src/share/vm/gc_implementation/parallelScavenge/cardTableExtension.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 704
850fdf70db2b
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_cardTableExtension.cpp.incl"
    28 // Checks an individual oop for missing precise marks. Mark
    29 // may be either dirty or newgen.
    30 class CheckForUnmarkedOops : public OopClosure {
    31  private:
    32   PSYoungGen*         _young_gen;
    33   CardTableExtension* _card_table;
    34   HeapWord*           _unmarked_addr;
    35   jbyte*              _unmarked_card;
    37  protected:
    38   template <class T> void do_oop_work(T* p) {
    39     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
    40     if (_young_gen->is_in_reserved(obj) &&
    41         !_card_table->addr_is_marked_imprecise(p)) {
    42       // Don't overwrite the first missing card mark
    43       if (_unmarked_addr == NULL) {
    44         _unmarked_addr = (HeapWord*)p;
    45         _unmarked_card = _card_table->byte_for(p);
    46       }
    47     }
    48   }
    50  public:
    51   CheckForUnmarkedOops(PSYoungGen* young_gen, CardTableExtension* card_table) :
    52     _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
    54   virtual void do_oop(oop* p)       { CheckForUnmarkedOops::do_oop_work(p); }
    55   virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
    57   bool has_unmarked_oop() {
    58     return _unmarked_addr != NULL;
    59   }
    60 };
    62 // Checks all objects for the existance of some type of mark,
    63 // precise or imprecise, dirty or newgen.
    64 class CheckForUnmarkedObjects : public ObjectClosure {
    65  private:
    66   PSYoungGen*         _young_gen;
    67   CardTableExtension* _card_table;
    69  public:
    70   CheckForUnmarkedObjects() {
    71     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    72     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    74     _young_gen = heap->young_gen();
    75     _card_table = (CardTableExtension*)heap->barrier_set();
    76     // No point in asserting barrier set type here. Need to make CardTableExtension
    77     // a unique barrier set type.
    78   }
    80   // Card marks are not precise. The current system can leave us with
    81   // a mismash of precise marks and beginning of object marks. This means
    82   // we test for missing precise marks first. If any are found, we don't
    83   // fail unless the object head is also unmarked.
    84   virtual void do_object(oop obj) {
    85     CheckForUnmarkedOops object_check(_young_gen, _card_table);
    86     obj->oop_iterate(&object_check);
    87     if (object_check.has_unmarked_oop()) {
    88       assert(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
    89     }
    90   }
    91 };
    93 // Checks for precise marking of oops as newgen.
    94 class CheckForPreciseMarks : public OopClosure {
    95  private:
    96   PSYoungGen*         _young_gen;
    97   CardTableExtension* _card_table;
    99  protected:
   100   template <class T> void do_oop_work(T* p) {
   101     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   102     if (_young_gen->is_in_reserved(obj)) {
   103       assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
   104       _card_table->set_card_newgen(p);
   105     }
   106   }
   108  public:
   109   CheckForPreciseMarks( PSYoungGen* young_gen, CardTableExtension* card_table ) :
   110     _young_gen(young_gen), _card_table(card_table) { }
   112   virtual void do_oop(oop* p)       { CheckForPreciseMarks::do_oop_work(p); }
   113   virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
   114 };
   116 // We get passed the space_top value to prevent us from traversing into
   117 // the old_gen promotion labs, which cannot be safely parsed.
