src/share/vm/gc_implementation/parallelScavenge/cardTableExtension.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 704
850fdf70db2b
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

duke@435 1 /*
xdono@631 2 * Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_cardTableExtension.cpp.incl"
duke@435 27
duke@435 28 // Checks an individual oop for missing precise marks. Mark
duke@435 29 // may be either dirty or newgen.
duke@435 30 class CheckForUnmarkedOops : public OopClosure {
coleenp@548 31 private:
coleenp@548 32 PSYoungGen* _young_gen;
duke@435 33 CardTableExtension* _card_table;
coleenp@548 34 HeapWord* _unmarked_addr;
coleenp@548 35 jbyte* _unmarked_card;
duke@435 36
coleenp@548 37 protected:
coleenp@548 38 template <class T> void do_oop_work(T* p) {
coleenp@548 39 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 40 if (_young_gen->is_in_reserved(obj) &&
duke@435 41 !_card_table->addr_is_marked_imprecise(p)) {
duke@435 42 // Don't overwrite the first missing card mark
duke@435 43 if (_unmarked_addr == NULL) {
duke@435 44 _unmarked_addr = (HeapWord*)p;
duke@435 45 _unmarked_card = _card_table->byte_for(p);
duke@435 46 }
duke@435 47 }
duke@435 48 }
duke@435 49
coleenp@548 50 public:
coleenp@548 51 CheckForUnmarkedOops(PSYoungGen* young_gen, CardTableExtension* card_table) :
coleenp@548 52 _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
coleenp@548 53
coleenp@548 54 virtual void do_oop(oop* p) { CheckForUnmarkedOops::do_oop_work(p); }
coleenp@548 55 virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
coleenp@548 56
duke@435 57 bool has_unmarked_oop() {
duke@435 58 return _unmarked_addr != NULL;
duke@435 59 }
duke@435 60 };
duke@435 61
duke@435 62 // Checks all objects for the existance of some type of mark,
duke@435 63 // precise or imprecise, dirty or newgen.
duke@435 64 class CheckForUnmarkedObjects : public ObjectClosure {
coleenp@548 65 private:
coleenp@548 66 PSYoungGen* _young_gen;
duke@435 67 CardTableExtension* _card_table;
duke@435 68
duke@435 69 public:
duke@435 70 CheckForUnmarkedObjects() {
duke@435 71 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 72 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 73
duke@435 74 _young_gen = heap->young_gen();
duke@435 75 _card_table = (CardTableExtension*)heap->barrier_set();
duke@435 76 // No point in asserting barrier set type here. Need to make CardTableExtension
duke@435 77 // a unique barrier set type.
duke@435 78 }
duke@435 79
duke@435 80 // Card marks are not precise. The current system can leave us with
twisti@1040 81 // a mismash of precise marks and beginning of object marks. This means
duke@435 82 // we test for missing precise marks first. If any are found, we don't
duke@435 83 // fail unless the object head is also unmarked.
duke@435 84 virtual void do_object(oop obj) {
coleenp@548 85 CheckForUnmarkedOops object_check(_young_gen, _card_table);
duke@435 86 obj->oop_iterate(&object_check);
duke@435 87 if (object_check.has_unmarked_oop()) {
duke@435 88 assert(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
duke@435 89 }
duke@435 90 }
duke@435 91 };
duke@435 92
duke@435 93 // Checks for precise marking of oops as newgen.
duke@435 94 class CheckForPreciseMarks : public OopClosure {
coleenp@548 95 private:
coleenp@548 96 PSYoungGen* _young_gen;
duke@435 97 CardTableExtension* _card_table;
duke@435 98
coleenp@548 99 protected:
coleenp@548 100 template <class T> void do_oop_work(T* p) {
coleenp@548 101 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 102 if (_young_gen->is_in_reserved(obj)) {
coleenp@548 103 assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
coleenp@548 104 _card_table->set_card_newgen(p);
coleenp@548 105 }
coleenp@548 106 }
coleenp@548 107
duke@435 108 public:
duke@435 109 CheckForPreciseMarks( PSYoungGen* young_gen, CardTableExtension* card_table ) :
duke@435 110 _young_gen(young_gen), _card_table(card_table) { }
duke@435 111
coleenp@548 112 virtual void do_oop(oop* p) { CheckForPreciseMarks::do_oop_work(p); }
coleenp@548 113 virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
duke@435 114 };
duke@435 115
duke@435 116 // We get passed the space_top value to prevent us from traversing into
duke@435 117 // the old_gen promotion labs, which cannot be safely parsed.
