING
   699       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
   700       if( UseCISCSpill && after_aggressive ) {
   701         inp = n->cisc_operand();
   702         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
   703           // Convert operand number to edge index number
   704           inp = n->as_Mach()->operand_index(inp);
   705       }
   706       // Prepare register mask for each input
   707       for( uint k = input_edge_start; k < cnt; k++ ) {
   708         uint vreg = n2lidx(n->in(k));
   709         if( !vreg ) continue;
   711         // If this instruction is CISC Spillable, add the flags
   712         // bit to its appropriate input
   713         if( UseCISCSpill && after_aggressive && inp == k ) {
   714 #ifndef PRODUCT
   715           if( TraceCISCSpill ) {
   716             tty->print("  use_cisc_RegMask: ");
   717             n->dump();
   718           }
   719 #endif
   720           n->as_Mach()->use_cisc_RegMask();
   721         }
   723         LRG &lrg = lrgs(vreg);
   724         // // Testing for floating point code shape
   725         // Node *test = n->in(k);
   726         // if( test->is_Mach() ) {
   727         //   MachNode *m = test->as_Mach();
   728         //   int  op = m->ideal_Opcode();
   729         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
   730         //     int zzz = 1;
   731         //   }
   732         // }
   734         // Limit result register mask to acceptable registers.
   735         // Do not limit registers from uncommon uses before
   736         // AggressiveCoalesce.  This effectively pre-virtual-splits
   737         // around uncommon uses of common defs.
   738         const RegMask &rm = n->in_RegMask(k);
   739         if( !after_aggressive &&
   740           _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
   741           // Since we are BEFORE aggressive coalesce, leave the register
   742           // mask untrimmed by the call.  This encourages more coalescing.
   743           // Later, AFTER aggressive, this live range will have to spill
   744           // but the spiller handles slow-path calls very nicely.
   745         } else {
   746           lrg.AND( rm );
   747         }
   748         // Check for bound register masks
   749         const RegMask &lrgmask = lrg.mask();
   750         if( lrgmask.is_bound1() || lrgmask.is_bound2() )
   751           lrg._is_bound = 1;
   752         // If this use of a double forces a mis-aligned double,
   753         // flag as '_fat_proj' - really flag as allowing misalignment
   754         // AND changes how we count interferences.  A mis-aligned
   755         // double can interfere with TWO aligned pairs, or effectively
   756         // FOUR registers!
   757         if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) {
   758           lrg._fat_proj = 1;
   759           lrg._is_bound = 1;
   760         }
   761         // if the LRG is an unaligned pair, we will have to spill
   762         // so clear the LRG's register mask if it is not already spilled
   763         if ( !n->is_SpillCopy() &&
   764                (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
   765                lrgmask.is_misaligned_Pair()) {
   766           lrg.Clear();
   767         }
   769         // Check for maximum frequency value
   770         if( lrg._maxfreq < b->_freq )
   771           lrg._maxfreq = b->_freq;
   773       } // End for all allocated inputs
   774     } // end for all instructions
   775   } // end for all blocks
   777   // Final per-liverange setup
   778   for( uint i2=0; i2<_maxlrg; i2++ ) {
   779     LRG &lrg = lrgs(i2);
   780     if( lrg.num_regs() == 2 && !lrg._fat_proj )
   781       lrg.ClearToPairs();
   782     lrg.compute_set_mask_size();
   783     if( lrg.not_free() ) {      // Handle case where we lose from the start
   784       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
   785       lrg._direct_conflict = 1;
   786     }
   787     lrg.set_degree(0);          // no neighbors in IFG yet
   788   }
   789 }
   791 //------------------------------set_was_low------------------------------------
   792 // Set the was-lo-degree bit.  Conservative coalescing should not change the
   793 // colorability of the graph.  If any live range was of low-degree before
   794 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
   795 // The bit is checked in Simplify.
   796 void PhaseChaitin::set_was_low() {
   797 #ifdef ASSERT
   798   for( uint i = 1; i < _maxlrg; i++ ) {
   799     int size = lrgs(i).num_regs();
   800     uint old_was_lo = lrgs(i)._was_lo;
   801     lrgs(i)._was_lo = 0;
   802     if( lrgs(i).lo_degree() ) {
   803       lrgs(i)._was_lo = 1;      // Trivially of low degree
   804     } else {                    // Else check the Brigg's assertion
   805       // Brigg's observation is that the lo-degree neighbors of a
   806       // hi-degree live range will not interfere with the color choices
   807       // of said hi-degree live range.  The Simplify reverse-stack-coloring
   808       // order takes care of the details.  Hence you do not have to count
   809       // low-degree neighbors when determining if this guy colors.
   810       int briggs_degree = 0;
   811       IndexSet *s = _ifg->neighbors(i);
   812       IndexSetIterator elements(s);
   813       uint lidx;
   814       while((lidx = elements.next()) != 0) {
   815         if( !lrgs(lidx).lo_degree() )
   816           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
   817       }
   818       if( briggs_degree < lrgs(i).degrees_of_freedom() )
   819         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
   820     }
   821     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
   822   }
   823 #endif
   824 }
   826 #define REGISTER_CONSTRAINED 16
   828 //------------------------------cache_lrg_info---------------------------------
   829 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
   830 void PhaseChaitin::cache_lrg_info( ) {
   832   for( uint i = 1; i < _maxlrg; i++ ) {
   833     LRG &lrg = lrgs(i);
   835     // Check for being of low degree: means we can be trivially colored.
   836     // Low degree, dead or must-spill guys just get to simplify right away
   837     if( lrg.lo_degree() ||
   838        !lrg.alive() ||
   839         lrg._must_spill ) {
   840       // Split low degree list into those guys that must get a
   841       // register and those that can go to register or stack.
   842       // The idea is LRGs that can go register or stack color first when
   843       // they have a good chance of getting a register.  The register-only
   844       // lo-degree live ranges always get a register.