   118 void CardTableExtension::scavenge_contents(ObjectStartArray* start_array,
   119                                            MutableSpace* sp,
   120                                            HeapWord* space_top,
   121                                            PSPromotionManager* pm)
   122 {
   123   assert(start_array != NULL && sp != NULL && pm != NULL, "Sanity");
   124   assert(start_array->covered_region().contains(sp->used_region()),
   125          "ObjectStartArray does not cover space");
   126   bool depth_first = pm->depth_first();
   128   if (sp->not_empty()) {
   129     oop* sp_top = (oop*)space_top;
   130     oop* prev_top = NULL;
   131     jbyte* current_card = byte_for(sp->bottom());
   132     jbyte* end_card     = byte_for(sp_top - 1);    // sp_top is exclusive
   133     // scan card marking array
   134     while (current_card <= end_card) {
   135       jbyte value = *current_card;
   136       // skip clean cards
   137       if (card_is_clean(value)) {
   138         current_card++;
   139       } else {
   140         // we found a non-clean card
   141         jbyte* first_nonclean_card = current_card++;
   142         oop* bottom = (oop*)addr_for(first_nonclean_card);
   143         // find object starting on card
   144         oop* bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
   145         // bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
   146         assert(bottom_obj <= bottom, "just checking");
   147         // make sure we don't scan oops we already looked at
   148         if (bottom < prev_top) bottom = prev_top;
   149         // figure out when to stop scanning
   150         jbyte* first_clean_card;
   151         oop* top;
   152         bool restart_scanning;
   153         do {
   154           restart_scanning = false;
   155           // find a clean card
   156           while (current_card <= end_card) {
   157             value = *current_card;
   158             if (card_is_clean(value)) break;
   159             current_card++;
   160           }
   161           // check if we reached the end, if so we are done
   162           if (current_card >= end_card) {
   163             first_clean_card = end_card + 1;
   164             current_card++;
   165             top = sp_top;
   166           } else {
   167             // we have a clean card, find object starting on that card
   168             first_clean_card = current_card++;
   169             top = (oop*)addr_for(first_clean_card);
   170             oop* top_obj = (oop*)start_array->object_start((HeapWord*)top);
   171             // top_obj = (oop*)start_array->object_start((HeapWord*)top);
   172             assert(top_obj <= top, "just checking");
   173             if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
   174               // an arrayOop is starting on the clean card - since we do exact store
   175               // checks for objArrays we are done
   176             } else {
   177               // otherwise, it is possible that the object starting on the clean card
   178               // spans the entire card, and that the store happened on a later card.
   179               // figure out where the object ends
   180               top = top_obj + oop(top_obj)->size();
   181               jbyte* top_card = CardTableModRefBS::byte_for(top - 1);   // top is exclusive
   182               if (top_card > first_clean_card) {
   183                 // object ends a different card
   184                 current_card = top_card + 1;
   185                 if (card_is_clean(*top_card)) {
   186                   // the ending card is clean, we are done
   187                   first_clean_card = top_card;
   188                 } else {
   189                   // the ending card is not clean, continue scanning at start of do-while
   190                   restart_scanning = true;
   191                 }
   192               } else {
   193                 // object ends on the clean card, we are done.
   194                 assert(first_clean_card == top_card, "just checking");
   195               }
   196             }
   197           }
   198         } while (restart_scanning);
   199         // we know which cards to scan, now clear them
   200         while (first_nonclean_card < first_clean_card) {
   201           *first_nonclean_card++ = clean_card;
   202         }
   203         // scan oops in objects
   204         // hoisted the if (depth_first) check out of the loop
   205         if (depth_first){
   206           do {
   207             oop(bottom_obj)->push_contents(pm);
   208             bottom_obj += oop(bottom_obj)->size();
   209             assert(bottom_obj <= sp_top, "just checking");
   210           } while (bottom_obj < top);
   211           pm->drain_stacks_cond_depth();
   212         } else {
   213           do {
   214             oop(bottom_obj)->copy_contents(pm);
   215             bottom_obj += oop(bottom_obj)->size();
   216             assert(bottom_obj <= sp_top, "just checking");
   217           } while (bottom_obj < top);
   218         }
   219         // remember top oop* scanned
   220         prev_top = top;
   221       }
   222     }
   223   }
   224 }
   226 void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_array,
   227                                                     MutableSpace* sp,
   228                                                     HeapWord* space_top,
   229                                                     PSPromotionManager* pm,
   230                                                     uint stripe_number) {
   231   int ssize = 128; // Naked constant!  Work unit = 64k.
   232   int dirty_card_count = 0;
   233   bool depth_first = pm->depth_first();
   235   oop* sp_top = (oop*)space_top;
   236   jbyte* start_card = byte_for(sp->bottom());
   237   jbyte* end_card   = byte_for(sp_top - 1) + 1;
   238   oop* last_scanned = NULL; // Prevent scanning objects more than once
   239   for (jbyte* slice = start_card; slice < end_card; slice += ssize*ParallelGCThreads) {
   240     jbyte* worker_start_card = slice + stripe_number * ssize;
   241     if (worker_start_card >= end_card)
   242       return; // We're done.
