src/cpu/x86/vm/cppInterpreter_x86.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 955
52a431267315
child 1057
56aae7be60d4
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

duke@435 1 /*
xdono@772 2 * Copyright 2007-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_cppInterpreter_x86.cpp.incl"
duke@435 27
duke@435 28 #ifdef CC_INTERP
duke@435 29
duke@435 30 // Routine exists to make tracebacks look decent in debugger
duke@435 31 // while we are recursed in the frame manager/c++ interpreter.
duke@435 32 // We could use an address in the frame manager but having
duke@435 33 // frames look natural in the debugger is a plus.
duke@435 34 extern "C" void RecursiveInterpreterActivation(interpreterState istate )
duke@435 35 {
duke@435 36 //
duke@435 37 ShouldNotReachHere();
duke@435 38 }
duke@435 39
duke@435 40
duke@435 41 #define __ _masm->
duke@435 42 #define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name)))
duke@435 43
duke@435 44 Label fast_accessor_slow_entry_path; // fast accessor methods need to be able to jmp to unsynchronized
duke@435 45 // c++ interpreter entry point this holds that entry point label.
duke@435 46
never@739 47 // default registers for state and sender_sp
never@739 48 // state and sender_sp are the same on 32bit because we have no choice.
never@739 49 // state could be rsi on 64bit but it is an arg reg and not callee save
never@739 50 // so r13 is better choice.
never@739 51
never@739 52 const Register state = NOT_LP64(rsi) LP64_ONLY(r13);
never@739 53 const Register sender_sp_on_entry = NOT_LP64(rsi) LP64_ONLY(r13);
never@739 54
duke@435 55 // NEEDED for JVMTI?
duke@435 56 // address AbstractInterpreter::_remove_activation_preserving_args_entry;
duke@435 57
duke@435 58 static address unctrap_frame_manager_entry = NULL;
duke@435 59
duke@435 60 static address deopt_frame_manager_return_atos = NULL;
duke@435 61 static address deopt_frame_manager_return_btos = NULL;
duke@435 62 static address deopt_frame_manager_return_itos = NULL;
duke@435 63 static address deopt_frame_manager_return_ltos = NULL;
duke@435 64 static address deopt_frame_manager_return_ftos = NULL;
duke@435 65 static address deopt_frame_manager_return_dtos = NULL;
duke@435 66 static address deopt_frame_manager_return_vtos = NULL;
duke@435 67
duke@435 68 int AbstractInterpreter::BasicType_as_index(BasicType type) {
duke@435 69 int i = 0;
duke@435 70 switch (type) {
duke@435 71 case T_BOOLEAN: i = 0; break;
duke@435 72 case T_CHAR : i = 1; break;
duke@435 73 case T_BYTE : i = 2; break;
duke@435 74 case T_SHORT : i = 3; break;
duke@435 75 case T_INT : i = 4; break;
duke@435 76 case T_VOID : i = 5; break;
duke@435 77 case T_FLOAT : i = 8; break;
duke@435 78 case T_LONG : i = 9; break;
duke@435 79 case T_DOUBLE : i = 6; break;
duke@435 80 case T_OBJECT : // fall through
duke@435 81 case T_ARRAY : i = 7; break;
duke@435 82 default : ShouldNotReachHere();
duke@435 83 }
duke@435 84 assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
duke@435 85 return i;
duke@435 86 }
duke@435 87
duke@435 88 // Is this pc anywhere within code owned by the interpreter?
duke@435 89 // This only works for pc that might possibly be exposed to frame
duke@435 90 // walkers. It clearly misses all of the actual c++ interpreter
duke@435 91 // implementation
duke@435 92 bool CppInterpreter::contains(address pc) {
duke@435 93 return (_code->contains(pc) ||
duke@435 94 pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
duke@435 95 }
duke@435 96
duke@435 97
duke@435 98 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
duke@435 99 address entry = __ pc();
duke@435 100 switch (type) {
duke@435 101 case T_BOOLEAN: __ c2bool(rax); break;
duke@435 102 case T_CHAR : __ andl(rax, 0xFFFF); break;
duke@435 103 case T_BYTE : __ sign_extend_byte (rax); break;
duke@435 104 case T_SHORT : __ sign_extend_short(rax); break;
duke@435 105 case T_VOID : // fall thru
duke@435 106 case T_LONG : // fall thru
duke@435 107 case T_INT : /* nothing to do */ break;
never@739 108
duke@435 109 case T_DOUBLE :
duke@435 110 case T_FLOAT :
never@739 111 {
never@739 112 const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
never@739 113 __ pop(t); // remove return address first
duke@435 114 // Must return a result for interpreter or compiler. In SSE
duke@435 115 // mode, results are returned in xmm0 and the FPU stack must
duke@435 116 // be empty.
duke@435 117 if (type == T_FLOAT && UseSSE >= 1) {
never@739 118 #ifndef _LP64
duke@435 119 // Load ST0
duke@435 120 __ fld_d(Address(rsp, 0));
duke@435 121 // Store as float and empty fpu stack
duke@435 122 __ fstp_s(Address(rsp, 0));
never@739 123 #endif // !_LP64
duke@435 124 // and reload
duke@435 125 __ movflt(xmm0, Address(rsp, 0));
duke@435 126 } else if (type == T_DOUBLE && UseSSE >= 2 ) {
duke@435 127 __ movdbl(xmm0, Address(rsp, 0));
duke@435 128 } else {
duke@435 129 // restore ST0
duke@435 130 __ fld_d(Address(rsp, 0));
duke@435 131 }
duke@435 132 // and pop the temp
never@739 133 __ addptr(rsp, 2 * wordSize);
never@739 134 __ push(t); // restore return address
duke@435 135 }
duke@435 136 break;
duke@435 137 case T_OBJECT :
duke@435 138 // retrieve result from frame
never@739 139 __ movptr(rax, STATE(_oop_temp));
duke@435 140 // and verify it
duke@435 141 __ verify_oop(rax);
duke@435 142 break;
duke@435 143 default : ShouldNotReachHere();
duke@435 144 }
duke@435 145 __ ret(0); // return from result handler
duke@435 146 return entry;
duke@435 147 }
duke@435 148
duke@435 149 // tosca based result to c++ interpreter stack based result.
duke@435 150 // Result goes to top of native stack.
duke@435 151
duke@435 152 #undef EXTEND // SHOULD NOT BE NEEDED
duke@435 153 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
duke@435 154 // A result is in the tosca (abi result) from either a native method call or compiled
duke@435 155 // code. Place this result on the java expression stack so C++ interpreter can use it.
duke@435 156 address entry = __ pc();
duke@435 157
duke@435 158 const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
never@739 159 __ pop(t); // remove return address first
duke@435 160 switch (type) {
duke@435 161 case T_VOID:
duke@435 162 break;
duke@435 163 case T_BOOLEAN:
duke@435 164 #ifdef EXTEND
duke@435 165 __ c2bool(rax);
duke@435 166 #endif
never@739 167 __ push(rax);
duke@435 168 break;
duke@435 169 case T_CHAR :
duke@435 170 #ifdef EXTEND
duke@435 171 __ andl(rax, 0xFFFF);
duke@435 172 #endif
never@739 173 __ push(rax);
duke@435 174 break;
duke@435 175 case T_BYTE :
duke@435 176 #ifdef EXTEND
duke@435 177 __ sign_extend_byte (rax);
duke@435 178 #endif
never@739 179 __ push(rax);
duke@435 180 break;
duke@435 181 case T_SHORT :
duke@435 182 #ifdef EXTEND
duke@435 183 __ sign_extend_short(rax);
duke@435 184 #endif
never@739 185 __ push(rax);
duke@435 186 break;
duke@435 187 case T_LONG :
never@739 188 __ push(rdx); // pushes useless junk on 64bit
never@739 189 __ push(rax);
duke@435 190 break;
duke@435 191 case T_INT :
never@739 192 __ push(rax);
duke@435 193 break;
duke@435 194 case T_FLOAT :
never@739 195 // Result is in ST(0)/xmm0
never@739 196 __ subptr(rsp, wordSize);
duke@435 197 if ( UseSSE < 1) {
never@739 198 __ fstp_s(Address(rsp, 0));
duke@435 199 } else {
duke@435 200 __ movflt(Address(rsp, 0), xmm0);
duke@435 201 }
duke@435 202 break;
duke@435 203 case T_DOUBLE :
never@739 204 __ subptr(rsp, 2*wordSize);
duke@435 205 if ( UseSSE < 2 ) {
never@739 206 __ fstp_d(Address(rsp, 0));
duke@435 207 } else {
duke@435 208 __ movdbl(Address(rsp, 0), xmm0);
duke@435 209 }
duke@435 210 break;
duke@435 211 case T_OBJECT :
duke@435 212 __ verify_oop(rax); // verify it
never@739 213 __ push(rax);
duke@435 214 break;
duke@435 215 default : ShouldNotReachHere();
duke@435 216 }
duke@435 217 __ jmp(t); // return from result handler
duke@435 218 return entry;
duke@435 219 }
duke@435 220
duke@435 221 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
duke@435 222 // A result is in the java expression stack of the interpreted method that has just
duke@435 223 // returned. Place this result on the java expression stack of the caller.
duke@435 224 //
never@739 225 // The current interpreter activation in rsi/r13 is for the method just returning its
duke@435 226 // result. So we know that the result of this method is on the top of the current
duke@435 227 // execution stack (which is pre-pushed) and will be return to the top of the caller
duke@435 228 // stack. The top of the callers stack is the bottom of the locals of the current
duke@435 229 // activation.
duke@435 230 // Because of the way activation are managed by the frame manager the value of rsp is
duke@435 231 // below both the stack top of the current activation and naturally the stack top
duke@435 232 // of the calling activation. This enable this routine to leave the return address
duke@435 233 // to the frame manager on the stack and do a vanilla return.
duke@435 234 //
never@739 235 // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
never@739 236 // On Return: rsi/r13 - unchanged
duke@435 237 // rax - new stack top for caller activation (i.e. activation in _prev_link)
duke@435 238 //
duke@435 239 // Can destroy rdx, rcx.
duke@435 240 //
duke@435 241
duke@435 242 address entry = __ pc();
duke@435 243 const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
duke@435 244 switch (type) {
duke@435 245 case T_VOID:
never@739 246 __ movptr(rax, STATE(_locals)); // pop parameters get new stack value
never@739 247 __ addptr(rax, wordSize); // account for prepush before we return
duke@435 248 break;
duke@435 249 case T_FLOAT :
duke@435 250 case T_BOOLEAN:
duke@435 251 case T_CHAR :
duke@435 252 case T_BYTE :
duke@435 253 case T_SHORT :
duke@435 254 case T_INT :
duke@435 255 // 1 word result
never@739 256 __ movptr(rdx, STATE(_stack));
never@739 257 __ movptr(rax, STATE(_locals)); // address for result
duke@435 258 __ movl(rdx, Address(rdx, wordSize)); // get result
never@739 259 __ movptr(Address(rax, 0), rdx); // and store it
duke@435 260 break;
duke@435 261 case T_LONG :
duke@435 262 case T_DOUBLE :
duke@435 263 // return top two words on current expression stack to caller's expression stack
duke@435 264 // The caller's expression stack is adjacent to the current frame manager's intepretState
duke@435 265 // except we allocated one extra word for this intepretState so we won't overwrite it
duke@435 266 // when we return a two word result.
duke@435 267
never@739 268 __ movptr(rax, STATE(_locals)); // address for result
never@739 269 __ movptr(rcx, STATE(_stack));
never@739 270 __ subptr(rax, wordSize); // need addition word besides locals[0]
never@739 271 __ movptr(rdx, Address(rcx, 2*wordSize)); // get result word (junk in 64bit)
never@739 272 __ movptr(Address(rax, wordSize), rdx); // and store it
never@739 273 __ movptr(rdx, Address(rcx, wordSize)); // get result word
never@739 274 __ movptr(Address(rax, 0), rdx); // and store it
duke@435 275 break;
duke@435 276 case T_OBJECT :
never@739 277 __ movptr(rdx, STATE(_stack));
never@739 278 __ movptr(rax, STATE(_locals)); // address for result
never@739 279 __ movptr(rdx, Address(rdx, wordSize)); // get result
duke@435 280 __ verify_oop(rdx); // verify it
never@739 281 __ movptr(Address(rax, 0), rdx); // and store it
duke@435 282 break;
duke@435 283 default : ShouldNotReachHere();
duke@435 284 }
duke@435 285 __ ret(0);
duke@435 286 return entry;
duke@435 287 }
duke@435 288
duke@435 289 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
duke@435 290 // A result is in the java expression stack of the interpreted method that has just
duke@435 291 // returned. Place this result in the native abi that the caller expects.
duke@435 292 //
duke@435 293 // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
duke@435 294 // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
duke@435 295 // and so rather than return result onto caller's java expression stack we return the
duke@435 296 // result in the expected location based on the native abi.
