src/cpu/x86/vm/cppInterpreter_x86.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 955
52a431267315
child 1057
56aae7be60d4
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 2007-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_cppInterpreter_x86.cpp.incl"
    28 #ifdef CC_INTERP
    30 // Routine exists to make tracebacks look decent in debugger
    31 // while we are recursed in the frame manager/c++ interpreter.
    32 // We could use an address in the frame manager but having
    33 // frames look natural in the debugger is a plus.
    34 extern "C" void RecursiveInterpreterActivation(interpreterState istate )
    35 {
    36   //
    37   ShouldNotReachHere();
    38 }
    41 #define __ _masm->
    42 #define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name)))
    44 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
    45                                       // c++ interpreter entry point this holds that entry point label.
    47 // default registers for state and sender_sp
    48 // state and sender_sp are the same on 32bit because we have no choice.
    49 // state could be rsi on 64bit but it is an arg reg and not callee save
    50 // so r13 is better choice.
    52 const Register state = NOT_LP64(rsi) LP64_ONLY(r13);
    53 const Register sender_sp_on_entry = NOT_LP64(rsi) LP64_ONLY(r13);
    55 // NEEDED for JVMTI?
    56 // address AbstractInterpreter::_remove_activation_preserving_args_entry;
    58 static address unctrap_frame_manager_entry  = NULL;
    60 static address deopt_frame_manager_return_atos  = NULL;
    61 static address deopt_frame_manager_return_btos  = NULL;
    62 static address deopt_frame_manager_return_itos  = NULL;
    63 static address deopt_frame_manager_return_ltos  = NULL;
    64 static address deopt_frame_manager_return_ftos  = NULL;
    65 static address deopt_frame_manager_return_dtos  = NULL;
    66 static address deopt_frame_manager_return_vtos  = NULL;
    68 int AbstractInterpreter::BasicType_as_index(BasicType type) {
    69   int i = 0;
    70   switch (type) {
    71     case T_BOOLEAN: i = 0; break;
    72     case T_CHAR   : i = 1; break;
    73     case T_BYTE   : i = 2; break;
    74     case T_SHORT  : i = 3; break;
    75     case T_INT    : i = 4; break;
    76     case T_VOID   : i = 5; break;
    77     case T_FLOAT  : i = 8; break;
    78     case T_LONG   : i = 9; break;
    79     case T_DOUBLE : i = 6; break;
    80     case T_OBJECT : // fall through
    81     case T_ARRAY  : i = 7; break;
    82     default       : ShouldNotReachHere();
    83   }
    84   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
    85   return i;
    86 }
    88 // Is this pc anywhere within code owned by the interpreter?
    89 // This only works for pc that might possibly be exposed to frame
    90 // walkers. It clearly misses all of the actual c++ interpreter
    91 // implementation
    92 bool CppInterpreter::contains(address pc)            {
    93     return (_code->contains(pc) ||
    94             pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
    95 }
    98 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
    99   address entry = __ pc();
   100   switch (type) {
   101     case T_BOOLEAN: __ c2bool(rax);            break;
   102     case T_CHAR   : __ andl(rax, 0xFFFF);      break;
   103     case T_BYTE   : __ sign_extend_byte (rax); break;
   104     case T_SHORT  : __ sign_extend_short(rax); break;
   105     case T_VOID   : // fall thru
   106     case T_LONG   : // fall thru
   107     case T_INT    : /* nothing to do */        break;
   109     case T_DOUBLE :
   110     case T_FLOAT  :
   111       {
   112         const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   113         __ pop(t);                            // remove return address first
   114         // Must return a result for interpreter or compiler. In SSE
   115         // mode, results are returned in xmm0 and the FPU stack must
   116         // be empty.
   117         if (type == T_FLOAT && UseSSE >= 1) {
   118 #ifndef _LP64
   119           // Load ST0
   120           __ fld_d(Address(rsp, 0));
   121           // Store as float and empty fpu stack
   122           __ fstp_s(Address(rsp, 0));
   123 #endif // !_LP64
   124           // and reload
   125           __ movflt(xmm0, Address(rsp, 0));
   126         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
   127           __ movdbl(xmm0, Address(rsp, 0));
   128         } else {
   129           // restore ST0
   130           __ fld_d(Address(rsp, 0));
   131         }
   132         // and pop the temp
   133         __ addptr(rsp, 2 * wordSize);
   134         __ push(t);                            // restore return address
   135       }
   136       break;
   137     case T_OBJECT :
   138       // retrieve result from frame
   139       __ movptr(rax, STATE(_oop_temp));
   140       // and verify it
   141       __ verify_oop(rax);
   142       break;
   143     default       : ShouldNotReachHere();
   144   }
   145   __ ret(0);                                   // return from result handler
   146   return entry;
   147 }
   149 // tosca based result to c++ interpreter stack based result.
   150 // Result goes to top of native stack.
   152 #undef EXTEND  // SHOULD NOT BE NEEDED
   153 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
   154   // A result is in the tosca (abi result) from either a native method call or compiled
   155   // code. Place this result on the java expression stack so C++ interpreter can use it.
   156   address entry = __ pc();
   158   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   159   __ pop(t);                            // remove return address first
   160   switch (type) {
   161     case T_VOID:
   162        break;
   163     case T_BOOLEAN:
   164 #ifdef EXTEND
   165       __ c2bool(rax);
   166 #endif
   167       __ push(rax);
   168       break;
   169     case T_CHAR   :
   170 #ifdef EXTEND
   171       __ andl(rax, 0xFFFF);
   172 #endif
   173       __ push(rax);
   174       break;
   175     case T_BYTE   :
   176 #ifdef EXTEND
   177       __ sign_extend_byte (rax);
   178 #endif
   179       __ push(rax);
   180       break;
   181     case T_SHORT  :
   182 #ifdef EXTEND
   183       __ sign_extend_short(rax);
   184 #endif
   185       __ push(rax);
   186       break;
   187     case T_LONG    :
   188       __ push(rdx);                             // pushes useless junk on 64bit
   189       __ push(rax);
   190       break;
   191     case T_INT    :
   192       __ push(rax);
   193       break;
   194     case T_FLOAT  :
   195       // Result is in ST(0)/xmm0
   196       __ subptr(rsp, wordSize);
   197       if ( UseSSE < 1) {
   198         __ fstp_s(Address(rsp, 0));
   199       } else {
   200         __ movflt(Address(rsp, 0), xmm0);
   201       }
   202       break;
   203     case T_DOUBLE  :
   204       __ subptr(rsp, 2*wordSize);
   205       if ( UseSSE < 2 ) {
   206         __ fstp_d(Address(rsp, 0));
   207       } else {
   208         __ movdbl(Address(rsp, 0), xmm0);
   209       }
   210       break;
   211     case T_OBJECT :
   212       __ verify_oop(rax);                      // verify it
   213       __ push(rax);
   214       break;
   215     default       : ShouldNotReachHere();
   216   }
   217   __ jmp(t);                                   // return from result handler
   218   return entry;
   219 }
   221 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
   222   // A result is in the java expression stack of the interpreted method that has just
   223   // returned. Place this result on the java expression stack of the caller.
   224   //
   225   // The current interpreter activation in rsi/r13 is for the method just returning its
   226   // result. So we know that the result of this method is on the top of the current
   227   // execution stack (which is pre-pushed) and will be return to the top of the caller
   228   // stack. The top of the callers stack is the bottom of the locals of the current
   229   // activation.
   230   // Because of the way activation are managed by the frame manager the value of rsp is
   231   // below both the stack top of the current activation and naturally the stack top
   232   // of the calling activation. This enable this routine to leave the return address
   233   // to the frame manager on the stack and do a vanilla return.
   234   //
   235   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
   236   // On Return: rsi/r13 - unchanged
   237   //            rax - new stack top for caller activation (i.e. activation in _prev_link)
   238   //
   239   // Can destroy rdx, rcx.
   240   //
   242   address entry = __ pc();
   243   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   244   switch (type) {
   245     case T_VOID:
   246       __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
   247       __ addptr(rax, wordSize);                                         // account for prepush before we return
   248       break;
   249     case T_FLOAT  :
   250     case T_BOOLEAN:
   251     case T_CHAR   :
   252     case T_BYTE   :
   253     case T_SHORT  :
   254     case T_INT    :
   255       // 1 word result
   256       __ movptr(rdx, STATE(_stack));
   257       __ movptr(rax, STATE(_locals));                                   // address for result
   258       __ movl(rdx, Address(rdx, wordSize));                             // get result
   259       __ movptr(Address(rax, 0), rdx);                                  // and store it
   260       break;
   261     case T_LONG    :
   262     case T_DOUBLE  :
   263       // return top two words on current expression stack to caller's expression stack
   264       // The caller's expression stack is adjacent to the current frame manager's intepretState
   265       // except we allocated one extra word for this intepretState so we won't overwrite it
   266       // when we return a two word result.
   268       __ movptr(rax, STATE(_locals));                                   // address for result
   269       __ movptr(rcx, STATE(_stack));
   270       __ subptr(rax, wordSize);                                         // need addition word besides locals[0]
   271       __ movptr(rdx, Address(rcx, 2*wordSize));                         // get result word (junk in 64bit)
   272       __ movptr(Address(rax, wordSize), rdx);                           // and store it
   273       __ movptr(rdx, Address(rcx, wordSize));                           // get result word
   274       __ movptr(Address(rax, 0), rdx);                                  // and store it
   275       break;
   276     case T_OBJECT :
   277       __ movptr(rdx, STATE(_stack));
   278       __ movptr(rax, STATE(_locals));                                   // address for result
   279       __ movptr(rdx, Address(rdx, wordSize));                           // get result
   280       __ verify_oop(rdx);                                               // verify it
   281       __ movptr(Address(rax, 0), rdx);                                  // and store it
   282       break;
   283     default       : ShouldNotReachHere();
   284   }
   285   __ ret(0);
   286   return entry;
   287 }
   289 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
   290   // A result is in the java expression stack of the interpreted method that has just
   291   // returned. Place this result in the native abi that the caller expects.
   292   //
   293   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
   294   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
   295   // and so rather than return result onto caller's java expression stack we return the
   296   // result in the expected location based on the native abi.