   244     jbyte* worker_end_card = worker_start_card + ssize;
   245     if (worker_end_card > end_card)
   246       worker_end_card = end_card;
   248     // We do not want to scan objects more than once. In order to accomplish
   249     // this, we assert that any object with an object head inside our 'slice'
   250     // belongs to us. We may need to extend the range of scanned cards if the
   251     // last object continues into the next 'slice'.
   252     //
   253     // Note! ending cards are exclusive!
   254     HeapWord* slice_start = addr_for(worker_start_card);
   255     HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
   257     // If there are not objects starting within the chunk, skip it.
   258     if (!start_array->object_starts_in_range(slice_start, slice_end)) {
   259       continue;
   260     }
   261     // Update our beginning addr
   262     HeapWord* first_object = start_array->object_start(slice_start);
   263     debug_only(oop* first_object_within_slice = (oop*) first_object;)
   264     if (first_object < slice_start) {
   265       last_scanned = (oop*)(first_object + oop(first_object)->size());
   266       debug_only(first_object_within_slice = last_scanned;)
   267       worker_start_card = byte_for(last_scanned);
   268     }
   270     // Update the ending addr
   271     if (slice_end < (HeapWord*)sp_top) {
   272       // The subtraction is important! An object may start precisely at slice_end.
   273       HeapWord* last_object = start_array->object_start(slice_end - 1);
   274       slice_end = last_object + oop(last_object)->size();
   275       // worker_end_card is exclusive, so bump it one past the end of last_object's
   276       // covered span.
   277       worker_end_card = byte_for(slice_end) + 1;
   279       if (worker_end_card > end_card)
   280         worker_end_card = end_card;
   281     }
   283     assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
   284     assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
   285     assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
   286     // Note that worker_start_card >= worker_end_card is legal, and happens when
   287     // an object spans an entire slice.
   288     assert(worker_start_card <= end_card, "worker start card beyond end card");
   289     assert(worker_end_card <= end_card, "worker end card beyond end card");
   291     jbyte* current_card = worker_start_card;
   292     while (current_card < worker_end_card) {
   293       // Find an unclean card.
   294       while (current_card < worker_end_card && card_is_clean(*current_card)) {
   295         current_card++;
   296       }
   297       jbyte* first_unclean_card = current_card;
   299       // Find the end of a run of contiguous unclean cards
   300       while (current_card < worker_end_card && !card_is_clean(*current_card)) {
   301         while (current_card < worker_end_card && !card_is_clean(*current_card)) {
   302           current_card++;
   303         }
   305         if (current_card < worker_end_card) {
   306           // Some objects may be large enough to span several cards. If such
   307           // an object has more than one dirty card, separated by a clean card,
   308           // we will attempt to scan it twice. The test against "last_scanned"
   309           // prevents the redundant object scan, but it does not prevent newly
   310           // marked cards from being cleaned.
   311           HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
   312           size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
   313           HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
   314           jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
   315           assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
   316           if (ending_card_of_last_object > current_card) {
   317             // This means the object spans the next complete card.
   318             // We need to bump the current_card to ending_card_of_last_object
   319             current_card = ending_card_of_last_object;
   320           }
   321         }
   322       }
   323       jbyte* following_clean_card = current_card;
   325       if (first_unclean_card < worker_end_card) {
   326         oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
   327         assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
   328         // "p" should always be >= "last_scanned" because newly GC dirtied
   329         // cards are no longer scanned again (see comment at end
   330         // of loop on the increment of "current_card").  Test that
   331         // hypothesis before removing this code.
   332         // If this code is removed, deal with the first time through
   333         // the loop when the last_scanned is the object starting in
   334         // the previous slice.
   335         assert((p >= last_scanned) ||
   336                (last_scanned == first_object_within_slice),
   337                "Should no longer be possible");
   338         if (p < last_scanned) {
   339           // Avoid scanning more than once; this can happen because
   340           // newgen cards set by GC may a different set than the
   341           // originally dirty set
   342           p = last_scanned;
   343         }
   344         oop* to = (oop*)addr_for(following_clean_card);
   346         // Test slice_end first!