duke@435 118 void CardTableExtension::scavenge_contents(ObjectStartArray* start_array,
duke@435 119 MutableSpace* sp,
duke@435 120 HeapWord* space_top,
duke@435 121 PSPromotionManager* pm)
duke@435 122 {
duke@435 123 assert(start_array != NULL && sp != NULL && pm != NULL, "Sanity");
duke@435 124 assert(start_array->covered_region().contains(sp->used_region()),
duke@435 125 "ObjectStartArray does not cover space");
duke@435 126 bool depth_first = pm->depth_first();
duke@435 127
duke@435 128 if (sp->not_empty()) {
duke@435 129 oop* sp_top = (oop*)space_top;
duke@435 130 oop* prev_top = NULL;
duke@435 131 jbyte* current_card = byte_for(sp->bottom());
duke@435 132 jbyte* end_card = byte_for(sp_top - 1); // sp_top is exclusive
duke@435 133 // scan card marking array
duke@435 134 while (current_card <= end_card) {
duke@435 135 jbyte value = *current_card;
duke@435 136 // skip clean cards
duke@435 137 if (card_is_clean(value)) {
duke@435 138 current_card++;
duke@435 139 } else {
duke@435 140 // we found a non-clean card
duke@435 141 jbyte* first_nonclean_card = current_card++;
duke@435 142 oop* bottom = (oop*)addr_for(first_nonclean_card);
duke@435 143 // find object starting on card
duke@435 144 oop* bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
duke@435 145 // bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
duke@435 146 assert(bottom_obj <= bottom, "just checking");
duke@435 147 // make sure we don't scan oops we already looked at
duke@435 148 if (bottom < prev_top) bottom = prev_top;
duke@435 149 // figure out when to stop scanning
duke@435 150 jbyte* first_clean_card;
duke@435 151 oop* top;
duke@435 152 bool restart_scanning;
duke@435 153 do {
duke@435 154 restart_scanning = false;
duke@435 155 // find a clean card
duke@435 156 while (current_card <= end_card) {
duke@435 157 value = *current_card;
duke@435 158 if (card_is_clean(value)) break;
duke@435 159 current_card++;
duke@435 160 }
duke@435 161 // check if we reached the end, if so we are done
duke@435 162 if (current_card >= end_card) {
duke@435 163 first_clean_card = end_card + 1;
duke@435 164 current_card++;
duke@435 165 top = sp_top;
duke@435 166 } else {
duke@435 167 // we have a clean card, find object starting on that card
duke@435 168 first_clean_card = current_card++;
duke@435 169 top = (oop*)addr_for(first_clean_card);
duke@435 170 oop* top_obj = (oop*)start_array->object_start((HeapWord*)top);
duke@435 171 // top_obj = (oop*)start_array->object_start((HeapWord*)top);
duke@435 172 assert(top_obj <= top, "just checking");
duke@435 173 if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
duke@435 174 // an arrayOop is starting on the clean card - since we do exact store
duke@435 175 // checks for objArrays we are done
duke@435 176 } else {
duke@435 177 // otherwise, it is possible that the object starting on the clean card
duke@435 178 // spans the entire card, and that the store happened on a later card.
duke@435 179 // figure out where the object ends
duke@435 180 top = top_obj + oop(top_obj)->size();
duke@435 181 jbyte* top_card = CardTableModRefBS::byte_for(top - 1); // top is exclusive
duke@435 182 if (top_card > first_clean_card) {
duke@435 183 // object ends a different card
duke@435 184 current_card = top_card + 1;
duke@435 185 if (card_is_clean(*top_card)) {
duke@435 186 // the ending card is clean, we are done
duke@435 187 first_clean_card = top_card;
duke@435 188 } else {
duke@435 189 // the ending card is not clean, continue scanning at start of do-while
duke@435 190 restart_scanning = true;
duke@435 191 }
duke@435 192 } else {
duke@435 193 // object ends on the clean card, we are done.
duke@435 194 assert(first_clean_card == top_card, "just checking");
duke@435 195 }
duke@435 196 }
duke@435 197 }
duke@435 198 } while (restart_scanning);
duke@435 199 // we know which cards to scan, now clear them
duke@435 200 while (first_nonclean_card < first_clean_card) {
duke@435 201 *first_nonclean_card++ = clean_card;
duke@435 202 }
duke@435 203 // scan oops in objects
duke@435 204 // hoisted the if (depth_first) check out of the loop
duke@435 205 if (depth_first){
duke@435 206 do {
duke@435 207 oop(bottom_obj)->push_contents(pm);
duke@435 208 bottom_obj += oop(bottom_obj)->size();
duke@435 209 assert(bottom_obj <= sp_top, "just checking");
duke@435 210 } while (bottom_obj < top);
duke@435 211 pm->drain_stacks_cond_depth();
duke@435 212 } else {
duke@435 213 do {
duke@435 214 oop(bottom_obj)->copy_contents(pm);
duke@435 215 bottom_obj += oop(bottom_obj)->size();
duke@435 216 assert(bottom_obj <= sp_top, "just checking");
duke@435 217 } while (bottom_obj < top);
duke@435 218 }
duke@435 219 // remember top oop* scanned
duke@435 220 prev_top = top;
duke@435 221 }
duke@435 222 }
duke@435 223 }
duke@435 224 }
duke@435 225
duke@435 226 void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_array,
duke@435 227 MutableSpace* sp,
duke@435 228 HeapWord* space_top,
duke@435 229 PSPromotionManager* pm,
duke@435 230 uint stripe_number) {
duke@435 231 int ssize = 128; // Naked constant! Work unit = 64k.
