src/share/vm/opto/buildOopMap.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 631
d1605aabd0a1
child 1164
04fa5affa478
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 2002-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_buildOopMap.cpp.incl"
    28 // The functions in this file builds OopMaps after all scheduling is done.
    29 //
    30 // OopMaps contain a list of all registers and stack-slots containing oops (so
    31 // they can be updated by GC).  OopMaps also contain a list of derived-pointer
    32 // base-pointer pairs.  When the base is moved, the derived pointer moves to
    33 // follow it.  Finally, any registers holding callee-save values are also
    34 // recorded.  These might contain oops, but only the caller knows.
    35 //
    36 // BuildOopMaps implements a simple forward reaching-defs solution.  At each
    37 // GC point we'll have the reaching-def Nodes.  If the reaching Nodes are
    38 // typed as pointers (no offset), then they are oops.  Pointers+offsets are
    39 // derived pointers, and bases can be found from them.  Finally, we'll also
    40 // track reaching callee-save values.  Note that a copy of a callee-save value
    41 // "kills" it's source, so that only 1 copy of a callee-save value is alive at
    42 // a time.
    43 //
    44 // We run a simple bitvector liveness pass to help trim out dead oops.  Due to
    45 // irreducible loops, we can have a reaching def of an oop that only reaches
    46 // along one path and no way to know if it's valid or not on the other path.
    47 // The bitvectors are quite dense and the liveness pass is fast.
    48 //
    49 // At GC points, we consult this information to build OopMaps.  All reaching
    50 // defs typed as oops are added to the OopMap.  Only 1 instance of a
    51 // callee-save register can be recorded.  For derived pointers, we'll have to
    52 // find and record the register holding the base.
    53 //
    54 // The reaching def's is a simple 1-pass worklist approach.  I tried a clever
    55 // breadth-first approach but it was worse (showed O(n^2) in the
    56 // pick-next-block code).
    57 //
    58 // The relevant data is kept in a struct of arrays (it could just as well be
    59 // an array of structs, but the struct-of-arrays is generally a little more
    60 // efficient).  The arrays are indexed by register number (including
    61 // stack-slots as registers) and so is bounded by 200 to 300 elements in
    62 // practice.  One array will map to a reaching def Node (or NULL for
    63 // conflict/dead).  The other array will map to a callee-saved register or
    64 // OptoReg::Bad for not-callee-saved.
    67 //------------------------------OopFlow----------------------------------------
    68 // Structure to pass around
    69 struct OopFlow : public ResourceObj {
    70   short *_callees;              // Array mapping register to callee-saved
    71   Node **_defs;                 // array mapping register to reaching def
    72                                 // or NULL if dead/conflict
    73   // OopFlow structs, when not being actively modified, describe the _end_ of
    74   // this block.
    75   Block *_b;                    // Block for this struct
    76   OopFlow *_next;               // Next free OopFlow
    78   OopFlow( short *callees, Node **defs ) : _callees(callees), _defs(defs),
    79     _b(NULL), _next(NULL) { }
    81   // Given reaching-defs for this block start, compute it for this block end
    82   void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
    84   // Merge these two OopFlows into the 'this' pointer.
    85   void merge( OopFlow *flow, int max_reg );
    87   // Copy a 'flow' over an existing flow
    88   void clone( OopFlow *flow, int max_size);
    90   // Make a new OopFlow from scratch
    91   static OopFlow *make( Arena *A, int max_size );
    93   // Build an oopmap from the current flow info
    94   OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
    95 };
    97 //------------------------------compute_reach----------------------------------
    98 // Given reaching-defs for this block start, compute it for this block end
    99 void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
   101   for( uint i=0; i<_b->_nodes.size(); i++ ) {
   102     Node *n = _b->_nodes[i];
   104     if( n->jvms() ) {           // Build an OopMap here?
   105       JVMState *jvms = n->jvms();
   106       // no map needed for leaf calls
   107       if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
   108         int *live = (int*) (*safehash)[n];
   109         assert( live, "must find live" );
   110         n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
   111       }
   112     }
   114     // Assign new reaching def's.
   115     // Note that I padded the _defs and _callees arrays so it's legal
   116     // to index at _defs[OptoReg::Bad].