   845       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
   846       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
   847         lrg._next = _lo_stk_degree;
   848         _lo_stk_degree = i;
   849       } else {
   850         lrg._next = _lo_degree;
   851         _lo_degree = i;
   852       }
   853     } else {                    // Else high degree
   854       lrgs(_hi_degree)._prev = i;
   855       lrg._next = _hi_degree;
   856       lrg._prev = 0;
   857       _hi_degree = i;
   858     }
   859   }
   860 }
   862 //------------------------------Pre-Simplify-----------------------------------
   863 // Simplify the IFG by removing LRGs of low degree that have NO copies
   864 void PhaseChaitin::Pre_Simplify( ) {
   866   // Warm up the lo-degree no-copy list
   867   int lo_no_copy = 0;
   868   for( uint i = 1; i < _maxlrg; i++ ) {
   869     if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
   870         !lrgs(i).alive() ||
   871         lrgs(i)._must_spill ) {
   872       lrgs(i)._next = lo_no_copy;
   873       lo_no_copy = i;
   874     }
   875   }
   877   while( lo_no_copy ) {
   878     uint lo = lo_no_copy;
   879     lo_no_copy = lrgs(lo)._next;
   880     int size = lrgs(lo).num_regs();
   882     // Put the simplified guy on the simplified list.
   883     lrgs(lo)._next = _simplified;
   884     _simplified = lo;
   886     // Yank this guy from the IFG.
   887     IndexSet *adj = _ifg->remove_node( lo );
   889     // If any neighbors' degrees fall below their number of
   890     // allowed registers, then put that neighbor on the low degree
   891     // list.  Note that 'degree' can only fall and 'numregs' is
   892     // unchanged by this action.  Thus the two are equal at most once,
   893     // so LRGs hit the lo-degree worklists at most once.
   894     IndexSetIterator elements(adj);
   895     uint neighbor;
   896     while ((neighbor = elements.next()) != 0) {
   897       LRG *n = &lrgs(neighbor);
   898       assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
   900       // Check for just becoming of-low-degree
   901       if( n->just_lo_degree() && !n->_has_copy ) {
   902         assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
   903         // Put on lo-degree list
   904         n->_next = lo_no_copy;
   905         lo_no_copy = neighbor;
   906       }
   907     }
   908   } // End of while lo-degree no_copy worklist not empty
   910   // No more lo-degree no-copy live ranges to simplify
   911 }
   913 //------------------------------Simplify---------------------------------------
   914 // Simplify the IFG by removing LRGs of low degree.
   915 void PhaseChaitin::Simplify( ) {
   917   while( 1 ) {                  // Repeat till simplified it all
   918     // May want to explore simplifying lo_degree before _lo_stk_degree.
   919     // This might result in more spills coloring into registers during
   920     // Select().
   921     while( _lo_degree || _lo_stk_degree ) {
   922       // If possible, pull from lo_stk first
   923       uint lo;
   924       if( _lo_degree ) {
   925         lo = _lo_degree;
   926         _lo_degree = lrgs(lo)._next;
   927       } else {
   928         lo = _lo_stk_degree;
   929         _lo_stk_degree = lrgs(lo)._next;
   930       }
   932       // Put the simplified guy on the simplified list.
   933       lrgs(lo)._next = _simplified;
   934       _simplified = lo;
   935       // If this guy is "at risk" then mark his current neighbors
   936       if( lrgs(lo)._at_risk ) {
   937         IndexSetIterator elements(_ifg->neighbors(lo));
   938         uint datum;
   939         while ((datum = elements.next()) != 0) {
   940           lrgs(datum)._risk_bias = lo;
   941         }
   942       }
   944       // Yank this guy from the IFG.
   945       IndexSet *adj = _ifg->remove_node( lo );
   947       // If any neighbors' degrees fall below their number of
   948       // allowed registers, then put that neighbor on the low degree
   949       // list.  Note that 'degree' can only fall and 'numregs' is
   950       // unchanged by this action.  Thus the two are equal at most once,
   951       // so LRGs hit the lo-degree worklist at most once.
   952       IndexSetIterator elements(adj);
   953       uint neighbor;
   954       while ((neighbor = elements.next()) != 0) {
   955         LRG *n = &lrgs(neighbor);
   956 #ifdef ASSERT
   957         if( VerifyOpto || VerifyRegisterAllocator ) {
   958           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
   959         }
   960 #endif
   962         // Check for just becoming of-low-degree just counting registers.
   963         // _must_spill live ranges are already on the low degree list.
   964         if( n->just_lo_degree() && !n->_must_spill ) {
   965           assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
   966           // Pull from hi-degree list
   967           uint prev = n->_prev;
   968           uint next = n->_next;
   969           if( prev ) lrgs(prev)._next = next;
   970           else _hi_degree = next;
   971           lrgs(next)._prev = prev;
   972           n->_next = _lo_degree;
   973           _lo_degree = neighbor;
   974         }
   975       }
   976     } // End of while lo-degree/lo_stk_degree worklist not empty
   978     // Check for got everything: is hi-degree list empty?
   979     if( !_hi_degree ) break;
   981     // Time to pick a potential spill guy
   982     uint lo_score = _hi_degree;
   983     double score = lrgs(lo_score).score();
   984     double area = lrgs(lo_score)._area;
   986     // Find cheapest guy
   987     debug_only( int lo_no_simplify=0; );
   988     for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
   989       assert( !(*_ifg->_yanked)[i], "" );
   990       // It's just vaguely possible to move hi-degree to lo-degree without
   991       // going through a just-lo-degree stage: If you remove a double from
   992       // a float live range it's degree will drop by 2 and you can skip the
   993       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
   994       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
   995       if( lrgs(i).lo_degree() ) {
   996         lo_score = i;
   997         break;
   998       }
   999       debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
  1000       double iscore = lrgs(i).score();
  1001       double iarea = lrgs(i)._area;
  1003       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
  1004       // wins.  Ties happen because all live ranges in question have spilled
  1005       // a few times before and the spill-score adds a huge number which
  1006       // washes out the low order bits.  We are choosing the lesser of 2
  1007       // evils; in this case pick largest area to spill.
  1008       if( iscore < score ||
  1009           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ) {
  1010         lo_score = i;
  1011         score = iscore;
  1012         area = iarea;
  1015     LRG *lo_lrg = &lrgs(lo_score);
  1016     // The live range we choose for spilling is either hi-degree, or very
  1017     // rarely it can be low-degree.  If we choose a hi-degree live range
  1018     // there better not be any lo-degree choices.