never@739 297 // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
never@739 298 // On Return: rsi/r13 - unchanged
duke@435 299 // Other registers changed [rax/rdx/ST(0) as needed for the result returned]
duke@435 300
duke@435 301 address entry = __ pc();
duke@435 302 switch (type) {
duke@435 303 case T_VOID:
duke@435 304 break;
duke@435 305 case T_BOOLEAN:
duke@435 306 case T_CHAR :
duke@435 307 case T_BYTE :
duke@435 308 case T_SHORT :
duke@435 309 case T_INT :
never@739 310 __ movptr(rdx, STATE(_stack)); // get top of stack
duke@435 311 __ movl(rax, Address(rdx, wordSize)); // get result word 1
duke@435 312 break;
duke@435 313 case T_LONG :
never@739 314 __ movptr(rdx, STATE(_stack)); // get top of stack
never@739 315 __ movptr(rax, Address(rdx, wordSize)); // get result low word
never@739 316 NOT_LP64(__ movl(rdx, Address(rdx, 2*wordSize));) // get result high word
duke@435 317 break;
duke@435 318 case T_FLOAT :
never@739 319 __ movptr(rdx, STATE(_stack)); // get top of stack
duke@435 320 if ( UseSSE >= 1) {
duke@435 321 __ movflt(xmm0, Address(rdx, wordSize));
duke@435 322 } else {
duke@435 323 __ fld_s(Address(rdx, wordSize)); // pushd float result
duke@435 324 }
duke@435 325 break;
duke@435 326 case T_DOUBLE :
never@739 327 __ movptr(rdx, STATE(_stack)); // get top of stack
duke@435 328 if ( UseSSE > 1) {
duke@435 329 __ movdbl(xmm0, Address(rdx, wordSize));
duke@435 330 } else {
duke@435 331 __ fld_d(Address(rdx, wordSize)); // push double result
duke@435 332 }
duke@435 333 break;
duke@435 334 case T_OBJECT :
never@739 335 __ movptr(rdx, STATE(_stack)); // get top of stack
never@739 336 __ movptr(rax, Address(rdx, wordSize)); // get result word 1
duke@435 337 __ verify_oop(rax); // verify it
duke@435 338 break;
duke@435 339 default : ShouldNotReachHere();
duke@435 340 }
duke@435 341 __ ret(0);
duke@435 342 return entry;
duke@435 343 }
duke@435 344
duke@435 345 address CppInterpreter::return_entry(TosState state, int length) {
duke@435 346 // make it look good in the debugger
duke@435 347 return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation);
duke@435 348 }
duke@435 349
duke@435 350 address CppInterpreter::deopt_entry(TosState state, int length) {
duke@435 351 address ret = NULL;
duke@435 352 if (length != 0) {
duke@435 353 switch (state) {
duke@435 354 case atos: ret = deopt_frame_manager_return_atos; break;
duke@435 355 case btos: ret = deopt_frame_manager_return_btos; break;
duke@435 356 case ctos:
duke@435 357 case stos:
duke@435 358 case itos: ret = deopt_frame_manager_return_itos; break;
duke@435 359 case ltos: ret = deopt_frame_manager_return_ltos; break;
duke@435 360 case ftos: ret = deopt_frame_manager_return_ftos; break;
duke@435 361 case dtos: ret = deopt_frame_manager_return_dtos; break;
duke@435 362 case vtos: ret = deopt_frame_manager_return_vtos; break;
duke@435 363 }
duke@435 364 } else {
duke@435 365 ret = unctrap_frame_manager_entry; // re-execute the bytecode ( e.g. uncommon trap)
duke@435 366 }
duke@435 367 assert(ret != NULL, "Not initialized");
duke@435 368 return ret;
duke@435 369 }
duke@435 370
duke@435 371 // C++ Interpreter
duke@435 372 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
duke@435 373 const Register locals,
duke@435 374 const Register sender_sp,
duke@435 375 bool native) {
duke@435 376
duke@435 377 // On entry the "locals" argument points to locals[0] (or where it would be in case no locals in
duke@435 378 // a static method). "state" contains any previous frame manager state which we must save a link
duke@435 379 // to in the newly generated state object. On return "state" is a pointer to the newly allocated
duke@435 380 // state object. We must allocate and initialize a new interpretState object and the method
duke@435 381 // expression stack. Because the returned result (if any) of the method will be placed on the caller's
duke@435 382 // expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must
duke@435 383 // be sure to leave space on the caller's stack so that this result will not overwrite values when
duke@435 384 // locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when
duke@435 385 // we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in
duke@435 386 // non-product builds and initialize this last local with the previous interpreterState as
duke@435 387 // this makes things look real nice in the debugger.
duke@435 388
duke@435 389 // State on entry
duke@435 390 // Assumes locals == &locals[0]
duke@435 391 // Assumes state == any previous frame manager state (assuming call path from c++ interpreter)
duke@435 392 // Assumes rax = return address
duke@435 393 // rcx == senders_sp
duke@435 394 // rbx == method
duke@435 395 // Modifies rcx, rdx, rax
duke@435 396 // Returns:
duke@435 397 // state == address of new interpreterState
duke@435 398 // rsp == bottom of method's expression stack.
duke@435 399
duke@435 400 const Address const_offset (rbx, methodOopDesc::const_offset());
duke@435 401
duke@435 402
duke@435 403 // On entry sp is the sender's sp. This includes the space for the arguments
duke@435 404 // that the sender pushed. If the sender pushed no args (a static) and the
duke@435 405 // caller returns a long then we need two words on the sender's stack which
duke@435 406 // are not present (although when we return a restore full size stack the
duke@435 407 // space will be present). If we didn't allocate two words here then when
duke@435 408 // we "push" the result of the caller's stack we would overwrite the return
duke@435 409 // address and the saved rbp. Not good. So simply allocate 2 words now
duke@435 410 // just to be safe. This is the "static long no_params() method" issue.
duke@435 411 // See Lo.java for a testcase.
duke@435 412 // We don't need this for native calls because they return result in
duke@435 413 // register and the stack is expanded in the caller before we store
duke@435 414 // the results on the stack.
duke@435 415
duke@435 416 if (!native) {
duke@435 417 #ifdef PRODUCT
never@739 418 __ subptr(rsp, 2*wordSize);
duke@435 419 #else /* PRODUCT */
never@739 420 __ push((int32_t)NULL_WORD);
never@739 421 __ push(state); // make it look like a real argument
duke@435 422 #endif /* PRODUCT */
duke@435 423 }
duke@435 424
duke@435 425 // Now that we are assure of space for stack result, setup typical linkage
duke@435 426
never@739 427 __ push(rax);
duke@435 428 __ enter();
duke@435 429
never@739 430 __ mov(rax, state); // save current state
never@739 431
never@739 432 __ lea(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter)));
never@739 433 __ mov(state, rsp);
never@739 434
never@739 435 // rsi/r13 == state/locals rax == prevstate
duke@435 436
duke@435 437 // initialize the "shadow" frame so that use since C++ interpreter not directly
duke@435 438 // recursive. Simpler to recurse but we can't trim expression stack as we call
duke@435 439 // new methods.
never@739 440 __ movptr(STATE(_locals), locals); // state->_locals = locals()
never@739 441 __ movptr(STATE(_self_link), state); // point to self
never@739 442 __ movptr(STATE(_prev_link), rax); // state->_link = state on entry (NULL or previous state)
never@739 443 __ movptr(STATE(_sender_sp), sender_sp); // state->_sender_sp = sender_sp
never@739 444 #ifdef _LP64
never@739 445 __ movptr(STATE(_thread), r15_thread); // state->_bcp = codes()
never@739 446 #else
duke@435 447 __ get_thread(rax); // get vm's javathread*
never@739 448 __ movptr(STATE(_thread), rax); // state->_bcp = codes()
never@739 449 #endif // _LP64
never@739 450 __ movptr(rdx, Address(rbx, methodOopDesc::const_offset())); // get constantMethodOop
never@739 451 __ lea(rdx, Address(rdx, constMethodOopDesc::codes_offset())); // get code base
duke@435 452 if (native) {
never@739 453 __ movptr(STATE(_bcp), (int32_t)NULL_WORD); // state->_bcp = NULL
duke@435 454 } else {
never@739 455 __ movptr(STATE(_bcp), rdx); // state->_bcp = codes()
duke@435 456 }
never@739 457 __ xorptr(rdx, rdx);
never@739 458 __ movptr(STATE(_oop_temp), rdx); // state->_oop_temp = NULL (only really needed for native)
never@739 459 __ movptr(STATE(_mdx), rdx); // state->_mdx = NULL
never@739 460 __ movptr(rdx, Address(rbx, methodOopDesc::constants_offset()));
never@739 461 __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
never@739 462 __ movptr(STATE(_constants), rdx); // state->_constants = constants()
never@739 463
never@739 464 __ movptr(STATE(_method), rbx); // state->_method = method()
never@739 465 __ movl(STATE(_msg), (int32_t) BytecodeInterpreter::method_entry); // state->_msg = initial method entry
never@739 466 __ movptr(STATE(_result._to_call._callee), (int32_t) NULL_WORD); // state->_result._to_call._callee_callee = NULL
never@739 467
never@739 468
never@739 469 __ movptr(STATE(_monitor_base), rsp); // set monitor block bottom (grows down) this would point to entry [0]
duke@435 470 // entries run from -1..x where &monitor[x] ==
duke@435 471
duke@435 472 {
duke@435 473 // Must not attempt to lock method until we enter interpreter as gc won't be able to find the
duke@435 474 // initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack
duke@435 475 // immediately.
duke@435 476
duke@435 477 // synchronize method
duke@435 478 const Address access_flags (rbx, methodOopDesc::access_flags_offset());
duke@435 479 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 480 Label not_synced;
duke@435 481
duke@435 482 __ movl(rax, access_flags);
duke@435 483 __ testl(rax, JVM_ACC_SYNCHRONIZED);
duke@435 484 __ jcc(Assembler::zero, not_synced);
duke@435 485
duke@435 486 // Allocate initial monitor and pre initialize it
duke@435 487 // get synchronization object
duke@435 488
duke@435 489 Label done;
duke@435 490 const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
duke@435 491 __ movl(rax, access_flags);
duke@435 492 __ testl(rax, JVM_ACC_STATIC);
never@739 493 __ movptr(rax, Address(locals, 0)); // get receiver (assume this is frequent case)
duke@435 494 __ jcc(Assembler::zero, done);
never@739 495 __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
never@739 496 __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
never@739 497 __ movptr(rax, Address(rax, mirror_offset));
duke@435 498 __ bind(done);
duke@435 499 // add space for monitor & lock
never@739 500 __ subptr(rsp, entry_size); // add space for a monitor entry
never@739 501 __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
duke@435 502 __ bind(not_synced);
duke@435 503 }
duke@435 504
never@739 505 __ movptr(STATE(_stack_base), rsp); // set expression stack base ( == &monitors[-count])
duke@435 506 if (native) {
never@739 507 __ movptr(STATE(_stack), rsp); // set current expression stack tos
never@739 508 __ movptr(STATE(_stack_limit), rsp);
duke@435 509 } else {
never@739 510 __ subptr(rsp, wordSize); // pre-push stack
never@739 511 __ movptr(STATE(_stack), rsp); // set current expression stack tos
duke@435 512
duke@435 513 // compute full expression stack limit
duke@435 514
duke@435 515 const Address size_of_stack (rbx, methodOopDesc::max_stack_offset());
duke@435 516 __ load_unsigned_word(rdx, size_of_stack); // get size of expression stack in words
never@739 517 __ negptr(rdx); // so we can subtract in next step
duke@435 518 // Allocate expression stack
never@739 519 __ lea(rsp, Address(rsp, rdx, Address::times_ptr));
never@739 520 __ movptr(STATE(_stack_limit), rsp);
duke@435 521 }
duke@435 522
never@739 523 #ifdef _LP64
never@739 524 // Make sure stack is properly aligned and sized for the abi
never@739 525 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
twisti@1040 526 __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
never@739 527 #endif // _LP64
never@739 528
never@739 529
never@739 530
duke@435 531 }
duke@435 532
duke@435 533 // Helpers for commoning out cases in the various type of method entries.
duke@435 534 //
duke@435 535
duke@435 536 // increment invocation count & check for overflow
duke@435 537 //
duke@435 538 // Note: checking for negative value instead of overflow
duke@435 539 // so we have a 'sticky' overflow test
duke@435 540 //
duke@435 541 // rbx,: method
duke@435 542 // rcx: invocation counter
duke@435 543 //
duke@435 544 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
duke@435 545
duke@435 546 const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
duke@435 547 const Address backedge_counter (rbx, methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset());
duke@435 548
duke@435 549 if (ProfileInterpreter) { // %%% Merge this into methodDataOop
never@739 550 __ incrementl(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
duke@435 551 }
duke@435 552 // Update standard invocation counters
duke@435 553 __ movl(rax, backedge_counter); // load backedge counter
duke@435 554
duke@435 555 __ increment(rcx, InvocationCounter::count_increment);
duke@435 556 __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
duke@435 557
duke@435 558 __ movl(invocation_counter, rcx); // save invocation count
duke@435 559 __ addl(rcx, rax); // add both counters
duke@435 560
duke@435 561 // profile_method is non-null only for interpreted method so
duke@435 562 // profile_method != NULL == !native_call
duke@435 563 // BytecodeInterpreter only calls for native so code is elided.
duke@435 564
duke@435 565 __ cmp32(rcx,
duke@435 566 ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
duke@435 567 __ jcc(Assembler::aboveEqual, *overflow);
duke@435 568
duke@435 569 }
duke@435 570
duke@435 571 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
duke@435 572
duke@435 573 // C++ interpreter on entry
never@739 574 // rsi/r13 - new interpreter state pointer
duke@435 575 // rbp - interpreter frame pointer
duke@435 576 // rbx - method
duke@435 577
duke@435 578 // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
duke@435 579 // rbx, - method
duke@435 580 // rcx - rcvr (assuming there is one)
duke@435 581 // top of stack return address of interpreter caller
duke@435 582 // rsp - sender_sp
duke@435 583
duke@435 584 // C++ interpreter only
never@739 585 // rsi/r13 - previous interpreter state pointer
duke@435 586
duke@435 587 const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
duke@435 588
duke@435 589 // InterpreterRuntime::frequency_counter_overflow takes one argument
duke@435 590 // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
duke@435 591 // The call returns the address of the verified entry point for the method or NULL
duke@435 592 // if the compilation did not complete (either went background or bailed out).
never@739 593 __ movptr(rax, (int32_t)false);
duke@435 594 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
duke@435 595
duke@435 596 // for c++ interpreter can rsi really be munged?
coleenp@955 597 __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter))); // restore state
never@739 598 __ movptr(rbx, Address(state, byte_offset_of(BytecodeInterpreter, _method))); // restore method
never@739 599 __ movptr(rdi, Address(state, byte_offset_of(BytecodeInterpreter, _locals))); // get locals pointer
never@739 600
duke@435 601 __ jmp(*do_continue, relocInfo::none);
duke@435 602
duke@435 603 }
duke@435 604
duke@435 605 void InterpreterGenerator::generate_stack_overflow_check(void) {
duke@435 606 // see if we've got enough room on the stack for locals plus overhead.
duke@435 607 // the expression stack grows down incrementally, so the normal guard
duke@435 608 // page mechanism will work for that.