   117     OptoReg::Name first = regalloc->get_reg_first(n);
   118     OptoReg::Name second = regalloc->get_reg_second(n);
   119     _defs[first] = n;
   120     _defs[second] = n;
   122     // Pass callee-save info around copies
   123     int idx = n->is_Copy();
   124     if( idx ) {                 // Copies move callee-save info
   125       OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
   126       OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
   127       int tmp_first = _callees[old_first];
   128       int tmp_second = _callees[old_second];
   129       _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
   130       _callees[old_second] = OptoReg::Bad;
   131       _callees[first] = tmp_first;
   132       _callees[second] = tmp_second;
   133     } else if( n->is_Phi() ) {  // Phis do not mod callee-saves
   134       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
   135       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
   136       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
   137       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
   138     } else {
   139       _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
   140       _callees[second] = OptoReg::Bad;
   142       // Find base case for callee saves
   143       if( n->is_Proj() && n->in(0)->is_Start() ) {
   144         if( OptoReg::is_reg(first) &&
   145             regalloc->_matcher.is_save_on_entry(first) )
   146           _callees[first] = first;
   147         if( OptoReg::is_reg(second) &&
   148             regalloc->_matcher.is_save_on_entry(second) )
   149           _callees[second] = second;
   150       }
   151     }
   152   }
   153 }
   155 //------------------------------merge------------------------------------------
   156 // Merge the given flow into the 'this' flow
   157 void OopFlow::merge( OopFlow *flow, int max_reg ) {
   158   assert( _b == NULL, "merging into a happy flow" );
   159   assert( flow->_b, "this flow is still alive" );
   160   assert( flow != this, "no self flow" );
   162   // Do the merge.  If there are any differences, drop to 'bottom' which
   163   // is OptoReg::Bad or NULL depending.
   164   for( int i=0; i<max_reg; i++ ) {
   165     // Merge the callee-save's
   166     if( _callees[i] != flow->_callees[i] )
   167       _callees[i] = OptoReg::Bad;
   168     // Merge the reaching defs
   169     if( _defs[i] != flow->_defs[i] )
   170       _defs[i] = NULL;
   171   }
   173 }
   175 //------------------------------clone------------------------------------------
   176 void OopFlow::clone( OopFlow *flow, int max_size ) {
   177   _b = flow->_b;
   178   memcpy( _callees, flow->_callees, sizeof(short)*max_size);
   179   memcpy( _defs   , flow->_defs   , sizeof(Node*)*max_size);
   180 }
   182 //------------------------------make-------------------------------------------
   183 OopFlow *OopFlow::make( Arena *A, int max_size ) {
   184   short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
   185   Node **defs    = NEW_ARENA_ARRAY(A,Node*,max_size+1);
   186   debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
   187   OopFlow *flow = new (A) OopFlow(callees+1, defs+1);
   188   assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
   189   assert( &flow->_defs   [OptoReg::Bad] == defs   , "Ok to index at OptoReg::Bad" );
   190   return flow;
   191 }
   193 //------------------------------bit twiddlers----------------------------------
   194 static int get_live_bit( int *live, int reg ) {
   195   return live[reg>>LogBitsPerInt] &   (1<<(reg&(BitsPerInt-1))); }
   196 static void set_live_bit( int *live, int reg ) {
   197          live[reg>>LogBitsPerInt] |=  (1<<(reg&(BitsPerInt-1))); }
   198 static void clr_live_bit( int *live, int reg ) {
   199          live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
   201 //------------------------------build_oop_map----------------------------------
   202 // Build an oopmap from the current flow info
   203 OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
   204   int framesize = regalloc->_framesize;
   205   int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
   206   debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
   207               memset(dup_check,0,OptoReg::stack0()) );
   209   OopMap *omap = new OopMap( framesize,  max_inarg_slot );
   210   MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
   211   JVMState* jvms = n->jvms();
   213   // For all registers do...
   214   for( int reg=0; reg<max_reg; reg++ ) {
   215     if( get_live_bit(live,reg) == 0 )
   216       continue;                 // Ignore if not live
   218     // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
   219     // register in that case we'll get an non-concrete register for the second
   220     // half. We only need to tell the map the register once!
   221     //
   222     // However for the moment we disable this change and leave things as they
   223     // were.
   225     VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
   227     if (false && r->is_reg() && !r->is_concrete()) {
   228       continue;
   229     }
   231     // See if dead (no reaching def).