  1019     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
  1021     // Pull from hi-degree list
  1022     uint prev = lo_lrg->_prev;
  1023     uint next = lo_lrg->_next;
  1024     if( prev ) lrgs(prev)._next = next;
  1025     else _hi_degree = next;
  1026     lrgs(next)._prev = prev;
  1027     // Jam him on the lo-degree list, despite his high degree.
  1028     // Maybe he'll get a color, and maybe he'll spill.
  1029     // Only Select() will know.
  1030     lrgs(lo_score)._at_risk = true;
  1031     _lo_degree = lo_score;
  1032     lo_lrg->_next = 0;
  1034   } // End of while not simplified everything
  1038 //------------------------------bias_color-------------------------------------
  1039 // Choose a color using the biasing heuristic
  1040 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
  1042   // Check for "at_risk" LRG's
  1043   uint risk_lrg = Find(lrg._risk_bias);
  1044   if( risk_lrg != 0 ) {
  1045     // Walk the colored neighbors of the "at_risk" candidate
  1046     // Choose a color which is both legal and already taken by a neighbor
  1047     // of the "at_risk" candidate in order to improve the chances of the
  1048     // "at_risk" candidate of coloring
  1049     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
  1050     uint datum;
  1051     while ((datum = elements.next()) != 0) {
  1052       OptoReg::Name reg = lrgs(datum).reg();
  1053       // If this LRG's register is legal for us, choose it
  1054       if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
  1055           lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
  1056           (lrg.num_regs()==1 || // either size 1
  1057            (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
  1058         return reg;
  1062   uint copy_lrg = Find(lrg._copy_bias);
  1063   if( copy_lrg != 0 ) {
  1064     // If he has a color,
  1065     if( !(*(_ifg->_yanked))[copy_lrg] ) {
  1066       OptoReg::Name reg = lrgs(copy_lrg).reg();
  1067       //  And it is legal for you,
  1068       if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
  1069           lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
  1070           (lrg.num_regs()==1 || // either size 1
  1071            (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
  1072         return reg;
  1073     } else if( chunk == 0 ) {
  1074       // Choose a color which is legal for him
  1075       RegMask tempmask = lrg.mask();
  1076       tempmask.AND(lrgs(copy_lrg).mask());
  1077       OptoReg::Name reg;
  1078       if( lrg.num_regs() == 1 ) {
  1079         reg = tempmask.find_first_elem();
  1080       } else {
  1081         tempmask.ClearToPairs();
  1082         reg = tempmask.find_first_pair();
  1084       if( OptoReg::is_valid(reg) )
  1085         return reg;
  1089   // If no bias info exists, just go with the register selection ordering
  1090   if( lrg.num_regs() == 2 ) {
  1091     // Find an aligned pair
  1092     return OptoReg::add(lrg.mask().find_first_pair(),chunk);
  1095   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
  1096   // copy removal to remove many more copies, by preventing a just-assigned
  1097   // register from being repeatedly assigned.
  1098   OptoReg::Name reg = lrg.mask().find_first_elem();
  1099   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
  1100     // This 'Remove; find; Insert' idiom is an expensive way to find the
  1101     // SECOND element in the mask.
  1102     lrg.Remove(reg);
  1103     OptoReg::Name reg2 = lrg.mask().find_first_elem();
  1104     lrg.Insert(reg);
  1105     if( OptoReg::is_reg(reg2))
  1106       reg = reg2;
  1108   return OptoReg::add( reg, chunk );
  1111 //------------------------------choose_color-----------------------------------
  1112 // Choose a color in the current chunk
  1113 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
  1114   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
  1115   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
  1117   if( lrg.num_regs() == 1 ||    // Common Case
  1118       !lrg._fat_proj )          // Aligned+adjacent pairs ok
  1119     // Use a heuristic to "bias" the color choice
  1120     return bias_color(lrg, chunk);
  1122   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
  1124   // Fat-proj case or misaligned double argument.
  1125   assert(lrg.compute_mask_size() == lrg.num_regs() ||
  1126          lrg.num_regs() == 2,"fat projs exactly color" );
  1127   assert( !chunk, "always color in 1st chunk" );
  1128   // Return the highest element in the set.
  1129   return lrg.mask().find_last_elem();
  1132 //------------------------------Select-----------------------------------------
  1133 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
  1134 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
  1135 // everything going back is guaranteed a color.  Select that color.  If some
  1136 // hi-degree LRG cannot get a color then we record that we must spill.
  1137 uint PhaseChaitin::Select( ) {
  1138   uint spill_reg = LRG::SPILL_REG;
  1139   _max_reg = OptoReg::Name(0);  // Past max register used
  1140   while( _simplified ) {
  1141     // Pull next LRG from the simplified list - in reverse order of removal
  1142     uint lidx = _simplified;
  1143     LRG *lrg = &lrgs(lidx);
  1144     _simplified = lrg->_next;
  1147 #ifndef PRODUCT
  1148     if (trace_spilling()) {
  1149       ttyLocker ttyl;
  1150       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
  1151                     lrg->degrees_of_freedom());
  1152       lrg->dump();
  1154 #endif
  1156     // Re-insert into the IFG
  1157     _ifg->re_insert(lidx);
  1158     if( !lrg->alive() ) continue;
  1159     // capture allstackedness flag before mask is hacked
  1160     const int is_allstack = lrg->mask().is_AllStack();
  1162     // Yeah, yeah, yeah, I know, I know.  I can refactor this
  1163     // to avoid the GOTO, although the refactored code will not
  1164     // be much clearer.  We arrive here IFF we have a stack-based
  1165     // live range that cannot color in the current chunk, and it
  1166     // has to move into the next free stack chunk.
  1167     int chunk = 0;              // Current chunk is first chunk
  1168     retry_next_chunk:
  1170     // Remove neighbor colors
  1171     IndexSet *s = _ifg->neighbors(lidx);
  1173     debug_only(RegMask orig_mask = lrg->mask();)
  1174     IndexSetIterator elements(s);
  1175     uint neighbor;
  1176     while ((neighbor = elements.next()) != 0) {
  1177       // Note that neighbor might be a spill_reg.  In this case, exclusion
  1178       // of its color will be a no-op, since the spill_reg chunk is in outer
  1179       // space.  Also, if neighbor is in a different chunk, this exclusion
  1180       // will be a no-op.  (Later on, if lrg runs out of possible colors in
  1181       // its chunk, a new chunk of color may be tried, in which case
  1182       // examination of neighbors is started again, at retry_next_chunk.)