   297   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
   298   // On Return: rsi/r13 - unchanged
   299   // Other registers changed [rax/rdx/ST(0) as needed for the result returned]
   301   address entry = __ pc();
   302   switch (type) {
   303     case T_VOID:
   304        break;
   305     case T_BOOLEAN:
   306     case T_CHAR   :
   307     case T_BYTE   :
   308     case T_SHORT  :
   309     case T_INT    :
   310       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   311       __ movl(rax, Address(rdx, wordSize));                             // get result word 1
   312       break;
   313     case T_LONG    :
   314       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   315       __ movptr(rax, Address(rdx, wordSize));                           // get result low word
   316       NOT_LP64(__ movl(rdx, Address(rdx, 2*wordSize));)                 // get result high word
   317       break;
   318     case T_FLOAT  :
   319       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   320       if ( UseSSE >= 1) {
   321         __ movflt(xmm0, Address(rdx, wordSize));
   322       } else {
   323         __ fld_s(Address(rdx, wordSize));                               // pushd float result
   324       }
   325       break;
   326     case T_DOUBLE  :
   327       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   328       if ( UseSSE > 1) {
   329         __ movdbl(xmm0, Address(rdx, wordSize));
   330       } else {
   331         __ fld_d(Address(rdx, wordSize));                               // push double result
   332       }
   333       break;
   334     case T_OBJECT :
   335       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   336       __ movptr(rax, Address(rdx, wordSize));                           // get result word 1
   337       __ verify_oop(rax);                                               // verify it
   338       break;
   339     default       : ShouldNotReachHere();
   340   }
   341   __ ret(0);
   342   return entry;
   343 }
   345 address CppInterpreter::return_entry(TosState state, int length) {
   346   // make it look good in the debugger
   347   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation);
   348 }
   350 address CppInterpreter::deopt_entry(TosState state, int length) {
   351   address ret = NULL;
   352   if (length != 0) {
   353     switch (state) {
   354       case atos: ret = deopt_frame_manager_return_atos; break;
   355       case btos: ret = deopt_frame_manager_return_btos; break;
   356       case ctos:
   357       case stos:
   358       case itos: ret = deopt_frame_manager_return_itos; break;
   359       case ltos: ret = deopt_frame_manager_return_ltos; break;
   360       case ftos: ret = deopt_frame_manager_return_ftos; break;
   361       case dtos: ret = deopt_frame_manager_return_dtos; break;
   362       case vtos: ret = deopt_frame_manager_return_vtos; break;
   363     }
   364   } else {
   365     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
   366   }
   367   assert(ret != NULL, "Not initialized");
   368   return ret;
   369 }
   371 // C++ Interpreter
   372 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
   373                                                                  const Register locals,
   374                                                                  const Register sender_sp,
   375                                                                  bool native) {
   377   // On entry the "locals" argument points to locals[0] (or where it would be in case no locals in
   378   // a static method). "state" contains any previous frame manager state which we must save a link
   379   // to in the newly generated state object. On return "state" is a pointer to the newly allocated
   380   // state object. We must allocate and initialize a new interpretState object and the method
   381   // expression stack. Because the returned result (if any) of the method will be placed on the caller's
   382   // expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must
   383   // be sure to leave space on the caller's stack so that this result will not overwrite values when
   384   // locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when
   385   // we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in
   386   // non-product builds and initialize this last local with the previous interpreterState as
   387   // this makes things look real nice in the debugger.
   389   // State on entry
   390   // Assumes locals == &locals[0]
   391   // Assumes state == any previous frame manager state (assuming call path from c++ interpreter)
   392   // Assumes rax = return address
   393   // rcx == senders_sp
   394   // rbx == method
   395   // Modifies rcx, rdx, rax
   396   // Returns:
   397   // state == address of new interpreterState
   398   // rsp == bottom of method's expression stack.
   400   const Address const_offset      (rbx, methodOopDesc::const_offset());
   403   // On entry sp is the sender's sp. This includes the space for the arguments
   404   // that the sender pushed. If the sender pushed no args (a static) and the
   405   // caller returns a long then we need two words on the sender's stack which
   406   // are not present (although when we return a restore full size stack the
   407   // space will be present). If we didn't allocate two words here then when
   408   // we "push" the result of the caller's stack we would overwrite the return
   409   // address and the saved rbp. Not good. So simply allocate 2 words now
   410   // just to be safe. This is the "static long no_params() method" issue.
   411   // See Lo.java for a testcase.
   412   // We don't need this for native calls because they return result in
   413   // register and the stack is expanded in the caller before we store
   414   // the results on the stack.
   416   if (!native) {
   417 #ifdef PRODUCT
   418     __ subptr(rsp, 2*wordSize);
   419 #else /* PRODUCT */
   420     __ push((int32_t)NULL_WORD);
   421     __ push(state);                         // make it look like a real argument
   422 #endif /* PRODUCT */
   423   }
   425   // Now that we are assure of space for stack result, setup typical linkage
   427   __ push(rax);
   428   __ enter();
   430   __ mov(rax, state);                                  // save current state
   432   __ lea(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter)));
   433   __ mov(state, rsp);
   435   // rsi/r13 == state/locals rax == prevstate
   437   // initialize the "shadow" frame so that use since C++ interpreter not directly
   438   // recursive. Simpler to recurse but we can't trim expression stack as we call
   439   // new methods.
   440   __ movptr(STATE(_locals), locals);                    // state->_locals = locals()
   441   __ movptr(STATE(_self_link), state);                  // point to self
   442   __ movptr(STATE(_prev_link), rax);                    // state->_link = state on entry (NULL or previous state)
   443   __ movptr(STATE(_sender_sp), sender_sp);              // state->_sender_sp = sender_sp
   444 #ifdef _LP64
   445   __ movptr(STATE(_thread), r15_thread);                // state->_bcp = codes()
   446 #else
   447   __ get_thread(rax);                                   // get vm's javathread*
   448   __ movptr(STATE(_thread), rax);                       // state->_bcp = codes()
   449 #endif // _LP64
   450   __ movptr(rdx, Address(rbx, methodOopDesc::const_offset())); // get constantMethodOop
   451   __ lea(rdx, Address(rdx, constMethodOopDesc::codes_offset())); // get code base
   452   if (native) {
   453     __ movptr(STATE(_bcp), (int32_t)NULL_WORD);         // state->_bcp = NULL
   454   } else {
   455     __ movptr(STATE(_bcp), rdx);                        // state->_bcp = codes()
   456   }
   457   __ xorptr(rdx, rdx);
   458   __ movptr(STATE(_oop_temp), rdx);                     // state->_oop_temp = NULL (only really needed for native)
   459   __ movptr(STATE(_mdx), rdx);                          // state->_mdx = NULL
   460   __ movptr(rdx, Address(rbx, methodOopDesc::constants_offset()));
   461   __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
   462   __ movptr(STATE(_constants), rdx);                    // state->_constants = constants()
   464   __ movptr(STATE(_method), rbx);                       // state->_method = method()
   465   __ movl(STATE(_msg), (int32_t) BytecodeInterpreter::method_entry);   // state->_msg = initial method entry
   466   __ movptr(STATE(_result._to_call._callee), (int32_t) NULL_WORD); // state->_result._to_call._callee_callee = NULL
   469   __ movptr(STATE(_monitor_base), rsp);                 // set monitor block bottom (grows down) this would point to entry [0]
   470                                                         // entries run from -1..x where &monitor[x] ==
   472   {
   473     // Must not attempt to lock method until we enter interpreter as gc won't be able to find the
   474     // initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack
   475     // immediately.
   477     // synchronize method
   478     const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   479     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   480     Label not_synced;
   482     __ movl(rax, access_flags);
   483     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   484     __ jcc(Assembler::zero, not_synced);
   486     // Allocate initial monitor and pre initialize it
   487     // get synchronization object
   489     Label done;
   490     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   491     __ movl(rax, access_flags);
   492     __ testl(rax, JVM_ACC_STATIC);
   493     __ movptr(rax, Address(locals, 0));                   // get receiver (assume this is frequent case)
   494     __ jcc(Assembler::zero, done);
   495     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
   496     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
   497     __ movptr(rax, Address(rax, mirror_offset));
   498     __ bind(done);
   499     // add space for monitor & lock
   500     __ subptr(rsp, entry_size);                                           // add space for a monitor entry
   501     __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
   502     __ bind(not_synced);
   503   }
   505   __ movptr(STATE(_stack_base), rsp);                                     // set expression stack base ( == &monitors[-count])
   506   if (native) {
   507     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
   508     __ movptr(STATE(_stack_limit), rsp);
   509   } else {
   510     __ subptr(rsp, wordSize);                                             // pre-push stack
   511     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
   513     // compute full expression stack limit
   515     const Address size_of_stack    (rbx, methodOopDesc::max_stack_offset());
   516     __ load_unsigned_word(rdx, size_of_stack);                            // get size of expression stack in words
   517     __ negptr(rdx);                                                       // so we can subtract in next step
   518     // Allocate expression stack
   519     __ lea(rsp, Address(rsp, rdx, Address::times_ptr));
   520     __ movptr(STATE(_stack_limit), rsp);
   521   }
   523 #ifdef _LP64
   524   // Make sure stack is properly aligned and sized for the abi
   525   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
   526   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
   527 #endif // _LP64
   531 }
   533 // Helpers for commoning out cases in the various type of method entries.
   534 //
   536 // increment invocation count & check for overflow
   537 //
   538 // Note: checking for negative value instead of overflow
   539 //       so we have a 'sticky' overflow test
   540 //
   541 // rbx,: method
   542 // rcx: invocation counter
   543 //
   544 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   546   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
   547   const Address backedge_counter  (rbx, methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset());
   549   if (ProfileInterpreter) { // %%% Merge this into methodDataOop
   550     __ incrementl(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
   551   }
   552   // Update standard invocation counters
   553   __ movl(rax, backedge_counter);               // load backedge counter
   555   __ increment(rcx, InvocationCounter::count_increment);
   556   __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
   558   __ movl(invocation_counter, rcx);             // save invocation count
   559   __ addl(rcx, rax);                            // add both counters
   561   // profile_method is non-null only for interpreted method so
   562   // profile_method != NULL == !native_call
   563   // BytecodeInterpreter only calls for native so code is elided.
   565   __ cmp32(rcx,
   566            ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   567   __ jcc(Assembler::aboveEqual, *overflow);
   569 }
   571 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   573   // C++ interpreter on entry
   574   // rsi/r13 - new interpreter state pointer
   575   // rbp - interpreter frame pointer
   576   // rbx - method
   578   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   579   // rbx, - method
   580   // rcx - rcvr (assuming there is one)
   581   // top of stack return address of interpreter caller
   582   // rsp - sender_sp
   584   // C++ interpreter only
   585   // rsi/r13 - previous interpreter state pointer
   587   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
   589   // InterpreterRuntime::frequency_counter_overflow takes one argument
   590   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
   591   // The call returns the address of the verified entry point for the method or NULL
   592   // if the compilation did not complete (either went background or bailed out).