duke@435 609 //
duke@435 610 // Registers live on entry:
duke@435 611 //
duke@435 612 // Asm interpreter
duke@435 613 // rdx: number of additional locals this frame needs (what we must check)
duke@435 614 // rbx,: methodOop
duke@435 615
duke@435 616 // C++ Interpreter
never@739 617 // rsi/r13: previous interpreter frame state object
duke@435 618 // rdi: &locals[0]
duke@435 619 // rcx: # of locals
duke@435 620 // rdx: number of additional locals this frame needs (what we must check)
duke@435 621 // rbx: methodOop
duke@435 622
duke@435 623 // destroyed on exit
duke@435 624 // rax,
duke@435 625
duke@435 626 // NOTE: since the additional locals are also always pushed (wasn't obvious in
duke@435 627 // generate_method_entry) so the guard should work for them too.
duke@435 628 //
duke@435 629
duke@435 630 // monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp
duke@435 631 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 632
duke@435 633 // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
duke@435 634 // be sure to change this if you add/subtract anything to/from the overhead area
duke@435 635 const int overhead_size = (int)sizeof(BytecodeInterpreter);
duke@435 636
duke@435 637 const int page_size = os::vm_page_size();
duke@435 638
duke@435 639 Label after_frame_check;
duke@435 640
duke@435 641 // compute rsp as if this were going to be the last frame on
duke@435 642 // the stack before the red zone
duke@435 643
duke@435 644 Label after_frame_check_pop;
duke@435 645
duke@435 646 // save rsi == caller's bytecode ptr (c++ previous interp. state)
duke@435 647 // QQQ problem here?? rsi overload????
never@739 648 __ push(state);
never@739 649
never@739 650 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rsi);
never@739 651
never@739 652 NOT_LP64(__ get_thread(thread));
duke@435 653
duke@435 654 const Address stack_base(thread, Thread::stack_base_offset());
duke@435 655 const Address stack_size(thread, Thread::stack_size_offset());
duke@435 656
duke@435 657 // locals + overhead, in bytes
duke@435 658 const Address size_of_stack (rbx, methodOopDesc::max_stack_offset());
duke@435 659 // Always give one monitor to allow us to start interp if sync method.
duke@435 660 // Any additional monitors need a check when moving the expression stack
coleenp@955 661 const int one_monitor = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 662 __ load_unsigned_word(rax, size_of_stack); // get size of expression stack in words
never@739 663 __ lea(rax, Address(noreg, rax, Interpreter::stackElementScale(), one_monitor));
never@739 664 __ lea(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size));
duke@435 665
duke@435 666 #ifdef ASSERT
duke@435 667 Label stack_base_okay, stack_size_okay;
duke@435 668 // verify that thread stack base is non-zero
never@739 669 __ cmpptr(stack_base, (int32_t)0);
duke@435 670 __ jcc(Assembler::notEqual, stack_base_okay);
duke@435 671 __ stop("stack base is zero");
duke@435 672 __ bind(stack_base_okay);
duke@435 673 // verify that thread stack size is non-zero
never@739 674 __ cmpptr(stack_size, (int32_t)0);
duke@435 675 __ jcc(Assembler::notEqual, stack_size_okay);
duke@435 676 __ stop("stack size is zero");
duke@435 677 __ bind(stack_size_okay);
duke@435 678 #endif
duke@435 679
duke@435 680 // Add stack base to locals and subtract stack size
never@739 681 __ addptr(rax, stack_base);
never@739 682 __ subptr(rax, stack_size);
duke@435 683
duke@435 684 // We should have a magic number here for the size of the c++ interpreter frame.
duke@435 685 // We can't actually tell this ahead of time. The debug version size is around 3k
duke@435 686 // product is 1k and fastdebug is 4k
duke@435 687 const int slop = 6 * K;
duke@435 688
duke@435 689 // Use the maximum number of pages we might bang.
duke@435 690 const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
duke@435 691 (StackRedPages+StackYellowPages);
duke@435 692 // Only need this if we are stack banging which is temporary while
duke@435 693 // we're debugging.
never@739 694 __ addptr(rax, slop + 2*max_pages * page_size);
duke@435 695
duke@435 696 // check against the current stack bottom
never@739 697 __ cmpptr(rsp, rax);
duke@435 698 __ jcc(Assembler::above, after_frame_check_pop);
duke@435 699
never@739 700 __ pop(state); // get c++ prev state.
duke@435 701
duke@435 702 // throw exception return address becomes throwing pc
duke@435 703 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
duke@435 704
duke@435 705 // all done with frame size check
duke@435 706 __ bind(after_frame_check_pop);
never@739 707 __ pop(state);
duke@435 708
duke@435 709 __ bind(after_frame_check);
duke@435 710 }
duke@435 711
duke@435 712 // Find preallocated monitor and lock method (C++ interpreter)
duke@435 713 // rbx - methodOop
duke@435 714 //
duke@435 715 void InterpreterGenerator::lock_method(void) {
never@739 716 // assumes state == rsi/r13 == pointer to current interpreterState
never@739 717 // minimally destroys rax, rdx|c_rarg1, rdi
duke@435 718 //
duke@435 719 // synchronize method
duke@435 720 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 721 const Address access_flags (rbx, methodOopDesc::access_flags_offset());
duke@435 722
never@739 723 const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
never@739 724
duke@435 725 // find initial monitor i.e. monitors[-1]
never@739 726 __ movptr(monitor, STATE(_monitor_base)); // get monitor bottom limit
never@739 727 __ subptr(monitor, entry_size); // point to initial monitor
duke@435 728
duke@435 729 #ifdef ASSERT
duke@435 730 { Label L;
duke@435 731 __ movl(rax, access_flags);
duke@435 732 __ testl(rax, JVM_ACC_SYNCHRONIZED);
duke@435 733 __ jcc(Assembler::notZero, L);
duke@435 734 __ stop("method doesn't need synchronization");
duke@435 735 __ bind(L);
duke@435 736 }
duke@435 737 #endif // ASSERT
duke@435 738 // get synchronization object
duke@435 739 { Label done;
duke@435 740 const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
duke@435 741 __ movl(rax, access_flags);
never@739 742 __ movptr(rdi, STATE(_locals)); // prepare to get receiver (assume common case)
duke@435 743 __ testl(rax, JVM_ACC_STATIC);
never@739 744 __ movptr(rax, Address(rdi, 0)); // get receiver (assume this is frequent case)
duke@435 745 __ jcc(Assembler::zero, done);
never@739 746 __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
never@739 747 __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
never@739 748 __ movptr(rax, Address(rax, mirror_offset));
duke@435 749 __ bind(done);
duke@435 750 }
duke@435 751 #ifdef ASSERT
duke@435 752 { Label L;
never@739 753 __ cmpptr(rax, Address(monitor, BasicObjectLock::obj_offset_in_bytes())); // correct object?
duke@435 754 __ jcc(Assembler::equal, L);
duke@435 755 __ stop("wrong synchronization lobject");
duke@435 756 __ bind(L);
duke@435 757 }
duke@435 758 #endif // ASSERT
never@739 759 // can destroy rax, rdx|c_rarg1, rcx, and (via call_VM) rdi!
never@739 760 __ lock_object(monitor);
duke@435 761 }
duke@435 762
duke@435 763 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
duke@435 764
duke@435 765 address InterpreterGenerator::generate_accessor_entry(void) {
duke@435 766
never@739 767 // rbx: methodOop
never@739 768
never@739 769 // rsi/r13: senderSP must preserved for slow path, set SP to it on fast path
duke@435 770
duke@435 771 Label xreturn_path;
duke@435 772
duke@435 773 // do fastpath for resolved accessor methods
duke@435 774 if (UseFastAccessorMethods) {
duke@435 775
duke@435 776 address entry_point = __ pc();
duke@435 777
duke@435 778 Label slow_path;
duke@435 779 // If we need a safepoint check, generate full interpreter entry.
duke@435 780 ExternalAddress state(SafepointSynchronize::address_of_state());
duke@435 781 __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
duke@435 782 SafepointSynchronize::_not_synchronized);
duke@435 783
duke@435 784 __ jcc(Assembler::notEqual, slow_path);
duke@435 785 // ASM/C++ Interpreter
duke@435 786 // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
duke@435 787 // Note: We can only use this code if the getfield has been resolved
duke@435 788 // and if we don't have a null-pointer exception => check for
duke@435 789 // these conditions first and use slow path if necessary.
duke@435 790 // rbx,: method
duke@435 791 // rcx: receiver
never@739 792 __ movptr(rax, Address(rsp, wordSize));
duke@435 793
duke@435 794 // check if local 0 != NULL and read field
never@739 795 __ testptr(rax, rax);
duke@435 796 __ jcc(Assembler::zero, slow_path);
duke@435 797
never@739 798 __ movptr(rdi, Address(rbx, methodOopDesc::constants_offset()));
duke@435 799 // read first instruction word and extract bytecode @ 1 and index @ 2
never@739 800 __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
duke@435 801 __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
duke@435 802 // Shift codes right to get the index on the right.
duke@435 803 // The bytecode fetched looks like <index><0xb4><0x2a>
duke@435 804 __ shrl(rdx, 2*BitsPerByte);
duke@435 805 __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
never@739 806 __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
duke@435 807
duke@435 808 // rax,: local 0
duke@435 809 // rbx,: method
duke@435 810 // rcx: receiver - do not destroy since it is needed for slow path!
duke@435 811 // rcx: scratch
duke@435 812 // rdx: constant pool cache index
duke@435 813 // rdi: constant pool cache
never@739 814 // rsi/r13: sender sp
duke@435 815
duke@435 816 // check if getfield has been resolved and read constant pool cache entry
duke@435 817 // check the validity of the cache entry by testing whether _indices field
duke@435 818 // contains Bytecode::_getfield in b1 byte.
duke@435 819 assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
duke@435 820 __ movl(rcx,
duke@435 821 Address(rdi,
duke@435 822 rdx,
never@739 823 Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
duke@435 824 __ shrl(rcx, 2*BitsPerByte);
duke@435 825 __ andl(rcx, 0xFF);
duke@435 826 __ cmpl(rcx, Bytecodes::_getfield);
duke@435 827 __ jcc(Assembler::notEqual, slow_path);
duke@435 828
duke@435 829 // Note: constant pool entry is not valid before bytecode is resolved
never@739 830 __ movptr(rcx,
duke@435 831 Address(rdi,
duke@435 832 rdx,
never@739 833 Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
duke@435 834 __ movl(rdx,
duke@435 835 Address(rdi,
duke@435 836 rdx,
never@739 837 Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
duke@435 838
duke@435 839 Label notByte, notShort, notChar;
duke@435 840 const Address field_address (rax, rcx, Address::times_1);
duke@435 841
duke@435 842 // Need to differentiate between igetfield, agetfield, bgetfield etc.
duke@435 843 // because they are different sizes.
duke@435 844 // Use the type from the constant pool cache
duke@435 845 __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
duke@435 846 // Make sure we don't need to mask rdx for tosBits after the above shift
duke@435 847 ConstantPoolCacheEntry::verify_tosBits();
never@739 848 #ifdef _LP64
never@739 849 Label notObj;
never@739 850 __ cmpl(rdx, atos);
never@739 851 __ jcc(Assembler::notEqual, notObj);
never@739 852 // atos
never@739 853 __ movptr(rax, field_address);
never@739 854 __ jmp(xreturn_path);
never@739 855
never@739 856 __ bind(notObj);
never@739 857 #endif // _LP64
duke@435 858 __ cmpl(rdx, btos);
duke@435 859 __ jcc(Assembler::notEqual, notByte);
duke@435 860 __ load_signed_byte(rax, field_address);
duke@435 861 __ jmp(xreturn_path);
duke@435 862
duke@435 863 __ bind(notByte);
duke@435 864 __ cmpl(rdx, stos);
duke@435 865 __ jcc(Assembler::notEqual, notShort);
duke@435 866 __ load_signed_word(rax, field_address);
duke@435 867 __ jmp(xreturn_path);
duke@435 868
duke@435 869 __ bind(notShort);
duke@435 870 __ cmpl(rdx, ctos);
duke@435 871 __ jcc(Assembler::notEqual, notChar);
duke@435 872 __ load_unsigned_word(rax, field_address);
duke@435 873 __ jmp(xreturn_path);
duke@435 874
duke@435 875 __ bind(notChar);
duke@435 876 #ifdef ASSERT
duke@435 877 Label okay;
never@739 878 #ifndef _LP64
duke@435 879 __ cmpl(rdx, atos);
duke@435 880 __ jcc(Assembler::equal, okay);
never@739 881 #endif // _LP64
duke@435 882 __ cmpl(rdx, itos);
duke@435 883 __ jcc(Assembler::equal, okay);
duke@435 884 __ stop("what type is this?");
duke@435 885 __ bind(okay);
duke@435 886 #endif // ASSERT
duke@435 887 // All the rest are a 32 bit wordsize
duke@435 888 __ movl(rax, field_address);
duke@435 889
duke@435 890 __ bind(xreturn_path);
duke@435 891
duke@435 892 // _ireturn/_areturn
never@739 893 __ pop(rdi); // get return address
never@739 894 __ mov(rsp, sender_sp_on_entry); // set sp to sender sp
duke@435 895 __ jmp(rdi);
duke@435 896
duke@435 897 // generate a vanilla interpreter entry as the slow path
duke@435 898 __ bind(slow_path);
duke@435 899 // We will enter c++ interpreter looking like it was
duke@435 900 // called by the call_stub this will cause it to return
duke@435 901 // a tosca result to the invoker which might have been
duke@435 902 // the c++ interpreter itself.
duke@435 903
duke@435 904 __ jmp(fast_accessor_slow_entry_path);
duke@435 905 return entry_point;
duke@435 906
duke@435 907 } else {
duke@435 908 return NULL;
duke@435 909 }
duke@435 910
duke@435 911 }
duke@435 912
duke@435 913 //
duke@435 914 // C++ Interpreter stub for calling a native method.
duke@435 915 // This sets up a somewhat different looking stack for calling the native method
duke@435 916 // than the typical interpreter frame setup but still has the pointer to
duke@435 917 // an interpreter state.