duke@435 232 int dirty_card_count = 0;
duke@435 233 bool depth_first = pm->depth_first();
duke@435 234
duke@435 235 oop* sp_top = (oop*)space_top;
duke@435 236 jbyte* start_card = byte_for(sp->bottom());
duke@435 237 jbyte* end_card = byte_for(sp_top - 1) + 1;
duke@435 238 oop* last_scanned = NULL; // Prevent scanning objects more than once
duke@435 239 for (jbyte* slice = start_card; slice < end_card; slice += ssize*ParallelGCThreads) {
duke@435 240 jbyte* worker_start_card = slice + stripe_number * ssize;
duke@435 241 if (worker_start_card >= end_card)
duke@435 242 return; // We're done.
duke@435 243
duke@435 244 jbyte* worker_end_card = worker_start_card + ssize;
duke@435 245 if (worker_end_card > end_card)
duke@435 246 worker_end_card = end_card;
duke@435 247
duke@435 248 // We do not want to scan objects more than once. In order to accomplish
duke@435 249 // this, we assert that any object with an object head inside our 'slice'
duke@435 250 // belongs to us. We may need to extend the range of scanned cards if the
duke@435 251 // last object continues into the next 'slice'.
duke@435 252 //
duke@435 253 // Note! ending cards are exclusive!
duke@435 254 HeapWord* slice_start = addr_for(worker_start_card);
duke@435 255 HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
duke@435 256
duke@435 257 // If there are not objects starting within the chunk, skip it.
duke@435 258 if (!start_array->object_starts_in_range(slice_start, slice_end)) {
duke@435 259 continue;
duke@435 260 }
twisti@1040 261 // Update our beginning addr
duke@435 262 HeapWord* first_object = start_array->object_start(slice_start);
duke@435 263 debug_only(oop* first_object_within_slice = (oop*) first_object;)
duke@435 264 if (first_object < slice_start) {
duke@435 265 last_scanned = (oop*)(first_object + oop(first_object)->size());
duke@435 266 debug_only(first_object_within_slice = last_scanned;)
duke@435 267 worker_start_card = byte_for(last_scanned);
duke@435 268 }
duke@435 269
duke@435 270 // Update the ending addr
duke@435 271 if (slice_end < (HeapWord*)sp_top) {
duke@435 272 // The subtraction is important! An object may start precisely at slice_end.
duke@435 273 HeapWord* last_object = start_array->object_start(slice_end - 1);
duke@435 274 slice_end = last_object + oop(last_object)->size();
duke@435 275 // worker_end_card is exclusive, so bump it one past the end of last_object's
duke@435 276 // covered span.
duke@435 277 worker_end_card = byte_for(slice_end) + 1;
duke@435 278
duke@435 279 if (worker_end_card > end_card)
duke@435 280 worker_end_card = end_card;
duke@435 281 }
duke@435 282
duke@435 283 assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
duke@435 284 assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
duke@435 285 assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
duke@435 286 // Note that worker_start_card >= worker_end_card is legal, and happens when
duke@435 287 // an object spans an entire slice.
duke@435 288 assert(worker_start_card <= end_card, "worker start card beyond end card");
duke@435 289 assert(worker_end_card <= end_card, "worker end card beyond end card");
duke@435 290
duke@435 291 jbyte* current_card = worker_start_card;
duke@435 292 while (current_card < worker_end_card) {
duke@435 293 // Find an unclean card.