   593   __ movptr(rax, (int32_t)false);
   594   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
   596   // for c++ interpreter can rsi really be munged?
   597   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));                               // restore state
   598   __ movptr(rbx, Address(state, byte_offset_of(BytecodeInterpreter, _method)));            // restore method
   599   __ movptr(rdi, Address(state, byte_offset_of(BytecodeInterpreter, _locals)));            // get locals pointer
   601   __ jmp(*do_continue, relocInfo::none);
   603 }
   605 void InterpreterGenerator::generate_stack_overflow_check(void) {
   606   // see if we've got enough room on the stack for locals plus overhead.
   607   // the expression stack grows down incrementally, so the normal guard
   608   // page mechanism will work for that.
   609   //
   610   // Registers live on entry:
   611   //
   612   // Asm interpreter
   613   // rdx: number of additional locals this frame needs (what we must check)
   614   // rbx,: methodOop
   616   // C++ Interpreter
   617   // rsi/r13: previous interpreter frame state object
   618   // rdi: &locals[0]
   619   // rcx: # of locals
   620   // rdx: number of additional locals this frame needs (what we must check)
   621   // rbx: methodOop
   623   // destroyed on exit
   624   // rax,
   626   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
   627   // generate_method_entry) so the guard should work for them too.
   628   //
   630   // monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp
   631   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
   633   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
   634   // be sure to change this if you add/subtract anything to/from the overhead area
   635   const int overhead_size = (int)sizeof(BytecodeInterpreter);
   637   const int page_size = os::vm_page_size();
   639   Label after_frame_check;
   641   // compute rsp as if this were going to be the last frame on
   642   // the stack before the red zone
   644   Label after_frame_check_pop;
   646   // save rsi == caller's bytecode ptr (c++ previous interp. state)
   647   // QQQ problem here?? rsi overload????
   648   __ push(state);
   650   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rsi);
   652   NOT_LP64(__ get_thread(thread));
   654   const Address stack_base(thread, Thread::stack_base_offset());
   655   const Address stack_size(thread, Thread::stack_size_offset());
   657   // locals + overhead, in bytes
   658     const Address size_of_stack    (rbx, methodOopDesc::max_stack_offset());
   659     // Always give one monitor to allow us to start interp if sync method.
   660     // Any additional monitors need a check when moving the expression stack
   661     const int one_monitor = frame::interpreter_frame_monitor_size() * wordSize;
   662   __ load_unsigned_word(rax, size_of_stack);                            // get size of expression stack in words
   663   __ lea(rax, Address(noreg, rax, Interpreter::stackElementScale(), one_monitor));
   664   __ lea(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size));
   666 #ifdef ASSERT
   667   Label stack_base_okay, stack_size_okay;
   668   // verify that thread stack base is non-zero
   669   __ cmpptr(stack_base, (int32_t)0);
   670   __ jcc(Assembler::notEqual, stack_base_okay);
   671   __ stop("stack base is zero");
   672   __ bind(stack_base_okay);
   673   // verify that thread stack size is non-zero
   674   __ cmpptr(stack_size, (int32_t)0);
   675   __ jcc(Assembler::notEqual, stack_size_okay);
   676   __ stop("stack size is zero");
   677   __ bind(stack_size_okay);
   678 #endif
   680   // Add stack base to locals and subtract stack size
   681   __ addptr(rax, stack_base);
   682   __ subptr(rax, stack_size);
   684   // We should have a magic number here for the size of the c++ interpreter frame.
   685   // We can't actually tell this ahead of time. The debug version size is around 3k
   686   // product is 1k and fastdebug is 4k
   687   const int slop = 6 * K;
   689   // Use the maximum number of pages we might bang.
   690   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   691                                                                               (StackRedPages+StackYellowPages);
   692   // Only need this if we are stack banging which is temporary while
   693   // we're debugging.
   694   __ addptr(rax, slop + 2*max_pages * page_size);
   696   // check against the current stack bottom
   697   __ cmpptr(rsp, rax);
   698   __ jcc(Assembler::above, after_frame_check_pop);
   700   __ pop(state);  //  get c++ prev state.
   702      // throw exception return address becomes throwing pc
   703   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   705   // all done with frame size check
   706   __ bind(after_frame_check_pop);
   707   __ pop(state);
   709   __ bind(after_frame_check);
   710 }
   712 // Find preallocated  monitor and lock method (C++ interpreter)
   713 // rbx - methodOop
   714 //
   715 void InterpreterGenerator::lock_method(void) {
   716   // assumes state == rsi/r13 == pointer to current interpreterState
   717   // minimally destroys rax, rdx|c_rarg1, rdi
   718   //
   719   // synchronize method
   720   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   721   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   723   const Register monitor  = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
   725   // find initial monitor i.e. monitors[-1]
   726   __ movptr(monitor, STATE(_monitor_base));                                   // get monitor bottom limit
   727   __ subptr(monitor, entry_size);                                             // point to initial monitor
   729 #ifdef ASSERT
   730   { Label L;
   731     __ movl(rax, access_flags);
   732     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   733     __ jcc(Assembler::notZero, L);
   734     __ stop("method doesn't need synchronization");
   735     __ bind(L);
   736   }
   737 #endif // ASSERT
   738   // get synchronization object
   739   { Label done;
   740     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   741     __ movl(rax, access_flags);
   742     __ movptr(rdi, STATE(_locals));                                     // prepare to get receiver (assume common case)
   743     __ testl(rax, JVM_ACC_STATIC);
   744     __ movptr(rax, Address(rdi, 0));                                    // get receiver (assume this is frequent case)
   745     __ jcc(Assembler::zero, done);
   746     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
   747     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
   748     __ movptr(rax, Address(rax, mirror_offset));
   749     __ bind(done);
   750   }
   751 #ifdef ASSERT
   752   { Label L;
   753     __ cmpptr(rax, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));   // correct object?
   754     __ jcc(Assembler::equal, L);
   755     __ stop("wrong synchronization lobject");
   756     __ bind(L);
   757   }
   758 #endif // ASSERT
   759   // can destroy rax, rdx|c_rarg1, rcx, and (via call_VM) rdi!
   760   __ lock_object(monitor);
   761 }
   763 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
   765 address InterpreterGenerator::generate_accessor_entry(void) {
   767   // rbx: methodOop
   769   // rsi/r13: senderSP must preserved for slow path, set SP to it on fast path
   771   Label xreturn_path;
   773   // do fastpath for resolved accessor methods
   774   if (UseFastAccessorMethods) {
   776     address entry_point = __ pc();
   778     Label slow_path;
   779     // If we need a safepoint check, generate full interpreter entry.
   780     ExternalAddress state(SafepointSynchronize::address_of_state());
   781     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   782              SafepointSynchronize::_not_synchronized);
   784     __ jcc(Assembler::notEqual, slow_path);
   785     // ASM/C++ Interpreter
   786     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
   787     // Note: We can only use this code if the getfield has been resolved
   788     //       and if we don't have a null-pointer exception => check for
   789     //       these conditions first and use slow path if necessary.
   790     // rbx,: method
   791     // rcx: receiver
   792     __ movptr(rax, Address(rsp, wordSize));
   794     // check if local 0 != NULL and read field
   795     __ testptr(rax, rax);
   796     __ jcc(Assembler::zero, slow_path);
   798     __ movptr(rdi, Address(rbx, methodOopDesc::constants_offset()));
   799     // read first instruction word and extract bytecode @ 1 and index @ 2
   800     __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
   801     __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
   802     // Shift codes right to get the index on the right.
   803     // The bytecode fetched looks like <index><0xb4><0x2a>
   804     __ shrl(rdx, 2*BitsPerByte);
   805     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   806     __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
   808     // rax,: local 0
   809     // rbx,: method
   810     // rcx: receiver - do not destroy since it is needed for slow path!
   811     // rcx: scratch
   812     // rdx: constant pool cache index
   813     // rdi: constant pool cache
   814     // rsi/r13: sender sp
   816     // check if getfield has been resolved and read constant pool cache entry
   817     // check the validity of the cache entry by testing whether _indices field
   818     // contains Bytecode::_getfield in b1 byte.
   819     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
   820     __ movl(rcx,
   821             Address(rdi,
   822                     rdx,
   823                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   824     __ shrl(rcx, 2*BitsPerByte);
   825     __ andl(rcx, 0xFF);
   826     __ cmpl(rcx, Bytecodes::_getfield);
   827     __ jcc(Assembler::notEqual, slow_path);
   829     // Note: constant pool entry is not valid before bytecode is resolved
   830     __ movptr(rcx,
   831             Address(rdi,
   832                     rdx,
   833                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
   834     __ movl(rdx,
   835             Address(rdi,
   836                     rdx,
   837                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   839     Label notByte, notShort, notChar;
   840     const Address field_address (rax, rcx, Address::times_1);
   842     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   843     // because they are different sizes.
   844     // Use the type from the constant pool cache
   845     __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
   846     // Make sure we don't need to mask rdx for tosBits after the above shift
   847     ConstantPoolCacheEntry::verify_tosBits();
   848 #ifdef _LP64
   849     Label notObj;
   850     __ cmpl(rdx, atos);
   851     __ jcc(Assembler::notEqual, notObj);
   852     // atos
   853     __ movptr(rax, field_address);
   854     __ jmp(xreturn_path);
   856     __ bind(notObj);
   857 #endif // _LP64
   858     __ cmpl(rdx, btos);
   859     __ jcc(Assembler::notEqual, notByte);
   860     __ load_signed_byte(rax, field_address);
   861     __ jmp(xreturn_path);
   863     __ bind(notByte);
   864     __ cmpl(rdx, stos);
   865     __ jcc(Assembler::notEqual, notShort);
   866     __ load_signed_word(rax, field_address);
   867     __ jmp(xreturn_path);
   869     __ bind(notShort);
   870     __ cmpl(rdx, ctos);
   871     __ jcc(Assembler::notEqual, notChar);
   872     __ load_unsigned_word(rax, field_address);
   873     __ jmp(xreturn_path);
   875     __ bind(notChar);
   876 #ifdef ASSERT
   877     Label okay;
   878 #ifndef _LP64
   879     __ cmpl(rdx, atos);
   880     __ jcc(Assembler::equal, okay);
   881 #endif // _LP64
   882     __ cmpl(rdx, itos);
   883     __ jcc(Assembler::equal, okay);
   884     __ stop("what type is this?");
   885     __ bind(okay);
   886 #endif // ASSERT
   887     // All the rest are a 32 bit wordsize
   888     __ movl(rax, field_address);
   890     __ bind(xreturn_path);
   892     // _ireturn/_areturn
   893     __ pop(rdi);                               // get return address
   894     __ mov(rsp, sender_sp_on_entry);           // set sp to sender sp
   895     __ jmp(rdi);
   897     // generate a vanilla interpreter entry as the slow path
   898     __ bind(slow_path);
   899     // We will enter c++ interpreter looking like it was
   900     // called by the call_stub this will cause it to return
   901     // a tosca result to the invoker which might have been
   902     // the c++ interpreter itself.