duke@435 918 //
duke@435 919
duke@435 920 address InterpreterGenerator::generate_native_entry(bool synchronized) {
duke@435 921 // determine code generation flags
duke@435 922 bool inc_counter = UseCompiler || CountCompiledCalls;
duke@435 923
duke@435 924 // rbx: methodOop
duke@435 925 // rcx: receiver (unused)
never@739 926 // rsi/r13: previous interpreter state (if called from C++ interpreter) must preserve
never@739 927 // in any case. If called via c1/c2/call_stub rsi/r13 is junk (to use) but harmless
duke@435 928 // to save/restore.
duke@435 929 address entry_point = __ pc();
duke@435 930
duke@435 931 const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
duke@435 932 const Address size_of_locals (rbx, methodOopDesc::size_of_locals_offset());
duke@435 933 const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
duke@435 934 const Address access_flags (rbx, methodOopDesc::access_flags_offset());
duke@435 935
never@739 936 // rsi/r13 == state/locals rdi == prevstate
duke@435 937 const Register locals = rdi;
duke@435 938
duke@435 939 // get parameter size (always needed)
duke@435 940 __ load_unsigned_word(rcx, size_of_parameters);
duke@435 941
duke@435 942 // rbx: methodOop
duke@435 943 // rcx: size of parameters
never@739 944 __ pop(rax); // get return address
duke@435 945 // for natives the size of locals is zero
duke@435 946
duke@435 947 // compute beginning of parameters /locals
never@739 948 __ lea(locals, Address(rsp, rcx, Address::times_ptr, -wordSize));
duke@435 949
duke@435 950 // initialize fixed part of activation frame
duke@435 951
duke@435 952 // Assumes rax = return address
duke@435 953
duke@435 954 // allocate and initialize new interpreterState and method expression stack
duke@435 955 // IN(locals) -> locals
duke@435 956 // IN(state) -> previous frame manager state (NULL from stub/c1/c2)
duke@435 957 // destroys rax, rcx, rdx
duke@435 958 // OUT (state) -> new interpreterState
duke@435 959 // OUT(rsp) -> bottom of methods expression stack
duke@435 960
duke@435 961 // save sender_sp
never@739 962 __ mov(rcx, sender_sp_on_entry);
duke@435 963 // start with NULL previous state
never@739 964 __ movptr(state, (int32_t)NULL_WORD);
duke@435 965 generate_compute_interpreter_state(state, locals, rcx, true);
duke@435 966
duke@435 967 #ifdef ASSERT
duke@435 968 { Label L;
never@739 969 __ movptr(rax, STATE(_stack_base));
never@739 970 #ifdef _LP64
never@739 971 // duplicate the alignment rsp got after setting stack_base
never@739 972 __ subptr(rax, frame::arg_reg_save_area_bytes); // windows
twisti@1040 973 __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
never@739 974 #endif // _LP64
never@739 975 __ cmpptr(rax, rsp);
duke@435 976 __ jcc(Assembler::equal, L);
duke@435 977 __ stop("broken stack frame setup in interpreter");
duke@435 978 __ bind(L);
duke@435 979 }
duke@435 980 #endif
duke@435 981
duke@435 982 if (inc_counter) __ movl(rcx, invocation_counter); // (pre-)fetch invocation count
duke@435 983
never@739 984 const Register unlock_thread = LP64_ONLY(r15_thread) NOT_LP64(rax);
never@739 985 NOT_LP64(__ movptr(unlock_thread, STATE(_thread));) // get thread
duke@435 986 // Since at this point in the method invocation the exception handler
duke@435 987 // would try to exit the monitor of synchronized methods which hasn't
duke@435 988 // been entered yet, we set the thread local variable
duke@435 989 // _do_not_unlock_if_synchronized to true. The remove_activation will
duke@435 990 // check this flag.
duke@435 991
never@739 992 const Address do_not_unlock_if_synchronized(unlock_thread,
duke@435 993 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
duke@435 994 __ movbool(do_not_unlock_if_synchronized, true);
duke@435 995
duke@435 996 // make sure method is native & not abstract
duke@435 997 #ifdef ASSERT
duke@435 998 __ movl(rax, access_flags);
duke@435 999 {
duke@435 1000 Label L;
duke@435 1001 __ testl(rax, JVM_ACC_NATIVE);
duke@435 1002 __ jcc(Assembler::notZero, L);
duke@435 1003 __ stop("tried to execute non-native method as native");
duke@435 1004 __ bind(L);
duke@435 1005 }
duke@435 1006 { Label L;
duke@435 1007 __ testl(rax, JVM_ACC_ABSTRACT);
duke@435 1008 __ jcc(Assembler::zero, L);
duke@435 1009 __ stop("tried to execute abstract method in interpreter");
duke@435 1010 __ bind(L);
duke@435 1011 }
duke@435 1012 #endif
duke@435 1013
duke@435 1014
duke@435 1015 // increment invocation count & check for overflow
duke@435 1016 Label invocation_counter_overflow;
duke@435 1017 if (inc_counter) {
duke@435 1018 generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
duke@435 1019 }
duke@435 1020
duke@435 1021 Label continue_after_compile;
duke@435 1022
duke@435 1023 __ bind(continue_after_compile);
duke@435 1024
duke@435 1025 bang_stack_shadow_pages(true);
duke@435 1026
duke@435 1027 // reset the _do_not_unlock_if_synchronized flag
never@739 1028 NOT_LP64(__ movl(rax, STATE(_thread));) // get thread
duke@435 1029 __ movbool(do_not_unlock_if_synchronized, false);
duke@435 1030
duke@435 1031
duke@435 1032 // check for synchronized native methods
duke@435 1033 //
duke@435 1034 // Note: This must happen *after* invocation counter check, since
duke@435 1035 // when overflow happens, the method should not be locked.
duke@435 1036 if (synchronized) {
duke@435 1037 // potentially kills rax, rcx, rdx, rdi
duke@435 1038 lock_method();
duke@435 1039 } else {
duke@435 1040 // no synchronization necessary
duke@435 1041 #ifdef ASSERT
duke@435 1042 { Label L;
duke@435 1043 __ movl(rax, access_flags);
duke@435 1044 __ testl(rax, JVM_ACC_SYNCHRONIZED);
duke@435 1045 __ jcc(Assembler::zero, L);
duke@435 1046 __ stop("method needs synchronization");
duke@435 1047 __ bind(L);
duke@435 1048 }
duke@435 1049 #endif
duke@435 1050 }
duke@435 1051
duke@435 1052 // start execution
duke@435 1053
duke@435 1054 // jvmti support
duke@435 1055 __ notify_method_entry();
duke@435 1056
duke@435 1057 // work registers
duke@435 1058 const Register method = rbx;
never@739 1059 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rdi);
never@739 1060 const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp(); // rcx|rscratch1
duke@435 1061
duke@435 1062 // allocate space for parameters
never@739 1063 __ movptr(method, STATE(_method));
duke@435 1064 __ verify_oop(method);
duke@435 1065 __ load_unsigned_word(t, Address(method, methodOopDesc::size_of_parameters_offset()));
duke@435 1066 __ shll(t, 2);
never@739 1067 #ifdef _LP64
never@739 1068 __ subptr(rsp, t);
never@739 1069 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
twisti@1040 1070 __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
never@739 1071 #else
never@739 1072 __ addptr(t, 2*wordSize); // allocate two more slots for JNIEnv and possible mirror
never@739 1073 __ subptr(rsp, t);
never@739 1074 __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
never@739 1075 #endif // _LP64
duke@435 1076
duke@435 1077 // get signature handler
duke@435 1078 Label pending_exception_present;
duke@435 1079
duke@435 1080 { Label L;
never@739 1081 __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
never@739 1082 __ testptr(t, t);
duke@435 1083 __ jcc(Assembler::notZero, L);
duke@435 1084 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false);
never@739 1085 __ movptr(method, STATE(_method));
never@739 1086 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 1087 __ jcc(Assembler::notEqual, pending_exception_present);
duke@435 1088 __ verify_oop(method);
never@739 1089 __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
duke@435 1090 __ bind(L);
duke@435 1091 }
duke@435 1092 #ifdef ASSERT
duke@435 1093 {
duke@435 1094 Label L;
never@739 1095 __ push(t);
duke@435 1096 __ get_thread(t); // get vm's javathread*
never@739 1097 __ cmpptr(t, STATE(_thread));
duke@435 1098 __ jcc(Assembler::equal, L);
duke@435 1099 __ int3();
duke@435 1100 __ bind(L);
never@739 1101 __ pop(t);
duke@435 1102 }
duke@435 1103 #endif //
duke@435 1104
never@739 1105 const Register from_ptr = InterpreterRuntime::SignatureHandlerGenerator::from();
duke@435 1106 // call signature handler
duke@435 1107 assert(InterpreterRuntime::SignatureHandlerGenerator::to () == rsp, "adjust this code");
never@739 1108
duke@435 1109 // The generated handlers do not touch RBX (the method oop).
duke@435 1110 // However, large signatures cannot be cached and are generated
duke@435 1111 // each time here. The slow-path generator will blow RBX
duke@435 1112 // sometime, so we must reload it after the call.
never@739 1113 __ movptr(from_ptr, STATE(_locals)); // get the from pointer
duke@435 1114 __ call(t);
never@739 1115 __ movptr(method, STATE(_method));
duke@435 1116 __ verify_oop(method);
duke@435 1117
duke@435 1118 // result handler is in rax
duke@435 1119 // set result handler
never@739 1120 __ movptr(STATE(_result_handler), rax);
never@739 1121
never@739 1122
never@739 1123 // get native function entry point
never@739 1124 { Label L;
never@739 1125 __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
never@739 1126 __ testptr(rax, rax);
never@739 1127 __ jcc(Assembler::notZero, L);
never@739 1128 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
never@739 1129 __ movptr(method, STATE(_method));
never@739 1130 __ verify_oop(method);
never@739 1131 __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
never@739 1132 __ bind(L);
never@739 1133 }
duke@435 1134
duke@435 1135 // pass mirror handle if static call
duke@435 1136 { Label L;
duke@435 1137 const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
duke@435 1138 __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
duke@435 1139 __ testl(t, JVM_ACC_STATIC);
duke@435 1140 __ jcc(Assembler::zero, L);
duke@435 1141 // get mirror
never@739 1142 __ movptr(t, Address(method, methodOopDesc:: constants_offset()));
never@739 1143 __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
never@739 1144 __ movptr(t, Address(t, mirror_offset));
duke@435 1145 // copy mirror into activation object
never@739 1146 __ movptr(STATE(_oop_temp), t);
duke@435 1147 // pass handle to mirror
never@739 1148 #ifdef _LP64
never@739 1149 __ lea(c_rarg1, STATE(_oop_temp));
never@739 1150 #else
never@739 1151 __ lea(t, STATE(_oop_temp));
never@739 1152 __ movptr(Address(rsp, wordSize), t);
never@739 1153 #endif // _LP64
duke@435 1154 __ bind(L);
duke@435 1155 }
duke@435 1156 #ifdef ASSERT
duke@435 1157 {
duke@435 1158 Label L;
never@739 1159 __ push(t);
duke@435 1160 __ get_thread(t); // get vm's javathread*
never@739 1161 __ cmpptr(t, STATE(_thread));
duke@435 1162 __ jcc(Assembler::equal, L);
duke@435 1163 __ int3();
duke@435 1164 __ bind(L);
never@739 1165 __ pop(t);
duke@435 1166 }
duke@435 1167 #endif //
duke@435 1168
duke@435 1169 // pass JNIEnv
never@739 1170 #ifdef _LP64
never@739 1171 __ lea(c_rarg0, Address(thread, JavaThread::jni_environment_offset()));
never@739 1172 #else
never@739 1173 __ movptr(thread, STATE(_thread)); // get thread
never@739 1174 __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
never@739 1175
never@739 1176 __ movptr(Address(rsp, 0), t);
never@739 1177 #endif // _LP64
never@739 1178
duke@435 1179 #ifdef ASSERT
duke@435 1180 {
duke@435 1181 Label L;
never@739 1182 __ push(t);
duke@435 1183 __ get_thread(t); // get vm's javathread*
never@739 1184 __ cmpptr(t, STATE(_thread));
duke@435 1185 __ jcc(Assembler::equal, L);
duke@435 1186 __ int3();
duke@435 1187 __ bind(L);
never@739 1188 __ pop(t);
duke@435 1189 }
duke@435 1190 #endif //
duke@435 1191
duke@435 1192 #ifdef ASSERT
duke@435 1193 { Label L;
duke@435 1194 __ movl(t, Address(thread, JavaThread::thread_state_offset()));
duke@435 1195 __ cmpl(t, _thread_in_Java);
duke@435 1196 __ jcc(Assembler::equal, L);
duke@435 1197 __ stop("Wrong thread state in native stub");
duke@435 1198 __ bind(L);
duke@435 1199 }
duke@435 1200 #endif
duke@435 1201
duke@435 1202 // Change state to native (we save the return address in the thread, since it might not
duke@435 1203 // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
duke@435 1204 // points into the right code segment. It does not have to be the correct return pc.
duke@435 1205
duke@435 1206 __ set_last_Java_frame(thread, noreg, rbp, __ pc());
duke@435 1207
duke@435 1208 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
duke@435 1209
duke@435 1210 __ call(rax);
duke@435 1211
duke@435 1212 // result potentially in rdx:rax or ST0
never@739 1213 __ movptr(method, STATE(_method));
never@739 1214 NOT_LP64(__ movptr(thread, STATE(_thread));) // get thread
duke@435 1215
duke@435 1216 // The potential result is in ST(0) & rdx:rax
duke@435 1217 // With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then
duke@435 1218 // we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about
duke@435 1219 // anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would
duke@435 1220 // be destroyed.