duke@435 294 while (current_card < worker_end_card && card_is_clean(*current_card)) {
duke@435 295 current_card++;
duke@435 296 }
duke@435 297 jbyte* first_unclean_card = current_card;
duke@435 298
duke@435 299 // Find the end of a run of contiguous unclean cards
duke@435 300 while (current_card < worker_end_card && !card_is_clean(*current_card)) {
duke@435 301 while (current_card < worker_end_card && !card_is_clean(*current_card)) {
duke@435 302 current_card++;
duke@435 303 }
duke@435 304
duke@435 305 if (current_card < worker_end_card) {
duke@435 306 // Some objects may be large enough to span several cards. If such
duke@435 307 // an object has more than one dirty card, separated by a clean card,
duke@435 308 // we will attempt to scan it twice. The test against "last_scanned"
duke@435 309 // prevents the redundant object scan, but it does not prevent newly
duke@435 310 // marked cards from being cleaned.
duke@435 311 HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
duke@435 312 size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
duke@435 313 HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
duke@435 314 jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
duke@435 315 assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
duke@435 316 if (ending_card_of_last_object > current_card) {
duke@435 317 // This means the object spans the next complete card.
duke@435 318 // We need to bump the current_card to ending_card_of_last_object
duke@435 319 current_card = ending_card_of_last_object;
duke@435 320 }
duke@435 321 }
duke@435 322 }
duke@435 323 jbyte* following_clean_card = current_card;
duke@435 324
duke@435 325 if (first_unclean_card < worker_end_card) {
duke@435 326 oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
duke@435 327 assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
duke@435 328 // "p" should always be >= "last_scanned" because newly GC dirtied
duke@435 329 // cards are no longer scanned again (see comment at end
duke@435 330 // of loop on the increment of "current_card"). Test that
duke@435 331 // hypothesis before removing this code.
duke@435 332 // If this code is removed, deal with the first time through
duke@435 333 // the loop when the last_scanned is the object starting in
duke@435 334 // the previous slice.
duke@435 335 assert((p >= last_scanned) ||
duke@435 336 (last_scanned == first_object_within_slice),
duke@435 337 "Should no longer be possible");
duke@435 338 if (p < last_scanned) {
duke@435 339 // Avoid scanning more than once; this can happen because
duke@435 340 // newgen cards set by GC may a different set than the
duke@435 341 // originally dirty set
duke@435 342 p = last_scanned;
duke@435 343 }
duke@435 344 oop* to = (oop*)addr_for(following_clean_card);
duke@435 345
duke@435 346 // Test slice_end first!
duke@435 347 if ((HeapWord*)to > slice_end) {
duke@435 348 to = (oop*)slice_end;
duke@435 349 } else if (to > sp_top) {
duke@435 350 to = sp_top;
duke@435 351 }
duke@435 352
duke@435 353 // we know which cards to scan, now clear them
duke@435 354 if (first_unclean_card <= worker_start_card+1)
duke@435 355 first_unclean_card = worker_start_card+1;
duke@435 356 if (following_clean_card >= worker_end_card-1)
duke@435 357 following_clean_card = worker_end_card-1;
duke@435 358
duke@435 359 while (first_unclean_card < following_clean_card) {
duke@435 360 *first_unclean_card++ = clean_card;
duke@435 361 }
duke@435 362
duke@435 363 const int interval = PrefetchScanIntervalInBytes;
duke@435 364 // scan all objects in the range
duke@435 365 if (interval != 0) {
duke@435 366 // hoisted the if (depth_first) check out of the loop
duke@435 367 if (depth_first) {
duke@435 368 while (p < to) {
duke@435 369 Prefetch::write(p, interval);
duke@435 370 oop m = oop(p);
duke@435 371 assert(m->is_oop_or_null(), "check for header");
duke@435 372 m->push_contents(pm);
duke@435 373 p += m->size();
duke@435 374 }
duke@435 375 pm->drain_stacks_cond_depth();
duke@435 376 } else {
duke@435 377 while (p < to) {
duke@435 378 Prefetch::write(p, interval);
duke@435 379 oop m = oop(p);
duke@435 380 assert(m->is_oop_or_null(), "check for header");
duke@435 381 m->copy_contents(pm);
duke@435 382 p += m->size();
duke@435 383 }
duke@435 384 }
duke@435 385 } else {
duke@435 386 // hoisted the if (depth_first) check out of the loop
duke@435 387 if (depth_first) {
duke@435 388 while (p < to) {
duke@435 389 oop m = oop(p);
duke@435 390 assert(m->is_oop_or_null(), "check for header");
duke@435 391 m->push_contents(pm);
duke@435 392 p += m->size();
duke@435 393 }
duke@435 394 pm->drain_stacks_cond_depth();
duke@435 395 } else {
duke@435 396 while (p < to) {
duke@435 397 oop m = oop(p);
duke@435 398 assert(m->is_oop_or_null(), "check for header");
duke@435 399 m->copy_contents(pm);
duke@435 400 p += m->size();
duke@435 401 }
duke@435 402 }
duke@435 403 }
duke@435 404 last_scanned = p;
duke@435 405 }
duke@435 406 // "current_card" is still the "following_clean_card" or
duke@435 407 // the current_card is >= the worker_end_card so the
duke@435 408 // loop will not execute again.