   904     __ jmp(fast_accessor_slow_entry_path);
   905     return entry_point;
   907   } else {
   908     return NULL;
   909   }
   911 }
   913 //
   914 // C++ Interpreter stub for calling a native method.
   915 // This sets up a somewhat different looking stack for calling the native method
   916 // than the typical interpreter frame setup but still has the pointer to
   917 // an interpreter state.
   918 //
   920 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   921   // determine code generation flags
   922   bool inc_counter  = UseCompiler || CountCompiledCalls;
   924   // rbx: methodOop
   925   // rcx: receiver (unused)
   926   // rsi/r13: previous interpreter state (if called from C++ interpreter) must preserve
   927   //      in any case. If called via c1/c2/call_stub rsi/r13 is junk (to use) but harmless
   928   //      to save/restore.
   929   address entry_point = __ pc();
   931   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
   932   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
   933   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
   934   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   936   // rsi/r13 == state/locals rdi == prevstate
   937   const Register locals = rdi;
   939   // get parameter size (always needed)
   940   __ load_unsigned_word(rcx, size_of_parameters);
   942   // rbx: methodOop
   943   // rcx: size of parameters
   944   __ pop(rax);                                       // get return address
   945   // for natives the size of locals is zero
   947   // compute beginning of parameters /locals
   948   __ lea(locals, Address(rsp, rcx, Address::times_ptr, -wordSize));
   950   // initialize fixed part of activation frame
   952   // Assumes rax = return address
   954   // allocate and initialize new interpreterState and method expression stack
   955   // IN(locals) ->  locals
   956   // IN(state) -> previous frame manager state (NULL from stub/c1/c2)
   957   // destroys rax, rcx, rdx
   958   // OUT (state) -> new interpreterState
   959   // OUT(rsp) -> bottom of methods expression stack
   961   // save sender_sp
   962   __ mov(rcx, sender_sp_on_entry);
   963   // start with NULL previous state
   964   __ movptr(state, (int32_t)NULL_WORD);
   965   generate_compute_interpreter_state(state, locals, rcx, true);
   967 #ifdef ASSERT
   968   { Label L;
   969     __ movptr(rax, STATE(_stack_base));
   970 #ifdef _LP64
   971     // duplicate the alignment rsp got after setting stack_base
   972     __ subptr(rax, frame::arg_reg_save_area_bytes); // windows
   973     __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
   974 #endif // _LP64
   975     __ cmpptr(rax, rsp);
   976     __ jcc(Assembler::equal, L);
   977     __ stop("broken stack frame setup in interpreter");
   978     __ bind(L);
   979   }
   980 #endif
   982   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
   984   const Register unlock_thread = LP64_ONLY(r15_thread) NOT_LP64(rax);
   985   NOT_LP64(__ movptr(unlock_thread, STATE(_thread));) // get thread
   986   // Since at this point in the method invocation the exception handler
   987   // would try to exit the monitor of synchronized methods which hasn't
   988   // been entered yet, we set the thread local variable
   989   // _do_not_unlock_if_synchronized to true. The remove_activation will
   990   // check this flag.
   992   const Address do_not_unlock_if_synchronized(unlock_thread,
   993         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   994   __ movbool(do_not_unlock_if_synchronized, true);
   996   // make sure method is native & not abstract
   997 #ifdef ASSERT
   998   __ movl(rax, access_flags);
   999   {
  1000     Label L;
  1001     __ testl(rax, JVM_ACC_NATIVE);
  1002     __ jcc(Assembler::notZero, L);
  1003     __ stop("tried to execute non-native method as native");
  1004     __ bind(L);
  1006   { Label L;
  1007     __ testl(rax, JVM_ACC_ABSTRACT);
  1008     __ jcc(Assembler::zero, L);
  1009     __ stop("tried to execute abstract method in interpreter");
  1010     __ bind(L);
  1012 #endif
  1015   // increment invocation count & check for overflow
  1016   Label invocation_counter_overflow;
  1017   if (inc_counter) {
  1018     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
  1021   Label continue_after_compile;
  1023   __ bind(continue_after_compile);
  1025   bang_stack_shadow_pages(true);
  1027   // reset the _do_not_unlock_if_synchronized flag
  1028   NOT_LP64(__ movl(rax, STATE(_thread));)                       // get thread
  1029   __ movbool(do_not_unlock_if_synchronized, false);
  1032   // check for synchronized native methods
  1033   //
  1034   // Note: This must happen *after* invocation counter check, since
  1035   //       when overflow happens, the method should not be locked.
  1036   if (synchronized) {
  1037     // potentially kills rax, rcx, rdx, rdi
  1038     lock_method();
  1039   } else {
  1040     // no synchronization necessary
  1041 #ifdef ASSERT
  1042       { Label L;
  1043         __ movl(rax, access_flags);
  1044         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1045         __ jcc(Assembler::zero, L);
  1046         __ stop("method needs synchronization");
  1047         __ bind(L);
  1049 #endif
  1052   // start execution
  1054   // jvmti support
  1055   __ notify_method_entry();
  1057   // work registers
  1058   const Register method = rbx;
  1059   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rdi);
  1060   const Register t      = InterpreterRuntime::SignatureHandlerGenerator::temp();    // rcx|rscratch1
  1062   // allocate space for parameters
  1063   __ movptr(method, STATE(_method));
  1064   __ verify_oop(method);
  1065   __ load_unsigned_word(t, Address(method, methodOopDesc::size_of_parameters_offset()));
  1066   __ shll(t, 2);
  1067 #ifdef _LP64
  1068   __ subptr(rsp, t);
  1069   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1070   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
  1071 #else
  1072   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
  1073   __ subptr(rsp, t);
  1074   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
  1075 #endif // _LP64
  1077   // get signature handler
  1078     Label pending_exception_present;
  1080   { Label L;
  1081     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
  1082     __ testptr(t, t);
  1083     __ jcc(Assembler::notZero, L);
  1084     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false);
  1085     __ movptr(method, STATE(_method));
  1086     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1087     __ jcc(Assembler::notEqual, pending_exception_present);
  1088     __ verify_oop(method);
  1089     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
  1090     __ bind(L);
  1092 #ifdef ASSERT
  1094     Label L;
  1095     __ push(t);
  1096     __ get_thread(t);                                   // get vm's javathread*
  1097     __ cmpptr(t, STATE(_thread));
  1098     __ jcc(Assembler::equal, L);
  1099     __ int3();
  1100     __ bind(L);
  1101     __ pop(t);
  1103 #endif //
  1105   const Register from_ptr = InterpreterRuntime::SignatureHandlerGenerator::from();
  1106   // call signature handler
  1107   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
  1109   // The generated handlers do not touch RBX (the method oop).
  1110   // However, large signatures cannot be cached and are generated
  1111   // each time here.  The slow-path generator will blow RBX
  1112   // sometime, so we must reload it after the call.
  1113   __ movptr(from_ptr, STATE(_locals));  // get the from pointer
  1114   __ call(t);
  1115   __ movptr(method, STATE(_method));
  1116   __ verify_oop(method);
  1118   // result handler is in rax
  1119   // set result handler
  1120   __ movptr(STATE(_result_handler), rax);
  1123   // get native function entry point
  1124   { Label L;
  1125     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
  1126     __ testptr(rax, rax);
  1127     __ jcc(Assembler::notZero, L);
  1128     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1129     __ movptr(method, STATE(_method));
  1130     __ verify_oop(method);
  1131     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
  1132     __ bind(L);
  1135   // pass mirror handle if static call
  1136   { Label L;
  1137     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
  1138     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
  1139     __ testl(t, JVM_ACC_STATIC);
  1140     __ jcc(Assembler::zero, L);
  1141     // get mirror
  1142     __ movptr(t, Address(method, methodOopDesc:: constants_offset()));
  1143     __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
  1144     __ movptr(t, Address(t, mirror_offset));
  1145     // copy mirror into activation object
  1146     __ movptr(STATE(_oop_temp), t);
  1147     // pass handle to mirror
  1148 #ifdef _LP64
  1149     __ lea(c_rarg1, STATE(_oop_temp));
  1150 #else
  1151     __ lea(t, STATE(_oop_temp));
  1152     __ movptr(Address(rsp, wordSize), t);
  1153 #endif // _LP64
  1154     __ bind(L);
  1156 #ifdef ASSERT
  1158     Label L;
  1159     __ push(t);
  1160     __ get_thread(t);                                   // get vm's javathread*
  1161     __ cmpptr(t, STATE(_thread));
  1162     __ jcc(Assembler::equal, L);
  1163     __ int3();
  1164     __ bind(L);
  1165     __ pop(t);
  1167 #endif //
  1169   // pass JNIEnv
  1170 #ifdef _LP64
  1171   __ lea(c_rarg0, Address(thread, JavaThread::jni_environment_offset()));
  1172 #else
  1173   __ movptr(thread, STATE(_thread));          // get thread
  1174   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
  1176   __ movptr(Address(rsp, 0), t);
  1177 #endif // _LP64
  1179 #ifdef ASSERT
  1181     Label L;
  1182     __ push(t);
  1183     __ get_thread(t);                                   // get vm's javathread*
  1184     __ cmpptr(t, STATE(_thread));
  1185     __ jcc(Assembler::equal, L);
  1186     __ int3();
  1187     __ bind(L);
  1188     __ pop(t);
  1190 #endif //
  1192 #ifdef ASSERT
  1193   { Label L;
  1194     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
  1195     __ cmpl(t, _thread_in_Java);
  1196     __ jcc(Assembler::equal, L);
  1197     __ stop("Wrong thread state in native stub");
  1198     __ bind(L);
  1200 #endif
  1202   // Change state to native (we save the return address in the thread, since it might not
  1203   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1204   // points into the right code segment. It does not have to be the correct return pc.