duke@435 1221 // It is safe to do these pushes because state is _thread_in_native and return address will be found
duke@435 1222 // via _last_native_pc and not via _last_jave_sp
duke@435 1223
never@739 1224 // Must save the value of ST(0)/xmm0 since it could be destroyed before we get to result handler
duke@435 1225 { Label Lpush, Lskip;
duke@435 1226 ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
duke@435 1227 ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
duke@435 1228 __ cmpptr(STATE(_result_handler), float_handler.addr());
duke@435 1229 __ jcc(Assembler::equal, Lpush);
duke@435 1230 __ cmpptr(STATE(_result_handler), double_handler.addr());
duke@435 1231 __ jcc(Assembler::notEqual, Lskip);
duke@435 1232 __ bind(Lpush);
never@739 1233 __ subptr(rsp, 2*wordSize);
never@739 1234 if ( UseSSE < 2 ) {
never@739 1235 __ fstp_d(Address(rsp, 0));
never@739 1236 } else {
never@739 1237 __ movdbl(Address(rsp, 0), xmm0);
never@739 1238 }
duke@435 1239 __ bind(Lskip);
duke@435 1240 }
duke@435 1241
never@739 1242 // save rax:rdx for potential use by result handler.
never@739 1243 __ push(rax);
never@739 1244 #ifndef _LP64
never@739 1245 __ push(rdx);
never@739 1246 #endif // _LP64
duke@435 1247
duke@435 1248 // Either restore the MXCSR register after returning from the JNI Call
duke@435 1249 // or verify that it wasn't changed.
duke@435 1250 if (VM_Version::supports_sse()) {
duke@435 1251 if (RestoreMXCSROnJNICalls) {
duke@435 1252 __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
duke@435 1253 }
duke@435 1254 else if (CheckJNICalls ) {
never@739 1255 __ call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
duke@435 1256 }
duke@435 1257 }
duke@435 1258
never@739 1259 #ifndef _LP64
duke@435 1260 // Either restore the x87 floating pointer control word after returning
duke@435 1261 // from the JNI call or verify that it wasn't changed.
duke@435 1262 if (CheckJNICalls) {
never@739 1263 __ call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
duke@435 1264 }
never@739 1265 #endif // _LP64
duke@435 1266
duke@435 1267
duke@435 1268 // change thread state
duke@435 1269 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
duke@435 1270 if(os::is_MP()) {
duke@435 1271 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 1272 // We use the current thread pointer to calculate a thread specific
duke@435 1273 // offset to write to within the page. This minimizes bus traffic
duke@435 1274 // due to cache line collision.
duke@435 1275 __ serialize_memory(thread, rcx);
duke@435 1276 }
duke@435 1277
duke@435 1278 // check for safepoint operation in progress and/or pending suspend requests
duke@435 1279 { Label Continue;
duke@435 1280
duke@435 1281 __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
duke@435 1282 SafepointSynchronize::_not_synchronized);
duke@435 1283
duke@435 1284 // threads running native code and they are expected to self-suspend
duke@435 1285 // when leaving the _thread_in_native state. We need to check for
duke@435 1286 // pending suspend requests here.
duke@435 1287 Label L;
duke@435 1288 __ jcc(Assembler::notEqual, L);
duke@435 1289 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
duke@435 1290 __ jcc(Assembler::equal, Continue);
duke@435 1291 __ bind(L);
duke@435 1292
duke@435 1293 // Don't use call_VM as it will see a possible pending exception and forward it
duke@435 1294 // and never return here preventing us from clearing _last_native_pc down below.
duke@435 1295 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
never@739 1296 // preserved and correspond to the bcp/locals pointers.
duke@435 1297 //
never@739 1298
never@739 1299 ((MacroAssembler*)_masm)->call_VM_leaf(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
never@739 1300 thread);
duke@435 1301 __ increment(rsp, wordSize);
duke@435 1302
never@739 1303 __ movptr(method, STATE(_method));
duke@435 1304 __ verify_oop(method);
never@739 1305 __ movptr(thread, STATE(_thread)); // get thread
duke@435 1306
duke@435 1307 __ bind(Continue);
duke@435 1308 }
duke@435 1309
duke@435 1310 // change thread state
duke@435 1311 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
duke@435 1312
duke@435 1313 __ reset_last_Java_frame(thread, true, true);
duke@435 1314
duke@435 1315 // reset handle block
never@739 1316 __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
never@739 1317 __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
duke@435 1318
duke@435 1319 // If result was an oop then unbox and save it in the frame
duke@435 1320 { Label L;
duke@435 1321 Label no_oop, store_result;
duke@435 1322 ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT));
duke@435 1323 __ cmpptr(STATE(_result_handler), oop_handler.addr());
duke@435 1324 __ jcc(Assembler::notEqual, no_oop);
never@739 1325 #ifndef _LP64
never@739 1326 __ pop(rdx);
never@739 1327 #endif // _LP64
never@739 1328 __ pop(rax);
never@739 1329 __ testptr(rax, rax);
duke@435 1330 __ jcc(Assembler::zero, store_result);
duke@435 1331 // unbox
never@739 1332 __ movptr(rax, Address(rax, 0));
duke@435 1333 __ bind(store_result);
never@739 1334 __ movptr(STATE(_oop_temp), rax);
duke@435 1335 // keep stack depth as expected by pushing oop which will eventually be discarded
never@739 1336 __ push(rax);
never@739 1337 #ifndef _LP64
never@739 1338 __ push(rdx);
never@739 1339 #endif // _LP64
duke@435 1340 __ bind(no_oop);
duke@435 1341 }
duke@435 1342
duke@435 1343 {
duke@435 1344 Label no_reguard;
duke@435 1345 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
duke@435 1346 __ jcc(Assembler::notEqual, no_reguard);
duke@435 1347
never@739 1348 __ pusha();
duke@435 1349 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
never@739 1350 __ popa();
duke@435 1351
duke@435 1352 __ bind(no_reguard);
duke@435 1353 }
duke@435 1354
duke@435 1355
duke@435 1356 // QQQ Seems like for native methods we simply return and the caller will see the pending
duke@435 1357 // exception and do the right thing. Certainly the interpreter will, don't know about
duke@435 1358 // compiled methods.
duke@435 1359 // Seems that the answer to above is no this is wrong. The old code would see the exception
duke@435 1360 // and forward it before doing the unlocking and notifying jvmdi that method has exited.
duke@435 1361 // This seems wrong need to investigate the spec.
duke@435 1362
duke@435 1363 // handle exceptions (exception handling will handle unlocking!)
duke@435 1364 { Label L;
never@739 1365 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 1366 __ jcc(Assembler::zero, L);
duke@435 1367 __ bind(pending_exception_present);
duke@435 1368
duke@435 1369 // There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply
duke@435 1370 // return and let caller deal with exception. This skips the unlocking here which
duke@435 1371 // seems wrong but seems to be what asm interpreter did. Can't find this in the spec.
duke@435 1372 // Note: must preverve method in rbx
duke@435 1373 //
duke@435 1374
duke@435 1375 // remove activation
duke@435 1376
never@739 1377 __ movptr(t, STATE(_sender_sp));
duke@435 1378 __ leave(); // remove frame anchor
never@739 1379 __ pop(rdi); // get return address
never@739 1380 __ movptr(state, STATE(_prev_link)); // get previous state for return
never@739 1381 __ mov(rsp, t); // set sp to sender sp
never@739 1382 __ push(rdi); // push throwing pc
duke@435 1383 // The skips unlocking!! This seems to be what asm interpreter does but seems
duke@435 1384 // very wrong. Not clear if this violates the spec.
duke@435 1385 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 1386 __ bind(L);
duke@435 1387 }
duke@435 1388
duke@435 1389 // do unlocking if necessary
duke@435 1390 { Label L;
duke@435 1391 __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
duke@435 1392 __ testl(t, JVM_ACC_SYNCHRONIZED);
duke@435 1393 __ jcc(Assembler::zero, L);
duke@435 1394 // the code below should be shared with interpreter macro assembler implementation
duke@435 1395 { Label unlock;
never@739 1396 const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
duke@435 1397 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
duke@435 1398 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
never@739 1399 __ movptr(monitor, STATE(_monitor_base));
never@739 1400 __ subptr(monitor, frame::interpreter_frame_monitor_size() * wordSize); // address of initial monitor
never@739 1401
never@739 1402 __ movptr(t, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));
never@739 1403 __ testptr(t, t);
duke@435 1404 __ jcc(Assembler::notZero, unlock);
duke@435 1405
duke@435 1406 // Entry already unlocked, need to throw exception
duke@435 1407 __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1408 __ should_not_reach_here();
duke@435 1409
duke@435 1410 __ bind(unlock);
never@739 1411 __ unlock_object(monitor);
duke@435 1412 // unlock can blow rbx so restore it for path that needs it below
never@739 1413 __ movptr(method, STATE(_method));
duke@435 1414 }
duke@435 1415 __ bind(L);
duke@435 1416 }
duke@435 1417
duke@435 1418 // jvmti support
duke@435 1419 // Note: This must happen _after_ handling/throwing any exceptions since
duke@435 1420 // the exception handler code notifies the runtime of method exits
duke@435 1421 // too. If this happens before, method entry/exit notifications are
duke@435 1422 // not properly paired (was bug - gri 11/22/99).
duke@435 1423 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
duke@435 1424
duke@435 1425 // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
never@739 1426 #ifndef _LP64
never@739 1427 __ pop(rdx);
never@739 1428 #endif // _LP64
never@739 1429 __ pop(rax);
never@739 1430 __ movptr(t, STATE(_result_handler)); // get result handler
duke@435 1431 __ call(t); // call result handler to convert to tosca form
duke@435 1432
duke@435 1433 // remove activation
duke@435 1434
never@739 1435 __ movptr(t, STATE(_sender_sp));
duke@435 1436
duke@435 1437 __ leave(); // remove frame anchor
never@739 1438 __ pop(rdi); // get return address
never@739 1439 __ movptr(state, STATE(_prev_link)); // get previous state for return (if c++ interpreter was caller)
never@739 1440 __ mov(rsp, t); // set sp to sender sp
duke@435 1441 __ jmp(rdi);
duke@435 1442
duke@435 1443 // invocation counter overflow
duke@435 1444 if (inc_counter) {
duke@435 1445 // Handle overflow of counter and compile method
duke@435 1446 __ bind(invocation_counter_overflow);
duke@435 1447 generate_counter_overflow(&continue_after_compile);
duke@435 1448 }
duke@435 1449
duke@435 1450 return entry_point;
duke@435 1451 }
duke@435 1452
duke@435 1453 // Generate entries that will put a result type index into rcx
duke@435 1454 void CppInterpreterGenerator::generate_deopt_handling() {
duke@435 1455
duke@435 1456 Label return_from_deopt_common;
duke@435 1457
duke@435 1458 // Generate entries that will put a result type index into rcx
duke@435 1459 // deopt needs to jump to here to enter the interpreter (return a result)
duke@435 1460 deopt_frame_manager_return_atos = __ pc();
duke@435 1461
duke@435 1462 // rax is live here
duke@435 1463 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT)); // Result stub address array index
duke@435 1464 __ jmp(return_from_deopt_common);
duke@435 1465
duke@435 1466
duke@435 1467 // deopt needs to jump to here to enter the interpreter (return a result)
duke@435 1468 deopt_frame_manager_return_btos = __ pc();
duke@435 1469
duke@435 1470 // rax is live here
duke@435 1471 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN)); // Result stub address array index
duke@435 1472 __ jmp(return_from_deopt_common);
duke@435 1473
duke@435 1474 // deopt needs to jump to here to enter the interpreter (return a result)
duke@435 1475 deopt_frame_manager_return_itos = __ pc();
duke@435 1476
duke@435 1477 // rax is live here
duke@435 1478 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT)); // Result stub address array index
duke@435 1479 __ jmp(return_from_deopt_common);
duke@435 1480
duke@435 1481 // deopt needs to jump to here to enter the interpreter (return a result)
duke@435 1482
duke@435 1483 deopt_frame_manager_return_ltos = __ pc();
duke@435 1484 // rax,rdx are live here
duke@435 1485 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG)); // Result stub address array index
duke@435 1486 __ jmp(return_from_deopt_common);
duke@435 1487
duke@435 1488 // deopt needs to jump to here to enter the interpreter (return a result)
duke@435 1489
duke@435 1490 deopt_frame_manager_return_ftos = __ pc();
duke@435 1491 // st(0) is live here
duke@435 1492 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT)); // Result stub address array index
duke@435 1493 __ jmp(return_from_deopt_common);
duke@435 1494
duke@435 1495 // deopt needs to jump to here to enter the interpreter (return a result)
duke@435 1496 deopt_frame_manager_return_dtos = __ pc();
duke@435 1497
duke@435 1498 // st(0) is live here
duke@435 1499 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE)); // Result stub address array index
duke@435 1500 __ jmp(return_from_deopt_common);
duke@435 1501
duke@435 1502 // deopt needs to jump to here to enter the interpreter (return a result)
duke@435 1503 deopt_frame_manager_return_vtos = __ pc();
duke@435 1504
duke@435 1505 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID));
duke@435 1506
duke@435 1507 // Deopt return common
duke@435 1508 // an index is present in rcx that lets us move any possible result being
duke@435 1509 // return to the interpreter's stack
duke@435 1510 //
duke@435 1511 // Because we have a full sized interpreter frame on the youngest
duke@435 1512 // activation the stack is pushed too deep to share the tosca to
duke@435 1513 // stack converters directly. We shrink the stack to the desired
duke@435 1514 // amount and then push result and then re-extend the stack.
duke@435 1515 // We could have the code in size_activation layout a short
duke@435 1516 // frame for the top activation but that would look different
duke@435 1517 // than say sparc (which needs a full size activation because
duke@435 1518 // the windows are in the way. Really it could be short? QQQ
duke@435 1519 //
duke@435 1520 __ bind(return_from_deopt_common);
duke@435 1521
never@739 1522 __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
duke@435 1523
duke@435 1524 // setup rsp so we can push the "result" as needed.
