src/share/vm/opto/type.hpp

Mon, 27 May 2013 12:56:34 +0200

author
stefank
date
Mon, 27 May 2013 12:56:34 +0200
changeset 5195
95c00927be11
parent 5110
6f3fd5150b67
child 5614
9758d9f36299
permissions
-rw-r--r--

8015428: Remove unused CDS support from StringTable
Summary: The string in StringTable is not used by CDS anymore. Remove the unnecessary code in preparation for 8015422: Large performance hit when the StringTable is walked twice in Parallel Scavenge
Reviewed-by: pliden, tschatzl, coleenp

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_TYPE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_TYPE_HPP
stefank@2314 27
stefank@2314 28 #include "libadt/port.hpp"
stefank@2314 29 #include "opto/adlcVMDeps.hpp"
stefank@2314 30 #include "runtime/handles.hpp"
stefank@2314 31
duke@435 32 // Portions of code courtesy of Clifford Click
duke@435 33
duke@435 34 // Optimization - Graph Style
duke@435 35
duke@435 36
duke@435 37 // This class defines a Type lattice. The lattice is used in the constant
duke@435 38 // propagation algorithms, and for some type-checking of the iloc code.
duke@435 39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
duke@435 40 // float & double precision constants, sets of data-labels and code-labels.
duke@435 41 // The complete lattice is described below. Subtypes have no relationship to
duke@435 42 // up or down in the lattice; that is entirely determined by the behavior of
duke@435 43 // the MEET/JOIN functions.
duke@435 44
duke@435 45 class Dict;
duke@435 46 class Type;
duke@435 47 class TypeD;
duke@435 48 class TypeF;
duke@435 49 class TypeInt;
duke@435 50 class TypeLong;
roland@4159 51 class TypeNarrowPtr;
roland@4159 52 class TypeNarrowOop;
roland@4159 53 class TypeNarrowKlass;
duke@435 54 class TypeAry;
duke@435 55 class TypeTuple;
kvn@3882 56 class TypeVect;
kvn@3882 57 class TypeVectS;
kvn@3882 58 class TypeVectD;
kvn@3882 59 class TypeVectX;
kvn@3882 60 class TypeVectY;
duke@435 61 class TypePtr;
duke@435 62 class TypeRawPtr;
duke@435 63 class TypeOopPtr;
duke@435 64 class TypeInstPtr;
duke@435 65 class TypeAryPtr;
duke@435 66 class TypeKlassPtr;
coleenp@4037 67 class TypeMetadataPtr;
duke@435 68
duke@435 69 //------------------------------Type-------------------------------------------
duke@435 70 // Basic Type object, represents a set of primitive Values.
duke@435 71 // Types are hash-cons'd into a private class dictionary, so only one of each
duke@435 72 // different kind of Type exists. Types are never modified after creation, so
duke@435 73 // all their interesting fields are constant.
duke@435 74 class Type {
never@3138 75 friend class VMStructs;
never@3138 76
duke@435 77 public:
duke@435 78 enum TYPES {
duke@435 79 Bad=0, // Type check
duke@435 80 Control, // Control of code (not in lattice)
duke@435 81 Top, // Top of the lattice
duke@435 82 Int, // Integer range (lo-hi)
duke@435 83 Long, // Long integer range (lo-hi)
duke@435 84 Half, // Placeholder half of doubleword
coleenp@548 85 NarrowOop, // Compressed oop pointer
roland@4159 86 NarrowKlass, // Compressed klass pointer
duke@435 87
duke@435 88 Tuple, // Method signature or object layout
duke@435 89 Array, // Array types
kvn@3882 90 VectorS, // 32bit Vector types
kvn@3882 91 VectorD, // 64bit Vector types
kvn@3882 92 VectorX, // 128bit Vector types
kvn@3882 93 VectorY, // 256bit Vector types
duke@435 94
duke@435 95 AnyPtr, // Any old raw, klass, inst, or array pointer
duke@435 96 RawPtr, // Raw (non-oop) pointers
duke@435 97 OopPtr, // Any and all Java heap entities
duke@435 98 InstPtr, // Instance pointers (non-array objects)
duke@435 99 AryPtr, // Array pointers
coleenp@4037 100 // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
coleenp@4037 101
coleenp@4037 102 MetadataPtr, // Generic metadata
duke@435 103 KlassPtr, // Klass pointers
duke@435 104
duke@435 105 Function, // Function signature
duke@435 106 Abio, // Abstract I/O
duke@435 107 Return_Address, // Subroutine return address
duke@435 108 Memory, // Abstract store
duke@435 109 FloatTop, // No float value
duke@435 110 FloatCon, // Floating point constant
duke@435 111 FloatBot, // Any float value
duke@435 112 DoubleTop, // No double value
duke@435 113 DoubleCon, // Double precision constant
duke@435 114 DoubleBot, // Any double value
duke@435 115 Bottom, // Bottom of lattice
duke@435 116 lastype // Bogus ending type (not in lattice)
duke@435 117 };
duke@435 118
duke@435 119 // Signal values for offsets from a base pointer
duke@435 120 enum OFFSET_SIGNALS {
duke@435 121 OffsetTop = -2000000000, // undefined offset
duke@435 122 OffsetBot = -2000000001 // any possible offset
duke@435 123 };
duke@435 124
duke@435 125 // Min and max WIDEN values.