duke@435 409 assert((current_card == following_clean_card) ||
duke@435 410 (current_card >= worker_end_card),
duke@435 411 "current_card should only be incremented if it still equals "
duke@435 412 "following_clean_card");
duke@435 413 // Increment current_card so that it is not processed again.
duke@435 414 // It may now be dirty because a old-to-young pointer was
duke@435 415 // found on it an updated. If it is now dirty, it cannot be
duke@435 416 // be safely cleaned in the next iteration.
duke@435 417 current_card++;
duke@435 418 }
duke@435 419 }
duke@435 420 }
duke@435 421
duke@435 422 // This should be called before a scavenge.
duke@435 423 void CardTableExtension::verify_all_young_refs_imprecise() {
duke@435 424 CheckForUnmarkedObjects check;
duke@435 425
duke@435 426 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 427 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 428
duke@435 429 PSOldGen* old_gen = heap->old_gen();
duke@435 430 PSPermGen* perm_gen = heap->perm_gen();
duke@435 431
duke@435 432 old_gen->object_iterate(&check);
duke@435 433 perm_gen->object_iterate(&check);
duke@435 434 }
duke@435 435
duke@435 436 // This should be called immediately after a scavenge, before mutators resume.
duke@435 437 void CardTableExtension::verify_all_young_refs_precise() {
duke@435 438 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 439 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 440
duke@435 441 PSOldGen* old_gen = heap->old_gen();
duke@435 442 PSPermGen* perm_gen = heap->perm_gen();
duke@435 443
duke@435 444 CheckForPreciseMarks check(heap->young_gen(), (CardTableExtension*)heap->barrier_set());
duke@435 445
duke@435 446 old_gen->oop_iterate(&check);
duke@435 447 perm_gen->oop_iterate(&check);
duke@435 448
duke@435 449 verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
duke@435 450 verify_all_young_refs_precise_helper(perm_gen->object_space()->used_region());
duke@435 451 }
duke@435 452
duke@435 453 void CardTableExtension::verify_all_young_refs_precise_helper(MemRegion mr) {
duke@435 454 CardTableExtension* card_table = (CardTableExtension*)Universe::heap()->barrier_set();
duke@435 455 // FIX ME ASSERT HERE
duke@435 456
duke@435 457 jbyte* bot = card_table->byte_for(mr.start());
duke@435 458 jbyte* top = card_table->byte_for(mr.end());
duke@435 459 while(bot <= top) {
duke@435 460 assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
duke@435 461 if (*bot == verify_card)
duke@435 462 *bot = youngergen_card;
duke@435 463 bot++;
duke@435 464 }
duke@435 465 }
duke@435 466
duke@435 467 bool CardTableExtension::addr_is_marked_imprecise(void *addr) {
duke@435 468 jbyte* p = byte_for(addr);
duke@435 469 jbyte val = *p;
duke@435 470
duke@435 471 if (card_is_dirty(val))
duke@435 472 return true;
duke@435 473
duke@435 474 if (card_is_newgen(val))
duke@435 475 return true;
duke@435 476
duke@435 477 if (card_is_clean(val))
duke@435 478 return false;
duke@435 479
duke@435 480 assert(false, "Found unhandled card mark type");
duke@435 481
duke@435 482 return false;
duke@435 483 }
duke@435 484
duke@435 485 // Also includes verify_card
duke@435 486 bool CardTableExtension::addr_is_marked_precise(void *addr) {
duke@435 487 jbyte* p = byte_for(addr);
duke@435 488 jbyte val = *p;
duke@435 489
duke@435 490 if (card_is_newgen(val))
duke@435 491 return true;
duke@435 492
duke@435 493 if (card_is_verify(val))
duke@435 494 return true;
duke@435 495
duke@435 496 if (card_is_clean(val))
duke@435 497 return false;
duke@435 498
duke@435 499 if (card_is_dirty(val))
duke@435 500 return false;
duke@435 501
duke@435 502 assert(false, "Found unhandled card mark type");
duke@435 503
duke@435 504 return false;
duke@435 505 }
duke@435 506
duke@435 507 // Assumes that only the base or the end changes. This allows indentification
duke@435 508 // of the region that is being resized. The
duke@435 509 // CardTableModRefBS::resize_covered_region() is used for the normal case
duke@435 510 // where the covered regions are growing or shrinking at the high end.