  1206   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1208   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1210   __ call(rax);
  1212   // result potentially in rdx:rax or ST0
  1213   __ movptr(method, STATE(_method));
  1214   NOT_LP64(__ movptr(thread, STATE(_thread));)                  // get thread
  1216   // The potential result is in ST(0) & rdx:rax
  1217   // With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then
  1218   // we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about
  1219   // anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would
  1220   // be destroyed.
  1221   // It is safe to do these pushes because state is _thread_in_native and return address will be found
  1222   // via _last_native_pc and not via _last_jave_sp
  1224     // Must save the value of ST(0)/xmm0 since it could be destroyed before we get to result handler
  1225     { Label Lpush, Lskip;
  1226       ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
  1227       ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
  1228       __ cmpptr(STATE(_result_handler), float_handler.addr());
  1229       __ jcc(Assembler::equal, Lpush);
  1230       __ cmpptr(STATE(_result_handler), double_handler.addr());
  1231       __ jcc(Assembler::notEqual, Lskip);
  1232       __ bind(Lpush);
  1233       __ subptr(rsp, 2*wordSize);
  1234       if ( UseSSE < 2 ) {
  1235         __ fstp_d(Address(rsp, 0));
  1236       } else {
  1237         __ movdbl(Address(rsp, 0), xmm0);
  1239       __ bind(Lskip);
  1242   // save rax:rdx for potential use by result handler.
  1243   __ push(rax);
  1244 #ifndef _LP64
  1245   __ push(rdx);
  1246 #endif // _LP64
  1248   // Either restore the MXCSR register after returning from the JNI Call
  1249   // or verify that it wasn't changed.
  1250   if (VM_Version::supports_sse()) {
  1251     if (RestoreMXCSROnJNICalls) {
  1252       __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
  1254     else if (CheckJNICalls ) {
  1255       __ call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
  1259 #ifndef _LP64
  1260   // Either restore the x87 floating pointer control word after returning
  1261   // from the JNI call or verify that it wasn't changed.
  1262   if (CheckJNICalls) {
  1263     __ call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
  1265 #endif // _LP64
  1268   // change thread state
  1269   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1270   if(os::is_MP()) {
  1271     // Write serialization page so VM thread can do a pseudo remote membar.
  1272     // We use the current thread pointer to calculate a thread specific
  1273     // offset to write to within the page. This minimizes bus traffic
  1274     // due to cache line collision.
  1275     __ serialize_memory(thread, rcx);
  1278   // check for safepoint operation in progress and/or pending suspend requests
  1279   { Label Continue;
  1281     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1282              SafepointSynchronize::_not_synchronized);
  1284     // threads running native code and they are expected to self-suspend
  1285     // when leaving the _thread_in_native state. We need to check for
  1286     // pending suspend requests here.
  1287     Label L;
  1288     __ jcc(Assembler::notEqual, L);
  1289     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1290     __ jcc(Assembler::equal, Continue);
  1291     __ bind(L);
  1293     // Don't use call_VM as it will see a possible pending exception and forward it
  1294     // and never return here preventing us from clearing _last_native_pc down below.
  1295     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1296     // preserved and correspond to the bcp/locals pointers.
  1297     //
  1299     ((MacroAssembler*)_masm)->call_VM_leaf(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  1300                           thread);
  1301     __ increment(rsp, wordSize);
  1303     __ movptr(method, STATE(_method));
  1304     __ verify_oop(method);
  1305     __ movptr(thread, STATE(_thread));                       // get thread
  1307     __ bind(Continue);
  1310   // change thread state
  1311   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1313   __ reset_last_Java_frame(thread, true, true);
  1315   // reset handle block
  1316   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
  1317   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  1319   // If result was an oop then unbox and save it in the frame
  1320   { Label L;
  1321     Label no_oop, store_result;
  1322       ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT));
  1323     __ cmpptr(STATE(_result_handler), oop_handler.addr());
  1324     __ jcc(Assembler::notEqual, no_oop);
  1325 #ifndef _LP64
  1326     __ pop(rdx);
  1327 #endif // _LP64
  1328     __ pop(rax);
  1329     __ testptr(rax, rax);
  1330     __ jcc(Assembler::zero, store_result);
  1331     // unbox
  1332     __ movptr(rax, Address(rax, 0));
  1333     __ bind(store_result);
  1334     __ movptr(STATE(_oop_temp), rax);
  1335     // keep stack depth as expected by pushing oop which will eventually be discarded
  1336     __ push(rax);
  1337 #ifndef _LP64
  1338     __ push(rdx);
  1339 #endif // _LP64
  1340     __ bind(no_oop);
  1344      Label no_reguard;
  1345      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1346      __ jcc(Assembler::notEqual, no_reguard);
  1348      __ pusha();
  1349      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1350      __ popa();
  1352      __ bind(no_reguard);
  1356   // QQQ Seems like for native methods we simply return and the caller will see the pending
  1357   // exception and do the right thing. Certainly the interpreter will, don't know about
  1358   // compiled methods.
  1359   // Seems that the answer to above is no this is wrong. The old code would see the exception
  1360   // and forward it before doing the unlocking and notifying jvmdi that method has exited.
  1361   // This seems wrong need to investigate the spec.
  1363   // handle exceptions (exception handling will handle unlocking!)
  1364   { Label L;
  1365     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1366     __ jcc(Assembler::zero, L);
  1367     __ bind(pending_exception_present);
  1369     // There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply
  1370     // return and let caller deal with exception. This skips the unlocking here which
  1371     // seems wrong but seems to be what asm interpreter did. Can't find this in the spec.
  1372     // Note: must preverve method in rbx
  1373     //
  1375     // remove activation
  1377     __ movptr(t, STATE(_sender_sp));
  1378     __ leave();                                  // remove frame anchor
  1379     __ pop(rdi);                                 // get return address
  1380     __ movptr(state, STATE(_prev_link));         // get previous state for return
  1381     __ mov(rsp, t);                              // set sp to sender sp
  1382     __ push(rdi);                                // push throwing pc
  1383     // The skips unlocking!! This seems to be what asm interpreter does but seems
  1384     // very wrong. Not clear if this violates the spec.
  1385     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1386     __ bind(L);
  1389   // do unlocking if necessary
  1390   { Label L;
  1391     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
  1392     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1393     __ jcc(Assembler::zero, L);
  1394     // the code below should be shared with interpreter macro assembler implementation
  1395     { Label unlock;
  1396     const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
  1397       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1398       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1399       __ movptr(monitor, STATE(_monitor_base));
  1400       __ subptr(monitor, frame::interpreter_frame_monitor_size() * wordSize);  // address of initial monitor
  1402       __ movptr(t, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));
  1403       __ testptr(t, t);
  1404       __ jcc(Assembler::notZero, unlock);
  1406       // Entry already unlocked, need to throw exception
  1407       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1408       __ should_not_reach_here();
  1410       __ bind(unlock);
  1411       __ unlock_object(monitor);
  1412       // unlock can blow rbx so restore it for path that needs it below
  1413       __ movptr(method, STATE(_method));
  1415     __ bind(L);
  1418   // jvmti support
  1419   // Note: This must happen _after_ handling/throwing any exceptions since
  1420   //       the exception handler code notifies the runtime of method exits
  1421   //       too. If this happens before, method entry/exit notifications are
  1422   //       not properly paired (was bug - gri 11/22/99).
  1423   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1425   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
  1426 #ifndef _LP64
  1427   __ pop(rdx);
  1428 #endif // _LP64
  1429   __ pop(rax);
  1430   __ movptr(t, STATE(_result_handler));       // get result handler
  1431   __ call(t);                                 // call result handler to convert to tosca form
  1433   // remove activation
  1435   __ movptr(t, STATE(_sender_sp));
  1437   __ leave();                                  // remove frame anchor
  1438   __ pop(rdi);                                 // get return address
  1439   __ movptr(state, STATE(_prev_link));         // get previous state for return (if c++ interpreter was caller)
  1440   __ mov(rsp, t);                              // set sp to sender sp
  1441   __ jmp(rdi);
  1443   // invocation counter overflow
  1444   if (inc_counter) {
  1445     // Handle overflow of counter and compile method
  1446     __ bind(invocation_counter_overflow);
  1447     generate_counter_overflow(&continue_after_compile);
  1450   return entry_point;
  1453 // Generate entries that will put a result type index into rcx
  1454 void CppInterpreterGenerator::generate_deopt_handling() {
  1456   Label return_from_deopt_common;
  1458   // Generate entries that will put a result type index into rcx
  1459   // deopt needs to jump to here to enter the interpreter (return a result)
  1460   deopt_frame_manager_return_atos  = __ pc();
  1462   // rax is live here
  1463   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT));    // Result stub address array index
  1464   __ jmp(return_from_deopt_common);
  1467   // deopt needs to jump to here to enter the interpreter (return a result)
  1468   deopt_frame_manager_return_btos  = __ pc();
  1470   // rax is live here
  1471   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN));    // Result stub address array index
  1472   __ jmp(return_from_deopt_common);
  1474   // deopt needs to jump to here to enter the interpreter (return a result)
  1475   deopt_frame_manager_return_itos  = __ pc();
  1477   // rax is live here
  1478   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT));    // Result stub address array index
  1479   __ jmp(return_from_deopt_common);
  1481   // deopt needs to jump to here to enter the interpreter (return a result)
  1483   deopt_frame_manager_return_ltos  = __ pc();
  1484   // rax,rdx are live here
  1485   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG));    // Result stub address array index
  1486   __ jmp(return_from_deopt_common);
  1488   // deopt needs to jump to here to enter the interpreter (return a result)
  1490   deopt_frame_manager_return_ftos  = __ pc();
  1491   // st(0) is live here
  1492   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
  1493   __ jmp(return_from_deopt_common);
  1495   // deopt needs to jump to here to enter the interpreter (return a result)
  1496   deopt_frame_manager_return_dtos  = __ pc();
  1498   // st(0) is live here
  1499   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
  1500   __ jmp(return_from_deopt_common);
  1502   // deopt needs to jump to here to enter the interpreter (return a result)
  1503   deopt_frame_manager_return_vtos  = __ pc();
  1505   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID));
  1507   // Deopt return common
  1508   // an index is present in rcx that lets us move any possible result being
  1509   // return to the interpreter's stack
  1510   //
  1511   // Because we have a full sized interpreter frame on the youngest
  1512   // activation the stack is pushed too deep to share the tosca to
  1513   // stack converters directly. We shrink the stack to the desired
  1514   // amount and then push result and then re-extend the stack.