never@739 1525 __ movptr(rsp, STATE(_stack)); // trim stack (is prepushed)
never@739 1526 __ addptr(rsp, wordSize); // undo prepush
duke@435 1527
duke@435 1528 ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
never@739 1529 // Address index(noreg, rcx, Address::times_ptr);
never@739 1530 __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
never@739 1531 // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
duke@435 1532 __ call(rcx); // call result converter
duke@435 1533
duke@435 1534 __ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume);
never@739 1535 __ lea(rsp, Address(rsp, -wordSize)); // prepush stack (result if any already present)
never@739 1536 __ movptr(STATE(_stack), rsp); // inform interpreter of new stack depth (parameters removed,
duke@435 1537 // result if any on stack already )
never@739 1538 __ movptr(rsp, STATE(_stack_limit)); // restore expression stack to full depth
duke@435 1539 }
duke@435 1540
duke@435 1541 // Generate the code to handle a more_monitors message from the c++ interpreter
duke@435 1542 void CppInterpreterGenerator::generate_more_monitors() {
duke@435 1543
duke@435 1544
duke@435 1545 Label entry, loop;
duke@435 1546 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
never@739 1547 // 1. compute new pointers // rsp: old expression stack top
never@739 1548 __ movptr(rdx, STATE(_stack_base)); // rdx: old expression stack bottom
never@739 1549 __ subptr(rsp, entry_size); // move expression stack top limit
never@739 1550 __ subptr(STATE(_stack), entry_size); // update interpreter stack top
never@739 1551 __ subptr(STATE(_stack_limit), entry_size); // inform interpreter
never@739 1552 __ subptr(rdx, entry_size); // move expression stack bottom
never@739 1553 __ movptr(STATE(_stack_base), rdx); // inform interpreter
never@739 1554 __ movptr(rcx, STATE(_stack)); // set start value for copy loop
duke@435 1555 __ jmp(entry);
duke@435 1556 // 2. move expression stack contents
duke@435 1557 __ bind(loop);
never@739 1558 __ movptr(rbx, Address(rcx, entry_size)); // load expression stack word from old location
never@739 1559 __ movptr(Address(rcx, 0), rbx); // and store it at new location
never@739 1560 __ addptr(rcx, wordSize); // advance to next word
duke@435 1561 __ bind(entry);
never@739 1562 __ cmpptr(rcx, rdx); // check if bottom reached
never@739 1563 __ jcc(Assembler::notEqual, loop); // if not at bottom then copy next word
duke@435 1564 // now zero the slot so we can find it.
never@739 1565 __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
duke@435 1566 __ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors);
duke@435 1567 }
duke@435 1568
duke@435 1569
duke@435 1570 // Initial entry to C++ interpreter from the call_stub.
duke@435 1571 // This entry point is called the frame manager since it handles the generation
duke@435 1572 // of interpreter activation frames via requests directly from the vm (via call_stub)
duke@435 1573 // and via requests from the interpreter. The requests from the call_stub happen
duke@435 1574 // directly thru the entry point. Requests from the interpreter happen via returning
duke@435 1575 // from the interpreter and examining the message the interpreter has returned to
duke@435 1576 // the frame manager. The frame manager can take the following requests:
duke@435 1577
duke@435 1578 // NO_REQUEST - error, should never happen.
duke@435 1579 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
duke@435 1580 // allocate a new monitor.
duke@435 1581 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
duke@435 1582 // happens during entry during the entry via the call stub.
duke@435 1583 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
duke@435 1584 //
duke@435 1585 // Arguments:
duke@435 1586 //
duke@435 1587 // rbx: methodOop
duke@435 1588 // rcx: receiver - unused (retrieved from stack as needed)
never@739 1589 // rsi/r13: previous frame manager state (NULL from the call_stub/c1/c2)
duke@435 1590 //
duke@435 1591 //
duke@435 1592 // Stack layout at entry
duke@435 1593 //
duke@435 1594 // [ return address ] <--- rsp
duke@435 1595 // [ parameter n ]
duke@435 1596 // ...
duke@435 1597 // [ parameter 1 ]
duke@435 1598 // [ expression stack ]
duke@435 1599 //
duke@435 1600 //
duke@435 1601 // We are free to blow any registers we like because the call_stub which brought us here
duke@435 1602 // initially has preserved the callee save registers already.
duke@435 1603 //
duke@435 1604 //
duke@435 1605
duke@435 1606 static address interpreter_frame_manager = NULL;
duke@435 1607
duke@435 1608 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
duke@435 1609
duke@435 1610 // rbx: methodOop
never@739 1611 // rsi/r13: sender sp
duke@435 1612
duke@435 1613 // Because we redispatch "recursive" interpreter entries thru this same entry point
duke@435 1614 // the "input" register usage is a little strange and not what you expect coming
duke@435 1615 // from the call_stub. From the call stub rsi/rdi (current/previous) interpreter
duke@435 1616 // state are NULL but on "recursive" dispatches they are what you'd expect.
duke@435 1617 // rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2)
duke@435 1618
duke@435 1619
duke@435 1620 // A single frame manager is plenty as we don't specialize for synchronized. We could and
duke@435 1621 // the code is pretty much ready. Would need to change the test below and for good measure
duke@435 1622 // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
duke@435 1623 // routines. Not clear this is worth it yet.
duke@435 1624
duke@435 1625 if (interpreter_frame_manager) return interpreter_frame_manager;
duke@435 1626
duke@435 1627 address entry_point = __ pc();
duke@435 1628
duke@435 1629 // Fast accessor methods share this entry point.
duke@435 1630 // This works because frame manager is in the same codelet
duke@435 1631 if (UseFastAccessorMethods && !synchronized) __ bind(fast_accessor_slow_entry_path);
duke@435 1632
duke@435 1633 Label dispatch_entry_2;
never@739 1634 __ movptr(rcx, sender_sp_on_entry);
never@739 1635 __ movptr(state, (int32_t)NULL_WORD); // no current activation
duke@435 1636
duke@435 1637 __ jmp(dispatch_entry_2);
duke@435 1638
duke@435 1639 const Register locals = rdi;
duke@435 1640
duke@435 1641 Label re_dispatch;
duke@435 1642
duke@435 1643 __ bind(re_dispatch);
duke@435 1644
duke@435 1645 // save sender sp (doesn't include return address
never@739 1646 __ lea(rcx, Address(rsp, wordSize));
duke@435 1647
duke@435 1648 __ bind(dispatch_entry_2);
duke@435 1649
duke@435 1650 // save sender sp
never@739 1651 __ push(rcx);
duke@435 1652
duke@435 1653 const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
duke@435 1654 const Address size_of_locals (rbx, methodOopDesc::size_of_locals_offset());
duke@435 1655 const Address access_flags (rbx, methodOopDesc::access_flags_offset());
duke@435 1656
duke@435 1657 // const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
duke@435 1658 // const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
duke@435 1659 // const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
duke@435 1660
duke@435 1661 // get parameter size (always needed)
duke@435 1662 __ load_unsigned_word(rcx, size_of_parameters);
duke@435 1663
duke@435 1664 // rbx: methodOop
duke@435 1665 // rcx: size of parameters
duke@435 1666 __ load_unsigned_word(rdx, size_of_locals); // get size of locals in words
duke@435 1667
never@739 1668 __ subptr(rdx, rcx); // rdx = no. of additional locals
duke@435 1669
duke@435 1670 // see if we've got enough room on the stack for locals plus overhead.
duke@435 1671 generate_stack_overflow_check(); // C++
duke@435 1672
duke@435 1673 // c++ interpreter does not use stack banging or any implicit exceptions
duke@435 1674 // leave for now to verify that check is proper.
duke@435 1675 bang_stack_shadow_pages(false);
duke@435 1676
duke@435 1677
duke@435 1678
duke@435 1679 // compute beginning of parameters (rdi)
never@739 1680 __ lea(locals, Address(rsp, rcx, Address::times_ptr, wordSize));
duke@435 1681
duke@435 1682 // save sender's sp
duke@435 1683 // __ movl(rcx, rsp);
duke@435 1684
duke@435 1685 // get sender's sp
never@739 1686 __ pop(rcx);
duke@435 1687
duke@435 1688 // get return address
never@739 1689 __ pop(rax);
duke@435 1690
duke@435 1691 // rdx - # of additional locals
duke@435 1692 // allocate space for locals
duke@435 1693 // explicitly initialize locals
duke@435 1694 {
duke@435 1695 Label exit, loop;
never@739 1696 __ testl(rdx, rdx); // (32bit ok)
duke@435 1697 __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
duke@435 1698 __ bind(loop);
never@739 1699 __ push((int32_t)NULL_WORD); // initialize local variables
duke@435 1700 __ decrement(rdx); // until everything initialized
duke@435 1701 __ jcc(Assembler::greater, loop);
duke@435 1702 __ bind(exit);
duke@435 1703 }
duke@435 1704
duke@435 1705
duke@435 1706 // Assumes rax = return address
duke@435 1707
duke@435 1708 // allocate and initialize new interpreterState and method expression stack
duke@435 1709 // IN(locals) -> locals
duke@435 1710 // IN(state) -> any current interpreter activation
duke@435 1711 // destroys rax, rcx, rdx, rdi
duke@435 1712 // OUT (state) -> new interpreterState
duke@435 1713 // OUT(rsp) -> bottom of methods expression stack
duke@435 1714
duke@435 1715 generate_compute_interpreter_state(state, locals, rcx, false);
duke@435 1716
duke@435 1717 // Call interpreter
duke@435 1718
duke@435 1719 Label call_interpreter;
duke@435 1720 __ bind(call_interpreter);
duke@435 1721
duke@435 1722 // c++ interpreter does not use stack banging or any implicit exceptions
duke@435 1723 // leave for now to verify that check is proper.
duke@435 1724 bang_stack_shadow_pages(false);
duke@435 1725
duke@435 1726
duke@435 1727 // Call interpreter enter here if message is
duke@435 1728 // set and we know stack size is valid
duke@435 1729
duke@435 1730 Label call_interpreter_2;
duke@435 1731
duke@435 1732 __ bind(call_interpreter_2);
duke@435 1733
duke@435 1734 {
never@739 1735 const Register thread = NOT_LP64(rcx) LP64_ONLY(r15_thread);
never@739 1736
never@739 1737 #ifdef _LP64
never@739 1738 __ mov(c_rarg0, state);
never@739 1739 #else
never@739 1740 __ push(state); // push arg to interpreter
never@739 1741 __ movptr(thread, STATE(_thread));
never@739 1742 #endif // _LP64
duke@435 1743
duke@435 1744 // We can setup the frame anchor with everything we want at this point
duke@435 1745 // as we are thread_in_Java and no safepoints can occur until we go to
duke@435 1746 // vm mode. We do have to clear flags on return from vm but that is it
duke@435 1747 //
never@739 1748 __ movptr(Address(thread, JavaThread::last_Java_fp_offset()), rbp);
never@739 1749 __ movptr(Address(thread, JavaThread::last_Java_sp_offset()), rsp);
duke@435 1750
duke@435 1751 // Call the interpreter
duke@435 1752
duke@435 1753 RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run));
duke@435 1754 RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks));
duke@435 1755
duke@435 1756 __ call(JvmtiExport::can_post_interpreter_events() ? checking : normal);
never@739 1757 NOT_LP64(__ pop(rax);) // discard parameter to run
duke@435 1758 //
duke@435 1759 // state is preserved since it is callee saved
duke@435 1760 //
duke@435 1761
duke@435 1762 // reset_last_Java_frame
duke@435 1763
never@739 1764 NOT_LP64(__ movl(thread, STATE(_thread));)
duke@435 1765 __ reset_last_Java_frame(thread, true, true);
duke@435 1766 }
duke@435 1767
duke@435 1768 // examine msg from interpreter to determine next action
duke@435 1769
duke@435 1770 __ movl(rdx, STATE(_msg)); // Get new message
duke@435 1771
duke@435 1772 Label call_method;
duke@435 1773 Label return_from_interpreted_method;
duke@435 1774 Label throw_exception;
duke@435 1775 Label bad_msg;
duke@435 1776 Label do_OSR;
duke@435 1777
never@739 1778 __ cmpl(rdx, (int32_t)BytecodeInterpreter::call_method);
duke@435 1779 __ jcc(Assembler::equal, call_method);
never@739 1780 __ cmpl(rdx, (int32_t)BytecodeInterpreter::return_from_method);
duke@435 1781 __ jcc(Assembler::equal, return_from_interpreted_method);
never@739 1782 __ cmpl(rdx, (int32_t)BytecodeInterpreter::do_osr);
duke@435 1783 __ jcc(Assembler::equal, do_OSR);
never@739 1784 __ cmpl(rdx, (int32_t)BytecodeInterpreter::throwing_exception);
duke@435 1785 __ jcc(Assembler::equal, throw_exception);
never@739 1786 __ cmpl(rdx, (int32_t)BytecodeInterpreter::more_monitors);
duke@435 1787 __ jcc(Assembler::notEqual, bad_msg);
duke@435 1788
duke@435 1789 // Allocate more monitor space, shuffle expression stack....
duke@435 1790
duke@435 1791 generate_more_monitors();
duke@435 1792
duke@435 1793 __ jmp(call_interpreter);
duke@435 1794
duke@435 1795 // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
duke@435 1796 unctrap_frame_manager_entry = __ pc();
duke@435 1797 //
duke@435 1798 // Load the registers we need.
never@739 1799 __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
never@739 1800 __ movptr(rsp, STATE(_stack_limit)); // restore expression stack to full depth
duke@435 1801 __ jmp(call_interpreter_2);
duke@435 1802
duke@435 1803
duke@435 1804
duke@435 1805 //=============================================================================
duke@435 1806 // Returning from a compiled method into a deopted method. The bytecode at the
duke@435 1807 // bcp has completed. The result of the bytecode is in the native abi (the tosca
duke@435 1808 // for the template based interpreter). Any stack space that was used by the
duke@435 1809 // bytecode that has completed has been removed (e.g. parameters for an invoke)
duke@435 1810 // so all that we have to do is place any pending result on the expression stack
duke@435 1811 // and resume execution on the next bytecode.
duke@435 1812
duke@435 1813
duke@435 1814 generate_deopt_handling();
duke@435 1815 __ jmp(call_interpreter);
duke@435 1816
duke@435 1817
duke@435 1818 // Current frame has caught an exception we need to dispatch to the
duke@435 1819 // handler. We can get here because a native interpreter frame caught
duke@435 1820 // an exception in which case there is no handler and we must rethrow
duke@435 1821 // If it is a vanilla interpreted frame the we simply drop into the
duke@435 1822 // interpreter and let it do the lookup.