duke@435 126 enum WIDEN {
duke@435 127 WidenMin = 0,
duke@435 128 WidenMax = 3
duke@435 129 };
duke@435 130
duke@435 131 private:
coleenp@4037 132 typedef struct {
coleenp@4037 133 const TYPES dual_type;
coleenp@4037 134 const BasicType basic_type;
coleenp@4037 135 const char* msg;
coleenp@4037 136 const bool isa_oop;
coleenp@4037 137 const int ideal_reg;
coleenp@4037 138 const relocInfo::relocType reloc;
coleenp@4037 139 } TypeInfo;
coleenp@4037 140
duke@435 141 // Dictionary of types shared among compilations.
duke@435 142 static Dict* _shared_type_dict;
coleenp@4037 143 static TypeInfo _type_info[];
duke@435 144
duke@435 145 static int uhash( const Type *const t );
duke@435 146 // Structural equality check. Assumes that cmp() has already compared
duke@435 147 // the _base types and thus knows it can cast 't' appropriately.
duke@435 148 virtual bool eq( const Type *t ) const;
duke@435 149
duke@435 150 // Top-level hash-table of types
duke@435 151 static Dict *type_dict() {
duke@435 152 return Compile::current()->type_dict();
duke@435 153 }
duke@435 154
duke@435 155 // DUAL operation: reflect around lattice centerline. Used instead of
duke@435 156 // join to ensure my lattice is symmetric up and down. Dual is computed
duke@435 157 // lazily, on demand, and cached in _dual.
duke@435 158 const Type *_dual; // Cached dual value
duke@435 159 // Table for efficient dualing of base types
duke@435 160 static const TYPES dual_type[lastype];
duke@435 161
duke@435 162 protected:
duke@435 163 // Each class of type is also identified by its base.
duke@435 164 const TYPES _base; // Enum of Types type
duke@435 165
duke@435 166 Type( TYPES t ) : _dual(NULL), _base(t) {} // Simple types
duke@435 167 // ~Type(); // Use fast deallocation
duke@435 168 const Type *hashcons(); // Hash-cons the type
duke@435 169
duke@435 170 public:
duke@435 171
duke@435 172 inline void* operator new( size_t x ) {
duke@435 173 Compile* compile = Compile::current();
duke@435 174 compile->set_type_last_size(x);
duke@435 175 void *temp = compile->type_arena()->Amalloc_D(x);
duke@435 176 compile->set_type_hwm(temp);
duke@435 177 return temp;
duke@435 178 }
duke@435 179 inline void operator delete( void* ptr ) {
duke@435 180 Compile* compile = Compile::current();
duke@435 181 compile->type_arena()->Afree(ptr,compile->type_last_size());
duke@435 182 }
duke@435 183
duke@435 184 // Initialize the type system for a particular compilation.
duke@435 185 static void Initialize(Compile* compile);
duke@435 186
duke@435 187 // Initialize the types shared by all compilations.
duke@435 188 static void Initialize_shared(Compile* compile);
duke@435 189
duke@435 190 TYPES base() const {
duke@435 191 assert(_base > Bad && _base < lastype, "sanity");
duke@435 192 return _base;
duke@435 193 }
duke@435 194
duke@435 195 // Create a new hash-consd type
duke@435 196 static const Type *make(enum TYPES);
duke@435 197 // Test for equivalence of types
duke@435 198 static int cmp( const Type *const t1, const Type *const t2 );
duke@435 199 // Test for higher or equal in lattice
duke@435 200 int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
duke@435 201
duke@435 202 // MEET operation; lower in lattice.