   347         if ((HeapWord*)to > slice_end) {
   348           to = (oop*)slice_end;
   349         } else if (to > sp_top) {
   350           to = sp_top;
   351         }
   353         // we know which cards to scan, now clear them
   354         if (first_unclean_card <= worker_start_card+1)
   355           first_unclean_card = worker_start_card+1;
   356         if (following_clean_card >= worker_end_card-1)
   357           following_clean_card = worker_end_card-1;
   359         while (first_unclean_card < following_clean_card) {
   360           *first_unclean_card++ = clean_card;
   361         }
   363         const int interval = PrefetchScanIntervalInBytes;
   364         // scan all objects in the range
   365         if (interval != 0) {
   366           // hoisted the if (depth_first) check out of the loop
   367           if (depth_first) {
   368             while (p < to) {
   369               Prefetch::write(p, interval);
   370               oop m = oop(p);
   371               assert(m->is_oop_or_null(), "check for header");
   372               m->push_contents(pm);
   373               p += m->size();
   374             }
   375             pm->drain_stacks_cond_depth();
   376           } else {
   377             while (p < to) {
   378               Prefetch::write(p, interval);
   379               oop m = oop(p);
   380               assert(m->is_oop_or_null(), "check for header");
   381               m->copy_contents(pm);
   382               p += m->size();
   383             }
   384           }
   385         } else {
   386           // hoisted the if (depth_first) check out of the loop
   387           if (depth_first) {
   388             while (p < to) {
   389               oop m = oop(p);
   390               assert(m->is_oop_or_null(), "check for header");
   391               m->push_contents(pm);
   392               p += m->size();
   393             }
   394             pm->drain_stacks_cond_depth();
   395           } else {
   396             while (p < to) {
   397               oop m = oop(p);
   398               assert(m->is_oop_or_null(), "check for header");
   399               m->copy_contents(pm);
   400               p += m->size();
   401             }
   402           }
   403         }
   404         last_scanned = p;
   405       }
   406       // "current_card" is still the "following_clean_card" or
   407       // the current_card is >= the worker_end_card so the
   408       // loop will not execute again.
   409       assert((current_card == following_clean_card) ||
   410              (current_card >= worker_end_card),
   411         "current_card should only be incremented if it still equals "
   412         "following_clean_card");
   413       // Increment current_card so that it is not processed again.
   414       // It may now be dirty because a old-to-young pointer was
   415       // found on it an updated.  If it is now dirty, it cannot be
   416       // be safely cleaned in the next iteration.
   417       current_card++;
   418     }
   419   }
   420 }
   422 // This should be called before a scavenge.
   423 void CardTableExtension::verify_all_young_refs_imprecise() {
   424   CheckForUnmarkedObjects check;
   426   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   427   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   429   PSOldGen* old_gen = heap->old_gen();
   430   PSPermGen* perm_gen = heap->perm_gen();
   432   old_gen->object_iterate(&check);
   433   perm_gen->object_iterate(&check);
   434 }
   436 // This should be called immediately after a scavenge, before mutators resume.