duke@435 1823
duke@435 1824 Interpreter::_rethrow_exception_entry = __ pc();
duke@435 1825 // rax: exception
duke@435 1826 // rdx: return address/pc that threw exception
duke@435 1827
duke@435 1828 Label return_with_exception;
duke@435 1829 Label unwind_and_forward;
duke@435 1830
duke@435 1831 // restore state pointer.
coleenp@955 1832 __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
never@739 1833
never@739 1834 __ movptr(rbx, STATE(_method)); // get method
never@739 1835 #ifdef _LP64
never@739 1836 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
never@739 1837 #else
duke@435 1838 __ movl(rcx, STATE(_thread)); // get thread
duke@435 1839
duke@435 1840 // Store exception with interpreter will expect it
never@739 1841 __ movptr(Address(rcx, Thread::pending_exception_offset()), rax);
never@739 1842 #endif // _LP64
duke@435 1843
duke@435 1844 // is current frame vanilla or native?
duke@435 1845
duke@435 1846 __ movl(rdx, access_flags);
duke@435 1847 __ testl(rdx, JVM_ACC_NATIVE);
duke@435 1848 __ jcc(Assembler::zero, return_with_exception); // vanilla interpreted frame, handle directly
duke@435 1849
duke@435 1850 // We drop thru to unwind a native interpreted frame with a pending exception
duke@435 1851 // We jump here for the initial interpreter frame with exception pending
duke@435 1852 // We unwind the current acivation and forward it to our caller.
duke@435 1853
duke@435 1854 __ bind(unwind_and_forward);
duke@435 1855
duke@435 1856 // unwind rbp, return stack to unextended value and re-push return address
duke@435 1857
never@739 1858 __ movptr(rcx, STATE(_sender_sp));
duke@435 1859 __ leave();
never@739 1860 __ pop(rdx);
never@739 1861 __ mov(rsp, rcx);
never@739 1862 __ push(rdx);
duke@435 1863 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 1864
duke@435 1865 // Return point from a call which returns a result in the native abi
duke@435 1866 // (c1/c2/jni-native). This result must be processed onto the java
duke@435 1867 // expression stack.
duke@435 1868 //
duke@435 1869 // A pending exception may be present in which case there is no result present
duke@435 1870
duke@435 1871 Label resume_interpreter;
duke@435 1872 Label do_float;
duke@435 1873 Label do_double;
duke@435 1874 Label done_conv;
duke@435 1875
duke@435 1876 address compiled_entry = __ pc();
duke@435 1877
duke@435 1878 // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
duke@435 1879 if (UseSSE < 2) {
coleenp@955 1880 __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
never@739 1881 __ movptr(rbx, STATE(_result._to_call._callee)); // get method just executed
duke@435 1882 __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
duke@435 1883 __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT)); // Result stub address array index
duke@435 1884 __ jcc(Assembler::equal, do_float);
duke@435 1885 __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE)); // Result stub address array index
duke@435 1886 __ jcc(Assembler::equal, do_double);
coleenp@955 1887 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
duke@435 1888 __ empty_FPU_stack();
duke@435 1889 #endif // COMPILER2
duke@435 1890 __ jmp(done_conv);
duke@435 1891
duke@435 1892 __ bind(do_float);
duke@435 1893 #ifdef COMPILER2
duke@435 1894 for (int i = 1; i < 8; i++) {
duke@435 1895 __ ffree(i);
duke@435 1896 }
duke@435 1897 #endif // COMPILER2
duke@435 1898 __ jmp(done_conv);
duke@435 1899 __ bind(do_double);
duke@435 1900 #ifdef COMPILER2
duke@435 1901 for (int i = 1; i < 8; i++) {
duke@435 1902 __ ffree(i);
duke@435 1903 }
duke@435 1904 #endif // COMPILER2
duke@435 1905 __ jmp(done_conv);
duke@435 1906 } else {
duke@435 1907 __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
duke@435 1908 __ jmp(done_conv);
duke@435 1909 }
duke@435 1910
never@739 1911 #if 0
duke@435 1912 // emit a sentinel we can test for when converting an interpreter
duke@435 1913 // entry point to a compiled entry point.
duke@435 1914 __ a_long(Interpreter::return_sentinel);
duke@435 1915 __ a_long((int)compiled_entry);
never@739 1916 #endif
duke@435 1917
duke@435 1918 // Return point to interpreter from compiled/native method
duke@435 1919
duke@435 1920 InternalAddress return_from_native_method(__ pc());
duke@435 1921
duke@435 1922 __ bind(done_conv);
duke@435 1923
duke@435 1924
duke@435 1925 // Result if any is in tosca. The java expression stack is in the state that the
duke@435 1926 // calling convention left it (i.e. params may or may not be present)
duke@435 1927 // Copy the result from tosca and place it on java expression stack.
duke@435 1928
never@739 1929 // Restore rsi/r13 as compiled code may not preserve it
never@739 1930
coleenp@955 1931 __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
duke@435 1932
duke@435 1933 // restore stack to what we had when we left (in case i2c extended it)
duke@435 1934
never@739 1935 __ movptr(rsp, STATE(_stack));
never@739 1936 __ lea(rsp, Address(rsp, wordSize));
duke@435 1937
duke@435 1938 // If there is a pending exception then we don't really have a result to process
duke@435 1939
never@739 1940 #ifdef _LP64
never@739 1941 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
never@739 1942 #else
never@739 1943 __ movptr(rcx, STATE(_thread)); // get thread
never@739 1944 __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
coleenp@955 1945 #endif // _LP64
duke@435 1946 __ jcc(Assembler::notZero, return_with_exception);
duke@435 1947
duke@435 1948 // get method just executed
never@739 1949 __ movptr(rbx, STATE(_result._to_call._callee));
duke@435 1950
duke@435 1951 // callee left args on top of expression stack, remove them
duke@435 1952 __ load_unsigned_word(rcx, Address(rbx, methodOopDesc::size_of_parameters_offset()));
never@739 1953 __ lea(rsp, Address(rsp, rcx, Address::times_ptr));
duke@435 1954
duke@435 1955 __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
duke@435 1956 ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
never@739 1957 // Address index(noreg, rax, Address::times_ptr);
never@739 1958 __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
never@739 1959 // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
duke@435 1960 __ call(rcx); // call result converter
duke@435 1961 __ jmp(resume_interpreter);
duke@435 1962
duke@435 1963 // An exception is being caught on return to a vanilla interpreter frame.
duke@435 1964 // Empty the stack and resume interpreter
duke@435 1965
duke@435 1966 __ bind(return_with_exception);
duke@435 1967
duke@435 1968 // Exception present, empty stack
never@739 1969 __ movptr(rsp, STATE(_stack_base));
duke@435 1970 __ jmp(resume_interpreter);
duke@435 1971
duke@435 1972 // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
duke@435 1973 // interpreter call, or native) and unwind this interpreter activation.
duke@435 1974 // All monitors should be unlocked.
duke@435 1975
duke@435 1976 __ bind(return_from_interpreted_method);
duke@435 1977
duke@435 1978 Label return_to_initial_caller;
duke@435 1979
never@739 1980 __ movptr(rbx, STATE(_method)); // get method just executed
never@739 1981 __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD); // returning from "recursive" interpreter call?
duke@435 1982 __ movl(rax, Address(rbx, methodOopDesc::result_index_offset())); // get result type index
duke@435 1983 __ jcc(Assembler::equal, return_to_initial_caller); // back to native code (call_stub/c1/c2)
duke@435 1984
duke@435 1985 // Copy result to callers java stack
duke@435 1986 ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack);
never@739 1987 // Address index(noreg, rax, Address::times_ptr);
never@739 1988
never@739 1989 __ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_ptr)));
never@739 1990 // __ movl(rax, Address(noreg, rax, Address::times_ptr, int(AbstractInterpreter::_stack_to_stack)));
duke@435 1991 __ call(rax); // call result converter
duke@435 1992
duke@435 1993 Label unwind_recursive_activation;
duke@435 1994 __ bind(unwind_recursive_activation);
duke@435 1995
duke@435 1996 // returning to interpreter method from "recursive" interpreter call
duke@435 1997 // result converter left rax pointing to top of the java stack for method we are returning
duke@435 1998 // to. Now all we must do is unwind the state from the completed call
duke@435 1999
never@739 2000 __ movptr(state, STATE(_prev_link)); // unwind state
duke@435 2001 __ leave(); // pop the frame
never@739 2002 __ mov(rsp, rax); // unwind stack to remove args
duke@435 2003
duke@435 2004 // Resume the interpreter. The current frame contains the current interpreter
duke@435 2005 // state object.
duke@435 2006 //
duke@435 2007
duke@435 2008 __ bind(resume_interpreter);
duke@435 2009
duke@435 2010 // state == interpreterState object for method we are resuming
duke@435 2011
duke@435 2012 __ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume);
never@739 2013 __ lea(rsp, Address(rsp, -wordSize)); // prepush stack (result if any already present)
never@739 2014 __ movptr(STATE(_stack), rsp); // inform interpreter of new stack depth (parameters removed,
duke@435 2015 // result if any on stack already )
never@739 2016 __ movptr(rsp, STATE(_stack_limit)); // restore expression stack to full depth
duke@435 2017 __ jmp(call_interpreter_2); // No need to bang
duke@435 2018
duke@435 2019 // interpreter returning to native code (call_stub/c1/c2)
duke@435 2020 // convert result and unwind initial activation
duke@435 2021 // rax - result index
duke@435 2022
duke@435 2023 __ bind(return_to_initial_caller);
duke@435 2024 ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi);
never@739 2025 // Address index(noreg, rax, Address::times_ptr);
never@739 2026
never@739 2027 __ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_ptr)));
duke@435 2028 __ call(rax); // call result converter
duke@435 2029
duke@435 2030 Label unwind_initial_activation;
duke@435 2031 __ bind(unwind_initial_activation);
duke@435 2032
duke@435 2033 // RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0))
duke@435 2034
duke@435 2035 /* Current stack picture
duke@435 2036
duke@435 2037 [ incoming parameters ]
duke@435 2038 [ extra locals ]
duke@435 2039 [ return address to CALL_STUB/C1/C2]
duke@435 2040 fp -> [ CALL_STUB/C1/C2 fp ]
duke@435 2041 BytecodeInterpreter object
duke@435 2042 expression stack
duke@435 2043 sp ->
duke@435 2044
duke@435 2045 */
duke@435 2046
duke@435 2047 // return restoring the stack to the original sender_sp value
duke@435 2048
never@739 2049 __ movptr(rcx, STATE(_sender_sp));
duke@435 2050 __ leave();
never@739 2051 __ pop(rdi); // get return address
duke@435 2052 // set stack to sender's sp
never@739 2053 __ mov(rsp, rcx);
duke@435 2054 __ jmp(rdi); // return to call_stub
duke@435 2055
duke@435 2056 // OSR request, adjust return address to make current frame into adapter frame
duke@435 2057 // and enter OSR nmethod
duke@435 2058
duke@435 2059 __ bind(do_OSR);
duke@435 2060
duke@435 2061 Label remove_initial_frame;
duke@435 2062
duke@435 2063 // We are going to pop this frame. Is there another interpreter frame underneath
duke@435 2064 // it or is it callstub/compiled?
duke@435 2065
duke@435 2066 // Move buffer to the expected parameter location
never@739 2067 __ movptr(rcx, STATE(_result._osr._osr_buf));
never@739 2068
never@739 2069 __ movptr(rax, STATE(_result._osr._osr_entry));
never@739 2070
never@739 2071 __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD); // returning from "recursive" interpreter call?
duke@435 2072 __ jcc(Assembler::equal, remove_initial_frame); // back to native code (call_stub/c1/c2)
duke@435 2073
never@739 2074 __ movptr(sender_sp_on_entry, STATE(_sender_sp)); // get sender's sp in expected register
duke@435 2075 __ leave(); // pop the frame
never@739 2076 __ mov(rsp, sender_sp_on_entry); // trim any stack expansion
duke@435 2077
duke@435 2078
duke@435 2079 // We know we are calling compiled so push specialized return
duke@435 2080 // method uses specialized entry, push a return so we look like call stub setup
duke@435 2081 // this path will handle fact that result is returned in registers and not
duke@435 2082 // on the java stack.
duke@435 2083
duke@435 2084 __ pushptr(return_from_native_method.addr());
duke@435 2085
duke@435 2086 __ jmp(rax);
duke@435 2087
duke@435 2088 __ bind(remove_initial_frame);
duke@435 2089
never@739 2090 __ movptr(rdx, STATE(_sender_sp));
duke@435 2091 __ leave();
duke@435 2092 // get real return
never@739 2093 __ pop(rsi);
duke@435 2094 // set stack to sender's sp
never@739 2095 __ mov(rsp, rdx);
duke@435 2096 // repush real return
never@739 2097 __ push(rsi);
duke@435 2098 // Enter OSR nmethod
duke@435 2099 __ jmp(rax);
duke@435 2100
duke@435 2101
duke@435 2102
duke@435 2103
duke@435 2104 // Call a new method. All we do is (temporarily) trim the expression stack
duke@435 2105 // push a return address to bring us back to here and leap to the new entry.
duke@435 2106
duke@435 2107 __ bind(call_method);
duke@435 2108
duke@435 2109 // stack points to next free location and not top element on expression stack
duke@435 2110 // method expects sp to be pointing to topmost element
duke@435 2111
never@739 2112 __ movptr(rsp, STATE(_stack)); // pop args to c++ interpreter, set sp to java stack top
never@739 2113 __ lea(rsp, Address(rsp, wordSize));
never@739 2114
never@739 2115 __ movptr(rbx, STATE(_result._to_call._callee)); // get method to execute
duke@435 2116
duke@435 2117 // don't need a return address if reinvoking interpreter
duke@435 2118
duke@435 2119 // Make it look like call_stub calling conventions
duke@435 2120
duke@435 2121 // Get (potential) receiver
duke@435 2122 __ load_unsigned_word(rcx, size_of_parameters); // get size of parameters in words
duke@435 2123
duke@435 2124 ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
duke@435 2125 __ pushptr(recursive.addr()); // make it look good in the debugger
duke@435 2126
duke@435 2127 InternalAddress entry(entry_point);
duke@435 2128 __ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter?
