src/share/vm/opto/node.hpp

Tue, 10 Mar 2020 10:46:35 +0100

author
mdoerr
date
Tue, 10 Mar 2020 10:46:35 +0100
changeset 9912
97d09139b360
parent 8504
a96cf90239c6
child 9931
fd44df5e3bc3
child 9952
19056c781208
permissions
-rw-r--r--

8146612: C2: Precedence edges specification violated
Reviewed-by: kvn

duke@435 1 /*
mdoerr@9912 2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_NODE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_NODE_HPP
stefank@2314 27
stefank@2314 28 #include "libadt/port.hpp"
stefank@2314 29 #include "libadt/vectset.hpp"
stefank@2314 30 #include "opto/compile.hpp"
stefank@2314 31 #include "opto/type.hpp"
stefank@2314 32
duke@435 33 // Portions of code courtesy of Clifford Click
duke@435 34
duke@435 35 // Optimization - Graph Style
duke@435 36
duke@435 37
duke@435 38 class AbstractLockNode;
duke@435 39 class AddNode;
duke@435 40 class AddPNode;
duke@435 41 class AliasInfo;
duke@435 42 class AllocateArrayNode;
duke@435 43 class AllocateNode;
duke@435 44 class Block;
duke@435 45 class BoolNode;
duke@435 46 class BoxLockNode;
duke@435 47 class CMoveNode;
duke@435 48 class CallDynamicJavaNode;
duke@435 49 class CallJavaNode;
duke@435 50 class CallLeafNode;
duke@435 51 class CallNode;
duke@435 52 class CallRuntimeNode;
duke@435 53 class CallStaticJavaNode;
duke@435 54 class CatchNode;
duke@435 55 class CatchProjNode;
duke@435 56 class CheckCastPPNode;
thartmann@8476 57 class CastIINode;
kvn@1535 58 class ClearArrayNode;
duke@435 59 class CmpNode;
duke@435 60 class CodeBuffer;
duke@435 61 class ConstraintCastNode;
duke@435 62 class ConNode;
duke@435 63 class CountedLoopNode;
duke@435 64 class CountedLoopEndNode;
roland@4159 65 class DecodeNarrowPtrNode;
kvn@603 66 class DecodeNNode;
roland@4159 67 class DecodeNKlassNode;
roland@4159 68 class EncodeNarrowPtrNode;
kvn@603 69 class EncodePNode;
roland@4159 70 class EncodePKlassNode;
duke@435 71 class FastLockNode;
duke@435 72 class FastUnlockNode;
duke@435 73 class IfNode;
kvn@3040 74 class IfFalseNode;
kvn@3040 75 class IfTrueNode;
duke@435 76 class InitializeNode;
duke@435 77 class JVMState;
duke@435 78 class JumpNode;
duke@435 79 class JumpProjNode;
duke@435 80 class LoadNode;
duke@435 81 class LoadStoreNode;
duke@435 82 class LockNode;
duke@435 83 class LoopNode;
kvn@3051 84 class MachBranchNode;
duke@435 85 class MachCallDynamicJavaNode;
duke@435 86 class MachCallJavaNode;
duke@435 87 class MachCallLeafNode;
duke@435 88 class MachCallNode;
duke@435 89 class MachCallRuntimeNode;
duke@435 90 class MachCallStaticJavaNode;
twisti@2350 91 class MachConstantBaseNode;
twisti@2350 92 class MachConstantNode;
kvn@3040 93 class MachGotoNode;
duke@435 94 class MachIfNode;
duke@435 95 class MachNode;
duke@435 96 class MachNullCheckNode;
kvn@3040 97 class MachProjNode;
duke@435 98 class MachReturnNode;
duke@435 99 class MachSafePointNode;
duke@435 100 class MachSpillCopyNode;
duke@435 101 class MachTempNode;
iveresov@7564 102 class MachMergeNode;
duke@435 103 class Matcher;
duke@435 104 class MemBarNode;
roland@3392 105 class MemBarStoreStoreNode;
duke@435 106 class MemNode;
duke@435 107 class MergeMemNode;
kvn@3882 108 class MulNode;
duke@435 109 class MultiNode;
duke@435 110 class MultiBranchNode;
duke@435 111 class NeverBranchNode;
duke@435 112 class Node;
duke@435 113 class Node_Array;
duke@435 114 class Node_List;
duke@435 115 class Node_Stack;
duke@435 116 class NullCheckNode;
duke@435 117 class OopMap;
kvn@468 118 class ParmNode;
duke@435 119 class PCTableNode;
duke@435 120 class PhaseCCP;
duke@435 121 class PhaseGVN;
duke@435 122 class PhaseIterGVN;
duke@435 123 class PhaseRegAlloc;
duke@435 124 class PhaseTransform;
duke@435 125 class PhaseValues;
duke@435 126 class PhiNode;
duke@435 127 class Pipeline;
duke@435 128 class ProjNode;
duke@435 129 class RegMask;
duke@435 130 class RegionNode;
duke@435 131 class RootNode;
duke@435 132 class SafePointNode;
kvn@498 133 class SafePointScalarObjectNode;
duke@435 134 class StartNode;
duke@435 135 class State;
duke@435 136 class StoreNode;
duke@435 137 class SubNode;
duke@435 138 class Type;
duke@435 139 class TypeNode;
duke@435 140 class UnlockNode;
kvn@3040 141 class VectorNode;
kvn@3882 142 class LoadVectorNode;
kvn@3882 143 class StoreVectorNode;
duke@435 144 class VectorSet;
duke@435 145 typedef void (*NFunc)(Node&,void*);
duke@435 146 extern "C" {
duke@435 147 typedef int (*C_sort_func_t)(const void *, const void *);
duke@435 148 }
duke@435 149
duke@435 150 // The type of all node counts and indexes.
duke@435 151 // It must hold at least 16 bits, but must also be fast to load and store.
duke@435 152 // This type, if less than 32 bits, could limit the number of possible nodes.
duke@435 153 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
duke@435 154 typedef unsigned int node_idx_t;
duke@435 155
duke@435 156
duke@435 157 #ifndef OPTO_DU_ITERATOR_ASSERT
duke@435 158 #ifdef ASSERT
duke@435 159 #define OPTO_DU_ITERATOR_ASSERT 1
duke@435 160 #else
duke@435 161 #define OPTO_DU_ITERATOR_ASSERT 0
duke@435 162 #endif
duke@435 163 #endif //OPTO_DU_ITERATOR_ASSERT
duke@435 164
duke@435 165 #if OPTO_DU_ITERATOR_ASSERT
duke@435 166 class DUIterator;
duke@435 167 class DUIterator_Fast;
duke@435 168 class DUIterator_Last;
duke@435 169 #else
duke@435 170 typedef uint DUIterator;
duke@435 171 typedef Node** DUIterator_Fast;
duke@435 172 typedef Node** DUIterator_Last;
duke@435 173 #endif
duke@435 174
duke@435 175 // Node Sentinel
duke@435 176 #define NodeSentinel (Node*)-1
duke@435 177
duke@435 178 // Unknown count frequency
duke@435 179 #define COUNT_UNKNOWN (-1.0f)
duke@435 180
duke@435 181 //------------------------------Node-------------------------------------------
duke@435 182 // Nodes define actions in the program. They create values, which have types.
duke@435 183 // They are both vertices in a directed graph and program primitives. Nodes
duke@435 184 // are labeled; the label is the "opcode", the primitive function in the lambda
duke@435 185 // calculus sense that gives meaning to the Node. Node inputs are ordered (so
duke@435 186 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to
duke@435 187 // the Node's function. These inputs also define a Type equation for the Node.
duke@435 188 // Solving these Type equations amounts to doing dataflow analysis.
duke@435 189 // Control and data are uniformly represented in the graph. Finally, Nodes
duke@435 190 // have a unique dense integer index which is used to index into side arrays
duke@435 191 // whenever I have phase-specific information.
duke@435 192
duke@435 193 class Node {
never@3138 194 friend class VMStructs;
never@3138 195
duke@435 196 // Lots of restrictions on cloning Nodes
duke@435 197 Node(const Node&); // not defined; linker error to use these
duke@435 198 Node &operator=(const Node &rhs);
duke@435 199
duke@435 200 public:
duke@435 201 friend class Compile;
duke@435 202 #if OPTO_DU_ITERATOR_ASSERT
duke@435 203 friend class DUIterator_Common;
duke@435 204 friend class DUIterator;
duke@435 205 friend class DUIterator_Fast;
duke@435 206 friend class DUIterator_Last;
duke@435 207 #endif
duke@435 208
duke@435 209 // Because Nodes come and go, I define an Arena of Node structures to pull
duke@435 210 // from. This should allow fast access to node creation & deletion. This
duke@435 211 // field is a local cache of a value defined in some "program fragment" for
duke@435 212 // which these Nodes are just a part of.
duke@435 213
duke@435 214 // New Operator that takes a Compile pointer, this will eventually
duke@435 215 // be the "new" New operator.
coleenp@5614 216 inline void* operator new( size_t x, Compile* C) throw() {
duke@435 217 Node* n = (Node*)C->node_arena()->Amalloc_D(x);
duke@435 218 #ifdef ASSERT
duke@435 219 n->_in = (Node**)n; // magic cookie for assertion check
duke@435 220 #endif
duke@435 221 n->_out = (Node**)C;
duke@435 222 return (void*)n;
duke@435 223 }
duke@435 224
duke@435 225 // Delete is a NOP
duke@435 226 void operator delete( void *ptr ) {}
duke@435 227 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
duke@435 228 void destruct();
duke@435 229
duke@435 230 // Create a new Node. Required is the number is of inputs required for
duke@435 231 // semantic correctness.
duke@435 232 Node( uint required );
duke@435 233
duke@435 234 // Create a new Node with given input edges.
duke@435 235 // This version requires use of the "edge-count" new.
duke@435 236 // E.g. new (C,3) FooNode( C, NULL, left, right );
duke@435 237 Node( Node *n0 );
duke@435 238 Node( Node *n0, Node *n1 );
duke@435 239 Node( Node *n0, Node *n1, Node *n2 );
duke@435 240 Node( Node *n0, Node *n1, Node *n2, Node *n3 );
duke@435 241 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
duke@435 242 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
duke@435 243 Node( Node *n0, Node *n1, Node *n2, Node *n3,
duke@435 244 Node *n4, Node *n5, Node *n6 );
duke@435 245
duke@435 246 // Clone an inherited Node given only the base Node type.