   437 void CardTableExtension::verify_all_young_refs_precise() {
   438   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   439   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   441   PSOldGen* old_gen = heap->old_gen();
   442   PSPermGen* perm_gen = heap->perm_gen();
   444   CheckForPreciseMarks check(heap->young_gen(), (CardTableExtension*)heap->barrier_set());
   446   old_gen->oop_iterate(&check);
   447   perm_gen->oop_iterate(&check);
   449   verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
   450   verify_all_young_refs_precise_helper(perm_gen->object_space()->used_region());
   451 }
   453 void CardTableExtension::verify_all_young_refs_precise_helper(MemRegion mr) {
   454   CardTableExtension* card_table = (CardTableExtension*)Universe::heap()->barrier_set();
   455   // FIX ME ASSERT HERE
   457   jbyte* bot = card_table->byte_for(mr.start());
   458   jbyte* top = card_table->byte_for(mr.end());
   459   while(bot <= top) {
   460     assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
   461     if (*bot == verify_card)
   462       *bot = youngergen_card;
   463     bot++;
   464   }
   465 }
   467 bool CardTableExtension::addr_is_marked_imprecise(void *addr) {
   468   jbyte* p = byte_for(addr);
   469   jbyte val = *p;
   471   if (card_is_dirty(val))
   472     return true;
   474   if (card_is_newgen(val))
   475     return true;
   477   if (card_is_clean(val))
   478     return false;
   480   assert(false, "Found unhandled card mark type");
   482   return false;
   483 }
   485 // Also includes verify_card
   486 bool CardTableExtension::addr_is_marked_precise(void *addr) {
   487   jbyte* p = byte_for(addr);
   488   jbyte val = *p;
   490   if (card_is_newgen(val))
   491     return true;
   493   if (card_is_verify(val))
   494     return true;
   496   if (card_is_clean(val))
   497     return false;
   499   if (card_is_dirty(val))
   500     return false;
   502   assert(false, "Found unhandled card mark type");
   504   return false;
   505 }
   507 // Assumes that only the base or the end changes.  This allows indentification
   508 // of the region that is being resized.  The
   509 // CardTableModRefBS::resize_covered_region() is used for the normal case
   510 // where the covered regions are growing or shrinking at the high end.
   511 // The method resize_covered_region_by_end() is analogous to
   512 // CardTableModRefBS::resize_covered_region() but
   513 // for regions that grow or shrink at the low end.
   514 void CardTableExtension::resize_covered_region(MemRegion new_region) {
   516   for (int i = 0; i < _cur_covered_regions; i++) {
   517     if (_covered[i].start() == new_region.start()) {
   518       // Found a covered region with the same start as the
   519       // new region.  The region is growing or shrinking
   520       // from the start of the region.
   521       resize_covered_region_by_start(new_region);
   522       return;
   523     }
   524     if (_covered[i].start() > new_region.start()) {
   525       break;
   526     }
   527   }
   529   int changed_region = -1;
   530   for (int j = 0; j < _cur_covered_regions; j++) {
   531     if (_covered[j].end() == new_region.end()) {
   532       changed_region = j;
   533       // This is a case where the covered region is growing or shrinking
   534       // at the start of the region.
   535       assert(changed_region != -1, "Don't expect to add a covered region");
   536       assert(_covered[changed_region].byte_size() != new_region.byte_size(),
   537         "The sizes should be different here");
   538       resize_covered_region_by_end(changed_region, new_region);
   539       return;
   540     }
   541   }
   542   // This should only be a new covered region (where no existing
   543   // covered region matches at the start or the end).
   544   assert(_cur_covered_regions < _max_covered_regions,
   545     "An existing region should have been found");
   546   resize_covered_region_by_start(new_region);
   547 }
   549 void CardTableExtension::resize_covered_region_by_start(MemRegion new_region) {
   550   CardTableModRefBS::resize_covered_region(new_region);
   551   debug_only(verify_guard();)
   552 }
   554 void CardTableExtension::resize_covered_region_by_end(int changed_region,
   555                                                       MemRegion new_region) {
   556   assert(SafepointSynchronize::is_at_safepoint(),
   557     "Only expect an expansion at the low end at a GC");
   558   debug_only(verify_guard();)
   559 #ifdef ASSERT
   560   for (int k = 0; k < _cur_covered_regions; k++) {
   561     if (_covered[k].end() == new_region.end()) {
   562       assert(changed_region == k, "Changed region is incorrect");
   563       break;
   564     }
   565   }
   566 #endif
   568   // Commit new or uncommit old pages, if necessary.