   232     Node *def = _defs[reg];     // Get reaching def
   233     assert( def, "since live better have reaching def" );
   235     // Classify the reaching def as oop, derived, callee-save, dead, or other
   236     const Type *t = def->bottom_type();
   237     if( t->isa_oop_ptr() ) {    // Oop or derived?
   238       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
   239 #ifdef _LP64
   240       // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
   241       // Make sure both are record from the same reaching def, but do not
   242       // put both into the oopmap.
   243       if( (reg&1) == 1 ) {      // High half of oop-pair?
   244         assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
   245         continue;               // Do not record high parts in oopmap
   246       }
   247 #endif
   249       // Check for a legal reg name in the oopMap and bailout if it is not.
   250       if (!omap->legal_vm_reg_name(r)) {
   251         regalloc->C->record_method_not_compilable("illegal oopMap register name");
   252         continue;
   253       }
   254       if( t->is_ptr()->_offset == 0 ) { // Not derived?
   255         if( mcall ) {
   256           // Outgoing argument GC mask responsibility belongs to the callee,
   257           // not the caller.  Inspect the inputs to the call, to see if
   258           // this live-range is one of them.
   259           uint cnt = mcall->tf()->domain()->cnt();
   260           uint j;
   261           for( j = TypeFunc::Parms; j < cnt; j++)
   262             if( mcall->in(j) == def )
   263               break;            // reaching def is an argument oop
   264           if( j < cnt )         // arg oops dont go in GC map
   265             continue;           // Continue on to the next register
   266         }
   267         omap->set_oop(r);
   268       } else {                  // Else it's derived.
   269         // Find the base of the derived value.
   270         uint i;
   271         // Fast, common case, scan
   272         for( i = jvms->oopoff(); i < n->req(); i+=2 )
   273           if( n->in(i) == def ) break; // Common case
   274         if( i == n->req() ) {   // Missed, try a more generous scan
   275           // Scan again, but this time peek through copies
   276           for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
   277             Node *m = n->in(i); // Get initial derived value
   278             while( 1 ) {
   279               Node *d = def;    // Get initial reaching def
   280               while( 1 ) {      // Follow copies of reaching def to end
   281                 if( m == d ) goto found; // breaks 3 loops
   282                 int idx = d->is_Copy();
   283                 if( !idx ) break;
   284                 d = d->in(idx);     // Link through copy
   285               }
   286               int idx = m->is_Copy();
   287               if( !idx ) break;
   288               m = m->in(idx);
   289             }
   290           }
   291          guarantee( 0, "must find derived/base pair" );
   292         }
   293       found: ;
   294         Node *base = n->in(i+1); // Base is other half of pair
   295         int breg = regalloc->get_reg_first(base);
   296         VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
   298         // I record liveness at safepoints BEFORE I make the inputs
   299         // live.  This is because argument oops are NOT live at a
   300         // safepoint (or at least they cannot appear in the oopmap).
   301         // Thus bases of base/derived pairs might not be in the
   302         // liveness data but they need to appear in the oopmap.
   303         if( get_live_bit(live,breg) == 0 ) {// Not live?
   304           // Flag it, so next derived pointer won't re-insert into oopmap
   305           set_live_bit(live,breg);
   306           // Already missed our turn?
   307           if( breg < reg ) {
   308             if (b->is_stack() || b->is_concrete() || true ) {
   309               omap->set_oop( b);
   310             }
   311           }
   312         }
   313         if (b->is_stack() || b->is_concrete() || true ) {
   314           omap->set_derived_oop( r, b);
   315         }
   316       }
   318     } else if( t->isa_narrowoop() ) {
   319       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
   320       // Check for a legal reg name in the oopMap and bailout if it is not.
   321       if (!omap->legal_vm_reg_name(r)) {
   322         regalloc->C->record_method_not_compilable("illegal oopMap register name");
   323         continue;
   324       }
   325       if( mcall ) {
   326           // Outgoing argument GC mask responsibility belongs to the callee,
   327           // not the caller.  Inspect the inputs to the call, to see if
   328           // this live-range is one of them.