duke@435 247 Node* clone() const;
duke@435 248
duke@435 249 // Clone a Node, immediately supplying one or two new edges.
duke@435 250 // The first and second arguments, if non-null, replace in(1) and in(2),
duke@435 251 // respectively.
duke@435 252 Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
duke@435 253 Node* nn = clone();
duke@435 254 if (in1 != NULL) nn->set_req(1, in1);
duke@435 255 if (in2 != NULL) nn->set_req(2, in2);
duke@435 256 return nn;
duke@435 257 }
duke@435 258
duke@435 259 private:
duke@435 260 // Shared setup for the above constructors.
duke@435 261 // Handles all interactions with Compile::current.
duke@435 262 // Puts initial values in all Node fields except _idx.
duke@435 263 // Returns the initial value for _idx, which cannot
duke@435 264 // be initialized by assignment.
duke@435 265 inline int Init(int req, Compile* C);
duke@435 266
duke@435 267 //----------------- input edge handling
duke@435 268 protected:
duke@435 269 friend class PhaseCFG; // Access to address of _in array elements
duke@435 270 Node **_in; // Array of use-def references to Nodes
duke@435 271 Node **_out; // Array of def-use references to Nodes
duke@435 272
twisti@1040 273 // Input edges are split into two categories. Required edges are required
duke@435 274 // for semantic correctness; order is important and NULLs are allowed.
duke@435 275 // Precedence edges are used to help determine execution order and are
duke@435 276 // added, e.g., for scheduling purposes. They are unordered and not
duke@435 277 // duplicated; they have no embedded NULLs. Edges from 0 to _cnt-1
duke@435 278 // are required, from _cnt to _max-1 are precedence edges.
duke@435 279 node_idx_t _cnt; // Total number of required Node inputs.
duke@435 280
duke@435 281 node_idx_t _max; // Actual length of input array.
duke@435 282
duke@435 283 // Output edges are an unordered list of def-use edges which exactly
duke@435 284 // correspond to required input edges which point from other nodes
duke@435 285 // to this one. Thus the count of the output edges is the number of
duke@435 286 // users of this node.
duke@435 287 node_idx_t _outcnt; // Total number of Node outputs.
duke@435 288
duke@435 289 node_idx_t _outmax; // Actual length of output array.
duke@435 290
duke@435 291 // Grow the actual input array to the next larger power-of-2 bigger than len.
duke@435 292 void grow( uint len );
duke@435 293 // Grow the output array to the next larger power-of-2 bigger than len.
duke@435 294 void out_grow( uint len );
duke@435 295
duke@435 296 public:
duke@435 297 // Each Node is assigned a unique small/dense number. This number is used
zmajo@8193 298 // to index into auxiliary arrays of data and bit vectors.
zmajo@8193 299 // The field _idx is declared constant to defend against inadvertent assignments,
zmajo@8193 300 // since it is used by clients as a naked field. However, the field's value can be
zmajo@8193 301 // changed using the set_idx() method.
zmajo@8193 302 //
zmajo@8193 303 // The PhaseRenumberLive phase renumbers nodes based on liveness information.
zmajo@8193 304 // Therefore, it updates the value of the _idx field. The parse-time _idx is
zmajo@8193 305 // preserved in _parse_idx.
duke@435 306 const node_idx_t _idx;
zmajo@8193 307 DEBUG_ONLY(const node_idx_t _parse_idx;)
duke@435 308
duke@435 309 // Get the (read-only) number of input edges
duke@435 310 uint req() const { return _cnt; }
duke@435 311 uint len() const { return _max; }
duke@435 312 // Get the (read-only) number of output edges
duke@435 313 uint outcnt() const { return _outcnt; }
duke@435 314
duke@435 315 #if OPTO_DU_ITERATOR_ASSERT
duke@435 316 // Iterate over the out-edges of this node. Deletions are illegal.
duke@435 317 inline DUIterator outs() const;
duke@435 318 // Use this when the out array might have changed to suppress asserts.
duke@435 319 inline DUIterator& refresh_out_pos(DUIterator& i) const;
duke@435 320 // Does the node have an out at this position? (Used for iteration.)
duke@435 321 inline bool has_out(DUIterator& i) const;
duke@435 322 inline Node* out(DUIterator& i) const;
duke@435 323 // Iterate over the out-edges of this node. All changes are illegal.
duke@435 324 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
duke@435 325 inline Node* fast_out(DUIterator_Fast& i) const;
duke@435 326 // Iterate over the out-edges of this node, deleting one at a time.
duke@435 327 inline DUIterator_Last last_outs(DUIterator_Last& min) const;
duke@435 328 inline Node* last_out(DUIterator_Last& i) const;
duke@435 329 // The inline bodies of all these methods are after the iterator definitions.
duke@435 330 #else
duke@435 331 // Iterate over the out-edges of this node. Deletions are illegal.
duke@435 332 // This iteration uses integral indexes, to decouple from array reallocations.
duke@435 333 DUIterator outs() const { return 0; }
duke@435 334 // Use this when the out array might have changed to suppress asserts.
duke@435 335 DUIterator refresh_out_pos(DUIterator i) const { return i; }
duke@435 336
duke@435 337 // Reference to the i'th output Node. Error if out of bounds.
duke@435 338 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
duke@435 339 // Does the node have an out at this position? (Used for iteration.)
duke@435 340 bool has_out(DUIterator i) const { return i < _outcnt; }
duke@435 341
duke@435 342 // Iterate over the out-edges of this node. All changes are illegal.
duke@435 343 // This iteration uses a pointer internal to the out array.
duke@435 344 DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
duke@435 345 Node** out = _out;
duke@435 346 // Assign a limit pointer to the reference argument:
duke@435 347 max = out + (ptrdiff_t)_outcnt;
duke@435 348 // Return the base pointer:
duke@435 349 return out;
duke@435 350 }
duke@435 351 Node* fast_out(DUIterator_Fast i) const { return *i; }
duke@435 352 // Iterate over the out-edges of this node, deleting one at a time.
duke@435 353 // This iteration uses a pointer internal to the out array.
duke@435 354 DUIterator_Last last_outs(DUIterator_Last& min) const {
duke@435 355 Node** out = _out;
duke@435 356 // Assign a limit pointer to the reference argument:
duke@435 357 min = out;
duke@435 358 // Return the pointer to the start of the iteration:
duke@435 359 return out + (ptrdiff_t)_outcnt - 1;
duke@435 360 }
duke@435 361 Node* last_out(DUIterator_Last i) const { return *i; }
duke@435 362 #endif
duke@435 363
duke@435 364 // Reference to the i'th input Node. Error if out of bounds.
kvn@3971 365 Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
goetz@6478 366 // Reference to the i'th input Node. NULL if out of bounds.
goetz@6478 367 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
duke@435 368 // Reference to the i'th output Node. Error if out of bounds.
duke@435 369 // Use this accessor sparingly. We are going trying to use iterators instead.
duke@435 370 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
duke@435 371 // Return the unique out edge.
duke@435 372 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
duke@435 373 // Delete out edge at position 'i' by moving last out edge to position 'i'
duke@435 374 void raw_del_out(uint i) {
duke@435 375 assert(i < _outcnt,"oob");
duke@435 376 assert(_outcnt > 0,"oob");
duke@435 377 #if OPTO_DU_ITERATOR_ASSERT
duke@435 378 // Record that a change happened here.
duke@435 379 debug_only(_last_del = _out[i]; ++_del_tick);
duke@435 380 #endif
duke@435 381 _out[i] = _out[--_outcnt];
duke@435 382 // Smash the old edge so it can't be used accidentally.
duke@435 383 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
duke@435 384 }
duke@435 385
duke@435 386 #ifdef ASSERT
duke@435 387 bool is_dead() const;
duke@435 388 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
duke@435 389 #endif
roland@4589 390 // Check whether node has become unreachable
roland@4589 391 bool is_unreachable(PhaseIterGVN &igvn) const;
duke@435 392
duke@435 393 // Set a required input edge, also updates corresponding output edge
duke@435 394 void add_req( Node *n ); // Append a NEW required input
goetz@6478 395 void add_req( Node *n0, Node *n1 ) {
goetz@6478 396 add_req(n0); add_req(n1); }
goetz@6478 397 void add_req( Node *n0, Node *n1, Node *n2 ) {
goetz@6478 398 add_req(n0); add_req(n1); add_req(n2); }
duke@435 399 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
duke@435 400 void del_req( uint idx ); // Delete required edge & compact
kvn@5626 401 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
duke@435 402 void ins_req( uint i, Node *n ); // Insert a NEW required input
duke@435 403 void set_req( uint i, Node *n ) {
duke@435 404 assert( is_not_dead(n), "can not use dead node");
kvn@3971 405 assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
duke@435 406 assert( !VerifyHashTableKeys || _hash_lock == 0,
duke@435 407 "remove node from hash table before modifying it");
duke@435 408 Node** p = &_in[i]; // cache this._in, across the del_out call
duke@435 409 if (*p != NULL) (*p)->del_out((Node *)this);
duke@435 410 (*p) = n;
duke@435 411 if (n != NULL) n->add_out((Node *)this);
duke@435 412 }
duke@435 413 // Light version of set_req() to init inputs after node creation.
duke@435 414 void init_req( uint i, Node *n ) {
duke@435 415 assert( i == 0 && this == n ||
duke@435 416 is_not_dead(n), "can not use dead node");
duke@435 417 assert( i < _cnt, "oob");
duke@435 418 assert( !VerifyHashTableKeys || _hash_lock == 0,
duke@435 419 "remove node from hash table before modifying it");
duke@435 420 assert( _in[i] == NULL, "sanity");
duke@435 421 _in[i] = n;
duke@435 422 if (n != NULL) n->add_out((Node *)this);
duke@435 423 }
duke@435 424 // Find first occurrence of n among my edges:
duke@435 425 int find_edge(Node* n);
mdoerr@9912 426 int find_prec_edge(Node* n) {
mdoerr@9912 427 for (uint i = req(); i < len(); i++) {
mdoerr@9912 428 if (_in[i] == n) return i;
mdoerr@9912 429 if (_in[i] == NULL) {
mdoerr@9912 430 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == NULL, "Gap in prec edges!"); )
mdoerr@9912 431 break;
mdoerr@9912 432 }
mdoerr@9912 433 }
mdoerr@9912 434 return -1;
mdoerr@9912 435 }
duke@435 436 int replace_edge(Node* old, Node* neww);
kvn@5110 437 int replace_edges_in_range(Node* old, Node* neww, int start, int end);
duke@435 438 // NULL out all inputs to eliminate incoming Def-Use edges.