duke@435 2129 __ jcc(Assembler::equal, re_dispatch); // yes
duke@435 2130
never@739 2131 __ pop(rax); // pop dummy address
duke@435 2132
duke@435 2133
duke@435 2134 // get specialized entry
never@739 2135 __ movptr(rax, STATE(_result._to_call._callee_entry_point));
duke@435 2136 // set sender SP
never@739 2137 __ mov(sender_sp_on_entry, rsp);
duke@435 2138
duke@435 2139 // method uses specialized entry, push a return so we look like call stub setup
duke@435 2140 // this path will handle fact that result is returned in registers and not
duke@435 2141 // on the java stack.
duke@435 2142
duke@435 2143 __ pushptr(return_from_native_method.addr());
duke@435 2144
duke@435 2145 __ jmp(rax);
duke@435 2146
duke@435 2147 __ bind(bad_msg);
duke@435 2148 __ stop("Bad message from interpreter");
duke@435 2149
duke@435 2150 // Interpreted method "returned" with an exception pass it on...
duke@435 2151 // Pass result, unwind activation and continue/return to interpreter/call_stub
duke@435 2152 // We handle result (if any) differently based on return to interpreter or call_stub
duke@435 2153
duke@435 2154 Label unwind_initial_with_pending_exception;
duke@435 2155
duke@435 2156 __ bind(throw_exception);
never@739 2157 __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD); // returning from recursive interpreter call?
duke@435 2158 __ jcc(Assembler::equal, unwind_initial_with_pending_exception); // no, back to native code (call_stub/c1/c2)
never@739 2159 __ movptr(rax, STATE(_locals)); // pop parameters get new stack value
never@739 2160 __ addptr(rax, wordSize); // account for prepush before we return
duke@435 2161 __ jmp(unwind_recursive_activation);
duke@435 2162
duke@435 2163 __ bind(unwind_initial_with_pending_exception);
duke@435 2164
duke@435 2165 // We will unwind the current (initial) interpreter frame and forward
duke@435 2166 // the exception to the caller. We must put the exception in the
duke@435 2167 // expected register and clear pending exception and then forward.
duke@435 2168
duke@435 2169 __ jmp(unwind_and_forward);
duke@435 2170
duke@435 2171 interpreter_frame_manager = entry_point;
duke@435 2172 return entry_point;
duke@435 2173 }
duke@435 2174
duke@435 2175 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
duke@435 2176 // determine code generation flags
duke@435 2177 bool synchronized = false;
duke@435 2178 address entry_point = NULL;
duke@435 2179
duke@435 2180 switch (kind) {
duke@435 2181 case Interpreter::zerolocals : break;
duke@435 2182 case Interpreter::zerolocals_synchronized: synchronized = true; break;
duke@435 2183 case Interpreter::native : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false); break;
duke@435 2184 case Interpreter::native_synchronized : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true); break;
duke@435 2185 case Interpreter::empty : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry(); break;
duke@435 2186 case Interpreter::accessor : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry(); break;
duke@435 2187 case Interpreter::abstract : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry(); break;
duke@435 2188
duke@435 2189 case Interpreter::java_lang_math_sin : // fall thru
duke@435 2190 case Interpreter::java_lang_math_cos : // fall thru
duke@435 2191 case Interpreter::java_lang_math_tan : // fall thru
duke@435 2192 case Interpreter::java_lang_math_abs : // fall thru
duke@435 2193 case Interpreter::java_lang_math_log : // fall thru
duke@435 2194 case Interpreter::java_lang_math_log10 : // fall thru
duke@435 2195 case Interpreter::java_lang_math_sqrt : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind); break;
duke@435 2196 default : ShouldNotReachHere(); break;
duke@435 2197 }
duke@435 2198
duke@435 2199 if (entry_point) return entry_point;
duke@435 2200
duke@435 2201 return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
duke@435 2202
duke@435 2203 }
duke@435 2204
duke@435 2205 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
duke@435 2206 : CppInterpreterGenerator(code) {
duke@435 2207 generate_all(); // down here so it can be "virtual"
duke@435 2208 }
duke@435 2209
duke@435 2210 // Deoptimization helpers for C++ interpreter
duke@435 2211
duke@435 2212 // How much stack a method activation needs in words.
duke@435 2213 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
duke@435 2214
duke@435 2215 const int stub_code = 4; // see generate_call_stub
duke@435 2216 // Save space for one monitor to get into the interpreted method in case
duke@435 2217 // the method is synchronized
duke@435 2218 int monitor_size = method->is_synchronized() ?
duke@435 2219 1*frame::interpreter_frame_monitor_size() : 0;
duke@435 2220
duke@435 2221 // total static overhead size. Account for interpreter state object, return
duke@435 2222 // address, saved rbp and 2 words for a "static long no_params() method" issue.
duke@435 2223
duke@435 2224 const int overhead_size = sizeof(BytecodeInterpreter)/wordSize +
duke@435 2225 ( frame::sender_sp_offset - frame::link_offset) + 2;
duke@435 2226
duke@435 2227 const int method_stack = (method->max_locals() + method->max_stack()) *
duke@435 2228 Interpreter::stackElementWords();
duke@435 2229 return overhead_size + method_stack + stub_code;
duke@435 2230 }
duke@435 2231
duke@435 2232 // returns the activation size.
duke@435 2233 static int size_activation_helper(int extra_locals_size, int monitor_size) {
duke@435 2234 return (extra_locals_size + // the addition space for locals
duke@435 2235 2*BytesPerWord + // return address and saved rbp
duke@435 2236 2*BytesPerWord + // "static long no_params() method" issue
duke@435 2237 sizeof(BytecodeInterpreter) + // interpreterState
duke@435 2238 monitor_size); // monitors
duke@435 2239 }
duke@435 2240
duke@435 2241 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
duke@435 2242 frame* caller,
duke@435 2243 frame* current,
duke@435 2244 methodOop method,
duke@435 2245 intptr_t* locals,
duke@435 2246 intptr_t* stack,
duke@435 2247 intptr_t* stack_base,
duke@435 2248 intptr_t* monitor_base,
duke@435 2249 intptr_t* frame_bottom,
duke@435 2250 bool is_top_frame
duke@435 2251 )
duke@435 2252 {
duke@435 2253 // What about any vtable?
duke@435 2254 //
duke@435 2255 to_fill->_thread = JavaThread::current();
duke@435 2256 // This gets filled in later but make it something recognizable for now
duke@435 2257 to_fill->_bcp = method->code_base();
duke@435 2258 to_fill->_locals = locals;
duke@435 2259 to_fill->_constants = method->constants()->cache();
duke@435 2260 to_fill->_method = method;
duke@435 2261 to_fill->_mdx = NULL;
duke@435 2262 to_fill->_stack = stack;
duke@435 2263 if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
duke@435 2264 to_fill->_msg = deopt_resume2;
duke@435 2265 } else {
duke@435 2266 to_fill->_msg = method_resume;
duke@435 2267 }
duke@435 2268 to_fill->_result._to_call._bcp_advance = 0;
duke@435 2269 to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
duke@435 2270 to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
duke@435 2271 to_fill->_prev_link = NULL;
duke@435 2272
duke@435 2273 to_fill->_sender_sp = caller->unextended_sp();
duke@435 2274
duke@435 2275 if (caller->is_interpreted_frame()) {
duke@435 2276 interpreterState prev = caller->get_interpreterState();
duke@435 2277 to_fill->_prev_link = prev;
duke@435 2278 // *current->register_addr(GR_Iprev_state) = (intptr_t) prev;
duke@435 2279 // Make the prev callee look proper
duke@435 2280 prev->_result._to_call._callee = method;
duke@435 2281 if (*prev->_bcp == Bytecodes::_invokeinterface) {
duke@435 2282 prev->_result._to_call._bcp_advance = 5;
duke@435 2283 } else {
duke@435 2284 prev->_result._to_call._bcp_advance = 3;
duke@435 2285 }
duke@435 2286 }
duke@435 2287 to_fill->_oop_temp = NULL;
duke@435 2288 to_fill->_stack_base = stack_base;
duke@435 2289 // Need +1 here because stack_base points to the word just above the first expr stack entry
duke@435 2290 // and stack_limit is supposed to point to the word just below the last expr stack entry.
duke@435 2291 // See generate_compute_interpreter_state.
duke@435 2292 to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
duke@435 2293 to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
duke@435 2294
duke@435 2295 to_fill->_self_link = to_fill;
duke@435 2296 assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base,
duke@435 2297 "Stack top out of range");
duke@435 2298 }
duke@435 2299
duke@435 2300 int AbstractInterpreter::layout_activation(methodOop method,
duke@435 2301 int tempcount, //
duke@435 2302 int popframe_extra_args,
duke@435 2303 int moncount,
duke@435 2304 int callee_param_count,
duke@435 2305 int callee_locals,
duke@435 2306 frame* caller,
duke@435 2307 frame* interpreter_frame,
duke@435 2308 bool is_top_frame) {
duke@435 2309
duke@435 2310 assert(popframe_extra_args == 0, "FIX ME");
duke@435 2311 // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
duke@435 2312 // does as far as allocating an interpreter frame.
duke@435 2313 // If interpreter_frame!=NULL, set up the method, locals, and monitors.
duke@435 2314 // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
duke@435 2315 // as determined by a previous call to this method.
duke@435 2316 // It is also guaranteed to be walkable even though it is in a skeletal state
duke@435 2317 // NOTE: return size is in words not bytes
duke@435 2318 // NOTE: tempcount is the current size of the java expression stack. For top most
duke@435 2319 // frames we will allocate a full sized expression stack and not the curback
duke@435 2320 // version that non-top frames have.
duke@435 2321
duke@435 2322 // Calculate the amount our frame will be adjust by the callee. For top frame
duke@435 2323 // this is zero.
duke@435 2324
duke@435 2325 // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
duke@435 2326 // calculates the extra locals based on itself. Not what the callee does
duke@435 2327 // to it. So it ignores last_frame_adjust value. Seems suspicious as far
duke@435 2328 // as getting sender_sp correct.
duke@435 2329
duke@435 2330 int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord;
duke@435 2331 int monitor_size = sizeof(BasicObjectLock) * moncount;
duke@435 2332
duke@435 2333 // First calculate the frame size without any java expression stack
duke@435 2334 int short_frame_size = size_activation_helper(extra_locals_size,
duke@435 2335 monitor_size);
duke@435 2336
duke@435 2337 // Now with full size expression stack
duke@435 2338 int full_frame_size = short_frame_size + method->max_stack() * BytesPerWord;
duke@435 2339
duke@435 2340 // and now with only live portion of the expression stack
duke@435 2341 short_frame_size = short_frame_size + tempcount * BytesPerWord;
duke@435 2342
duke@435 2343 // the size the activation is right now. Only top frame is full size
duke@435 2344 int frame_size = (is_top_frame ? full_frame_size : short_frame_size);
duke@435 2345
duke@435 2346 if (interpreter_frame != NULL) {
duke@435 2347 #ifdef ASSERT
duke@435 2348 assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
duke@435 2349 #endif
duke@435 2350
duke@435 2351 // MUCHO HACK
duke@435 2352
duke@435 2353 intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size));
duke@435 2354
duke@435 2355 /* Now fillin the interpreterState object */
duke@435 2356
duke@435 2357 // The state object is the first thing on the frame and easily located
duke@435 2358
duke@435 2359 interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
duke@435 2360
duke@435 2361
duke@435 2362 // Find the locals pointer. This is rather simple on x86 because there is no
duke@435 2363 // confusing rounding at the callee to account for. We can trivially locate
duke@435 2364 // our locals based on the current fp().
duke@435 2365 // Note: the + 2 is for handling the "static long no_params() method" issue.
duke@435 2366 // (too bad I don't really remember that issue well...)
duke@435 2367
duke@435 2368 intptr_t* locals;
duke@435 2369 // If the caller is interpreted we need to make sure that locals points to the first
duke@435 2370 // argument that the caller passed and not in an area where the stack might have been extended.
duke@435 2371 // because the stack to stack to converter needs a proper locals value in order to remove the
duke@435 2372 // arguments from the caller and place the result in the proper location. Hmm maybe it'd be
duke@435 2373 // simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code
duke@435 2374 // adjust the stack?? HMMM QQQ
duke@435 2375 //
duke@435 2376 if (caller->is_interpreted_frame()) {
duke@435 2377 // locals must agree with the caller because it will be used to set the
duke@435 2378 // caller's tos when we return.
duke@435 2379 interpreterState prev = caller->get_interpreterState();
duke@435 2380 // stack() is prepushed.
duke@435 2381 locals = prev->stack() + method->size_of_parameters();
duke@435 2382 // locals = caller->unextended_sp() + (method->size_of_parameters() - 1);
duke@435 2383 if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) {
duke@435 2384 // os::breakpoint();
duke@435 2385 }
duke@435 2386 } else {
duke@435 2387 // this is where a c2i would have placed locals (except for the +2)
duke@435 2388 locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2;
duke@435 2389 }
duke@435 2390
duke@435 2391 intptr_t* monitor_base = (intptr_t*) cur_state;
duke@435 2392 intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size);
duke@435 2393 /* +1 because stack is always prepushed */
duke@435 2394 intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord);
duke@435 2395
duke@435 2396
duke@435 2397 BytecodeInterpreter::layout_interpreterState(cur_state,
duke@435 2398 caller,
duke@435 2399 interpreter_frame,
duke@435 2400 method,
duke@435 2401 locals,
duke@435 2402 stack,
duke@435 2403 stack_base,
duke@435 2404 monitor_base,
duke@435 2405 frame_bottom,
duke@435 2406 is_top_frame);
duke@435 2407
duke@435 2408 // BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
duke@435 2409 }
duke@435 2410 return frame_size/BytesPerWord;
duke@435 2411 }
duke@435 2412
duke@435 2413 #endif // CC_INTERP (all)

mercurial