  1183       LRG &nlrg = lrgs(neighbor);
  1184       OptoReg::Name nreg = nlrg.reg();
  1185       // Only subtract masks in the same chunk
  1186       if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
  1187 #ifndef PRODUCT
  1188         uint size = lrg->mask().Size();
  1189         RegMask rm = lrg->mask();
  1190 #endif
  1191         lrg->SUBTRACT(nlrg.mask());
  1192 #ifndef PRODUCT
  1193         if (trace_spilling() && lrg->mask().Size() != size) {
  1194           ttyLocker ttyl;
  1195           tty->print("L%d ", lidx);
  1196           rm.dump();
  1197           tty->print(" intersected L%d ", neighbor);
  1198           nlrg.mask().dump();
  1199           tty->print(" removed ");
  1200           rm.SUBTRACT(lrg->mask());
  1201           rm.dump();
  1202           tty->print(" leaving ");
  1203           lrg->mask().dump();
  1204           tty->cr();
  1206 #endif
  1209     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
  1210     // Aligned pairs need aligned masks
  1211     if( lrg->num_regs() == 2 && !lrg->_fat_proj )
  1212       lrg->ClearToPairs();
  1214     // Check if a color is available and if so pick the color
  1215     OptoReg::Name reg = choose_color( *lrg, chunk );
  1216 #ifdef SPARC
  1217     debug_only(lrg->compute_set_mask_size());
  1218     assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
  1219 #endif
  1221     //---------------
  1222     // If we fail to color and the AllStack flag is set, trigger
  1223     // a chunk-rollover event
  1224     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
  1225       // Bump register mask up to next stack chunk
  1226       chunk += RegMask::CHUNK_SIZE;
  1227       lrg->Set_All();
  1229       goto retry_next_chunk;
  1232     //---------------
  1233     // Did we get a color?
  1234     else if( OptoReg::is_valid(reg)) {
  1235 #ifndef PRODUCT
  1236       RegMask avail_rm = lrg->mask();
  1237 #endif
  1239       // Record selected register
  1240       lrg->set_reg(reg);
  1242       if( reg >= _max_reg )     // Compute max register limit
  1243         _max_reg = OptoReg::add(reg,1);
  1244       // Fold reg back into normal space
  1245       reg = OptoReg::add(reg,-chunk);
  1247       // If the live range is not bound, then we actually had some choices
  1248       // to make.  In this case, the mask has more bits in it than the colors
  1249       // chosen.  Restrict the mask to just what was picked.
  1250       if( lrg->num_regs() == 1 ) { // Size 1 live range
  1251         lrg->Clear();           // Clear the mask
  1252         lrg->Insert(reg);       // Set regmask to match selected reg
  1253         lrg->set_mask_size(1);
  1254       } else if( !lrg->_fat_proj ) {
  1255         // For pairs, also insert the low bit of the pair
  1256         assert( lrg->num_regs() == 2, "unbound fatproj???" );
  1257         lrg->Clear();           // Clear the mask
  1258         lrg->Insert(reg);       // Set regmask to match selected reg
  1259         lrg->Insert(OptoReg::add(reg,-1));
  1260         lrg->set_mask_size(2);
  1261       } else {                  // Else fatproj
  1262         // mask must be equal to fatproj bits, by definition
  1264 #ifndef PRODUCT
  1265       if (trace_spilling()) {
  1266         ttyLocker ttyl;
  1267         tty->print("L%d selected ", lidx);
  1268         lrg->mask().dump();
  1269         tty->print(" from ");
  1270         avail_rm.dump();
  1271         tty->cr();
  1273 #endif
  1274       // Note that reg is the highest-numbered register in the newly-bound mask.
  1275     } // end color available case
  1277     //---------------
  1278     // Live range is live and no colors available
  1279     else {
  1280       assert( lrg->alive(), "" );
  1281       assert( !lrg->_fat_proj || lrg->is_multidef() ||
  1282               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
  1283       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
  1285       // Assign the special spillreg register
  1286       lrg->set_reg(OptoReg::Name(spill_reg++));
  1287       // Do not empty the regmask; leave mask_size lying around
  1288       // for use during Spilling
  1289 #ifndef PRODUCT
  1290       if( trace_spilling() ) {
  1291         ttyLocker ttyl;
  1292         tty->print("L%d spilling with neighbors: ", lidx);
  1293         s->dump();
  1294         debug_only(tty->print(" original mask: "));
  1295         debug_only(orig_mask.dump());
  1296         dump_lrg(lidx);
  1298 #endif
  1299     } // end spill case
  1303   return spill_reg-LRG::SPILL_REG;      // Return number of spills
  1307 //------------------------------copy_was_spilled-------------------------------
  1308 // Copy 'was_spilled'-edness from the source Node to the dst Node.
  1309 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
  1310   if( _spilled_once.test(src->_idx) ) {
  1311     _spilled_once.set(dst->_idx);
  1312     lrgs(Find(dst))._was_spilled1 = 1;
  1313     if( _spilled_twice.test(src->_idx) ) {
  1314       _spilled_twice.set(dst->_idx);
  1315       lrgs(Find(dst))._was_spilled2 = 1;
  1320 //------------------------------set_was_spilled--------------------------------
  1321 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
  1322 void PhaseChaitin::set_was_spilled( Node *n ) {
  1323   if( _spilled_once.test_set(n->_idx) )
  1324     _spilled_twice.set(n->_idx);
  1327 //------------------------------fixup_spills-----------------------------------
  1328 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
  1329 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
  1330 void PhaseChaitin::fixup_spills() {
  1331   // This function does only cisc spill work.
  1332   if( !UseCISCSpill ) return;
  1334   NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
  1336   // Grab the Frame Pointer
  1337   Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
  1339   // For all blocks
  1340   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  1341     Block *b = _cfg._blocks[i];
  1343     // For all instructions in block
  1344     uint last_inst = b->end_idx();
  1345     for( uint j = 1; j <= last_inst; j++ ) {
  1346       Node *n = b->_nodes[j];
  1348       // Dead instruction???