duke@435 203 const Type *meet( const Type *t ) const;
duke@435 204 // WIDEN: 'widens' for Ints and other range types
never@1444 205 virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
duke@435 206 // NARROW: complement for widen, used by pessimistic phases
duke@435 207 virtual const Type *narrow( const Type *old ) const { return this; }
duke@435 208
duke@435 209 // DUAL operation: reflect around lattice centerline. Used instead of
duke@435 210 // join to ensure my lattice is symmetric up and down.
duke@435 211 const Type *dual() const { return _dual; }
duke@435 212
duke@435 213 // Compute meet dependent on base type
duke@435 214 virtual const Type *xmeet( const Type *t ) const;
duke@435 215 virtual const Type *xdual() const; // Compute dual right now.
duke@435 216
duke@435 217 // JOIN operation; higher in lattice. Done by finding the dual of the
duke@435 218 // meet of the dual of the 2 inputs.
duke@435 219 const Type *join( const Type *t ) const {
duke@435 220 return dual()->meet(t->dual())->dual(); }
duke@435 221
duke@435 222 // Modified version of JOIN adapted to the needs Node::Value.
duke@435 223 // Normalizes all empty values to TOP. Does not kill _widen bits.
duke@435 224 // Currently, it also works around limitations involving interface types.
duke@435 225 virtual const Type *filter( const Type *kills ) const;
duke@435 226
kvn@1255 227 #ifdef ASSERT
kvn@1255 228 // One type is interface, the other is oop
kvn@1255 229 virtual bool interface_vs_oop(const Type *t) const;
kvn@1255 230 #endif
kvn@1255 231
coleenp@548 232 // Returns true if this pointer points at memory which contains a
kvn@598 233 // compressed oop references.
kvn@598 234 bool is_ptr_to_narrowoop() const;
roland@4159 235 bool is_ptr_to_narrowklass() const;
coleenp@548 236
kvn@5110 237 bool is_ptr_to_boxing_obj() const;
kvn@5110 238
kvn@5110 239
duke@435 240 // Convenience access
duke@435 241 float getf() const;
duke@435 242 double getd() const;
duke@435 243
duke@435 244 const TypeInt *is_int() const;
duke@435 245 const TypeInt *isa_int() const; // Returns NULL if not an Int
duke@435 246 const TypeLong *is_long() const;
duke@435 247 const TypeLong *isa_long() const; // Returns NULL if not a Long
twisti@4313 248 const TypeD *isa_double() const; // Returns NULL if not a Double{Top,Con,Bot}
duke@435 249 const TypeD *is_double_constant() const; // Asserts it is a DoubleCon
duke@435 250 const TypeD *isa_double_constant() const; // Returns NULL if not a DoubleCon
twisti@4313 251 const TypeF *isa_float() const; // Returns NULL if not a Float{Top,Con,Bot}
duke@435 252 const TypeF *is_float_constant() const; // Asserts it is a FloatCon
duke@435 253 const TypeF *isa_float_constant() const; // Returns NULL if not a FloatCon
duke@435 254 const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer
duke@435 255 const TypeAry *is_ary() const; // Array, NOT array pointer
kvn@3882 256 const TypeVect *is_vect() const; // Vector
kvn@3882 257 const TypeVect *isa_vect() const; // Returns NULL if not a Vector
duke@435 258 const TypePtr *is_ptr() const; // Asserts it is a ptr type
duke@435 259 const TypePtr *isa_ptr() const; // Returns NULL if not ptr type
coleenp@548 260 const TypeRawPtr *isa_rawptr() const; // NOT Java oop
coleenp@548 261 const TypeRawPtr *is_rawptr() const; // Asserts is rawptr
kvn@598 262 const TypeNarrowOop *is_narrowoop() const; // Java-style GC'd pointer
kvn@598 263 const TypeNarrowOop *isa_narrowoop() const; // Returns NULL if not oop ptr type
roland@4159 264 const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
roland@4159 265 const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
coleenp@548 266 const TypeOopPtr *isa_oopptr() const; // Returns NULL if not oop ptr type
coleenp@548 267 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer
coleenp@548 268 const TypeInstPtr *isa_instptr() const; // Returns NULL if not InstPtr
coleenp@548 269 const TypeInstPtr *is_instptr() const; // Instance
coleenp@548 270 const TypeAryPtr *isa_aryptr() const; // Returns NULL if not AryPtr
coleenp@548 271 const TypeAryPtr *is_aryptr() const; // Array oop
coleenp@4037 272
coleenp@4037 273 const TypeMetadataPtr *isa_metadataptr() const; // Returns NULL if not oop ptr type
coleenp@4037 274 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
coleenp@4037 275 const TypeKlassPtr *isa_klassptr() const; // Returns NULL if not KlassPtr
coleenp@4037 276 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
coleenp@4037 277
duke@435 278 virtual bool is_finite() const; // Has a finite value
duke@435 279 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 280
kvn@656 281 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
kvn@656 282 const TypePtr* make_ptr() const;
never@1262 283
never@1262 284 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
never@1262 285 // Asserts if the underlying type is not an oopptr or narrowoop.