   329         uint cnt = mcall->tf()->domain()->cnt();
   330         uint j;
   331         for( j = TypeFunc::Parms; j < cnt; j++)
   332           if( mcall->in(j) == def )
   333             break;            // reaching def is an argument oop
   334         if( j < cnt )         // arg oops dont go in GC map
   335           continue;           // Continue on to the next register
   336       }
   337       omap->set_narrowoop(r);
   338     } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
   339       // It's a callee-save value
   340       assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
   341       debug_only( dup_check[_callees[reg]]=1; )
   342       VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
   343       if ( callee->is_concrete() || true ) {
   344         omap->set_callee_saved( r, callee);
   345       }
   347     } else {
   348       // Other - some reaching non-oop value
   349       omap->set_value( r);
   350     }
   352   }
   354 #ifdef ASSERT
   355   /* Nice, Intel-only assert
   356   int cnt_callee_saves=0;
   357   int reg2 = 0;
   358   while (OptoReg::is_reg(reg2)) {
   359     if( dup_check[reg2] != 0) cnt_callee_saves++;
   360     assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
   361     reg2++;
   362   }
   363   */
   364 #endif
   366   return omap;
   367 }
   369 //------------------------------do_liveness------------------------------------
   370 // Compute backwards liveness on registers
   371 static void do_liveness( PhaseRegAlloc *regalloc, PhaseCFG *cfg, Block_List *worklist, int max_reg_ints, Arena *A, Dict *safehash ) {
   372   int *live = NEW_ARENA_ARRAY(A, int, (cfg->_num_blocks+1) * max_reg_ints);
   373   int *tmp_live = &live[cfg->_num_blocks * max_reg_ints];
   374   Node *root = cfg->C->root();
   375   // On CISC platforms, get the node representing the stack pointer  that regalloc
   376   // used for spills
   377   Node *fp = NodeSentinel;
   378   if (UseCISCSpill && root->req() > 1) {
   379     fp = root->in(1)->in(TypeFunc::FramePtr);
   380   }
   381   memset( live, 0, cfg->_num_blocks * (max_reg_ints<<LogBytesPerInt) );
   382   // Push preds onto worklist
   383   for( uint i=1; i<root->req(); i++ )
   384     worklist->push(cfg->_bbs[root->in(i)->_idx]);
   386   // ZKM.jar includes tiny infinite loops which are unreached from below.
   387   // If we missed any blocks, we'll retry here after pushing all missed
   388   // blocks on the worklist.  Normally this outer loop never trips more
   389   // than once.
   390   while( 1 ) {
   392     while( worklist->size() ) { // Standard worklist algorithm
   393       Block *b = worklist->rpop();
   395       // Copy first successor into my tmp_live space
   396       int s0num = b->_succs[0]->_pre_order;
   397       int *t = &live[s0num*max_reg_ints];
   398       for( int i=0; i<max_reg_ints; i++ )
   399         tmp_live[i] = t[i];
   401       // OR in the remaining live registers
   402       for( uint j=1; j<b->_num_succs; j++ ) {
   403         uint sjnum = b->_succs[j]->_pre_order;
   404         int *t = &live[sjnum*max_reg_ints];
   405         for( int i=0; i<max_reg_ints; i++ )
   406           tmp_live[i] |= t[i];
   407       }
   409       // Now walk tmp_live up the block backwards, computing live
   410       for( int k=b->_nodes.size()-1; k>=0; k-- ) {
   411         Node *n = b->_nodes[k];
   412         // KILL def'd bits
   413         int first = regalloc->get_reg_first(n);
   414         int second = regalloc->get_reg_second(n);
   415         if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
   416         if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
   418         MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;
   420         // Check if m is potentially a CISC alternate instruction (i.e, possibly
   421         // synthesized by RegAlloc from a conventional instruction and a
   422         // spilled input)
   423         bool is_cisc_alternate = false;
   424         if (UseCISCSpill && m) {
   425           is_cisc_alternate = m->is_cisc_alternate();
   426         }
   428         // GEN use'd bits
   429         for( uint l=1; l<n->req(); l++ ) {
   430           Node *def = n->in(l);
   431           assert(def != 0, "input edge required");
   432           int first = regalloc->get_reg_first(def);
   433           int second = regalloc->get_reg_second(def);
   434           if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
   435           if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
   436           // If we use the stack pointer in a cisc-alternative instruction,
   437           // check for use as a memory operand.  Then reconstruct the RegName
   438           // for this stack location, and set the appropriate bit in the
   439           // live vector 4987749.