duke@435 439 // Return the number of edges between 'n' and 'this'
bharadwaj@4315 440 int disconnect_inputs(Node *n, Compile *c);
duke@435 441
duke@435 442 // Quickly, return true if and only if I am Compile::current()->top().
duke@435 443 bool is_top() const {
duke@435 444 assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
duke@435 445 return (_out == NULL);
duke@435 446 }
duke@435 447 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.)
duke@435 448 void setup_is_top();
duke@435 449
duke@435 450 // Strip away casting. (It is depth-limited.)
duke@435 451 Node* uncast() const;
kvn@3407 452 // Return whether two Nodes are equivalent, after stripping casting.
kvn@3407 453 bool eqv_uncast(const Node* n) const {
kvn@3407 454 return (this->uncast() == n->uncast());
kvn@3407 455 }
duke@435 456
duke@435 457 private:
duke@435 458 static Node* uncast_helper(const Node* n);
duke@435 459
duke@435 460 // Add an output edge to the end of the list
duke@435 461 void add_out( Node *n ) {
duke@435 462 if (is_top()) return;
duke@435 463 if( _outcnt == _outmax ) out_grow(_outcnt);
duke@435 464 _out[_outcnt++] = n;
duke@435 465 }
duke@435 466 // Delete an output edge
duke@435 467 void del_out( Node *n ) {
duke@435 468 if (is_top()) return;
duke@435 469 Node** outp = &_out[_outcnt];
duke@435 470 // Find and remove n
duke@435 471 do {
duke@435 472 assert(outp > _out, "Missing Def-Use edge");
duke@435 473 } while (*--outp != n);
duke@435 474 *outp = _out[--_outcnt];
duke@435 475 // Smash the old edge so it can't be used accidentally.
duke@435 476 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
duke@435 477 // Record that a change happened here.
duke@435 478 #if OPTO_DU_ITERATOR_ASSERT
duke@435 479 debug_only(_last_del = n; ++_del_tick);
duke@435 480 #endif
duke@435 481 }
mdoerr@9912 482 // Close gap after removing edge.
mdoerr@9912 483 void close_prec_gap_at(uint gap) {
mdoerr@9912 484 assert(_cnt <= gap && gap < _max, "no valid prec edge");
mdoerr@9912 485 uint i = gap;
mdoerr@9912 486 Node *last = NULL;
mdoerr@9912 487 for (; i < _max-1; ++i) {
mdoerr@9912 488 Node *next = _in[i+1];
mdoerr@9912 489 if (next == NULL) break;
mdoerr@9912 490 last = next;
mdoerr@9912 491 }
mdoerr@9912 492 _in[gap] = last; // Move last slot to empty one.
mdoerr@9912 493 _in[i] = NULL; // NULL out last slot.
mdoerr@9912 494 }
duke@435 495
duke@435 496 public:
duke@435 497 // Globally replace this node by a given new node, updating all uses.
duke@435 498 void replace_by(Node* new_node);
kvn@603 499 // Globally replace this node by a given new node, updating all uses
kvn@603 500 // and cutting input edges of old node.
bharadwaj@4315 501 void subsume_by(Node* new_node, Compile* c) {
kvn@603 502 replace_by(new_node);
bharadwaj@4315 503 disconnect_inputs(NULL, c);
kvn@603 504 }
duke@435 505 void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
duke@435 506 // Find the one non-null required input. RegionNode only
duke@435 507 Node *nonnull_req() const;
duke@435 508 // Add or remove precedence edges
duke@435 509 void add_prec( Node *n );
duke@435 510 void rm_prec( uint i );
mdoerr@9912 511
mdoerr@9912 512 // Note: prec(i) will not necessarily point to n if edge already exists.
duke@435 513 void set_prec( uint i, Node *n ) {
mdoerr@9912 514 assert(i < _max, err_msg("oob: i=%d, _max=%d", i, _max));
mdoerr@9912 515 assert(is_not_dead(n), "can not use dead node");
mdoerr@9912 516 assert(i >= _cnt, "not a precedence edge");
mdoerr@9912 517 // Avoid spec violation: duplicated prec edge.
mdoerr@9912 518 if (_in[i] == n) return;
mdoerr@9912 519 if (n == NULL || find_prec_edge(n) != -1) {
mdoerr@9912 520 rm_prec(i);
mdoerr@9912 521 return;
mdoerr@9912 522 }
duke@435 523 if (_in[i] != NULL) _in[i]->del_out((Node *)this);
duke@435 524 _in[i] = n;
duke@435 525 if (n != NULL) n->add_out((Node *)this);
duke@435 526 }
mdoerr@9912 527
duke@435 528 // Set this node's index, used by cisc_version to replace current node
duke@435 529 void set_idx(uint new_idx) {
duke@435 530 const node_idx_t* ref = &_idx;
duke@435 531 *(node_idx_t*)ref = new_idx;
duke@435 532 }
duke@435 533 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.)
duke@435 534 void swap_edges(uint i1, uint i2) {
duke@435 535 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
duke@435 536 // Def-Use info is unchanged
duke@435 537 Node* n1 = in(i1);
duke@435 538 Node* n2 = in(i2);
duke@435 539 _in[i1] = n2;
duke@435 540 _in[i2] = n1;
duke@435 541 // If this node is in the hash table, make sure it doesn't need a rehash.
duke@435 542 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
duke@435 543 }
duke@435 544
duke@435 545 // Iterators over input Nodes for a Node X are written as:
duke@435 546 // for( i = 0; i < X.req(); i++ ) ... X[i] ...
duke@435 547 // NOTE: Required edges can contain embedded NULL pointers.
duke@435 548
duke@435 549 //----------------- Other Node Properties
duke@435 550
duke@435 551 // Generate class id for some ideal nodes to avoid virtual query
duke@435 552 // methods is_<Node>().
duke@435 553 // Class id is the set of bits corresponded to the node class and all its
duke@435 554 // super classes so that queries for super classes are also valid.
duke@435 555 // Subclasses of the same super class have different assigned bit
duke@435 556 // (the third parameter in the macro DEFINE_CLASS_ID).
duke@435 557 // Classes with deeper hierarchy are declared first.
duke@435 558 // Classes with the same hierarchy depth are sorted by usage frequency.
duke@435 559 //
duke@435 560 // The query method masks the bits to cut off bits of subclasses
duke@435 561 // and then compare the result with the class id
duke@435 562 // (see the macro DEFINE_CLASS_QUERY below).
duke@435 563 //
duke@435 564 // Class_MachCall=30, ClassMask_MachCall=31
duke@435 565 // 12 8 4 0
duke@435 566 // 0 0 0 0 0 0 0 0 1 1 1 1 0
duke@435 567 // | | | |
duke@435 568 // | | | Bit_Mach=2
duke@435 569 // | | Bit_MachReturn=4
duke@435 570 // | Bit_MachSafePoint=8
duke@435 571 // Bit_MachCall=16
duke@435 572 //
duke@435 573 // Class_CountedLoop=56, ClassMask_CountedLoop=63
duke@435 574 // 12 8 4 0
duke@435 575 // 0 0 0 0 0 0 0 1 1 1 0 0 0
duke@435 576 // | | |
duke@435 577 // | | Bit_Region=8
duke@435 578 // | Bit_Loop=16
duke@435 579 // Bit_CountedLoop=32
duke@435 580
duke@435 581 #define DEFINE_CLASS_ID(cl, supcl, subn) \
duke@435 582 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
duke@435 583 Class_##cl = Class_##supcl + Bit_##cl , \
duke@435 584 ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
duke@435 585
duke@435 586 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
duke@435 587 // so that it's values fits into 16 bits.