never@1262 286 const TypeOopPtr* make_oopptr() const;
never@1262 287
kvn@656 288 // Returns this compressed pointer or the equivalent compressed version
kvn@656 289 // of this pointer type.
kvn@656 290 const TypeNarrowOop* make_narrowoop() const;
kvn@656 291
roland@4159 292 // Returns this compressed klass pointer or the equivalent
roland@4159 293 // compressed version of this pointer type.
roland@4159 294 const TypeNarrowKlass* make_narrowklass() const;
roland@4159 295
duke@435 296 // Special test for register pressure heuristic
duke@435 297 bool is_floatingpoint() const; // True if Float or Double base type
duke@435 298
duke@435 299 // Do you have memory, directly or through a tuple?
duke@435 300 bool has_memory( ) const;
duke@435 301
duke@435 302 // TRUE if type is a singleton
duke@435 303 virtual bool singleton(void) const;
duke@435 304
duke@435 305 // TRUE if type is above the lattice centerline, and is therefore vacuous
duke@435 306 virtual bool empty(void) const;
duke@435 307
duke@435 308 // Return a hash for this type. The hash function is public so ConNode
duke@435 309 // (constants) can hash on their constant, which is represented by a Type.
duke@435 310 virtual int hash() const;
duke@435 311
duke@435 312 // Map ideal registers (machine types) to ideal types
duke@435 313 static const Type *mreg2type[];
duke@435 314
duke@435 315 // Printing, statistics
duke@435 316 #ifndef PRODUCT
duke@435 317 void dump_on(outputStream *st) const;
duke@435 318 void dump() const {
duke@435 319 dump_on(tty);
duke@435 320 }
duke@435 321 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 322 static void dump_stats();
duke@435 323 #endif
duke@435 324 void typerr(const Type *t) const; // Mixing types error
duke@435 325
duke@435 326 // Create basic type
duke@435 327 static const Type* get_const_basic_type(BasicType type) {
duke@435 328 assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
duke@435 329 return _const_basic_type[type];
duke@435 330 }
duke@435 331
duke@435 332 // Mapping to the array element's basic type.
duke@435 333 BasicType array_element_basic_type() const;
duke@435 334
duke@435 335 // Create standard type for a ciType:
duke@435 336 static const Type* get_const_type(ciType* type);
duke@435 337
duke@435 338 // Create standard zero value:
duke@435 339 static const Type* get_zero_type(BasicType type) {
duke@435 340 assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
duke@435 341 return _zero_type[type];
duke@435 342 }
duke@435 343
duke@435 344 // Report if this is a zero value (not top).
duke@435 345 bool is_zero_type() const {
duke@435 346 BasicType type = basic_type();
duke@435 347 if (type == T_VOID || type >= T_CONFLICT)
duke@435 348 return false;
duke@435 349 else
duke@435 350 return (this == _zero_type[type]);
duke@435 351 }
duke@435 352
duke@435 353 // Convenience common pre-built types.
duke@435 354 static const Type *ABIO;
duke@435 355 static const Type *BOTTOM;
duke@435 356 static const Type *CONTROL;
duke@435 357 static const Type *DOUBLE;
duke@435 358 static const Type *FLOAT;
duke@435 359 static const Type *HALF;
duke@435 360 static const Type *MEMORY;
duke@435 361 static const Type *MULTI;
duke@435 362 static const Type *RETURN_ADDRESS;
duke@435 363 static const Type *TOP;
duke@435 364
duke@435 365 // Mapping from compiler type to VM BasicType
coleenp@4037 366 BasicType basic_type() const { return _type_info[_base].basic_type; }
coleenp@4037 367 int ideal_reg() const { return _type_info[_base].ideal_reg; }
coleenp@4037 368 const char* msg() const { return _type_info[_base].msg; }
coleenp@4037 369 bool isa_oop_ptr() const { return _type_info[_base].isa_oop; }
coleenp@4037 370 relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
duke@435 371
duke@435 372 // Mapping from CI type system to compiler type:
duke@435 373 static const Type* get_typeflow_type(ciType* type);
duke@435 374
duke@435 375 private:
duke@435 376 // support arrays
duke@435 377 static const BasicType _basic_type[];
duke@435 378 static const Type* _zero_type[T_CONFLICT+1];
duke@435 379 static const Type* _const_basic_type[T_CONFLICT+1];
duke@435 380 };
duke@435 381
duke@435 382 //------------------------------TypeF------------------------------------------
duke@435 383 // Class of Float-Constant Types.