duke@435 511 // The method resize_covered_region_by_end() is analogous to
duke@435 512 // CardTableModRefBS::resize_covered_region() but
duke@435 513 // for regions that grow or shrink at the low end.
duke@435 514 void CardTableExtension::resize_covered_region(MemRegion new_region) {
duke@435 515
duke@435 516 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 517 if (_covered[i].start() == new_region.start()) {
duke@435 518 // Found a covered region with the same start as the
duke@435 519 // new region. The region is growing or shrinking
duke@435 520 // from the start of the region.
duke@435 521 resize_covered_region_by_start(new_region);
duke@435 522 return;
duke@435 523 }
duke@435 524 if (_covered[i].start() > new_region.start()) {
duke@435 525 break;
duke@435 526 }
duke@435 527 }
duke@435 528
duke@435 529 int changed_region = -1;
duke@435 530 for (int j = 0; j < _cur_covered_regions; j++) {
duke@435 531 if (_covered[j].end() == new_region.end()) {
duke@435 532 changed_region = j;
duke@435 533 // This is a case where the covered region is growing or shrinking
duke@435 534 // at the start of the region.
duke@435 535 assert(changed_region != -1, "Don't expect to add a covered region");
duke@435 536 assert(_covered[changed_region].byte_size() != new_region.byte_size(),
duke@435 537 "The sizes should be different here");
duke@435 538 resize_covered_region_by_end(changed_region, new_region);
duke@435 539 return;
duke@435 540 }
duke@435 541 }
duke@435 542 // This should only be a new covered region (where no existing
duke@435 543 // covered region matches at the start or the end).
duke@435 544 assert(_cur_covered_regions < _max_covered_regions,
duke@435 545 "An existing region should have been found");
duke@435 546 resize_covered_region_by_start(new_region);
duke@435 547 }
duke@435 548
duke@435 549 void CardTableExtension::resize_covered_region_by_start(MemRegion new_region) {
duke@435 550 CardTableModRefBS::resize_covered_region(new_region);
duke@435 551 debug_only(verify_guard();)
duke@435 552 }
duke@435 553
duke@435 554 void CardTableExtension::resize_covered_region_by_end(int changed_region,
duke@435 555 MemRegion new_region) {
duke@435 556 assert(SafepointSynchronize::is_at_safepoint(),
duke@435 557 "Only expect an expansion at the low end at a GC");
duke@435 558 debug_only(verify_guard();)
duke@435 559 #ifdef ASSERT
duke@435 560 for (int k = 0; k < _cur_covered_regions; k++) {
duke@435 561 if (_covered[k].end() == new_region.end()) {
duke@435 562 assert(changed_region == k, "Changed region is incorrect");
duke@435 563 break;
duke@435 564 }
duke@435 565 }
duke@435 566 #endif
duke@435 567
duke@435 568 // Commit new or uncommit old pages, if necessary.
duke@435 569 resize_commit_uncommit(changed_region, new_region);
duke@435 570
duke@435 571 // Update card table entries
duke@435 572 resize_update_card_table_entries(changed_region, new_region);
duke@435 573
duke@435 574 // Set the new start of the committed region
duke@435 575 resize_update_committed_table(changed_region, new_region);
duke@435 576
duke@435 577 // Update the covered region
duke@435 578 resize_update_covered_table(changed_region, new_region);
duke@435 579
duke@435 580 if (TraceCardTableModRefBS) {
duke@435 581 int ind = changed_region;
duke@435 582 gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
duke@435 583 gclog_or_tty->print_cr(" "
duke@435 584 " _covered[%d].start(): " INTPTR_FORMAT
duke@435 585 " _covered[%d].last(): " INTPTR_FORMAT,
duke@435 586 ind, _covered[ind].start(),
duke@435 587 ind, _covered[ind].last());
duke@435 588 gclog_or_tty->print_cr(" "
duke@435 589 " _committed[%d].start(): " INTPTR_FORMAT
duke@435 590 " _committed[%d].last(): " INTPTR_FORMAT,
duke@435 591 ind, _committed[ind].start(),
duke@435 592 ind, _committed[ind].last());
duke@435 593 gclog_or_tty->print_cr(" "
duke@435 594 " byte_for(start): " INTPTR_FORMAT
duke@435 595 " byte_for(last): " INTPTR_FORMAT,
duke@435 596 byte_for(_covered[ind].start()),
duke@435 597 byte_for(_covered[ind].last()));
duke@435 598 gclog_or_tty->print_cr(" "
duke@435 599 " addr_for(start): " INTPTR_FORMAT
duke@435 600 " addr_for(last): " INTPTR_FORMAT,
duke@435 601 addr_for((jbyte*) _committed[ind].start()),
duke@435 602 addr_for((jbyte*) _committed[ind].last()));
duke@435 603 }
duke@435 604 debug_only(verify_guard();)
duke@435 605 }
duke@435 606
duke@435 607 void CardTableExtension::resize_commit_uncommit(int changed_region,
duke@435 608 MemRegion new_region) {
duke@435 609 // Commit new or uncommit old pages, if necessary.