duke@435 588 enum NodeClasses {
duke@435 589 Bit_Node = 0x0000,
duke@435 590 Class_Node = 0x0000,
duke@435 591 ClassMask_Node = 0xFFFF,
duke@435 592
duke@435 593 DEFINE_CLASS_ID(Multi, Node, 0)
duke@435 594 DEFINE_CLASS_ID(SafePoint, Multi, 0)
duke@435 595 DEFINE_CLASS_ID(Call, SafePoint, 0)
duke@435 596 DEFINE_CLASS_ID(CallJava, Call, 0)
duke@435 597 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0)
duke@435 598 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1)
duke@435 599 DEFINE_CLASS_ID(CallRuntime, Call, 1)
duke@435 600 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0)
duke@435 601 DEFINE_CLASS_ID(Allocate, Call, 2)
duke@435 602 DEFINE_CLASS_ID(AllocateArray, Allocate, 0)
duke@435 603 DEFINE_CLASS_ID(AbstractLock, Call, 3)
duke@435 604 DEFINE_CLASS_ID(Lock, AbstractLock, 0)
duke@435 605 DEFINE_CLASS_ID(Unlock, AbstractLock, 1)
duke@435 606 DEFINE_CLASS_ID(MultiBranch, Multi, 1)
duke@435 607 DEFINE_CLASS_ID(PCTable, MultiBranch, 0)
duke@435 608 DEFINE_CLASS_ID(Catch, PCTable, 0)
duke@435 609 DEFINE_CLASS_ID(Jump, PCTable, 1)
duke@435 610 DEFINE_CLASS_ID(If, MultiBranch, 1)
duke@435 611 DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
duke@435 612 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
duke@435 613 DEFINE_CLASS_ID(Start, Multi, 2)
duke@435 614 DEFINE_CLASS_ID(MemBar, Multi, 3)
roland@3392 615 DEFINE_CLASS_ID(Initialize, MemBar, 0)
roland@3392 616 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
duke@435 617
duke@435 618 DEFINE_CLASS_ID(Mach, Node, 1)
duke@435 619 DEFINE_CLASS_ID(MachReturn, Mach, 0)
duke@435 620 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
duke@435 621 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
duke@435 622 DEFINE_CLASS_ID(MachCallJava, MachCall, 0)
duke@435 623 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0)
duke@435 624 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1)
duke@435 625 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1)
duke@435 626 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0)
kvn@3051 627 DEFINE_CLASS_ID(MachBranch, Mach, 1)
kvn@3051 628 DEFINE_CLASS_ID(MachIf, MachBranch, 0)
kvn@3051 629 DEFINE_CLASS_ID(MachGoto, MachBranch, 1)
kvn@3051 630 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2)
kvn@3051 631 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2)
kvn@3051 632 DEFINE_CLASS_ID(MachTemp, Mach, 3)
kvn@3051 633 DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
kvn@3051 634 DEFINE_CLASS_ID(MachConstant, Mach, 5)
iveresov@7564 635 DEFINE_CLASS_ID(MachMerge, Mach, 6)
duke@435 636
kvn@3040 637 DEFINE_CLASS_ID(Type, Node, 2)
duke@435 638 DEFINE_CLASS_ID(Phi, Type, 0)
duke@435 639 DEFINE_CLASS_ID(ConstraintCast, Type, 1)
thartmann@8476 640 DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
duke@435 641 DEFINE_CLASS_ID(CheckCastPP, Type, 2)
duke@435 642 DEFINE_CLASS_ID(CMove, Type, 3)
kvn@498 643 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
roland@4159 644 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
roland@4159 645 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
roland@4159 646 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
roland@4159 647 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
roland@4159 648 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
roland@4159 649 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
duke@435 650
kvn@3040 651 DEFINE_CLASS_ID(Proj, Node, 3)
kvn@3040 652 DEFINE_CLASS_ID(CatchProj, Proj, 0)
kvn@3040 653 DEFINE_CLASS_ID(JumpProj, Proj, 1)
kvn@3040 654 DEFINE_CLASS_ID(IfTrue, Proj, 2)
kvn@3040 655 DEFINE_CLASS_ID(IfFalse, Proj, 3)
kvn@3040 656 DEFINE_CLASS_ID(Parm, Proj, 4)
kvn@3040 657 DEFINE_CLASS_ID(MachProj, Proj, 5)
kvn@3040 658
kvn@3040 659 DEFINE_CLASS_ID(Mem, Node, 4)
duke@435 660 DEFINE_CLASS_ID(Load, Mem, 0)
kvn@3882 661 DEFINE_CLASS_ID(LoadVector, Load, 0)
duke@435 662 DEFINE_CLASS_ID(Store, Mem, 1)
kvn@3882 663 DEFINE_CLASS_ID(StoreVector, Store, 0)
duke@435 664 DEFINE_CLASS_ID(LoadStore, Mem, 2)
duke@435 665
kvn@3040 666 DEFINE_CLASS_ID(Region, Node, 5)
kvn@3040 667 DEFINE_CLASS_ID(Loop, Region, 0)
kvn@3040 668 DEFINE_CLASS_ID(Root, Loop, 0)
kvn@3040 669 DEFINE_CLASS_ID(CountedLoop, Loop, 1)
kvn@3040 670
kvn@3040 671 DEFINE_CLASS_ID(Sub, Node, 6)
kvn@3040 672 DEFINE_CLASS_ID(Cmp, Sub, 0)
kvn@3040 673 DEFINE_CLASS_ID(FastLock, Cmp, 0)
kvn@3040 674 DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
kvn@3040 675
duke@435 676 DEFINE_CLASS_ID(MergeMem, Node, 7)
duke@435 677 DEFINE_CLASS_ID(Bool, Node, 8)
duke@435 678 DEFINE_CLASS_ID(AddP, Node, 9)
duke@435 679 DEFINE_CLASS_ID(BoxLock, Node, 10)
duke@435 680 DEFINE_CLASS_ID(Add, Node, 11)
kvn@3882 681 DEFINE_CLASS_ID(Mul, Node, 12)
kvn@3882 682 DEFINE_CLASS_ID(Vector, Node, 13)
kvn@3882 683 DEFINE_CLASS_ID(ClearArray, Node, 14)
duke@435 684
kvn@1535 685 _max_classes = ClassMask_ClearArray
duke@435 686 };
duke@435 687 #undef DEFINE_CLASS_ID
duke@435 688
duke@435 689 // Flags are sorted by usage frequency.
duke@435 690 enum NodeFlags {
iveresov@6620 691 Flag_is_Copy = 0x01, // should be first bit to avoid shift
iveresov@6620 692 Flag_rematerialize = Flag_is_Copy << 1,
duke@435 693 Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
iveresov@6620 694 Flag_is_macro = Flag_needs_anti_dependence_check << 1,
iveresov@6620 695 Flag_is_Con = Flag_is_macro << 1,
iveresov@6620 696 Flag_is_cisc_alternate = Flag_is_Con << 1,
iveresov@6620 697 Flag_is_dead_loop_safe = Flag_is_cisc_alternate << 1,
iveresov@6620 698 Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
iveresov@6620 699 Flag_avoid_back_to_back_before = Flag_may_be_short_branch << 1,
iveresov@6620 700 Flag_avoid_back_to_back_after = Flag_avoid_back_to_back_before << 1,
iveresov@6620 701 Flag_has_call = Flag_avoid_back_to_back_after << 1,
iveresov@6620 702 Flag_is_expensive = Flag_has_call << 1,
roland@4589 703 _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
duke@435 704 };
duke@435 705
duke@435 706 private:
duke@435 707 jushort _class_id;
duke@435 708 jushort _flags;
duke@435 709
duke@435 710 protected:
duke@435 711 // These methods should be called from constructors only.
duke@435 712 void init_class_id(jushort c) {
duke@435 713 assert(c <= _max_classes, "invalid node class");
duke@435 714 _class_id = c; // cast out const
duke@435 715 }
duke@435 716 void init_flags(jushort fl) {
duke@435 717 assert(fl <= _max_flags, "invalid node flag");
duke@435 718 _flags |= fl;
duke@435 719 }
duke@435 720 void clear_flag(jushort fl) {
duke@435 721 assert(fl <= _max_flags, "invalid node flag");
duke@435 722 _flags &= ~fl;
duke@435 723 }
duke@435 724
duke@435 725 public:
duke@435 726 const jushort class_id() const { return _class_id; }
duke@435 727
duke@435 728 const jushort flags() const { return _flags; }
duke@435 729
duke@435 730 // Return a dense integer opcode number
duke@435 731 virtual int Opcode() const;
duke@435 732
duke@435 733 // Virtual inherited Node size
duke@435 734 virtual uint size_of() const;
duke@435 735
duke@435 736 // Other interesting Node properties
never@1515 737 #define DEFINE_CLASS_QUERY(type) \
never@1515 738 bool is_##type() const { \
duke@435 739 return ((_class_id & ClassMask_##type) == Class_##type); \
never@1515 740 } \
never@1515 741 type##Node *as_##type() const { \
never@1515 742 assert(is_##type(), "invalid node class"); \
never@1515 743 return (type##Node*)this; \
never@1515 744 } \
never@1515 745 type##Node* isa_##type() const { \
never@1515 746 return (is_##type()) ? as_##type() : NULL; \
duke@435 747 }
duke@435 748
duke@435 749 DEFINE_CLASS_QUERY(AbstractLock)
duke@435 750 DEFINE_CLASS_QUERY(Add)
duke@435 751 DEFINE_CLASS_QUERY(AddP)
duke@435 752 DEFINE_CLASS_QUERY(Allocate)
duke@435 753 DEFINE_CLASS_QUERY(AllocateArray)
duke@435 754 DEFINE_CLASS_QUERY(Bool)
duke@435 755 DEFINE_CLASS_QUERY(BoxLock)
kvn@3040 756 DEFINE_CLASS_QUERY(Call)
duke@435 757 DEFINE_CLASS_QUERY(CallDynamicJava)
duke@435 758 DEFINE_CLASS_QUERY(CallJava)
duke@435 759 DEFINE_CLASS_QUERY(CallLeaf)
duke@435 760 DEFINE_CLASS_QUERY(CallRuntime)
duke@435 761 DEFINE_CLASS_QUERY(CallStaticJava)
duke@435 762 DEFINE_CLASS_QUERY(Catch)
duke@435 763 DEFINE_CLASS_QUERY(CatchProj)
duke@435 764 DEFINE_CLASS_QUERY(CheckCastPP)
thartmann@8476 765 DEFINE_CLASS_QUERY(CastII)
duke@435 766 DEFINE_CLASS_QUERY(ConstraintCast)
kvn@1535 767 DEFINE_CLASS_QUERY(ClearArray)
duke@435 768 DEFINE_CLASS_QUERY(CMove)
duke@435 769 DEFINE_CLASS_QUERY(Cmp)
duke@435 770 DEFINE_CLASS_QUERY(CountedLoop)
duke@435 771 DEFINE_CLASS_QUERY(CountedLoopEnd)
roland@4159 772 DEFINE_CLASS_QUERY(DecodeNarrowPtr)
kvn@603 773 DEFINE_CLASS_QUERY(DecodeN)
roland@4159 774 DEFINE_CLASS_QUERY(DecodeNKlass)
roland@4159 775 DEFINE_CLASS_QUERY(EncodeNarrowPtr)
kvn@603 776 DEFINE_CLASS_QUERY(EncodeP)
roland@4159 777 DEFINE_CLASS_QUERY(EncodePKlass)
duke@435 778 DEFINE_CLASS_QUERY(FastLock)
duke@435 779 DEFINE_CLASS_QUERY(FastUnlock)
duke@435 780 DEFINE_CLASS_QUERY(If)
duke@435 781 DEFINE_CLASS_QUERY(IfFalse)
duke@435 782 DEFINE_CLASS_QUERY(IfTrue)
duke@435 783 DEFINE_CLASS_QUERY(Initialize)
duke@435 784 DEFINE_CLASS_QUERY(Jump)
duke@435 785 DEFINE_CLASS_QUERY(JumpProj)
duke@435 786 DEFINE_CLASS_QUERY(Load)
duke@435 787 DEFINE_CLASS_QUERY(LoadStore)
duke@435 788 DEFINE_CLASS_QUERY(Lock)
duke@435 789 DEFINE_CLASS_QUERY(Loop)
duke@435 790 DEFINE_CLASS_QUERY(Mach)
kvn@3051 791 DEFINE_CLASS_QUERY(MachBranch)
duke@435 792 DEFINE_CLASS_QUERY(MachCall)
duke@435 793 DEFINE_CLASS_QUERY(MachCallDynamicJava)
duke@435 794 DEFINE_CLASS_QUERY(MachCallJava)
duke@435 795 DEFINE_CLASS_QUERY(MachCallLeaf)
duke@435 796 DEFINE_CLASS_QUERY(MachCallRuntime)
duke@435 797 DEFINE_CLASS_QUERY(MachCallStaticJava)
twisti@2350 798 DEFINE_CLASS_QUERY(MachConstantBase)
twisti@2350 799 DEFINE_CLASS_QUERY(MachConstant)
kvn@3040 800 DEFINE_CLASS_QUERY(MachGoto)
duke@435 801 DEFINE_CLASS_QUERY(MachIf)
duke@435 802 DEFINE_CLASS_QUERY(MachNullCheck)
kvn@3040 803 DEFINE_CLASS_QUERY(MachProj)
duke@435 804 DEFINE_CLASS_QUERY(MachReturn)
duke@435 805 DEFINE_CLASS_QUERY(MachSafePoint)
duke@435 806 DEFINE_CLASS_QUERY(MachSpillCopy)
duke@435 807 DEFINE_CLASS_QUERY(MachTemp)
iveresov@7564 808 DEFINE_CLASS_QUERY(MachMerge)
duke@435 809 DEFINE_CLASS_QUERY(Mem)
duke@435 810 DEFINE_CLASS_QUERY(MemBar)
roland@3392 811 DEFINE_CLASS_QUERY(MemBarStoreStore)
duke@435 812 DEFINE_CLASS_QUERY(MergeMem)
kvn@3882 813 DEFINE_CLASS_QUERY(Mul)
duke@435 814 DEFINE_CLASS_QUERY(Multi)
duke@435 815 DEFINE_CLASS_QUERY(MultiBranch)
kvn@468 816 DEFINE_CLASS_QUERY(Parm)
duke@435 817 DEFINE_CLASS_QUERY(PCTable)
duke@435 818 DEFINE_CLASS_QUERY(Phi)
duke@435 819 DEFINE_CLASS_QUERY(Proj)
duke@435 820 DEFINE_CLASS_QUERY(Region)
duke@435 821 DEFINE_CLASS_QUERY(Root)
duke@435 822 DEFINE_CLASS_QUERY(SafePoint)
kvn@498 823 DEFINE_CLASS_QUERY(SafePointScalarObject)
duke@435 824 DEFINE_CLASS_QUERY(Start)
duke@435 825 DEFINE_CLASS_QUERY(Store)
duke@435 826 DEFINE_CLASS_QUERY(Sub)
duke@435 827 DEFINE_CLASS_QUERY(Type)
kvn@3040 828 DEFINE_CLASS_QUERY(Vector)
kvn@3882 829 DEFINE_CLASS_QUERY(LoadVector)
kvn@3882 830 DEFINE_CLASS_QUERY(StoreVector)
duke@435 831 DEFINE_CLASS_QUERY(Unlock)
duke@435 832
duke@435 833 #undef DEFINE_CLASS_QUERY
duke@435 834
duke@435 835 // duplicate of is_MachSpillCopy()
duke@435 836 bool is_SpillCopy () const {
duke@435 837 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
duke@435 838 }
duke@435 839
duke@435 840 bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
duke@435 841 // The data node which is safe to leave in dead loop during IGVN optimization.