   440           if (is_cisc_alternate && def == fp) {
   441             const TypePtr *adr_type = NULL;
   442             intptr_t offset;
   443             const Node* base = m->get_base_and_disp(offset, adr_type);
   444             if (base == NodeSentinel) {
   445               // Machnode has multiple memory inputs. We are unable to reason
   446               // with these, but are presuming (with trepidation) that not any of
   447               // them are oops. This can be fixed by making get_base_and_disp()
   448               // look at a specific input instead of all inputs.
   449               assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
   450             } else if (base != fp || offset == Type::OffsetBot) {
   451               // Do nothing: the fp operand is either not from a memory use
   452               // (base == NULL) OR the fp is used in a non-memory context
   453               // (base is some other register) OR the offset is not constant,
   454               // so it is not a stack slot.
   455             } else {
   456               assert(offset >= 0, "unexpected negative offset");
   457               offset -= (offset % jintSize);  // count the whole word
   458               int stack_reg = regalloc->offset2reg(offset);
   459               if (OptoReg::is_stack(stack_reg)) {
   460                 set_live_bit(tmp_live, stack_reg);
   461               } else {
   462                 assert(false, "stack_reg not on stack?");
   463               }
   464             }
   465           }
   466         }
   468         if( n->jvms() ) {       // Record liveness at safepoint
   470           // This placement of this stanza means inputs to calls are
   471           // considered live at the callsite's OopMap.  Argument oops are
   472           // hence live, but NOT included in the oopmap.  See cutout in
   473           // build_oop_map.  Debug oops are live (and in OopMap).
   474           int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
   475           for( int l=0; l<max_reg_ints; l++ )
   476             n_live[l] = tmp_live[l];
   477           safehash->Insert(n,n_live);
   478         }
   480       }
   482       // Now at block top, see if we have any changes.  If so, propagate
   483       // to prior blocks.
   484       int *old_live = &live[b->_pre_order*max_reg_ints];
   485       int l;
   486       for( l=0; l<max_reg_ints; l++ )
   487         if( tmp_live[l] != old_live[l] )
   488           break;
   489       if( l<max_reg_ints ) {     // Change!
   490         // Copy in new value
   491         for( l=0; l<max_reg_ints; l++ )
   492           old_live[l] = tmp_live[l];
   493         // Push preds onto worklist
   494         for( l=1; l<(int)b->num_preds(); l++ )
   495           worklist->push(cfg->_bbs[b->pred(l)->_idx]);
   496       }
   497     }
   499     // Scan for any missing safepoints.  Happens to infinite loops
   500     // ala ZKM.jar
   501     uint i;
   502     for( i=1; i<cfg->_num_blocks; i++ ) {
   503       Block *b = cfg->_blocks[i];
   504       uint j;
   505       for( j=1; j<b->_nodes.size(); j++ )
   506         if( b->_nodes[j]->jvms() &&
   507             (*safehash)[b->_nodes[j]] == NULL )
   508            break;
   509       if( j<b->_nodes.size() ) break;
   510     }
   511     if( i == cfg->_num_blocks )
   512       break;                    // Got 'em all
   513 #ifndef PRODUCT
   514     if( PrintOpto && Verbose )
   515       tty->print_cr("retripping live calc");
   516 #endif
   517     // Force the issue (expensively): recheck everybody
   518     for( i=1; i<cfg->_num_blocks; i++ )
   519       worklist->push(cfg->_blocks[i]);
   520   }
   522 }
   524 //------------------------------BuildOopMaps-----------------------------------
   525 // Collect GC mask info - where are all the OOPs?
   526 void Compile::BuildOopMaps() {
   527   NOT_PRODUCT( TracePhase t3("bldOopMaps", &_t_buildOopMaps, TimeCompiler); )
   528   // Can't resource-mark because I need to leave all those OopMaps around,
   529   // or else I need to resource-mark some arena other than the default.