  1515   // We could have the code in size_activation layout a short
  1516   // frame for the top activation but that would look different
  1517   // than say sparc (which needs a full size activation because
  1518   // the windows are in the way. Really it could be short? QQQ
  1519   //
  1520   __ bind(return_from_deopt_common);
  1522   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
  1524   // setup rsp so we can push the "result" as needed.
  1525   __ movptr(rsp, STATE(_stack));                                   // trim stack (is prepushed)
  1526   __ addptr(rsp, wordSize);                                        // undo prepush
  1528   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
  1529   // Address index(noreg, rcx, Address::times_ptr);
  1530   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
  1531   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
  1532   __ call(rcx);                                                   // call result converter
  1534   __ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume);
  1535   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
  1536   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
  1537                                                                    // result if any on stack already )
  1538   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
  1541 // Generate the code to handle a more_monitors message from the c++ interpreter
  1542 void CppInterpreterGenerator::generate_more_monitors() {
  1545   Label entry, loop;
  1546   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  1547   // 1. compute new pointers                     // rsp: old expression stack top
  1548   __ movptr(rdx, STATE(_stack_base));            // rdx: old expression stack bottom
  1549   __ subptr(rsp, entry_size);                    // move expression stack top limit
  1550   __ subptr(STATE(_stack), entry_size);          // update interpreter stack top
  1551   __ subptr(STATE(_stack_limit), entry_size);    // inform interpreter
  1552   __ subptr(rdx, entry_size);                    // move expression stack bottom
  1553   __ movptr(STATE(_stack_base), rdx);            // inform interpreter
  1554   __ movptr(rcx, STATE(_stack));                 // set start value for copy loop
  1555   __ jmp(entry);
  1556   // 2. move expression stack contents
  1557   __ bind(loop);
  1558   __ movptr(rbx, Address(rcx, entry_size));      // load expression stack word from old location
  1559   __ movptr(Address(rcx, 0), rbx);               // and store it at new location
  1560   __ addptr(rcx, wordSize);                      // advance to next word
  1561   __ bind(entry);
  1562   __ cmpptr(rcx, rdx);                           // check if bottom reached
  1563   __ jcc(Assembler::notEqual, loop);             // if not at bottom then copy next word
  1564   // now zero the slot so we can find it.
  1565   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  1566   __ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors);
  1570 // Initial entry to C++ interpreter from the call_stub.
  1571 // This entry point is called the frame manager since it handles the generation
  1572 // of interpreter activation frames via requests directly from the vm (via call_stub)
  1573 // and via requests from the interpreter. The requests from the call_stub happen
  1574 // directly thru the entry point. Requests from the interpreter happen via returning
  1575 // from the interpreter and examining the message the interpreter has returned to
  1576 // the frame manager. The frame manager can take the following requests:
  1578 // NO_REQUEST - error, should never happen.
  1579 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
  1580 //                 allocate a new monitor.
  1581 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
  1582 //               happens during entry during the entry via the call stub.
  1583 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
  1584 //
  1585 // Arguments:
  1586 //
  1587 // rbx: methodOop
  1588 // rcx: receiver - unused (retrieved from stack as needed)
  1589 // rsi/r13: previous frame manager state (NULL from the call_stub/c1/c2)
  1590 //
  1591 //
  1592 // Stack layout at entry
  1593 //
  1594 // [ return address     ] <--- rsp
  1595 // [ parameter n        ]
  1596 //   ...
  1597 // [ parameter 1        ]
  1598 // [ expression stack   ]
  1599 //
  1600 //
  1601 // We are free to blow any registers we like because the call_stub which brought us here
  1602 // initially has preserved the callee save registers already.
  1603 //
  1604 //
  1606 static address interpreter_frame_manager = NULL;
  1608 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1610   // rbx: methodOop
  1611   // rsi/r13: sender sp
  1613   // Because we redispatch "recursive" interpreter entries thru this same entry point
  1614   // the "input" register usage is a little strange and not what you expect coming
  1615   // from the call_stub. From the call stub rsi/rdi (current/previous) interpreter
  1616   // state are NULL but on "recursive" dispatches they are what you'd expect.
  1617   // rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2)
  1620   // A single frame manager is plenty as we don't specialize for synchronized. We could and
  1621   // the code is pretty much ready. Would need to change the test below and for good measure
  1622   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
  1623   // routines. Not clear this is worth it yet.
  1625   if (interpreter_frame_manager) return interpreter_frame_manager;
  1627   address entry_point = __ pc();
  1629   // Fast accessor methods share this entry point.
  1630   // This works because frame manager is in the same codelet
  1631   if (UseFastAccessorMethods && !synchronized) __ bind(fast_accessor_slow_entry_path);
  1633   Label dispatch_entry_2;
  1634   __ movptr(rcx, sender_sp_on_entry);
  1635   __ movptr(state, (int32_t)NULL_WORD);                              // no current activation
  1637   __ jmp(dispatch_entry_2);
  1639   const Register locals  = rdi;
  1641   Label re_dispatch;
  1643   __ bind(re_dispatch);
  1645   // save sender sp (doesn't include return address
  1646   __ lea(rcx, Address(rsp, wordSize));
  1648   __ bind(dispatch_entry_2);
  1650   // save sender sp
  1651   __ push(rcx);
  1653   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
  1654   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
  1655   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
  1657   // const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1658   // const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  1659   // const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
  1661   // get parameter size (always needed)
  1662   __ load_unsigned_word(rcx, size_of_parameters);
  1664   // rbx: methodOop
  1665   // rcx: size of parameters
  1666   __ load_unsigned_word(rdx, size_of_locals);                      // get size of locals in words
  1668   __ subptr(rdx, rcx);                                             // rdx = no. of additional locals
  1670   // see if we've got enough room on the stack for locals plus overhead.
  1671   generate_stack_overflow_check();                                 // C++
  1673   // c++ interpreter does not use stack banging or any implicit exceptions
  1674   // leave for now to verify that check is proper.
  1675   bang_stack_shadow_pages(false);
  1679   // compute beginning of parameters (rdi)
  1680   __ lea(locals, Address(rsp, rcx, Address::times_ptr, wordSize));
  1682   // save sender's sp
  1683   // __ movl(rcx, rsp);
  1685   // get sender's sp
  1686   __ pop(rcx);
  1688   // get return address
  1689   __ pop(rax);
  1691   // rdx - # of additional locals
  1692   // allocate space for locals
  1693   // explicitly initialize locals
  1695     Label exit, loop;
  1696     __ testl(rdx, rdx);                               // (32bit ok)
  1697     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
  1698     __ bind(loop);
  1699     __ push((int32_t)NULL_WORD);                      // initialize local variables
  1700     __ decrement(rdx);                                // until everything initialized
  1701     __ jcc(Assembler::greater, loop);
  1702     __ bind(exit);
  1706   // Assumes rax = return address
  1708   // allocate and initialize new interpreterState and method expression stack
  1709   // IN(locals) ->  locals
  1710   // IN(state) -> any current interpreter activation
  1711   // destroys rax, rcx, rdx, rdi
  1712   // OUT (state) -> new interpreterState
  1713   // OUT(rsp) -> bottom of methods expression stack
  1715   generate_compute_interpreter_state(state, locals, rcx, false);
  1717   // Call interpreter
  1719   Label call_interpreter;
  1720   __ bind(call_interpreter);
  1722   // c++ interpreter does not use stack banging or any implicit exceptions
  1723   // leave for now to verify that check is proper.
  1724   bang_stack_shadow_pages(false);
  1727   // Call interpreter enter here if message is
  1728   // set and we know stack size is valid
  1730   Label call_interpreter_2;
  1732   __ bind(call_interpreter_2);
  1735     const Register thread  = NOT_LP64(rcx) LP64_ONLY(r15_thread);
  1737 #ifdef _LP64
  1738     __ mov(c_rarg0, state);
  1739 #else
  1740     __ push(state);                                                 // push arg to interpreter
  1741     __ movptr(thread, STATE(_thread));
  1742 #endif // _LP64
  1744     // We can setup the frame anchor with everything we want at this point
  1745     // as we are thread_in_Java and no safepoints can occur until we go to
  1746     // vm mode. We do have to clear flags on return from vm but that is it
  1747     //
  1748     __ movptr(Address(thread, JavaThread::last_Java_fp_offset()), rbp);
  1749     __ movptr(Address(thread, JavaThread::last_Java_sp_offset()), rsp);
  1751     // Call the interpreter
  1753     RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run));
  1754     RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks));
  1756     __ call(JvmtiExport::can_post_interpreter_events() ? checking : normal);
  1757     NOT_LP64(__ pop(rax);)                                          // discard parameter to run
  1758     //
  1759     // state is preserved since it is callee saved
  1760     //
  1762     // reset_last_Java_frame
  1764     NOT_LP64(__ movl(thread, STATE(_thread));)
  1765     __ reset_last_Java_frame(thread, true, true);
  1768   // examine msg from interpreter to determine next action
  1770   __ movl(rdx, STATE(_msg));                                       // Get new message
  1772   Label call_method;
  1773   Label return_from_interpreted_method;
  1774   Label throw_exception;
  1775   Label bad_msg;
  1776   Label do_OSR;
  1778   __ cmpl(rdx, (int32_t)BytecodeInterpreter::call_method);
  1779   __ jcc(Assembler::equal, call_method);
  1780   __ cmpl(rdx, (int32_t)BytecodeInterpreter::return_from_method);
  1781   __ jcc(Assembler::equal, return_from_interpreted_method);
  1782   __ cmpl(rdx, (int32_t)BytecodeInterpreter::do_osr);
  1783   __ jcc(Assembler::equal, do_OSR);
  1784   __ cmpl(rdx, (int32_t)BytecodeInterpreter::throwing_exception);
  1785   __ jcc(Assembler::equal, throw_exception);
  1786   __ cmpl(rdx, (int32_t)BytecodeInterpreter::more_monitors);
  1787   __ jcc(Assembler::notEqual, bad_msg);
  1789   // Allocate more monitor space, shuffle expression stack....
  1791   generate_more_monitors();
  1793   __ jmp(call_interpreter);
  1795   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
  1796   unctrap_frame_manager_entry  = __ pc();
  1797   //
  1798   // Load the registers we need.
  1799   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
  1800   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
  1801   __ jmp(call_interpreter_2);
  1805   //=============================================================================
  1806   // Returning from a compiled method into a deopted method. The bytecode at the
  1807   // bcp has completed. The result of the bytecode is in the native abi (the tosca
  1808   // for the template based interpreter). Any stack space that was used by the
  1809   // bytecode that has completed has been removed (e.g. parameters for an invoke)
  1810   // so all that we have to do is place any pending result on the expression stack
  1811   // and resume execution on the next bytecode.