duke@435 384 class TypeF : public Type {
duke@435 385 TypeF( float f ) : Type(FloatCon), _f(f) {};
duke@435 386 public:
duke@435 387 virtual bool eq( const Type *t ) const;
duke@435 388 virtual int hash() const; // Type specific hashing
duke@435 389 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 390 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 391 public:
duke@435 392 const float _f; // Float constant
duke@435 393
duke@435 394 static const TypeF *make(float f);
duke@435 395
duke@435 396 virtual bool is_finite() const; // Has a finite value
duke@435 397 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 398
duke@435 399 virtual const Type *xmeet( const Type *t ) const;
duke@435 400 virtual const Type *xdual() const; // Compute dual right now.
duke@435 401 // Convenience common pre-built types.
duke@435 402 static const TypeF *ZERO; // positive zero only
duke@435 403 static const TypeF *ONE;
duke@435 404 #ifndef PRODUCT
duke@435 405 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 406 #endif
duke@435 407 };
duke@435 408
duke@435 409 //------------------------------TypeD------------------------------------------
duke@435 410 // Class of Double-Constant Types.
duke@435 411 class TypeD : public Type {
duke@435 412 TypeD( double d ) : Type(DoubleCon), _d(d) {};
duke@435 413 public:
duke@435 414 virtual bool eq( const Type *t ) const;
duke@435 415 virtual int hash() const; // Type specific hashing
duke@435 416 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 417 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 418 public:
duke@435 419 const double _d; // Double constant
duke@435 420
duke@435 421 static const TypeD *make(double d);
duke@435 422
duke@435 423 virtual bool is_finite() const; // Has a finite value
duke@435 424 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 425
duke@435 426 virtual const Type *xmeet( const Type *t ) const;
duke@435 427 virtual const Type *xdual() const; // Compute dual right now.
duke@435 428 // Convenience common pre-built types.
duke@435 429 static const TypeD *ZERO; // positive zero only
duke@435 430 static const TypeD *ONE;
duke@435 431 #ifndef PRODUCT
duke@435 432 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 433 #endif
duke@435 434 };
duke@435 435
duke@435 436 //------------------------------TypeInt----------------------------------------
duke@435 437 // Class of integer ranges, the set of integers between a lower bound and an
duke@435 438 // upper bound, inclusive.
duke@435 439 class TypeInt : public Type {
duke@435 440 TypeInt( jint lo, jint hi, int w );
duke@435 441 public:
duke@435 442 virtual bool eq( const Type *t ) const;
duke@435 443 virtual int hash() const; // Type specific hashing
duke@435 444 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 445 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 446 public:
duke@435 447 const jint _lo, _hi; // Lower bound, upper bound
duke@435 448 const short _widen; // Limit on times we widen this sucker
duke@435 449
duke@435 450 static const TypeInt *make(jint lo);
duke@435 451 // must always specify w
duke@435 452 static const TypeInt *make(jint lo, jint hi, int w);
duke@435 453
duke@435 454 // Check for single integer
duke@435 455 int is_con() const { return _lo==_hi; }
duke@435 456 bool is_con(int i) const { return is_con() && _lo == i; }
duke@435 457 jint get_con() const { assert( is_con(), "" ); return _lo; }
duke@435 458
duke@435 459 virtual bool is_finite() const; // Has a finite value
duke@435 460
duke@435 461 virtual const Type *xmeet( const Type *t ) const;
duke@435 462 virtual const Type *xdual() const; // Compute dual right now.
never@1444 463 virtual const Type *widen( const Type *t, const Type* limit_type ) const;
duke@435 464 virtual const Type *narrow( const Type *t ) const;
duke@435 465 // Do not kill _widen bits.
duke@435 466 virtual const Type *filter( const Type *kills ) const;
duke@435 467 // Convenience common pre-built types.