  1349       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
  1350               C->top() == n ||  // Or the random TOP node
  1351               n->is_Proj(),     // Or a fat-proj kill node
  1352               "No dead instructions after post-alloc" );
  1354       int inp = n->cisc_operand();
  1355       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
  1356         // Convert operand number to edge index number
  1357         MachNode *mach = n->as_Mach();
  1358         inp = mach->operand_index(inp);
  1359         Node *src = n->in(inp);   // Value to load or store
  1360         LRG &lrg_cisc = lrgs( Find_const(src) );
  1361         OptoReg::Name src_reg = lrg_cisc.reg();
  1362         // Doubles record the HIGH register of an adjacent pair.
  1363         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
  1364         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
  1365           // This is a CISC Spill, get stack offset and construct new node
  1366 #ifndef PRODUCT
  1367           if( TraceCISCSpill ) {
  1368             tty->print("    reg-instr:  ");
  1369             n->dump();
  1371 #endif
  1372           int stk_offset = reg2offset(src_reg);
  1373           // Bailout if we might exceed node limit when spilling this instruction
  1374           C->check_node_count(0, "out of nodes fixing spills");
  1375           if (C->failing())  return;
  1376           // Transform node
  1377           MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
  1378           cisc->set_req(inp,fp);          // Base register is frame pointer
  1379           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
  1380             assert( cisc->oper_input_base() == 2, "Only adding one edge");
  1381             cisc->ins_req(1,src);         // Requires a memory edge
  1383           b->_nodes.map(j,cisc);          // Insert into basic block
  1384           n->subsume_by(cisc); // Correct graph
  1385           //
  1386           ++_used_cisc_instructions;
  1387 #ifndef PRODUCT
  1388           if( TraceCISCSpill ) {
  1389             tty->print("    cisc-instr: ");
  1390             cisc->dump();
  1392 #endif
  1393         } else {
  1394 #ifndef PRODUCT
  1395           if( TraceCISCSpill ) {
  1396             tty->print("    using reg-instr: ");
  1397             n->dump();
  1399 #endif
  1400           ++_unused_cisc_instructions;    // input can be on stack
  1404     } // End of for all instructions
  1406   } // End of for all blocks
  1409 //------------------------------find_base_for_derived--------------------------
  1410 // Helper to stretch above; recursively discover the base Node for a
  1411 // given derived Node.  Easy for AddP-related machine nodes, but needs
  1412 // to be recursive for derived Phis.
  1413 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
  1414   // See if already computed; if so return it
  1415   if( derived_base_map[derived->_idx] )
  1416     return derived_base_map[derived->_idx];
  1418   // See if this happens to be a base.
  1419   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
  1420   // pointers derived from NULL!  These are always along paths that
  1421   // can't happen at run-time but the optimizer cannot deduce it so
  1422   // we have to handle it gracefully.
  1423   const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1424   // If its an OOP with a non-zero offset, then it is derived.
  1425   if( tj->_offset == 0 ) {
  1426     derived_base_map[derived->_idx] = derived;
  1427     return derived;
  1429   // Derived is NULL+offset?  Base is NULL!
  1430   if( derived->is_Con() ) {
  1431     Node *base = new (C, 1) ConPNode( TypePtr::NULL_PTR );
  1432     uint no_lidx = 0;  // an unmatched constant in debug info has no LRG
  1433     _names.extend(base->_idx, no_lidx);
  1434     derived_base_map[derived->_idx] = base;
  1435     return base;
  1438   // Check for AddP-related opcodes
  1439   if( !derived->is_Phi() ) {
  1440     assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" );
  1441     Node *base = derived->in(AddPNode::Base);
  1442     derived_base_map[derived->_idx] = base;
  1443     return base;
  1446   // Recursively find bases for Phis.
  1447   // First check to see if we can avoid a base Phi here.
  1448   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
  1449   uint i;
  1450   for( i = 2; i < derived->req(); i++ )
  1451     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
  1452       break;
  1453   // Went to the end without finding any different bases?
  1454   if( i == derived->req() ) {   // No need for a base Phi here
  1455     derived_base_map[derived->_idx] = base;
  1456     return base;
  1459   // Now we see we need a base-Phi here to merge the bases
  1460   base = new (C, derived->req()) PhiNode( derived->in(0), base->bottom_type() );
  1461   for( i = 1; i < derived->req(); i++ )
  1462     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
  1464   // Search the current block for an existing base-Phi
  1465   Block *b = _cfg._bbs[derived->_idx];
  1466   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
  1467     Node *phi = b->_nodes[i];
  1468     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
  1469       b->_nodes.insert( i, base ); // Must insert created Phi here as base
  1470       _cfg._bbs.map( base->_idx, b );
  1471       new_lrg(base,maxlrg++);
  1472       break;
  1474     // See if Phi matches.
  1475     uint j;
  1476     for( j = 1; j < base->req(); j++ )
  1477       if( phi->in(j) != base->in(j) &&
  1478           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
  1479         break;
  1480     if( j == base->req() ) {    // All inputs match?
  1481       base = phi;               // Then use existing 'phi' and drop 'base'
  1482       break;
  1487   // Cache info for later passes
  1488   derived_base_map[derived->_idx] = base;
  1489   return base;
  1493 //------------------------------stretch_base_pointer_live_ranges---------------
  1494 // At each Safepoint, insert extra debug edges for each pair of derived value/
  1495 // base pointer that is live across the Safepoint for oopmap building.  The
  1496 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
  1497 // required edge set.
  1498 bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
  1499   int must_recompute_live = false;
  1500   uint maxlrg = _maxlrg;
  1501   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
  1502   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
  1504   // For all blocks in RPO do...
  1505   for( uint i=0; i<_cfg._num_blocks; i++ ) {
  1506     Block *b = _cfg._blocks[i];
  1507     // Note use of deep-copy constructor.  I cannot hammer the original
  1508     // liveout bits, because they are needed by the following coalesce pass.
  1509     IndexSet liveout(_live->live(b));
  1511     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
  1512       Node *n = b->_nodes[j-1];
  1514       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
  1515       // like to see in the same register.  Compare uses the loop-phi and so
  1516       // extends its live range BUT cannot be part of the cycle.  If this
  1517       // extended live range overlaps with the update of the loop-phi value
  1518       // we need both alive at the same time -- which requires at least 1
  1519       // copy.  But because Intel has only 2-address registers we end up with
  1520       // at least 2 copies, one before the loop-phi update instruction and
  1521       // one after.  Instead we split the input to the compare just after the
  1522       // phi.