  1814   generate_deopt_handling();
  1815   __ jmp(call_interpreter);
  1818   // Current frame has caught an exception we need to dispatch to the
  1819   // handler. We can get here because a native interpreter frame caught
  1820   // an exception in which case there is no handler and we must rethrow
  1821   // If it is a vanilla interpreted frame the we simply drop into the
  1822   // interpreter and let it do the lookup.
  1824   Interpreter::_rethrow_exception_entry = __ pc();
  1825   // rax: exception
  1826   // rdx: return address/pc that threw exception
  1828   Label return_with_exception;
  1829   Label unwind_and_forward;
  1831   // restore state pointer.
  1832   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
  1834   __ movptr(rbx, STATE(_method));                       // get method
  1835 #ifdef _LP64
  1836   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
  1837 #else
  1838   __ movl(rcx, STATE(_thread));                       // get thread
  1840   // Store exception with interpreter will expect it
  1841   __ movptr(Address(rcx, Thread::pending_exception_offset()), rax);
  1842 #endif // _LP64
  1844   // is current frame vanilla or native?
  1846   __ movl(rdx, access_flags);
  1847   __ testl(rdx, JVM_ACC_NATIVE);
  1848   __ jcc(Assembler::zero, return_with_exception);     // vanilla interpreted frame, handle directly
  1850   // We drop thru to unwind a native interpreted frame with a pending exception
  1851   // We jump here for the initial interpreter frame with exception pending
  1852   // We unwind the current acivation and forward it to our caller.
  1854   __ bind(unwind_and_forward);
  1856   // unwind rbp, return stack to unextended value and re-push return address
  1858   __ movptr(rcx, STATE(_sender_sp));
  1859   __ leave();
  1860   __ pop(rdx);
  1861   __ mov(rsp, rcx);
  1862   __ push(rdx);
  1863   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1865   // Return point from a call which returns a result in the native abi
  1866   // (c1/c2/jni-native). This result must be processed onto the java
  1867   // expression stack.
  1868   //
  1869   // A pending exception may be present in which case there is no result present
  1871   Label resume_interpreter;
  1872   Label do_float;
  1873   Label do_double;
  1874   Label done_conv;
  1876   address compiled_entry = __ pc();
  1878   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
  1879   if (UseSSE < 2) {
  1880     __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
  1881     __ movptr(rbx, STATE(_result._to_call._callee));                   // get method just executed
  1882     __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
  1883     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
  1884     __ jcc(Assembler::equal, do_float);
  1885     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
  1886     __ jcc(Assembler::equal, do_double);
  1887 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  1888     __ empty_FPU_stack();
  1889 #endif // COMPILER2
  1890     __ jmp(done_conv);
  1892     __ bind(do_float);
  1893 #ifdef COMPILER2
  1894     for (int i = 1; i < 8; i++) {
  1895       __ ffree(i);
  1897 #endif // COMPILER2
  1898     __ jmp(done_conv);
  1899     __ bind(do_double);
  1900 #ifdef COMPILER2
  1901     for (int i = 1; i < 8; i++) {
  1902       __ ffree(i);
  1904 #endif // COMPILER2
  1905     __ jmp(done_conv);
  1906   } else {
  1907     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
  1908     __ jmp(done_conv);
  1911 #if 0
  1912   // emit a sentinel we can test for when converting an interpreter
  1913   // entry point to a compiled entry point.
  1914   __ a_long(Interpreter::return_sentinel);
  1915   __ a_long((int)compiled_entry);
  1916 #endif
  1918   // Return point to interpreter from compiled/native method
  1920   InternalAddress return_from_native_method(__ pc());
  1922   __ bind(done_conv);
  1925   // Result if any is in tosca. The java expression stack is in the state that the
  1926   // calling convention left it (i.e. params may or may not be present)
  1927   // Copy the result from tosca and place it on java expression stack.
  1929   // Restore rsi/r13 as compiled code may not preserve it
  1931   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
  1933   // restore stack to what we had when we left (in case i2c extended it)
  1935   __ movptr(rsp, STATE(_stack));
  1936   __ lea(rsp, Address(rsp, wordSize));
  1938   // If there is a pending exception then we don't really have a result to process
  1940 #ifdef _LP64
  1941   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1942 #else
  1943   __ movptr(rcx, STATE(_thread));                       // get thread
  1944   __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1945 #endif // _LP64
  1946   __ jcc(Assembler::notZero, return_with_exception);
  1948   // get method just executed
  1949   __ movptr(rbx, STATE(_result._to_call._callee));
  1951   // callee left args on top of expression stack, remove them
  1952   __ load_unsigned_word(rcx, Address(rbx, methodOopDesc::size_of_parameters_offset()));
  1953   __ lea(rsp, Address(rsp, rcx, Address::times_ptr));
  1955   __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
  1956   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
  1957   // Address index(noreg, rax, Address::times_ptr);
  1958   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
  1959   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
  1960   __ call(rcx);                                               // call result converter
  1961   __ jmp(resume_interpreter);
  1963   // An exception is being caught on return to a vanilla interpreter frame.
  1964   // Empty the stack and resume interpreter
  1966   __ bind(return_with_exception);
  1968   // Exception present, empty stack
  1969   __ movptr(rsp, STATE(_stack_base));
  1970   __ jmp(resume_interpreter);
  1972   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
  1973   // interpreter call, or native) and unwind this interpreter activation.
  1974   // All monitors should be unlocked.
  1976   __ bind(return_from_interpreted_method);
  1978   Label return_to_initial_caller;
  1980   __ movptr(rbx, STATE(_method));                                   // get method just executed
  1981   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from "recursive" interpreter call?
  1982   __ movl(rax, Address(rbx, methodOopDesc::result_index_offset())); // get result type index
  1983   __ jcc(Assembler::equal, return_to_initial_caller);               // back to native code (call_stub/c1/c2)
  1985   // Copy result to callers java stack
  1986   ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack);
  1987   // Address index(noreg, rax, Address::times_ptr);
  1989   __ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_ptr)));
  1990   // __ movl(rax, Address(noreg, rax, Address::times_ptr, int(AbstractInterpreter::_stack_to_stack)));
  1991   __ call(rax);                                                     // call result converter
  1993   Label unwind_recursive_activation;
  1994   __ bind(unwind_recursive_activation);
  1996   // returning to interpreter method from "recursive" interpreter call
  1997   // result converter left rax pointing to top of the java stack for method we are returning
  1998   // to. Now all we must do is unwind the state from the completed call
  2000   __ movptr(state, STATE(_prev_link));                              // unwind state
  2001   __ leave();                                                       // pop the frame
  2002   __ mov(rsp, rax);                                                 // unwind stack to remove args
  2004   // Resume the interpreter. The current frame contains the current interpreter
  2005   // state object.
  2006   //
  2008   __ bind(resume_interpreter);
  2010   // state == interpreterState object for method we are resuming
  2012   __ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume);
  2013   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
  2014   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
  2015                                                                    // result if any on stack already )
  2016   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
  2017   __ jmp(call_interpreter_2);                                      // No need to bang
  2019   // interpreter returning to native code (call_stub/c1/c2)
  2020   // convert result and unwind initial activation
  2021   // rax - result index
  2023   __ bind(return_to_initial_caller);
  2024   ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi);
  2025   // Address index(noreg, rax, Address::times_ptr);
  2027   __ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_ptr)));
  2028   __ call(rax);                                                    // call result converter
  2030   Label unwind_initial_activation;
  2031   __ bind(unwind_initial_activation);
  2033   // RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0))
  2035   /* Current stack picture
  2037         [ incoming parameters ]
  2038         [ extra locals ]
  2039         [ return address to CALL_STUB/C1/C2]
  2040   fp -> [ CALL_STUB/C1/C2 fp ]
  2041         BytecodeInterpreter object
  2042         expression stack
  2043   sp ->
  2045   */
  2047   // return restoring the stack to the original sender_sp value
  2049   __ movptr(rcx, STATE(_sender_sp));
  2050   __ leave();
  2051   __ pop(rdi);                                                        // get return address
  2052   // set stack to sender's sp
  2053   __ mov(rsp, rcx);
  2054   __ jmp(rdi);                                                        // return to call_stub
  2056   // OSR request, adjust return address to make current frame into adapter frame
  2057   // and enter OSR nmethod
  2059   __ bind(do_OSR);
  2061   Label remove_initial_frame;
  2063   // We are going to pop this frame. Is there another interpreter frame underneath
  2064   // it or is it callstub/compiled?
  2066   // Move buffer to the expected parameter location
  2067   __ movptr(rcx, STATE(_result._osr._osr_buf));
  2069   __ movptr(rax, STATE(_result._osr._osr_entry));
  2071   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);            // returning from "recursive" interpreter call?
  2072   __ jcc(Assembler::equal, remove_initial_frame);              // back to native code (call_stub/c1/c2)
  2074   __ movptr(sender_sp_on_entry, STATE(_sender_sp));            // get sender's sp in expected register
  2075   __ leave();                                                  // pop the frame
  2076   __ mov(rsp, sender_sp_on_entry);                             // trim any stack expansion
  2079   // We know we are calling compiled so push specialized return
  2080   // method uses specialized entry, push a return so we look like call stub setup
  2081   // this path will handle fact that result is returned in registers and not
  2082   // on the java stack.
  2084   __ pushptr(return_from_native_method.addr());
  2086   __ jmp(rax);
  2088   __ bind(remove_initial_frame);
  2090   __ movptr(rdx, STATE(_sender_sp));
  2091   __ leave();
  2092   // get real return
  2093   __ pop(rsi);
  2094   // set stack to sender's sp
  2095   __ mov(rsp, rdx);
  2096   // repush real return
  2097   __ push(rsi);
  2098   // Enter OSR nmethod
  2099   __ jmp(rax);
  2104   // Call a new method. All we do is (temporarily) trim the expression stack
  2105   // push a return address to bring us back to here and leap to the new entry.