duke@435 610 MemRegion cur_committed = _committed[changed_region];
duke@435 611 assert(_covered[changed_region].end() == new_region.end(),
duke@435 612 "The ends of the regions are expected to match");
duke@435 613 // Extend the start of this _committed region to
duke@435 614 // to cover the start of any previous _committed region.
duke@435 615 // This forms overlapping regions, but never interior regions.
duke@435 616 HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
duke@435 617 if (min_prev_start < cur_committed.start()) {
duke@435 618 // Only really need to set start of "cur_committed" to
duke@435 619 // the new start (min_prev_start) but assertion checking code
duke@435 620 // below use cur_committed.end() so make it correct.
duke@435 621 MemRegion new_committed =
duke@435 622 MemRegion(min_prev_start, cur_committed.end());
duke@435 623 cur_committed = new_committed;
duke@435 624 }
duke@435 625 #ifdef ASSERT
duke@435 626 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 627 assert(cur_committed.start() ==
duke@435 628 (HeapWord*) align_size_up((uintptr_t) cur_committed.start(),
duke@435 629 os::vm_page_size()),
duke@435 630 "Starts should have proper alignment");
duke@435 631 #endif
duke@435 632
duke@435 633 jbyte* new_start = byte_for(new_region.start());
duke@435 634 // Round down because this is for the start address
duke@435 635 HeapWord* new_start_aligned =
duke@435 636 (HeapWord*)align_size_down((uintptr_t)new_start, os::vm_page_size());
duke@435 637 // The guard page is always committed and should not be committed over.
duke@435 638 // This method is used in cases where the generation is growing toward
duke@435 639 // lower addresses but the guard region is still at the end of the
duke@435 640 // card table. That still makes sense when looking for writes
duke@435 641 // off the end of the card table.
duke@435 642 if (new_start_aligned < cur_committed.start()) {
duke@435 643 // Expand the committed region
duke@435 644 //
duke@435 645 // Case A
duke@435 646 // |+ guard +|
duke@435 647 // |+ cur committed +++++++++|
duke@435 648 // |+ new committed +++++++++++++++++|
duke@435 649 //
duke@435 650 // Case B
duke@435 651 // |+ guard +|
duke@435 652 // |+ cur committed +|
duke@435 653 // |+ new committed +++++++|
duke@435 654 //
duke@435 655 // These are not expected because the calculation of the
duke@435 656 // cur committed region and the new committed region
duke@435 657 // share the same end for the covered region.
duke@435 658 // Case C
duke@435 659 // |+ guard +|
duke@435 660 // |+ cur committed +|
duke@435 661 // |+ new committed +++++++++++++++++|
duke@435 662 // Case D
duke@435 663 // |+ guard +|
duke@435 664 // |+ cur committed +++++++++++|
duke@435 665 // |+ new committed +++++++|
duke@435 666
duke@435 667 HeapWord* new_end_for_commit =
duke@435 668 MIN2(cur_committed.end(), _guard_region.start());
jmasa@698 669 if(new_start_aligned < new_end_for_commit) {
jmasa@698 670 MemRegion new_committed =
jmasa@698 671 MemRegion(new_start_aligned, new_end_for_commit);
duke@435 672 if (!os::commit_memory((char*)new_committed.start(),
duke@435 673 new_committed.byte_size())) {
duke@435 674 vm_exit_out_of_memory(new_committed.byte_size(),
duke@435 675 "card table expansion");
duke@435 676 }
duke@435 677 }
duke@435 678 } else if (new_start_aligned > cur_committed.start()) {
duke@435 679 // Shrink the committed region
duke@435 680 MemRegion uncommit_region = committed_unique_to_self(changed_region,
duke@435 681 MemRegion(cur_committed.start(), new_start_aligned));
duke@435 682 if (!uncommit_region.is_empty()) {
duke@435 683 if (!os::uncommit_memory((char*)uncommit_region.start(),
duke@435 684 uncommit_region.byte_size())) {
duke@435 685 vm_exit_out_of_memory(uncommit_region.byte_size(),
duke@435 686 "card table contraction");
duke@435 687 }
duke@435 688 }
duke@435 689 }
duke@435 690 assert(_committed[changed_region].end() == cur_committed.end(),
duke@435 691 "end should not change");
duke@435 692 }
duke@435 693
duke@435 694 void CardTableExtension::resize_update_committed_table(int changed_region,