  1523       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
  1524         Node *phi = n->in(1);
  1525         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
  1526           Block *phi_block = _cfg._bbs[phi->_idx];
  1527           if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
  1528             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
  1529             Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
  1530             insert_proj( phi_block, 1, spill, maxlrg++ );
  1531             n->set_req(1,spill);
  1532             must_recompute_live = true;
  1537       // Get value being defined
  1538       uint lidx = n2lidx(n);
  1539       if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
  1540         // Remove from live-out set
  1541         liveout.remove(lidx);
  1543         // Copies do not define a new value and so do not interfere.
  1544         // Remove the copies source from the liveout set before interfering.
  1545         uint idx = n->is_Copy();
  1546         if( idx ) liveout.remove( n2lidx(n->in(idx)) );
  1549       // Found a safepoint?
  1550       JVMState *jvms = n->jvms();
  1551       if( jvms ) {
  1552         // Now scan for a live derived pointer
  1553         IndexSetIterator elements(&liveout);
  1554         uint neighbor;
  1555         while ((neighbor = elements.next()) != 0) {
  1556           // Find reaching DEF for base and derived values
  1557           // This works because we are still in SSA during this call.
  1558           Node *derived = lrgs(neighbor)._def;
  1559           const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1560           // If its an OOP with a non-zero offset, then it is derived.
  1561           if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
  1562             Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
  1563             assert( base->_idx < _names.Size(), "" );
  1564             // Add reaching DEFs of derived pointer and base pointer as a
  1565             // pair of inputs
  1566             n->add_req( derived );
  1567             n->add_req( base );
  1569             // See if the base pointer is already live to this point.
  1570             // Since I'm working on the SSA form, live-ness amounts to
  1571             // reaching def's.  So if I find the base's live range then
  1572             // I know the base's def reaches here.
  1573             if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
  1574                  !liveout.member( n2lidx(base) ) ) && // not live) AND
  1575                  (n2lidx(base) > 0)                && // not a constant
  1576                  _cfg._bbs[base->_idx] != b ) {     //  base not def'd in blk)
  1577               // Base pointer is not currently live.  Since I stretched
  1578               // the base pointer to here and it crosses basic-block
  1579               // boundaries, the global live info is now incorrect.
  1580               // Recompute live.
  1581               must_recompute_live = true;
  1582             } // End of if base pointer is not live to debug info
  1584         } // End of scan all live data for derived ptrs crossing GC point
  1585       } // End of if found a GC point
  1587       // Make all inputs live
  1588       if( !n->is_Phi() ) {      // Phi function uses come from prior block
  1589         for( uint k = 1; k < n->req(); k++ ) {
  1590           uint lidx = n2lidx(n->in(k));
  1591           if( lidx < _maxlrg )
  1592             liveout.insert( lidx );
  1596     } // End of forall instructions in block
  1597     liveout.clear();  // Free the memory used by liveout.
  1599   } // End of forall blocks
  1600   _maxlrg = maxlrg;
  1602   // If I created a new live range I need to recompute live
  1603   if( maxlrg != _ifg->_maxlrg )
  1604     must_recompute_live = true;
  1606   return must_recompute_live != 0;
  1610 //------------------------------add_reference----------------------------------
  1611 // Extend the node to LRG mapping
  1612 void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
  1613   _names.extend( node->_idx, n2lidx(old_node) );
  1616 //------------------------------dump-------------------------------------------
  1617 #ifndef PRODUCT
  1618 void PhaseChaitin::dump( const Node *n ) const {
  1619   uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
  1620   tty->print("L%d",r);
  1621   if( r && n->Opcode() != Op_Phi ) {
  1622     if( _node_regs ) {          // Got a post-allocation copy of allocation?
  1623       tty->print("[");
  1624       OptoReg::Name second = get_reg_second(n);
  1625       if( OptoReg::is_valid(second) ) {
  1626         if( OptoReg::is_reg(second) )
  1627           tty->print("%s:",Matcher::regName[second]);
  1628         else
  1629           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
  1631       OptoReg::Name first = get_reg_first(n);
  1632       if( OptoReg::is_reg(first) )
  1633         tty->print("%s]",Matcher::regName[first]);
  1634       else
  1635          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
  1636     } else
  1637     n->out_RegMask().dump();
  1639   tty->print("/N%d\t",n->_idx);
  1640   tty->print("%s === ", n->Name());
  1641   uint k;
  1642   for( k = 0; k < n->req(); k++) {
  1643     Node *m = n->in(k);
  1644     if( !m ) tty->print("_ ");
  1645     else {
  1646       uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
  1647       tty->print("L%d",r);
  1648       // Data MultiNode's can have projections with no real registers.
  1649       // Don't die while dumping them.