duke@435 468 static const TypeInt *MINUS_1;
duke@435 469 static const TypeInt *ZERO;
duke@435 470 static const TypeInt *ONE;
duke@435 471 static const TypeInt *BOOL;
duke@435 472 static const TypeInt *CC;
duke@435 473 static const TypeInt *CC_LT; // [-1] == MINUS_1
duke@435 474 static const TypeInt *CC_GT; // [1] == ONE
duke@435 475 static const TypeInt *CC_EQ; // [0] == ZERO
duke@435 476 static const TypeInt *CC_LE; // [-1,0]
duke@435 477 static const TypeInt *CC_GE; // [0,1] == BOOL (!)
duke@435 478 static const TypeInt *BYTE;
twisti@1059 479 static const TypeInt *UBYTE;
duke@435 480 static const TypeInt *CHAR;
duke@435 481 static const TypeInt *SHORT;
duke@435 482 static const TypeInt *POS;
duke@435 483 static const TypeInt *POS1;
duke@435 484 static const TypeInt *INT;
duke@435 485 static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 486 #ifndef PRODUCT
duke@435 487 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 488 #endif
duke@435 489 };
duke@435 490
duke@435 491
duke@435 492 //------------------------------TypeLong---------------------------------------
duke@435 493 // Class of long integer ranges, the set of integers between a lower bound and
duke@435 494 // an upper bound, inclusive.
duke@435 495 class TypeLong : public Type {
duke@435 496 TypeLong( jlong lo, jlong hi, int w );
duke@435 497 public:
duke@435 498 virtual bool eq( const Type *t ) const;
duke@435 499 virtual int hash() const; // Type specific hashing
duke@435 500 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 501 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 502 public:
duke@435 503 const jlong _lo, _hi; // Lower bound, upper bound
duke@435 504 const short _widen; // Limit on times we widen this sucker
duke@435 505
duke@435 506 static const TypeLong *make(jlong lo);
duke@435 507 // must always specify w
duke@435 508 static const TypeLong *make(jlong lo, jlong hi, int w);
duke@435 509
duke@435 510 // Check for single integer
duke@435 511 int is_con() const { return _lo==_hi; }
rasbold@580 512 bool is_con(int i) const { return is_con() && _lo == i; }
duke@435 513 jlong get_con() const { assert( is_con(), "" ); return _lo; }
duke@435 514
duke@435 515 virtual bool is_finite() const; // Has a finite value
duke@435 516
duke@435 517 virtual const Type *xmeet( const Type *t ) const;
duke@435 518 virtual const Type *xdual() const; // Compute dual right now.
never@1444 519 virtual const Type *widen( const Type *t, const Type* limit_type ) const;
duke@435 520 virtual const Type *narrow( const Type *t ) const;
duke@435 521 // Do not kill _widen bits.
duke@435 522 virtual const Type *filter( const Type *kills ) const;
duke@435 523 // Convenience common pre-built types.
duke@435 524 static const TypeLong *MINUS_1;
duke@435 525 static const TypeLong *ZERO;
duke@435 526 static const TypeLong *ONE;
duke@435 527 static const TypeLong *POS;
duke@435 528 static const TypeLong *LONG;
duke@435 529 static const TypeLong *INT; // 32-bit subrange [min_jint..max_jint]
duke@435 530 static const TypeLong *UINT; // 32-bit unsigned [0..max_juint]
duke@435 531 #ifndef PRODUCT
duke@435 532 virtual void dump2( Dict &d, uint, outputStream *st ) const;// Specialized per-Type dumping
duke@435 533 #endif
duke@435 534 };
duke@435 535
duke@435 536 //------------------------------TypeTuple--------------------------------------
duke@435 537 // Class of Tuple Types, essentially type collections for function signatures
duke@435 538 // and class layouts. It happens to also be a fast cache for the HotSpot
duke@435 539 // signature types.