duke@435 695 MemRegion new_region) {
duke@435 696
duke@435 697 jbyte* new_start = byte_for(new_region.start());
duke@435 698 // Set the new start of the committed region
duke@435 699 HeapWord* new_start_aligned =
duke@435 700 (HeapWord*)align_size_down((uintptr_t)new_start,
duke@435 701 os::vm_page_size());
duke@435 702 MemRegion new_committed = MemRegion(new_start_aligned,
duke@435 703 _committed[changed_region].end());
duke@435 704 _committed[changed_region] = new_committed;
duke@435 705 _committed[changed_region].set_start(new_start_aligned);
duke@435 706 }
duke@435 707
duke@435 708 void CardTableExtension::resize_update_card_table_entries(int changed_region,
duke@435 709 MemRegion new_region) {
duke@435 710 debug_only(verify_guard();)
duke@435 711 MemRegion original_covered = _covered[changed_region];
duke@435 712 // Initialize the card entries. Only consider the
duke@435 713 // region covered by the card table (_whole_heap)
duke@435 714 jbyte* entry;
duke@435 715 if (new_region.start() < _whole_heap.start()) {
duke@435 716 entry = byte_for(_whole_heap.start());
duke@435 717 } else {
duke@435 718 entry = byte_for(new_region.start());
duke@435 719 }
duke@435 720 jbyte* end = byte_for(original_covered.start());
duke@435 721 // If _whole_heap starts at the original covered regions start,
duke@435 722 // this loop will not execute.
duke@435 723 while (entry < end) { *entry++ = clean_card; }
duke@435 724 }
duke@435 725
duke@435 726 void CardTableExtension::resize_update_covered_table(int changed_region,
duke@435 727 MemRegion new_region) {
duke@435 728 // Update the covered region
duke@435 729 _covered[changed_region].set_start(new_region.start());
duke@435 730 _covered[changed_region].set_word_size(new_region.word_size());
duke@435 731
duke@435 732 // reorder regions. There should only be at most 1 out
duke@435 733 // of order.
duke@435 734 for (int i = _cur_covered_regions-1 ; i > 0; i--) {
duke@435 735 if (_covered[i].start() < _covered[i-1].start()) {
duke@435 736 MemRegion covered_mr = _covered[i-1];
duke@435 737 _covered[i-1] = _covered[i];
duke@435 738 _covered[i] = covered_mr;
duke@435 739 MemRegion committed_mr = _committed[i-1];
duke@435 740 _committed[i-1] = _committed[i];
duke@435 741 _committed[i] = committed_mr;
duke@435 742 break;
duke@435 743 }
duke@435 744 }
duke@435 745 #ifdef ASSERT
duke@435 746 for (int m = 0; m < _cur_covered_regions-1; m++) {
duke@435 747 assert(_covered[m].start() <= _covered[m+1].start(),
duke@435 748 "Covered regions out of order");
duke@435 749 assert(_committed[m].start() <= _committed[m+1].start(),
duke@435 750 "Committed regions out of order");
duke@435 751 }
duke@435 752 #endif
duke@435 753 }
duke@435 754
duke@435 755 // Returns the start of any committed region that is lower than
duke@435 756 // the target committed region (index ind) and that intersects the
duke@435 757 // target region. If none, return start of target region.
duke@435 758 //
duke@435 759 // -------------
duke@435 760 // | |
duke@435 761 // -------------
duke@435 762 // ------------
duke@435 763 // | target |
duke@435 764 // ------------
duke@435 765 // -------------
duke@435 766 // | |
duke@435 767 // -------------
duke@435 768 // ^ returns this
duke@435 769 //
duke@435 770 // -------------
duke@435 771 // | |
duke@435 772 // -------------
duke@435 773 // ------------
duke@435 774 // | target |
duke@435 775 // ------------
duke@435 776 // -------------
duke@435 777 // | |
duke@435 778 // -------------
duke@435 779 // ^ returns this
duke@435 780
duke@435 781 HeapWord* CardTableExtension::lowest_prev_committed_start(int ind) const {
duke@435 782 assert(_cur_covered_regions >= 0, "Expecting at least on region");
duke@435 783 HeapWord* min_start = _committed[ind].start();
duke@435 784 for (int j = 0; j < ind; j++) {
duke@435 785 HeapWord* this_start = _committed[j].start();
duke@435 786 if ((this_start < min_start) &&
duke@435 787 !(_committed[j].intersection(_committed[ind])).is_empty()) {
duke@435 788 min_start = this_start;
duke@435 789 }
duke@435 790 }
duke@435 791 return min_start;
duke@435 792 }

mercurial