   530   // ResourceMark rm;              // Reclaim all OopFlows when done
   531   int max_reg = _regalloc->_max_reg; // Current array extent
   533   Arena *A = Thread::current()->resource_area();
   534   Block_List worklist;          // Worklist of pending blocks
   536   int max_reg_ints = round_to(max_reg, BitsPerInt)>>LogBitsPerInt;
   537   Dict *safehash = NULL;        // Used for assert only
   538   // Compute a backwards liveness per register.  Needs a bitarray of
   539   // #blocks x (#registers, rounded up to ints)
   540   safehash = new Dict(cmpkey,hashkey,A);
   541   do_liveness( _regalloc, _cfg, &worklist, max_reg_ints, A, safehash );
   542   OopFlow *free_list = NULL;    // Free, unused
   544   // Array mapping blocks to completed oopflows
   545   OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->_num_blocks);
   546   memset( flows, 0, _cfg->_num_blocks*sizeof(OopFlow*) );
   549   // Do the first block 'by hand' to prime the worklist
   550   Block *entry = _cfg->_blocks[1];
   551   OopFlow *rootflow = OopFlow::make(A,max_reg);
   552   // Initialize to 'bottom' (not 'top')
   553   memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
   554   memset( rootflow->_defs   ,            0, max_reg*sizeof(Node*) );
   555   flows[entry->_pre_order] = rootflow;
   557   // Do the first block 'by hand' to prime the worklist
   558   rootflow->_b = entry;
   559   rootflow->compute_reach( _regalloc, max_reg, safehash );
   560   for( uint i=0; i<entry->_num_succs; i++ )
   561     worklist.push(entry->_succs[i]);
   563   // Now worklist contains blocks which have some, but perhaps not all,
   564   // predecessors visited.
   565   while( worklist.size() ) {
   566     // Scan for a block with all predecessors visited, or any randoms slob
   567     // otherwise.  All-preds-visited order allows me to recycle OopFlow
   568     // structures rapidly and cut down on the memory footprint.
   569     // Note: not all predecessors might be visited yet (must happen for
   570     // irreducible loops).  This is OK, since every live value must have the
   571     // SAME reaching def for the block, so any reaching def is OK.
   572     uint i;
   574     Block *b = worklist.pop();
   575     // Ignore root block
   576     if( b == _cfg->_broot ) continue;
   577     // Block is already done?  Happens if block has several predecessors,
   578     // he can get on the worklist more than once.
   579     if( flows[b->_pre_order] ) continue;
   581     // If this block has a visited predecessor AND that predecessor has this
   582     // last block as his only undone child, we can move the OopFlow from the
   583     // pred to this block.  Otherwise we have to grab a new OopFlow.
   584     OopFlow *flow = NULL;       // Flag for finding optimized flow
   585     Block *pred = (Block*)0xdeadbeef;
   586     uint j;
   587     // Scan this block's preds to find a done predecessor
   588     for( j=1; j<b->num_preds(); j++ ) {
   589       Block *p = _cfg->_bbs[b->pred(j)->_idx];
   590       OopFlow *p_flow = flows[p->_pre_order];
   591       if( p_flow ) {            // Predecessor is done
   592         assert( p_flow->_b == p, "cross check" );
   593         pred = p;               // Record some predecessor
   594         // If all successors of p are done except for 'b', then we can carry
   595         // p_flow forward to 'b' without copying, otherwise we have to draw
   596         // from the free_list and clone data.
   597         uint k;
   598         for( k=0; k<p->_num_succs; k++ )
   599           if( !flows[p->_succs[k]->_pre_order] &&
   600               p->_succs[k] != b )
   601             break;
   603         // Either carry-forward the now-unused OopFlow for b's use
   604         // or draw a new one from the free list
   605         if( k==p->_num_succs ) {
   606           flow = p_flow;
   607           break;                // Found an ideal pred, use him
   608         }
   609       }
   610     }
   612     if( flow ) {
   613       // We have an OopFlow that's the last-use of a predecessor.
   614       // Carry it forward.
   615     } else {                    // Draw a new OopFlow from the freelist
   616       if( !free_list )
   617         free_list = OopFlow::make(A,max_reg);
   618       flow = free_list;
   619       assert( flow->_b == NULL, "oopFlow is not free" );
   620       free_list = flow->_next;
   621       flow->_next = NULL;
   623       // Copy/clone over the data
   624       flow->clone(flows[pred->_pre_order], max_reg);
   625     }
   627     // Mark flow for block.  Blocks can only be flowed over once,
   628     // because after the first time they are guarded from entering
   629     // this code again.
   630     assert( flow->_b == pred, "have some prior flow" );
   631     flow->_b = NULL;
   633     // Now push flow forward
   634     flows[b->_pre_order] = flow;// Mark flow for this block
   635     flow->_b = b;
   636     flow->compute_reach( _regalloc, max_reg, safehash );
   638     // Now push children onto worklist
   639     for( i=0; i<b->_num_succs; i++ )
   640       worklist.push(b->_succs[i]);
   642   }
   643 }

mercurial