   569   resize_commit_uncommit(changed_region, new_region);
   571   // Update card table entries
   572   resize_update_card_table_entries(changed_region, new_region);
   574   // Set the new start of the committed region
   575   resize_update_committed_table(changed_region, new_region);
   577   // Update the covered region
   578   resize_update_covered_table(changed_region, new_region);
   580   if (TraceCardTableModRefBS) {
   581     int ind = changed_region;
   582     gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
   583     gclog_or_tty->print_cr("  "
   584                   "  _covered[%d].start(): " INTPTR_FORMAT
   585                   "  _covered[%d].last(): " INTPTR_FORMAT,
   586                   ind, _covered[ind].start(),
   587                   ind, _covered[ind].last());
   588     gclog_or_tty->print_cr("  "
   589                   "  _committed[%d].start(): " INTPTR_FORMAT
   590                   "  _committed[%d].last(): " INTPTR_FORMAT,
   591                   ind, _committed[ind].start(),
   592                   ind, _committed[ind].last());
   593     gclog_or_tty->print_cr("  "
   594                   "  byte_for(start): " INTPTR_FORMAT
   595                   "  byte_for(last): " INTPTR_FORMAT,
   596                   byte_for(_covered[ind].start()),
   597                   byte_for(_covered[ind].last()));
   598     gclog_or_tty->print_cr("  "
   599                   "  addr_for(start): " INTPTR_FORMAT
   600                   "  addr_for(last): " INTPTR_FORMAT,
   601                   addr_for((jbyte*) _committed[ind].start()),
   602                   addr_for((jbyte*) _committed[ind].last()));
   603   }
   604   debug_only(verify_guard();)
   605 }
   607 void CardTableExtension::resize_commit_uncommit(int changed_region,
   608                                                 MemRegion new_region) {
   609   // Commit new or uncommit old pages, if necessary.
   610   MemRegion cur_committed = _committed[changed_region];
   611   assert(_covered[changed_region].end() == new_region.end(),
   612     "The ends of the regions are expected to match");
   613   // Extend the start of this _committed region to
   614   // to cover the start of any previous _committed region.
   615   // This forms overlapping regions, but never interior regions.
   616   HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
   617   if (min_prev_start < cur_committed.start()) {
   618     // Only really need to set start of "cur_committed" to
   619     // the new start (min_prev_start) but assertion checking code
   620     // below use cur_committed.end() so make it correct.
   621     MemRegion new_committed =
   622         MemRegion(min_prev_start, cur_committed.end());
   623     cur_committed = new_committed;
   624   }
   625 #ifdef ASSERT
   626   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   627   assert(cur_committed.start() ==
   628     (HeapWord*) align_size_up((uintptr_t) cur_committed.start(),
   629                               os::vm_page_size()),
   630     "Starts should have proper alignment");
   631 #endif
   633   jbyte* new_start = byte_for(new_region.start());
   634   // Round down because this is for the start address
   635   HeapWord* new_start_aligned =
   636     (HeapWord*)align_size_down((uintptr_t)new_start, os::vm_page_size());
   637   // The guard page is always committed and should not be committed over.
   638   // This method is used in cases where the generation is growing toward
   639   // lower addresses but the guard region is still at the end of the
   640   // card table.  That still makes sense when looking for writes
   641   // off the end of the card table.
   642   if (new_start_aligned < cur_committed.start()) {
   643     // Expand the committed region
   644     //
   645     // Case A
   646     //                                          |+ guard +|
   647     //                          |+ cur committed +++++++++|
   648     //                  |+ new committed +++++++++++++++++|
   649     //
   650     // Case B
   651     //                                          |+ guard +|
   652     //                        |+ cur committed +|
   653     //                  |+ new committed +++++++|
   654     //
   655     // These are not expected because the calculation of the
   656     // cur committed region and the new committed region
   657     // share the same end for the covered region.