  1650       int op = n->Opcode();
  1651       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
  1652         if( _node_regs ) {
  1653           tty->print("[");
  1654           OptoReg::Name second = get_reg_second(n->in(k));
  1655           if( OptoReg::is_valid(second) ) {
  1656             if( OptoReg::is_reg(second) )
  1657               tty->print("%s:",Matcher::regName[second]);
  1658             else
  1659               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
  1660                          reg2offset_unchecked(second));
  1662           OptoReg::Name first = get_reg_first(n->in(k));
  1663           if( OptoReg::is_reg(first) )
  1664             tty->print("%s]",Matcher::regName[first]);
  1665           else
  1666             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
  1667                        reg2offset_unchecked(first));
  1668         } else
  1669           n->in_RegMask(k).dump();
  1671       tty->print("/N%d ",m->_idx);
  1674   if( k < n->len() && n->in(k) ) tty->print("| ");
  1675   for( ; k < n->len(); k++ ) {
  1676     Node *m = n->in(k);
  1677     if( !m ) break;
  1678     uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
  1679     tty->print("L%d",r);
  1680     tty->print("/N%d ",m->_idx);
  1682   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
  1683   else n->dump_spec(tty);
  1684   if( _spilled_once.test(n->_idx ) ) {
  1685     tty->print(" Spill_1");
  1686     if( _spilled_twice.test(n->_idx ) )
  1687       tty->print(" Spill_2");
  1689   tty->print("\n");
  1692 void PhaseChaitin::dump( const Block * b ) const {
  1693   b->dump_head( &_cfg._bbs );
  1695   // For all instructions
  1696   for( uint j = 0; j < b->_nodes.size(); j++ )
  1697     dump(b->_nodes[j]);
  1698   // Print live-out info at end of block
  1699   if( _live ) {
  1700     tty->print("Liveout: ");
  1701     IndexSet *live = _live->live(b);
  1702     IndexSetIterator elements(live);
  1703     tty->print("{");
  1704     uint i;
  1705     while ((i = elements.next()) != 0) {
  1706       tty->print("L%d ", Find_const(i));
  1708     tty->print_cr("}");
  1710   tty->print("\n");
  1713 void PhaseChaitin::dump() const {
  1714   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
  1715               _matcher._new_SP, _framesize );
  1717   // For all blocks
  1718   for( uint i = 0; i < _cfg._num_blocks; i++ )
  1719     dump(_cfg._blocks[i]);
  1720   // End of per-block dump
  1721   tty->print("\n");
  1723   if (!_ifg) {
  1724     tty->print("(No IFG.)\n");
  1725     return;
  1728   // Dump LRG array
  1729   tty->print("--- Live RanGe Array ---\n");
  1730   for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
  1731     tty->print("L%d: ",i2);
  1732     if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
  1733     else tty->print("new LRG");
  1735   tty->print_cr("");
  1737   // Dump lo-degree list
  1738   tty->print("Lo degree: ");
  1739   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
  1740     tty->print("L%d ",i3);
  1741   tty->print_cr("");
  1743   // Dump lo-stk-degree list
  1744   tty->print("Lo stk degree: ");
  1745   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
  1746     tty->print("L%d ",i4);
  1747   tty->print_cr("");
  1749   // Dump lo-degree list
  1750   tty->print("Hi degree: ");
  1751   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
  1752     tty->print("L%d ",i5);
  1753   tty->print_cr("");
  1756 //------------------------------dump_degree_lists------------------------------
  1757 void PhaseChaitin::dump_degree_lists() const {
  1758   // Dump lo-degree list
  1759   tty->print("Lo degree: ");
  1760   for( uint i = _lo_degree; i; i = lrgs(i)._next )
  1761     tty->print("L%d ",i);
  1762   tty->print_cr("");
  1764   // Dump lo-stk-degree list
  1765   tty->print("Lo stk degree: ");
  1766   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
  1767     tty->print("L%d ",i2);
  1768   tty->print_cr("");
  1770   // Dump lo-degree list
  1771   tty->print("Hi degree: ");
  1772   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
  1773     tty->print("L%d ",i3);
  1774   tty->print_cr("");
  1777 //------------------------------dump_simplified--------------------------------
  1778 void PhaseChaitin::dump_simplified() const {
  1779   tty->print("Simplified: ");
  1780   for( uint i = _simplified; i; i = lrgs(i)._next )
  1781     tty->print("L%d ",i);
  1782   tty->print_cr("");
  1785 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
  1786   if ((int)reg < 0)
  1787     sprintf(buf, "<OptoReg::%d>", (int)reg);
  1788   else if (OptoReg::is_reg(reg))
  1789     strcpy(buf, Matcher::regName[reg]);
  1790   else
  1791     sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
  1792             pc->reg2offset(reg));
  1793   return buf+strlen(buf);
  1796 //------------------------------dump_register----------------------------------
  1797 // Dump a register name into a buffer.  Be intelligent if we get called
  1798 // before allocation is complete.
  1799 char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
  1800   if( !this ) {                 // Not got anything?
  1801     sprintf(buf,"N%d",n->_idx); // Then use Node index
  1802   } else if( _node_regs ) {
  1803     // Post allocation, use direct mappings, no LRG info available
  1804     print_reg( get_reg_first(n), this, buf );
  1805   } else {
  1806     uint lidx = Find_const(n); // Grab LRG number
  1807     if( !_ifg ) {
  1808       sprintf(buf,"L%d",lidx);  // No register binding yet
  1809     } else if( !lidx ) {        // Special, not allocated value
  1810       strcpy(buf,"Special");
  1811     } else if( (lrgs(lidx).num_regs() == 1)
  1812                 ? !lrgs(lidx).mask().is_bound1()
  1813                 : !lrgs(lidx).mask().is_bound2() ) {
  1814       sprintf(buf,"L%d",lidx); // No register binding yet
  1815     } else {                    // Hah!  We have a bound machine register
  1816       print_reg( lrgs(lidx).reg(), this, buf );
  1819   return buf+strlen(buf);
  1822 //----------------------dump_for_spill_split_recycle--------------------------
  1823 void PhaseChaitin::dump_for_spill_split_recycle() const {
  1824   if( WizardMode && (PrintCompilation || PrintOpto) ) {
  1825     // Display which live ranges need to be split and the allocator's state
  1826     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
  1827     for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
  1828       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
  1829         tty->print("L%d: ", bidx);
  1830         lrgs(bidx).dump();
  1833     tty->cr();
  1834     dump();
  1838 //------------------------------dump_frame------------------------------------
  1839 void PhaseChaitin::dump_frame() const {
  1840   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
  1841   const TypeTuple *domain = C->tf()->domain();
  1842   const int        argcnt = domain->cnt() - TypeFunc::Parms;
  1844   // Incoming arguments in registers dump
  1845   for( int k = 0; k < argcnt; k++ ) {
  1846     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
  1847     if( OptoReg::is_reg(parmreg))  {
  1848       const char *reg_name = OptoReg::regname(parmreg);