duke@435 842 bool is_dead_loop_safe() const {
kvn@561 843 return is_Phi() || (is_Proj() && in(0) == NULL) ||
kvn@561 844 ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
kvn@561 845 (!is_Proj() || !in(0)->is_Allocate()));
duke@435 846 }
duke@435 847
duke@435 848 // is_Copy() returns copied edge index (0 or 1)
duke@435 849 uint is_Copy() const { return (_flags & Flag_is_Copy); }
duke@435 850
duke@435 851 virtual bool is_CFG() const { return false; }
duke@435 852
duke@435 853 // If this node is control-dependent on a test, can it be
duke@435 854 // rerouted to a dominating equivalent test? This is usually
duke@435 855 // true of non-CFG nodes, but can be false for operations which
duke@435 856 // depend for their correct sequencing on more than one test.
duke@435 857 // (In that case, hoisting to a dominating test may silently
duke@435 858 // skip some other important test.)
duke@435 859 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
duke@435 860
duke@435 861 // When building basic blocks, I need to have a notion of block beginning
duke@435 862 // Nodes, next block selector Nodes (block enders), and next block
duke@435 863 // projections. These calls need to work on their machine equivalents. The
duke@435 864 // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
duke@435 865 bool is_block_start() const {
duke@435 866 if ( is_Region() )
duke@435 867 return this == (const Node*)in(0);
duke@435 868 else
kvn@3040 869 return is_Start();
duke@435 870 }
duke@435 871
duke@435 872 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
duke@435 873 // Goto and Return. This call also returns the block ending Node.
duke@435 874 virtual const Node *is_block_proj() const;
duke@435 875
duke@435 876 // The node is a "macro" node which needs to be expanded before matching
duke@435 877 bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
roland@4589 878 // The node is expensive: the best control is set during loop opts
roland@4589 879 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
duke@435 880
duke@435 881 //----------------- Optimization
duke@435 882
duke@435 883 // Get the worst-case Type output for this Node.
duke@435 884 virtual const class Type *bottom_type() const;
duke@435 885
duke@435 886 // If we find a better type for a node, try to record it permanently.
duke@435 887 // Return true if this node actually changed.
duke@435 888 // Be sure to do the hash_delete game in the "rehash" variant.
duke@435 889 void raise_bottom_type(const Type* new_type);
duke@435 890
duke@435 891 // Get the address type with which this node uses and/or defs memory,
duke@435 892 // or NULL if none. The address type is conservatively wide.
duke@435 893 // Returns non-null for calls, membars, loads, stores, etc.
duke@435 894 // Returns TypePtr::BOTTOM if the node touches memory "broadly".
duke@435 895 virtual const class TypePtr *adr_type() const { return NULL; }
duke@435 896
duke@435 897 // Return an existing node which computes the same function as this node.
duke@435 898 // The optimistic combined algorithm requires this to return a Node which
duke@435 899 // is a small number of steps away (e.g., one of my inputs).
duke@435 900 virtual Node *Identity( PhaseTransform *phase );
duke@435 901
duke@435 902 // Return the set of values this Node can take on at runtime.
duke@435 903 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 904
duke@435 905 // Return a node which is more "ideal" than the current node.
duke@435 906 // The invariants on this call are subtle. If in doubt, read the
duke@435 907 // treatise in node.cpp above the default implemention AND TEST WITH
duke@435 908 // +VerifyIterativeGVN!
duke@435 909 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 910
duke@435 911 // Some nodes have specific Ideal subgraph transformations only if they are
duke@435 912 // unique users of specific nodes. Such nodes should be put on IGVN worklist
duke@435 913 // for the transformations to happen.
duke@435 914 bool has_special_unique_user() const;
duke@435 915
kvn@554 916 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
kvn@554 917 Node* find_exact_control(Node* ctrl);
kvn@554 918
kvn@554 919 // Check if 'this' node dominates or equal to 'sub'.
kvn@554 920 bool dominates(Node* sub, Node_List &nlist);
kvn@554 921
duke@435 922 protected:
duke@435 923 bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
duke@435 924 public:
duke@435 925
duke@435 926 // Idealize graph, using DU info. Done after constant propagation
duke@435 927 virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
duke@435 928
duke@435 929 // See if there is valid pipeline info
duke@435 930 static const Pipeline *pipeline_class();
duke@435 931 virtual const Pipeline *pipeline() const;
duke@435 932
duke@435 933 // Compute the latency from the def to this instruction of the ith input node
duke@435 934 uint latency(uint i);
duke@435 935
duke@435 936 // Hash & compare functions, for pessimistic value numbering
duke@435 937
duke@435 938 // If the hash function returns the special sentinel value NO_HASH,
duke@435 939 // the node is guaranteed never to compare equal to any other node.
twisti@1040 940 // If we accidentally generate a hash with value NO_HASH the node
duke@435 941 // won't go into the table and we'll lose a little optimization.
duke@435 942 enum { NO_HASH = 0 };
duke@435 943 virtual uint hash() const;
duke@435 944 virtual uint cmp( const Node &n ) const;
duke@435 945
duke@435 946 // Operation appears to be iteratively computed (such as an induction variable)
duke@435 947 // It is possible for this operation to return false for a loop-varying
duke@435 948 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
duke@435 949 bool is_iteratively_computed();
duke@435 950
duke@435 951 // Determine if a node is Counted loop induction variable.
duke@435 952 // The method is defined in loopnode.cpp.
duke@435 953 const Node* is_loop_iv() const;
duke@435 954
duke@435 955 // Return a node with opcode "opc" and same inputs as "this" if one can
duke@435 956 // be found; Otherwise return NULL;
duke@435 957 Node* find_similar(int opc);
duke@435 958
duke@435 959 // Return the unique control out if only one. Null if none or more than one.
duke@435 960 Node* unique_ctrl_out();
duke@435 961
duke@435 962 //----------------- Code Generation
duke@435 963
duke@435 964 // Ideal register class for Matching. Zero means unmatched instruction
duke@435 965 // (these are cloned instead of converted to machine nodes).
duke@435 966 virtual uint ideal_reg() const;
duke@435 967
duke@435 968 static const uint NotAMachineReg; // must be > max. machine register
duke@435 969
duke@435 970 // Do we Match on this edge index or not? Generally false for Control
duke@435 971 // and true for everything else. Weird for calls & returns.
duke@435 972 virtual uint match_edge(uint idx) const;
duke@435 973
duke@435 974 // Register class output is returned in
duke@435 975 virtual const RegMask &out_RegMask() const;
duke@435 976 // Register class input is expected in
duke@435 977 virtual const RegMask &in_RegMask(uint) const;
duke@435 978 // Should we clone rather than spill this instruction?
duke@435 979 bool rematerialize() const;
duke@435 980
duke@435 981 // Return JVM State Object if this Node carries debug info, or NULL otherwise
duke@435 982 virtual JVMState* jvms() const;
duke@435 983
duke@435 984 // Print as assembly
duke@435 985 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
duke@435 986 // Emit bytes starting at parameter 'ptr'
duke@435 987 // Bump 'ptr' by the number of output bytes
duke@435 988 virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
duke@435 989 // Size of instruction in bytes
duke@435 990 virtual uint size(PhaseRegAlloc *ra_) const;
duke@435 991
duke@435 992 // Convenience function to extract an integer constant from a node.