   658     // Case C
   659     //                                          |+ guard +|
   660     //                        |+ cur committed +|
   661     //                  |+ new committed +++++++++++++++++|
   662     // Case D
   663     //                                          |+ guard +|
   664     //                        |+ cur committed +++++++++++|
   665     //                  |+ new committed +++++++|
   667     HeapWord* new_end_for_commit =
   668       MIN2(cur_committed.end(), _guard_region.start());
   669     if(new_start_aligned < new_end_for_commit) {
   670       MemRegion new_committed =
   671         MemRegion(new_start_aligned, new_end_for_commit);
   672       if (!os::commit_memory((char*)new_committed.start(),
   673                              new_committed.byte_size())) {
   674         vm_exit_out_of_memory(new_committed.byte_size(),
   675                               "card table expansion");
   676       }
   677     }
   678   } else if (new_start_aligned > cur_committed.start()) {
   679     // Shrink the committed region
   680     MemRegion uncommit_region = committed_unique_to_self(changed_region,
   681       MemRegion(cur_committed.start(), new_start_aligned));
   682     if (!uncommit_region.is_empty()) {
   683       if (!os::uncommit_memory((char*)uncommit_region.start(),
   684                                uncommit_region.byte_size())) {
   685         vm_exit_out_of_memory(uncommit_region.byte_size(),
   686           "card table contraction");
   687       }
   688     }
   689   }
   690   assert(_committed[changed_region].end() == cur_committed.end(),
   691     "end should not change");
   692 }
   694 void CardTableExtension::resize_update_committed_table(int changed_region,
   695                                                        MemRegion new_region) {
   697   jbyte* new_start = byte_for(new_region.start());
   698   // Set the new start of the committed region
   699   HeapWord* new_start_aligned =
   700     (HeapWord*)align_size_down((uintptr_t)new_start,
   701                              os::vm_page_size());
   702   MemRegion new_committed = MemRegion(new_start_aligned,
   703     _committed[changed_region].end());
   704   _committed[changed_region] = new_committed;
   705   _committed[changed_region].set_start(new_start_aligned);
   706 }
   708 void CardTableExtension::resize_update_card_table_entries(int changed_region,
   709                                                           MemRegion new_region) {
   710   debug_only(verify_guard();)
   711   MemRegion original_covered = _covered[changed_region];
   712   // Initialize the card entries.  Only consider the
   713   // region covered by the card table (_whole_heap)
   714   jbyte* entry;
   715   if (new_region.start() < _whole_heap.start()) {
   716     entry = byte_for(_whole_heap.start());
   717   } else {
   718     entry = byte_for(new_region.start());
   719   }
   720   jbyte* end = byte_for(original_covered.start());
   721   // If _whole_heap starts at the original covered regions start,
   722   // this loop will not execute.
   723   while (entry < end) { *entry++ = clean_card; }
   724 }
   726 void CardTableExtension::resize_update_covered_table(int changed_region,
   727                                                      MemRegion new_region) {
   728   // Update the covered region
   729   _covered[changed_region].set_start(new_region.start());
   730   _covered[changed_region].set_word_size(new_region.word_size());
   732   // reorder regions.  There should only be at most 1 out
   733   // of order.
   734   for (int i = _cur_covered_regions-1 ; i > 0; i--) {
   735     if (_covered[i].start() < _covered[i-1].start()) {
   736         MemRegion covered_mr = _covered[i-1];
   737         _covered[i-1] = _covered[i];
   738         _covered[i] = covered_mr;
   739         MemRegion committed_mr = _committed[i-1];
   740       _committed[i-1] = _committed[i];
   741       _committed[i] = committed_mr;
   742       break;
   743     }
   744   }
   745 #ifdef ASSERT
   746   for (int m = 0; m < _cur_covered_regions-1; m++) {
   747     assert(_covered[m].start() <= _covered[m+1].start(),
   748       "Covered regions out of order");
   749     assert(_committed[m].start() <= _committed[m+1].start(),
   750       "Committed regions out of order");
   751   }
   752 #endif
   753 }
   755 // Returns the start of any committed region that is lower than
   756 // the target committed region (index ind) and that intersects the
   757 // target region.  If none, return start of target region.
   758 //
   759 //      -------------
   760 //      |           |
   761 //      -------------
   762 //              ------------
   763 //              | target   |
   764 //              ------------
   765 //                               -------------
   766 //                               |           |
   767 //                               -------------
   768 //      ^ returns this
   769 //
   770 //      -------------
   771 //      |           |
   772 //      -------------
   773 //                      ------------
   774 //                      | target   |
   775 //                      ------------
   776 //                               -------------
   777 //                               |           |
   778 //                               -------------
   779 //                      ^ returns this
   781 HeapWord* CardTableExtension::lowest_prev_committed_start(int ind) const {
   782   assert(_cur_covered_regions >= 0, "Expecting at least on region");
   783   HeapWord* min_start = _committed[ind].start();
   784   for (int j = 0; j < ind; j++) {
   785     HeapWord* this_start = _committed[j].start();
   786     if ((this_start < min_start) &&
   787         !(_committed[j].intersection(_committed[ind])).is_empty()) {
   788        min_start = this_start;
   789     }
   790   }
   791   return min_start;
   792 }

mercurial