  1849       tty->print("#r%3.3d %s", parmreg, reg_name);
  1850       parmreg = _matcher._parm_regs[k].second();
  1851       if( OptoReg::is_reg(parmreg))  {
  1852         tty->print(":%s", OptoReg::regname(parmreg));
  1854       tty->print("   : parm %d: ", k);
  1855       domain->field_at(k + TypeFunc::Parms)->dump();
  1856       tty->print_cr("");
  1860   // Check for un-owned padding above incoming args
  1861   OptoReg::Name reg = _matcher._new_SP;
  1862   if( reg > _matcher._in_arg_limit ) {
  1863     reg = OptoReg::add(reg, -1);
  1864     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
  1867   // Incoming argument area dump
  1868   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
  1869   while( reg > begin_in_arg ) {
  1870     reg = OptoReg::add(reg, -1);
  1871     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  1872     int j;
  1873     for( j = 0; j < argcnt; j++) {
  1874       if( _matcher._parm_regs[j].first() == reg ||
  1875           _matcher._parm_regs[j].second() == reg ) {
  1876         tty->print("parm %d: ",j);
  1877         domain->field_at(j + TypeFunc::Parms)->dump();
  1878         tty->print_cr("");
  1879         break;
  1882     if( j >= argcnt )
  1883       tty->print_cr("HOLE, owned by SELF");
  1886   // Old outgoing preserve area
  1887   while( reg > _matcher._old_SP ) {
  1888     reg = OptoReg::add(reg, -1);
  1889     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
  1892   // Old SP
  1893   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
  1894     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
  1896   // Preserve area dump
  1897   reg = OptoReg::add(reg, -1);
  1898   while( OptoReg::is_stack(reg)) {
  1899     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  1900     if( _matcher.return_addr() == reg )
  1901       tty->print_cr("return address");
  1902     else if( _matcher.return_addr() == OptoReg::add(reg,1) &&
  1903              VerifyStackAtCalls )
  1904       tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
  1905     else if ((int)OptoReg::reg2stack(reg) < C->fixed_slots())
  1906       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
  1907     else
  1908       tty->print_cr("pad2, in_preserve");
  1909     reg = OptoReg::add(reg, -1);
  1912   // Spill area dump
  1913   reg = OptoReg::add(_matcher._new_SP, _framesize );
  1914   while( reg > _matcher._out_arg_limit ) {
  1915     reg = OptoReg::add(reg, -1);
  1916     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
  1919   // Outgoing argument area dump
  1920   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
  1921     reg = OptoReg::add(reg, -1);
  1922     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
  1925   // Outgoing new preserve area
  1926   while( reg > _matcher._new_SP ) {
  1927     reg = OptoReg::add(reg, -1);
  1928     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
  1930   tty->print_cr("#");
  1933 //------------------------------dump_bb----------------------------------------
  1934 void PhaseChaitin::dump_bb( uint pre_order ) const {
  1935   tty->print_cr("---dump of B%d---",pre_order);
  1936   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  1937     Block *b = _cfg._blocks[i];
  1938     if( b->_pre_order == pre_order )
  1939       dump(b);
  1943 //------------------------------dump_lrg---------------------------------------
  1944 void PhaseChaitin::dump_lrg( uint lidx ) const {
  1945   tty->print_cr("---dump of L%d---",lidx);
  1947   if( _ifg ) {
  1948     if( lidx >= _maxlrg ) {
  1949       tty->print("Attempt to print live range index beyond max live range.\n");
  1950       return;
  1952     tty->print("L%d: ",lidx);
  1953     lrgs(lidx).dump( );
  1955   if( _ifg ) {    tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
  1956     _ifg->neighbors(lidx)->dump();
  1957     tty->cr();
  1959   // For all blocks
  1960   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  1961     Block *b = _cfg._blocks[i];
  1962     int dump_once = 0;
  1964     // For all instructions
  1965     for( uint j = 0; j < b->_nodes.size(); j++ ) {
  1966       Node *n = b->_nodes[j];
  1967       if( Find_const(n) == lidx ) {
  1968         if( !dump_once++ ) {
  1969           tty->cr();
  1970           b->dump_head( &_cfg._bbs );
  1972         dump(n);
  1973         continue;
  1975       uint cnt = n->req();
  1976       for( uint k = 1; k < cnt; k++ ) {
  1977         Node *m = n->in(k);
  1978         if (!m)  continue;  // be robust in the dumper
  1979         if( Find_const(m) == lidx ) {
  1980           if( !dump_once++ ) {
  1981             tty->cr();
  1982             b->dump_head( &_cfg._bbs );
  1984           dump(n);
  1988   } // End of per-block dump
  1989   tty->cr();
  1991 #endif // not PRODUCT
  1993 //------------------------------print_chaitin_statistics-------------------------------
  1994 int PhaseChaitin::_final_loads  = 0;
  1995 int PhaseChaitin::_final_stores = 0;
  1996 int PhaseChaitin::_final_memoves= 0;
  1997 int PhaseChaitin::_final_copies = 0;
  1998 double PhaseChaitin::_final_load_cost  = 0;
  1999 double PhaseChaitin::_final_store_cost = 0;
  2000 double PhaseChaitin::_final_memove_cost= 0;
  2001 double PhaseChaitin::_final_copy_cost  = 0;
  2002 int PhaseChaitin::_conserv_coalesce = 0;
  2003 int PhaseChaitin::_conserv_coalesce_pair = 0;
  2004 int PhaseChaitin::_conserv_coalesce_trie = 0;
  2005 int PhaseChaitin::_conserv_coalesce_quad = 0;
  2006 int PhaseChaitin::_post_alloc = 0;
  2007 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
  2008 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
  2009 int PhaseChaitin::_used_cisc_instructions   = 0;
  2010 int PhaseChaitin::_unused_cisc_instructions = 0;
  2011 int PhaseChaitin::_allocator_attempts       = 0;
  2012 int PhaseChaitin::_allocator_successes      = 0;
  2014 #ifndef PRODUCT
  2015 uint PhaseChaitin::_high_pressure           = 0;
  2016 uint PhaseChaitin::_low_pressure            = 0;
  2018 void PhaseChaitin::print_chaitin_statistics() {
  2019   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
  2020   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
  2021   tty->print_cr("Adjusted spill cost = %7.0f.",
  2022                 _final_load_cost*4.0 + _final_store_cost  * 2.0 +
  2023                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
  2024   tty->print("Conservatively coalesced %d copies, %d pairs",
  2025                 _conserv_coalesce, _conserv_coalesce_pair);
  2026   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
  2027     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
  2028   tty->print_cr(", %d post alloc.", _post_alloc);
  2029   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
  2030     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
  2031                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
  2032   if( _used_cisc_instructions || _unused_cisc_instructions )
  2033     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
  2034                    _used_cisc_instructions, _unused_cisc_instructions);
  2035   if( _allocator_successes != 0 )
  2036     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
  2037   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
  2039 #endif // not PRODUCT

mercurial