duke@435 993 // If it is not an integer constant (either Con, CastII, or Mach),
duke@435 994 // return value_if_unknown.
duke@435 995 jint find_int_con(jint value_if_unknown) const {
duke@435 996 const TypeInt* t = find_int_type();
duke@435 997 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
duke@435 998 }
duke@435 999 // Return the constant, knowing it is an integer constant already
duke@435 1000 jint get_int() const {
duke@435 1001 const TypeInt* t = find_int_type();
duke@435 1002 guarantee(t != NULL, "must be con");
duke@435 1003 return t->get_con();
duke@435 1004 }
duke@435 1005 // Here's where the work is done. Can produce non-constant int types too.
duke@435 1006 const TypeInt* find_int_type() const;
duke@435 1007
duke@435 1008 // Same thing for long (and intptr_t, via type.hpp):
duke@435 1009 jlong get_long() const {
duke@435 1010 const TypeLong* t = find_long_type();
duke@435 1011 guarantee(t != NULL, "must be con");
duke@435 1012 return t->get_con();
duke@435 1013 }
duke@435 1014 jlong find_long_con(jint value_if_unknown) const {
duke@435 1015 const TypeLong* t = find_long_type();
duke@435 1016 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
duke@435 1017 }
duke@435 1018 const TypeLong* find_long_type() const;
duke@435 1019
kvn@5111 1020 const TypePtr* get_ptr_type() const;
kvn@5111 1021
duke@435 1022 // These guys are called by code generated by ADLC:
duke@435 1023 intptr_t get_ptr() const;
coleenp@548 1024 intptr_t get_narrowcon() const;
duke@435 1025 jdouble getd() const;
duke@435 1026 jfloat getf() const;
duke@435 1027
duke@435 1028 // Nodes which are pinned into basic blocks
duke@435 1029 virtual bool pinned() const { return false; }
duke@435 1030
duke@435 1031 // Nodes which use memory without consuming it, hence need antidependences
duke@435 1032 // More specifically, needs_anti_dependence_check returns true iff the node
duke@435 1033 // (a) does a load, and (b) does not perform a store (except perhaps to a
duke@435 1034 // stack slot or some other unaliased location).
duke@435 1035 bool needs_anti_dependence_check() const;
duke@435 1036
duke@435 1037 // Return which operand this instruction may cisc-spill. In other words,
duke@435 1038 // return operand position that can convert from reg to memory access
duke@435 1039 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
duke@435 1040 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
duke@435 1041
duke@435 1042 //----------------- Graph walking
duke@435 1043 public:
duke@435 1044 // Walk and apply member functions recursively.
duke@435 1045 // Supplied (this) pointer is root.
duke@435 1046 void walk(NFunc pre, NFunc post, void *env);
duke@435 1047 static void nop(Node &, void*); // Dummy empty function
duke@435 1048 static void packregion( Node &n, void* );
duke@435 1049 private:
duke@435 1050 void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
duke@435 1051
duke@435 1052 //----------------- Printing, etc
duke@435 1053 public:
duke@435 1054 #ifndef PRODUCT
duke@435 1055 Node* find(int idx) const; // Search the graph for the given idx.
duke@435 1056 Node* find_ctrl(int idx) const; // Search control ancestors for the given idx.
kvn@4478 1057 void dump() const { dump("\n"); } // Print this node.
kvn@4478 1058 void dump(const char* suffix, outputStream *st = tty) const;// Print this node.
duke@435 1059 void dump(int depth) const; // Print this node, recursively to depth d
duke@435 1060 void dump_ctrl(int depth) const; // Print control nodes, to depth d
kvn@4478 1061 virtual void dump_req(outputStream *st = tty) const; // Print required-edge info
kvn@4478 1062 virtual void dump_prec(outputStream *st = tty) const; // Print precedence-edge info
kvn@4478 1063 virtual void dump_out(outputStream *st = tty) const; // Print the output edge info
duke@435 1064 virtual void dump_spec(outputStream *st) const {}; // Print per-node info
duke@435 1065 void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
duke@435 1066 void verify() const; // Check Def-Use info for my subgraph
duke@435 1067 static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
duke@435 1068
duke@435 1069 // This call defines a class-unique string used to identify class instances
duke@435 1070 virtual const char *Name() const;
duke@435 1071
duke@435 1072 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
duke@435 1073 // RegMask Print Functions
duke@435 1074 void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
duke@435 1075 void dump_out_regmask() { out_RegMask().dump(); }
goetz@6488 1076 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
duke@435 1077 void fast_dump() const {
duke@435 1078 tty->print("%4d: %-17s", _idx, Name());
duke@435 1079 for (uint i = 0; i < len(); i++)
duke@435 1080 if (in(i))
duke@435 1081 tty->print(" %4d", in(i)->_idx);
duke@435 1082 else
duke@435 1083 tty->print(" NULL");
duke@435 1084 tty->print("\n");
duke@435 1085 }
duke@435 1086 #endif
duke@435 1087 #ifdef ASSERT
duke@435 1088 void verify_construction();
duke@435 1089 bool verify_jvms(const JVMState* jvms) const;
duke@435 1090 int _debug_idx; // Unique value assigned to every node.
duke@435 1091 int debug_idx() const { return _debug_idx; }
duke@435 1092 void set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
duke@435 1093
duke@435 1094 Node* _debug_orig; // Original version of this, if any.
duke@435 1095 Node* debug_orig() const { return _debug_orig; }
duke@435 1096 void set_debug_orig(Node* orig); // _debug_orig = orig
duke@435 1097
duke@435 1098 int _hash_lock; // Barrier to modifications of nodes in the hash table
duke@435 1099 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
duke@435 1100 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
duke@435 1101
duke@435 1102 static void init_NodeProperty();
duke@435 1103
duke@435 1104 #if OPTO_DU_ITERATOR_ASSERT
duke@435 1105 const Node* _last_del; // The last deleted node.
duke@435 1106 uint _del_tick; // Bumped when a deletion happens..
duke@435 1107 #endif
duke@435 1108 #endif
duke@435 1109 };
duke@435 1110
duke@435 1111 //-----------------------------------------------------------------------------
duke@435 1112 // Iterators over DU info, and associated Node functions.
duke@435 1113
duke@435 1114 #if OPTO_DU_ITERATOR_ASSERT
duke@435 1115
duke@435 1116 // Common code for assertion checking on DU iterators.
duke@435 1117 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
duke@435 1118 #ifdef ASSERT
duke@435 1119 protected:
duke@435 1120 bool _vdui; // cached value of VerifyDUIterators
duke@435 1121 const Node* _node; // the node containing the _out array
duke@435 1122 uint _outcnt; // cached node->_outcnt
duke@435 1123 uint _del_tick; // cached node->_del_tick
duke@435 1124 Node* _last; // last value produced by the iterator
duke@435 1125
duke@435 1126 void sample(const Node* node); // used by c'tor to set up for verifies
duke@435 1127 void verify(const Node* node, bool at_end_ok = false);
duke@435 1128 void verify_resync();
duke@435 1129 void reset(const DUIterator_Common& that);
duke@435 1130
duke@435 1131 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
duke@435 1132 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
duke@435 1133 #else
duke@435 1134 #define I_VDUI_ONLY(i,x) { }
duke@435 1135 #endif //ASSERT
duke@435 1136 };
duke@435 1137
duke@435 1138 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x)
duke@435 1139
duke@435 1140 // Default DU iterator. Allows appends onto the out array.
duke@435 1141 // Allows deletion from the out array only at the current point.
duke@435 1142 // Usage:
duke@435 1143 // for (DUIterator i = x->outs(); x->has_out(i); i++) {
duke@435 1144 // Node* y = x->out(i);
duke@435 1145 // ...
duke@435 1146 // }
duke@435 1147 // Compiles in product mode to a unsigned integer index, which indexes
duke@435 1148 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate
duke@435 1149 // also reloads x->_outcnt. If you delete, you must perform "--i" just
duke@435 1150 // before continuing the loop. You must delete only the last-produced
duke@435 1151 // edge. You must delete only a single copy of the last-produced edge,
duke@435 1152 // or else you must delete all copies at once (the first time the edge
duke@435 1153 // is produced by the iterator).
duke@435 1154 class DUIterator : public DUIterator_Common {
duke@435 1155 friend class Node;
duke@435 1156
duke@435 1157 // This is the index which provides the product-mode behavior.
duke@435 1158 // Whatever the product-mode version of the system does to the
duke@435 1159 // DUI index is done to this index. All other fields in
duke@435 1160 // this class are used only for assertion checking.
duke@435 1161 uint _idx;
duke@435 1162
duke@435 1163 #ifdef ASSERT
duke@435 1164 uint _refresh_tick; // Records the refresh activity.
duke@435 1165
duke@435 1166 void sample(const Node* node); // Initialize _refresh_tick etc.
duke@435 1167 void verify(const Node* node, bool at_end_ok = false);
duke@435 1168 void verify_increment(); // Verify an increment operation.
duke@435 1169 void verify_resync(); // Verify that we can back up over a deletion.
duke@435 1170 void verify_finish(); // Verify that the loop terminated properly.
duke@435 1171 void refresh(); // Resample verification info.
duke@435 1172 void reset(const DUIterator& that); // Resample after assignment.
duke@435 1173 #endif
duke@435 1174
duke@435 1175 DUIterator(const Node* node, int dummy_to_avoid_conversion)
duke@435 1176 { _idx = 0; debug_only(sample(node)); }
duke@435 1177
duke@435 1178 public:
duke@435 1179 // initialize to garbage; clear _vdui to disable asserts
duke@435 1180 DUIterator()
duke@435 1181 { /*initialize to garbage*/ debug_only(_vdui = false); }
duke@435 1182
duke@435 1183 void operator++(int dummy_to_specify_postfix_op)
duke@435 1184 { _idx++; VDUI_ONLY(verify_increment()); }
duke@435 1185
duke@435 1186 void operator--()
duke@435 1187 { VDUI_ONLY(verify_resync()); --_idx; }
duke@435 1188
duke@435 1189 ~DUIterator()
duke@435 1190 { VDUI_ONLY(verify_finish()); }
duke@435 1191
duke@435 1192 void operator=(const DUIterator& that)
duke@435 1193 { _idx = that._idx; debug_only(reset(that)); }
duke@435 1194 };
duke@435 1195
duke@435 1196 DUIterator Node::outs() const
duke@435 1197 { return DUIterator(this, 0); }
duke@435 1198 DUIterator& Node::refresh_out_pos(DUIterator& i) const
duke@435 1199 { I_VDUI_ONLY(i, i.refresh()); return i; }
duke@435 1200 bool Node::has_out(DUIterator& i) const
duke@435 1201 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
duke@435 1202 Node* Node::out(DUIterator& i) const
duke@435 1203 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; }
duke@435 1204
duke@435 1205
duke@435 1206 // Faster DU iterator. Disallows insertions into the out array.