duke@435 540 class TypeTuple : public Type {
duke@435 541 TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
duke@435 542 public:
duke@435 543 virtual bool eq( const Type *t ) const;
duke@435 544 virtual int hash() const; // Type specific hashing
duke@435 545 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 546 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 547
duke@435 548 public:
duke@435 549 const uint _cnt; // Count of fields
duke@435 550 const Type ** const _fields; // Array of field types
duke@435 551
duke@435 552 // Accessors:
duke@435 553 uint cnt() const { return _cnt; }
duke@435 554 const Type* field_at(uint i) const {
duke@435 555 assert(i < _cnt, "oob");
duke@435 556 return _fields[i];
duke@435 557 }
duke@435 558 void set_field_at(uint i, const Type* t) {
duke@435 559 assert(i < _cnt, "oob");
duke@435 560 _fields[i] = t;
duke@435 561 }
duke@435 562
duke@435 563 static const TypeTuple *make( uint cnt, const Type **fields );
duke@435 564 static const TypeTuple *make_range(ciSignature *sig);
duke@435 565 static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
duke@435 566
duke@435 567 // Subroutine call type with space allocated for argument types
duke@435 568 static const Type **fields( uint arg_cnt );
duke@435 569
duke@435 570 virtual const Type *xmeet( const Type *t ) const;
duke@435 571 virtual const Type *xdual() const; // Compute dual right now.
duke@435 572 // Convenience common pre-built types.
duke@435 573 static const TypeTuple *IFBOTH;
duke@435 574 static const TypeTuple *IFFALSE;
duke@435 575 static const TypeTuple *IFTRUE;
duke@435 576 static const TypeTuple *IFNEITHER;
duke@435 577 static const TypeTuple *LOOPBODY;
duke@435 578 static const TypeTuple *MEMBAR;
duke@435 579 static const TypeTuple *STORECONDITIONAL;
duke@435 580 static const TypeTuple *START_I2C;
duke@435 581 static const TypeTuple *INT_PAIR;
duke@435 582 static const TypeTuple *LONG_PAIR;
duke@435 583 #ifndef PRODUCT
duke@435 584 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
duke@435 585 #endif
duke@435 586 };
duke@435 587
duke@435 588 //------------------------------TypeAry----------------------------------------
duke@435 589 // Class of Array Types
duke@435 590 class TypeAry : public Type {
duke@435 591 TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
duke@435 592 _elem(elem), _size(size) {}
duke@435 593 public:
duke@435 594 virtual bool eq( const Type *t ) const;
duke@435 595 virtual int hash() const; // Type specific hashing
duke@435 596 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 597 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 598
duke@435 599 private:
duke@435 600 const Type *_elem; // Element type of array
duke@435 601 const TypeInt *_size; // Elements in array
duke@435 602 friend class TypeAryPtr;
duke@435 603
duke@435 604 public:
duke@435 605 static const TypeAry *make( const Type *elem, const TypeInt *size);
duke@435 606
duke@435 607 virtual const Type *xmeet( const Type *t ) const;
duke@435 608 virtual const Type *xdual() const; // Compute dual right now.
duke@435 609 bool ary_must_be_exact() const; // true if arrays of such are never generic
kvn@1255 610 #ifdef ASSERT
kvn@1255 611 // One type is interface, the other is oop
kvn@1255 612 virtual bool interface_vs_oop(const Type *t) const;
kvn@1255 613 #endif
duke@435 614 #ifndef PRODUCT
duke@435 615 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
duke@435 616 #endif
duke@435 617 };
duke@435 618
kvn@3882 619 //------------------------------TypeVect---------------------------------------
kvn@3882 620 // Class of Vector Types
kvn@3882 621 class TypeVect : public Type {
kvn@3882 622 const Type* _elem; // Vector's element type
kvn@3882 623 const uint _length; // Elements in vector (power of 2)
kvn@3882 624
kvn@3882 625 protected:
kvn@3882 626 TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
kvn@3882 627 _elem(elem), _length(length) {}
kvn@3882 628
kvn@3882 629 public:
kvn@3882 630 const Type* element_type() const { return _elem; }
kvn@3882 631 BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
kvn@3882 632 uint length() const { return _length; }
kvn@3882 633 uint length_in_bytes() const {
kvn@3882 634 return _length * type2aelembytes(element_basic_type());
kvn@3882 635 }
kvn@3882 636
kvn@3882 637 virtual bool eq(const Type *t) const;
kvn@3882 638 virtual int hash() const; // Type specific hashing
kvn@3882 639 virtual bool singleton(void) const; // TRUE if type is a singleton
kvn@3882 640 virtual bool empty(void) const; // TRUE if type is vacuous
kvn@3882 641
kvn@3882 642 static const TypeVect *make(const BasicType elem_bt, uint length) {
kvn@3882 643 // Use bottom primitive type.
kvn@3882 644 return make(get_const_basic_type(elem_bt), length);
kvn@3882 645 }
kvn@3882 646 // Used directly by Replicate nodes to construct singleton vector.