  2107   __ bind(call_method);
  2109   // stack points to next free location and not top element on expression stack
  2110   // method expects sp to be pointing to topmost element
  2112   __ movptr(rsp, STATE(_stack));                                     // pop args to c++ interpreter, set sp to java stack top
  2113   __ lea(rsp, Address(rsp, wordSize));
  2115   __ movptr(rbx, STATE(_result._to_call._callee));                   // get method to execute
  2117   // don't need a return address if reinvoking interpreter
  2119   // Make it look like call_stub calling conventions
  2121   // Get (potential) receiver
  2122   __ load_unsigned_word(rcx, size_of_parameters);                     // get size of parameters in words
  2124   ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
  2125   __ pushptr(recursive.addr());                                      // make it look good in the debugger
  2127   InternalAddress entry(entry_point);
  2128   __ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter?
  2129   __ jcc(Assembler::equal, re_dispatch);                             // yes
  2131   __ pop(rax);                                                       // pop dummy address
  2134   // get specialized entry
  2135   __ movptr(rax, STATE(_result._to_call._callee_entry_point));
  2136   // set sender SP
  2137   __ mov(sender_sp_on_entry, rsp);
  2139   // method uses specialized entry, push a return so we look like call stub setup
  2140   // this path will handle fact that result is returned in registers and not
  2141   // on the java stack.
  2143   __ pushptr(return_from_native_method.addr());
  2145   __ jmp(rax);
  2147   __ bind(bad_msg);
  2148   __ stop("Bad message from interpreter");
  2150   // Interpreted method "returned" with an exception pass it on...
  2151   // Pass result, unwind activation and continue/return to interpreter/call_stub
  2152   // We handle result (if any) differently based on return to interpreter or call_stub
  2154   Label unwind_initial_with_pending_exception;
  2156   __ bind(throw_exception);
  2157   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from recursive interpreter call?
  2158   __ jcc(Assembler::equal, unwind_initial_with_pending_exception);  // no, back to native code (call_stub/c1/c2)
  2159   __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
  2160   __ addptr(rax, wordSize);                                         // account for prepush before we return
  2161   __ jmp(unwind_recursive_activation);
  2163   __ bind(unwind_initial_with_pending_exception);
  2165   // We will unwind the current (initial) interpreter frame and forward
  2166   // the exception to the caller. We must put the exception in the
  2167   // expected register and clear pending exception and then forward.
  2169   __ jmp(unwind_and_forward);
  2171   interpreter_frame_manager = entry_point;
  2172   return entry_point;
  2175 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
  2176   // determine code generation flags
  2177   bool synchronized = false;
  2178   address entry_point = NULL;
  2180   switch (kind) {
  2181     case Interpreter::zerolocals             :                                                                             break;
  2182     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  2183     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
  2184     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
  2185     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
  2186     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
  2187     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
  2189     case Interpreter::java_lang_math_sin     : // fall thru
  2190     case Interpreter::java_lang_math_cos     : // fall thru
  2191     case Interpreter::java_lang_math_tan     : // fall thru
  2192     case Interpreter::java_lang_math_abs     : // fall thru
  2193     case Interpreter::java_lang_math_log     : // fall thru
  2194     case Interpreter::java_lang_math_log10   : // fall thru
  2195     case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
  2196     default                                  : ShouldNotReachHere();                                                       break;
  2199   if (entry_point) return entry_point;
  2201   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
  2205 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  2206  : CppInterpreterGenerator(code) {
  2207    generate_all(); // down here so it can be "virtual"
  2210 // Deoptimization helpers for C++ interpreter
  2212 // How much stack a method activation needs in words.
  2213 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  2215   const int stub_code = 4;  // see generate_call_stub
  2216   // Save space for one monitor to get into the interpreted method in case
  2217   // the method is synchronized
  2218   int monitor_size    = method->is_synchronized() ?
  2219                                 1*frame::interpreter_frame_monitor_size() : 0;
  2221   // total static overhead size. Account for interpreter state object, return
  2222   // address, saved rbp and 2 words for a "static long no_params() method" issue.
  2224   const int overhead_size = sizeof(BytecodeInterpreter)/wordSize +
  2225     ( frame::sender_sp_offset - frame::link_offset) + 2;
  2227   const int method_stack = (method->max_locals() + method->max_stack()) *
  2228                            Interpreter::stackElementWords();
  2229   return overhead_size + method_stack + stub_code;
  2232 // returns the activation size.
  2233 static int size_activation_helper(int extra_locals_size, int monitor_size) {
  2234   return (extra_locals_size +                  // the addition space for locals
  2235           2*BytesPerWord +                     // return address and saved rbp
  2236           2*BytesPerWord +                     // "static long no_params() method" issue
  2237           sizeof(BytecodeInterpreter) +               // interpreterState
  2238           monitor_size);                       // monitors
  2241 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
  2242                                            frame* caller,
  2243                                            frame* current,
  2244                                            methodOop method,
  2245                                            intptr_t* locals,
  2246                                            intptr_t* stack,
  2247                                            intptr_t* stack_base,
  2248                                            intptr_t* monitor_base,
  2249                                            intptr_t* frame_bottom,
  2250                                            bool is_top_frame
  2253   // What about any vtable?
  2254   //
  2255   to_fill->_thread = JavaThread::current();
  2256   // This gets filled in later but make it something recognizable for now
  2257   to_fill->_bcp = method->code_base();
  2258   to_fill->_locals = locals;
  2259   to_fill->_constants = method->constants()->cache();
  2260   to_fill->_method = method;
  2261   to_fill->_mdx = NULL;
  2262   to_fill->_stack = stack;
  2263   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
  2264     to_fill->_msg = deopt_resume2;
  2265   } else {
  2266     to_fill->_msg = method_resume;
  2268   to_fill->_result._to_call._bcp_advance = 0;
  2269   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
  2270   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
  2271   to_fill->_prev_link = NULL;
  2273   to_fill->_sender_sp = caller->unextended_sp();
  2275   if (caller->is_interpreted_frame()) {
  2276     interpreterState prev  = caller->get_interpreterState();
  2277     to_fill->_prev_link = prev;
  2278     // *current->register_addr(GR_Iprev_state) = (intptr_t) prev;
  2279     // Make the prev callee look proper
  2280     prev->_result._to_call._callee = method;
  2281     if (*prev->_bcp == Bytecodes::_invokeinterface) {
  2282       prev->_result._to_call._bcp_advance = 5;
  2283     } else {
  2284       prev->_result._to_call._bcp_advance = 3;
  2287   to_fill->_oop_temp = NULL;
  2288   to_fill->_stack_base = stack_base;
  2289   // Need +1 here because stack_base points to the word just above the first expr stack entry
  2290   // and stack_limit is supposed to point to the word just below the last expr stack entry.
  2291   // See generate_compute_interpreter_state.
  2292   to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
  2293   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
  2295   to_fill->_self_link = to_fill;
  2296   assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base,
  2297          "Stack top out of range");
  2300 int AbstractInterpreter::layout_activation(methodOop method,
  2301                                                 int tempcount,  //
  2302                                                 int popframe_extra_args,
  2303                                                 int moncount,
  2304                                                 int callee_param_count,
  2305                                                 int callee_locals,
  2306                                                 frame* caller,
  2307                                                 frame* interpreter_frame,
  2308                                                 bool is_top_frame) {
  2310   assert(popframe_extra_args == 0, "FIX ME");
  2311   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
  2312   // does as far as allocating an interpreter frame.
  2313   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  2314   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
  2315   // as determined by a previous call to this method.
  2316   // It is also guaranteed to be walkable even though it is in a skeletal state
  2317   // NOTE: return size is in words not bytes
  2318   // NOTE: tempcount is the current size of the java expression stack. For top most
  2319   //       frames we will allocate a full sized expression stack and not the curback
  2320   //       version that non-top frames have.
  2322   // Calculate the amount our frame will be adjust by the callee. For top frame
  2323   // this is zero.
  2325   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
  2326   // calculates the extra locals based on itself. Not what the callee does
  2327   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
  2328   // as getting sender_sp correct.
  2330   int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord;
  2331   int monitor_size = sizeof(BasicObjectLock) * moncount;
  2333   // First calculate the frame size without any java expression stack
  2334   int short_frame_size = size_activation_helper(extra_locals_size,
  2335                                                 monitor_size);
  2337   // Now with full size expression stack
  2338   int full_frame_size = short_frame_size + method->max_stack() * BytesPerWord;
  2340   // and now with only live portion of the expression stack
  2341   short_frame_size = short_frame_size + tempcount * BytesPerWord;
  2343   // the size the activation is right now. Only top frame is full size
  2344   int frame_size = (is_top_frame ? full_frame_size : short_frame_size);
  2346   if (interpreter_frame != NULL) {
  2347 #ifdef ASSERT
  2348     assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  2349 #endif
  2351     // MUCHO HACK
  2353     intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size));
  2355     /* Now fillin the interpreterState object */
  2357     // The state object is the first thing on the frame and easily located
  2359     interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
  2362     // Find the locals pointer. This is rather simple on x86 because there is no
  2363     // confusing rounding at the callee to account for. We can trivially locate
  2364     // our locals based on the current fp().
  2365     // Note: the + 2 is for handling the "static long no_params() method" issue.
  2366     // (too bad I don't really remember that issue well...)
  2368     intptr_t* locals;
  2369     // If the caller is interpreted we need to make sure that locals points to the first
  2370     // argument that the caller passed and not in an area where the stack might have been extended.
  2371     // because the stack to stack to converter needs a proper locals value in order to remove the
  2372     // arguments from the caller and place the result in the proper location. Hmm maybe it'd be
  2373     // simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code
  2374     // adjust the stack?? HMMM QQQ
  2375     //
  2376     if (caller->is_interpreted_frame()) {
  2377       // locals must agree with the caller because it will be used to set the
  2378       // caller's tos when we return.
  2379       interpreterState prev  = caller->get_interpreterState();
  2380       // stack() is prepushed.
  2381       locals = prev->stack() + method->size_of_parameters();
  2382       // locals = caller->unextended_sp() + (method->size_of_parameters() - 1);
  2383       if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) {
  2384         // os::breakpoint();
  2386     } else {
  2387       // this is where a c2i would have placed locals (except for the +2)
  2388       locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2;
  2391     intptr_t* monitor_base = (intptr_t*) cur_state;
  2392     intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size);
  2393     /* +1 because stack is always prepushed */
  2394     intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord);
  2397     BytecodeInterpreter::layout_interpreterState(cur_state,
  2398                                           caller,
  2399                                           interpreter_frame,
  2400                                           method,
  2401                                           locals,
  2402                                           stack,
  2403                                           stack_base,
  2404                                           monitor_base,
  2405                                           frame_bottom,
  2406                                           is_top_frame);
  2408     // BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
  2410   return frame_size/BytesPerWord;
  2413 #endif // CC_INTERP (all)

mercurial