duke@435 1207 // Allows deletion from the out array only at the current point.
duke@435 1208 // Usage:
duke@435 1209 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
duke@435 1210 // Node* y = x->fast_out(i);
duke@435 1211 // ...
duke@435 1212 // }
duke@435 1213 // Compiles in product mode to raw Node** pointer arithmetic, with
duke@435 1214 // no reloading of pointers from the original node x. If you delete,
duke@435 1215 // you must perform "--i; --imax" just before continuing the loop.
duke@435 1216 // If you delete multiple copies of the same edge, you must decrement
duke@435 1217 // imax, but not i, multiple times: "--i, imax -= num_edges".
duke@435 1218 class DUIterator_Fast : public DUIterator_Common {
duke@435 1219 friend class Node;
duke@435 1220 friend class DUIterator_Last;
duke@435 1221
duke@435 1222 // This is the pointer which provides the product-mode behavior.
duke@435 1223 // Whatever the product-mode version of the system does to the
duke@435 1224 // DUI pointer is done to this pointer. All other fields in
duke@435 1225 // this class are used only for assertion checking.
duke@435 1226 Node** _outp;
duke@435 1227
duke@435 1228 #ifdef ASSERT
duke@435 1229 void verify(const Node* node, bool at_end_ok = false);
duke@435 1230 void verify_limit();
duke@435 1231 void verify_resync();
duke@435 1232 void verify_relimit(uint n);
duke@435 1233 void reset(const DUIterator_Fast& that);
duke@435 1234 #endif
duke@435 1235
duke@435 1236 // Note: offset must be signed, since -1 is sometimes passed
duke@435 1237 DUIterator_Fast(const Node* node, ptrdiff_t offset)
duke@435 1238 { _outp = node->_out + offset; debug_only(sample(node)); }
duke@435 1239
duke@435 1240 public:
duke@435 1241 // initialize to garbage; clear _vdui to disable asserts
duke@435 1242 DUIterator_Fast()
duke@435 1243 { /*initialize to garbage*/ debug_only(_vdui = false); }
duke@435 1244
duke@435 1245 void operator++(int dummy_to_specify_postfix_op)
duke@435 1246 { _outp++; VDUI_ONLY(verify(_node, true)); }
duke@435 1247
duke@435 1248 void operator--()
duke@435 1249 { VDUI_ONLY(verify_resync()); --_outp; }
duke@435 1250
duke@435 1251 void operator-=(uint n) // applied to the limit only
duke@435 1252 { _outp -= n; VDUI_ONLY(verify_relimit(n)); }
duke@435 1253
duke@435 1254 bool operator<(DUIterator_Fast& limit) {
duke@435 1255 I_VDUI_ONLY(*this, this->verify(_node, true));
duke@435 1256 I_VDUI_ONLY(limit, limit.verify_limit());
duke@435 1257 return _outp < limit._outp;
duke@435 1258 }
duke@435 1259
duke@435 1260 void operator=(const DUIterator_Fast& that)
duke@435 1261 { _outp = that._outp; debug_only(reset(that)); }
duke@435 1262 };
duke@435 1263
duke@435 1264 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
duke@435 1265 // Assign a limit pointer to the reference argument:
duke@435 1266 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
duke@435 1267 // Return the base pointer:
duke@435 1268 return DUIterator_Fast(this, 0);
duke@435 1269 }
duke@435 1270 Node* Node::fast_out(DUIterator_Fast& i) const {
duke@435 1271 I_VDUI_ONLY(i, i.verify(this));
duke@435 1272 return debug_only(i._last=) *i._outp;
duke@435 1273 }
duke@435 1274
duke@435 1275
duke@435 1276 // Faster DU iterator. Requires each successive edge to be removed.
duke@435 1277 // Does not allow insertion of any edges.
duke@435 1278 // Usage:
duke@435 1279 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
duke@435 1280 // Node* y = x->last_out(i);
duke@435 1281 // ...
duke@435 1282 // }
duke@435 1283 // Compiles in product mode to raw Node** pointer arithmetic, with
duke@435 1284 // no reloading of pointers from the original node x.
duke@435 1285 class DUIterator_Last : private DUIterator_Fast {
duke@435 1286 friend class Node;
duke@435 1287
duke@435 1288 #ifdef ASSERT
duke@435 1289 void verify(const Node* node, bool at_end_ok = false);
duke@435 1290 void verify_limit();
duke@435 1291 void verify_step(uint num_edges);
duke@435 1292 #endif
duke@435 1293
duke@435 1294 // Note: offset must be signed, since -1 is sometimes passed
duke@435 1295 DUIterator_Last(const Node* node, ptrdiff_t offset)
duke@435 1296 : DUIterator_Fast(node, offset) { }
duke@435 1297
duke@435 1298 void operator++(int dummy_to_specify_postfix_op) {} // do not use
duke@435 1299 void operator<(int) {} // do not use
duke@435 1300
duke@435 1301 public:
duke@435 1302 DUIterator_Last() { }
duke@435 1303 // initialize to garbage
duke@435 1304
duke@435 1305 void operator--()
duke@435 1306 { _outp--; VDUI_ONLY(verify_step(1)); }
duke@435 1307
duke@435 1308 void operator-=(uint n)
duke@435 1309 { _outp -= n; VDUI_ONLY(verify_step(n)); }
duke@435 1310
duke@435 1311 bool operator>=(DUIterator_Last& limit) {
duke@435 1312 I_VDUI_ONLY(*this, this->verify(_node, true));
duke@435 1313 I_VDUI_ONLY(limit, limit.verify_limit());
duke@435 1314 return _outp >= limit._outp;
duke@435 1315 }
duke@435 1316
duke@435 1317 void operator=(const DUIterator_Last& that)
duke@435 1318 { DUIterator_Fast::operator=(that); }
duke@435 1319 };
duke@435 1320
duke@435 1321 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
duke@435 1322 // Assign a limit pointer to the reference argument:
duke@435 1323 imin = DUIterator_Last(this, 0);
duke@435 1324 // Return the initial pointer:
duke@435 1325 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
duke@435 1326 }
duke@435 1327 Node* Node::last_out(DUIterator_Last& i) const {
duke@435 1328 I_VDUI_ONLY(i, i.verify(this));
duke@435 1329 return debug_only(i._last=) *i._outp;
duke@435 1330 }
duke@435 1331
duke@435 1332 #endif //OPTO_DU_ITERATOR_ASSERT
duke@435 1333
duke@435 1334 #undef I_VDUI_ONLY
duke@435 1335 #undef VDUI_ONLY
duke@435 1336
never@1515 1337 // An Iterator that truly follows the iterator pattern. Doesn't
never@1515 1338 // support deletion but could be made to.
never@1515 1339 //
never@1515 1340 // for (SimpleDUIterator i(n); i.has_next(); i.next()) {
never@1515 1341 // Node* m = i.get();
never@1515 1342 //
never@1515 1343 class SimpleDUIterator : public StackObj {
never@1515 1344 private:
never@1515 1345 Node* node;
never@1515 1346 DUIterator_Fast i;
never@1515 1347 DUIterator_Fast imax;
never@1515 1348 public:
never@1515 1349 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
never@1515 1350 bool has_next() { return i < imax; }
never@1515 1351 void next() { i++; }
never@1515 1352 Node* get() { return node->fast_out(i); }
never@1515 1353 };
never@1515 1354
duke@435 1355
duke@435 1356 //-----------------------------------------------------------------------------
duke@435 1357 // Map dense integer indices to Nodes. Uses classic doubling-array trick.
duke@435 1358 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
duke@435 1359 // Note that the constructor just zeros things, and since I use Arena
duke@435 1360 // allocation I do not need a destructor to reclaim storage.
duke@435 1361 class Node_Array : public ResourceObj {
never@3138 1362 friend class VMStructs;
duke@435 1363 protected:
duke@435 1364 Arena *_a; // Arena to allocate in
duke@435 1365 uint _max;
duke@435 1366 Node **_nodes;
duke@435 1367 void grow( uint i ); // Grow array node to fit
duke@435 1368 public:
duke@435 1369 Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
duke@435 1370 _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
duke@435 1371 for( int i = 0; i < OptoNodeListSize; i++ ) {
duke@435 1372 _nodes[i] = NULL;
duke@435 1373 }
duke@435 1374 }
duke@435 1375
duke@435 1376 Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
duke@435 1377 Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
duke@435 1378 { return (i<_max) ? _nodes[i] : (Node*)NULL; }
duke@435 1379 Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
duke@435 1380 Node **adr() { return _nodes; }
duke@435 1381 // Extend the mapping: index i maps to Node *n.
duke@435 1382 void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
duke@435 1383 void insert( uint i, Node *n );
duke@435 1384 void remove( uint i ); // Remove, preserving order
duke@435 1385 void sort( C_sort_func_t func);
duke@435 1386 void reset( Arena *new_a ); // Zap mapping to empty; reclaim storage
duke@435 1387 void clear(); // Set all entries to NULL, keep storage
duke@435 1388 uint Size() const { return _max; }
duke@435 1389 void dump() const;
duke@435 1390 };
duke@435 1391
duke@435 1392 class Node_List : public Node_Array {
never@3138 1393 friend class VMStructs;
duke@435 1394 uint _cnt;
duke@435 1395 public:
duke@435 1396 Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
duke@435 1397 Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
goetz@6478 1398 bool contains(const Node* n) const {
never@1515 1399 for (uint e = 0; e < size(); e++) {
never@1515 1400 if (at(e) == n) return true;
never@1515 1401 }
never@1515 1402 return false;
never@1515 1403 }
duke@435 1404 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
duke@435 1405 void remove( uint i ) { Node_Array::remove(i); _cnt--; }
duke@435 1406 void push( Node *b ) { map(_cnt++,b); }
duke@435 1407 void yank( Node *n ); // Find and remove
duke@435 1408 Node *pop() { return _nodes[--_cnt]; }
duke@435 1409 Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
duke@435 1410 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
duke@435 1411 uint size() const { return _cnt; }
duke@435 1412 void dump() const;
vlivanov@8196 1413 void dump_simple() const;
duke@435 1414 };
duke@435 1415
duke@435 1416 //------------------------------Unique_Node_List-------------------------------
duke@435 1417 class Unique_Node_List : public Node_List {
never@3138 1418 friend class VMStructs;
duke@435 1419 VectorSet _in_worklist;
duke@435 1420 uint _clock_index; // Index in list where to pop from next
duke@435 1421 public:
duke@435 1422 Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
duke@435 1423 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
duke@435 1424
duke@435 1425 void remove( Node *n );
duke@435 1426 bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
duke@435 1427 VectorSet &member_set(){ return _in_worklist; }
duke@435 1428
duke@435 1429 void push( Node *b ) {
duke@435 1430 if( !_in_worklist.test_set(b->_idx) )
duke@435 1431 Node_List::push(b);
duke@435 1432 }
duke@435 1433 Node *pop() {
duke@435 1434 if( _clock_index >= size() ) _clock_index = 0;
duke@435 1435 Node *b = at(_clock_index);
kvn@835 1436 map( _clock_index, Node_List::pop());
kvn@835 1437 if (size() != 0) _clock_index++; // Always start from 0
duke@435 1438 _in_worklist >>= b->_idx;
duke@435 1439 return b;
duke@435 1440 }
duke@435 1441 Node *remove( uint i ) {
duke@435 1442 Node *b = Node_List::at(i);
duke@435 1443 _in_worklist >>= b->_idx;
duke@435 1444 map(i,Node_List::pop());
duke@435 1445 return b;
duke@435 1446 }
duke@435 1447 void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
duke@435 1448 void clear() {
duke@435 1449 _in_worklist.Clear(); // Discards storage but grows automatically
duke@435 1450 Node_List::clear();
duke@435 1451 _clock_index = 0;
duke@435 1452 }
duke@435 1453
duke@435 1454 // Used after parsing to remove useless nodes before Iterative GVN
duke@435 1455 void remove_useless_nodes(VectorSet &useful);
duke@435 1456
duke@435 1457 #ifndef PRODUCT
duke@435 1458 void print_set() const { _in_worklist.print(); }
duke@435 1459 #endif
duke@435 1460 };
duke@435 1461
duke@435 1462 // Inline definition of Compile::record_for_igvn must be deferred to this point.
duke@435 1463 inline void Compile::record_for_igvn(Node* n) {
duke@435 1464 _for_igvn->push(n);
duke@435 1465 }
duke@435 1466
duke@435 1467 //------------------------------Node_Stack-------------------------------------
duke@435 1468 class Node_Stack {
never@3138 1469 friend class VMStructs;
duke@435 1470 protected:
duke@435 1471 struct INode {
duke@435 1472 Node *node; // Processed node
duke@435 1473 uint indx; // Index of next node's child
duke@435 1474 };
duke@435 1475 INode *_inode_top; // tos, stack grows up
duke@435 1476 INode *_inode_max; // End of _inodes == _inodes + _max
duke@435 1477 INode *_inodes; // Array storage for the stack
duke@435 1478 Arena *_a; // Arena to allocate in
duke@435 1479 void grow();
duke@435 1480 public:
duke@435 1481 Node_Stack(int size) {
duke@435 1482 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
duke@435 1483 _a = Thread::current()->resource_area();
duke@435 1484 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
duke@435 1485 _inode_max = _inodes + max;
duke@435 1486 _inode_top = _inodes - 1; // stack is empty
duke@435 1487 }
duke@435 1488
duke@435 1489 Node_Stack(Arena *a, int size) : _a(a) {
duke@435 1490 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
duke@435 1491 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
duke@435 1492 _inode_max = _inodes + max;
duke@435 1493 _inode_top = _inodes - 1; // stack is empty
duke@435 1494 }
duke@435 1495
duke@435 1496 void pop() {
duke@435 1497 assert(_inode_top >= _inodes, "node stack underflow");
duke@435 1498 --_inode_top;
duke@435 1499 }
duke@435 1500 void push(Node *n, uint i) {
duke@435 1501 ++_inode_top;
duke@435 1502 if (_inode_top >= _inode_max) grow();
duke@435 1503 INode *top = _inode_top; // optimization
duke@435 1504 top->node = n;
duke@435 1505 top->indx = i;
duke@435 1506 }
duke@435 1507 Node *node() const {
duke@435 1508 return _inode_top->node;
duke@435 1509 }
duke@435 1510 Node* node_at(uint i) const {
duke@435 1511 assert(_inodes + i <= _inode_top, "in range");
duke@435 1512 return _inodes[i].node;
duke@435 1513 }
duke@435 1514 uint index() const {
duke@435 1515 return _inode_top->indx;
duke@435 1516 }
kvn@682 1517 uint index_at(uint i) const {
kvn@682 1518 assert(_inodes + i <= _inode_top, "in range");
kvn@682 1519 return _inodes[i].indx;
kvn@682 1520 }
duke@435 1521 void set_node(Node *n) {
duke@435 1522 _inode_top->node = n;
duke@435 1523 }
duke@435 1524 void set_index(uint i) {
duke@435 1525 _inode_top->indx = i;
duke@435 1526 }
duke@435 1527 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size
kvn@475 1528 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size
duke@435 1529 bool is_nonempty() const { return (_inode_top >= _inodes); }
duke@435 1530 bool is_empty() const { return (_inode_top < _inodes); }
duke@435 1531 void clear() { _inode_top = _inodes - 1; } // retain storage
kvn@2985 1532
kvn@2985 1533 // Node_Stack is used to map nodes.
kvn@2985 1534 Node* find(uint idx) const;
duke@435 1535 };
duke@435 1536
duke@435 1537
duke@435 1538 //-----------------------------Node_Notes--------------------------------------
duke@435 1539 // Debugging or profiling annotations loosely and sparsely associated
duke@435 1540 // with some nodes. See Compile::node_notes_at for the accessor.
duke@435 1541 class Node_Notes VALUE_OBJ_CLASS_SPEC {
never@3138 1542 friend class VMStructs;
duke@435 1543 JVMState* _jvms;
duke@435 1544
duke@435 1545 public:
duke@435 1546 Node_Notes(JVMState* jvms = NULL) {
duke@435 1547 _jvms = jvms;
duke@435 1548 }
duke@435 1549
duke@435 1550 JVMState* jvms() { return _jvms; }
duke@435 1551 void set_jvms(JVMState* x) { _jvms = x; }
duke@435 1552
duke@435 1553 // True if there is nothing here.
duke@435 1554 bool is_clear() {
duke@435 1555 return (_jvms == NULL);
duke@435 1556 }
duke@435 1557
duke@435 1558 // Make there be nothing here.
duke@435 1559 void clear() {
duke@435 1560 _jvms = NULL;
duke@435 1561 }
duke@435 1562
duke@435 1563 // Make a new, clean node notes.
duke@435 1564 static Node_Notes* make(Compile* C) {
duke@435 1565 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
duke@435 1566 nn->clear();
duke@435 1567 return nn;
duke@435 1568 }
duke@435 1569
duke@435 1570 Node_Notes* clone(Compile* C) {
duke@435 1571 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
duke@435 1572 (*nn) = (*this);
duke@435 1573 return nn;
duke@435 1574 }
duke@435 1575
duke@435 1576 // Absorb any information from source.
duke@435 1577 bool update_from(Node_Notes* source) {
duke@435 1578 bool changed = false;
duke@435 1579 if (source != NULL) {
duke@435 1580 if (source->jvms() != NULL) {
duke@435 1581 set_jvms(source->jvms());
duke@435 1582 changed = true;
duke@435 1583 }
duke@435 1584 }
duke@435 1585 return changed;
duke@435 1586 }
duke@435 1587 };
duke@435 1588
duke@435 1589 // Inlined accessors for Compile::node_nodes that require the preceding class:
duke@435 1590 inline Node_Notes*
duke@435 1591 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
duke@435 1592 int idx, bool can_grow) {
duke@435 1593 assert(idx >= 0, "oob");
duke@435 1594 int block_idx = (idx >> _log2_node_notes_block_size);
duke@435 1595 int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
duke@435 1596 if (grow_by >= 0) {
duke@435 1597 if (!can_grow) return NULL;
duke@435 1598 grow_node_notes(arr, grow_by + 1);
duke@435 1599 }
duke@435 1600 // (Every element of arr is a sub-array of length _node_notes_block_size.)
duke@435 1601 return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
duke@435 1602 }
duke@435 1603
duke@435 1604 inline bool
duke@435 1605 Compile::set_node_notes_at(int idx, Node_Notes* value) {
duke@435 1606 if (value == NULL || value->is_clear())
duke@435 1607 return false; // nothing to write => write nothing
duke@435 1608 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
duke@435 1609 assert(loc != NULL, "");
duke@435 1610 return loc->update_from(value);
duke@435 1611 }
duke@435 1612
duke@435 1613
duke@435 1614 //------------------------------TypeNode---------------------------------------
duke@435 1615 // Node with a Type constant.
duke@435 1616 class TypeNode : public Node {
duke@435 1617 protected:
duke@435 1618 virtual uint hash() const; // Check the type
duke@435 1619 virtual uint cmp( const Node &n ) const;
duke@435 1620 virtual uint size_of() const; // Size is bigger
duke@435 1621 const Type* const _type;
duke@435 1622 public:
duke@435 1623 void set_type(const Type* t) {
duke@435 1624 assert(t != NULL, "sanity");
duke@435 1625 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
duke@435 1626 *(const Type**)&_type = t; // cast away const-ness
duke@435 1627 // If this node is in the hash table, make sure it doesn't need a rehash.
duke@435 1628 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
duke@435 1629 }
duke@435 1630 const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
duke@435 1631 TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
duke@435 1632 init_class_id(Class_Type);
duke@435 1633 }
duke@435 1634 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 1635 virtual const Type *bottom_type() const;
duke@435 1636 virtual uint ideal_reg() const;
duke@435 1637 #ifndef PRODUCT
duke@435 1638 virtual void dump_spec(outputStream *st) const;
duke@435 1639 #endif
duke@435 1640 };
stefank@2314 1641
stefank@2314 1642 #endif // SHARE_VM_OPTO_NODE_HPP

mercurial