kvn@3882 647 static const TypeVect *make(const Type* elem, uint length);
kvn@3882 648
kvn@3882 649 virtual const Type *xmeet( const Type *t) const;
kvn@3882 650 virtual const Type *xdual() const; // Compute dual right now.
kvn@3882 651
kvn@3882 652 static const TypeVect *VECTS;
kvn@3882 653 static const TypeVect *VECTD;
kvn@3882 654 static const TypeVect *VECTX;
kvn@3882 655 static const TypeVect *VECTY;
kvn@3882 656
kvn@3882 657 #ifndef PRODUCT
kvn@3882 658 virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
kvn@3882 659 #endif
kvn@3882 660 };
kvn@3882 661
kvn@3882 662 class TypeVectS : public TypeVect {
kvn@3882 663 friend class TypeVect;
kvn@3882 664 TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
kvn@3882 665 };
kvn@3882 666
kvn@3882 667 class TypeVectD : public TypeVect {
kvn@3882 668 friend class TypeVect;
kvn@3882 669 TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
kvn@3882 670 };
kvn@3882 671
kvn@3882 672 class TypeVectX : public TypeVect {
kvn@3882 673 friend class TypeVect;
kvn@3882 674 TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
kvn@3882 675 };
kvn@3882 676
kvn@3882 677 class TypeVectY : public TypeVect {
kvn@3882 678 friend class TypeVect;
kvn@3882 679 TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
kvn@3882 680 };
kvn@3882 681
duke@435 682 //------------------------------TypePtr----------------------------------------
duke@435 683 // Class of machine Pointer Types: raw data, instances or arrays.
duke@435 684 // If the _base enum is AnyPtr, then this refers to all of the above.
duke@435 685 // Otherwise the _base will indicate which subset of pointers is affected,
duke@435 686 // and the class will be inherited from.
duke@435 687 class TypePtr : public Type {
roland@4159 688 friend class TypeNarrowPtr;
duke@435 689 public:
duke@435 690 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
duke@435 691 protected:
duke@435 692 TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
duke@435 693 virtual bool eq( const Type *t ) const;
duke@435 694 virtual int hash() const; // Type specific hashing
duke@435 695 static const PTR ptr_meet[lastPTR][lastPTR];
duke@435 696 static const PTR ptr_dual[lastPTR];
duke@435 697 static const char * const ptr_msg[lastPTR];
duke@435 698
duke@435 699 public:
duke@435 700 const int _offset; // Offset into oop, with TOP & BOT
duke@435 701 const PTR _ptr; // Pointer equivalence class
duke@435 702
duke@435 703 const int offset() const { return _offset; }
duke@435 704 const PTR ptr() const { return _ptr; }
duke@435 705
duke@435 706 static const TypePtr *make( TYPES t, PTR ptr, int offset );
duke@435 707
duke@435 708 // Return a 'ptr' version of this type
duke@435 709 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 710
duke@435 711 virtual intptr_t get_con() const;
duke@435 712
kvn@741 713 int xadd_offset( intptr_t offset ) const;
kvn@741 714 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 715
duke@435 716 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 717 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 718 virtual const Type *xmeet( const Type *t ) const;
duke@435 719 int meet_offset( int offset ) const;
duke@435 720 int dual_offset( ) const;
duke@435 721 virtual const Type *xdual() const; // Compute dual right now.
duke@435 722
duke@435 723 // meet, dual and join over pointer equivalence sets
duke@435 724 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
duke@435 725 PTR dual_ptr() const { return ptr_dual[ptr()]; }
duke@435 726
duke@435 727 // This is textually confusing unless one recalls that
duke@435 728 // join(t) == dual()->meet(t->dual())->dual().
duke@435 729 PTR join_ptr( const PTR in_ptr ) const {
duke@435 730 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
duke@435 731 }
duke@435 732
duke@435 733 // Tests for relation to centerline of type lattice:
duke@435 734 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
duke@435 735 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
duke@435 736 // Convenience common pre-built types.
duke@435 737 static const TypePtr *NULL_PTR;
duke@435 738 static const TypePtr *NOTNULL;
duke@435 739 static const TypePtr *BOTTOM;
duke@435 740 #ifndef PRODUCT
duke@435 741 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 742 #endif
duke@435 743 };
duke@435 744
duke@435 745 //------------------------------TypeRawPtr-------------------------------------
duke@435 746 // Class of raw pointers, pointers to things other than Oops. Examples
duke@435 747 // include the stack pointer, top of heap, card-marking area, handles, etc.
duke@435 748 class TypeRawPtr : public TypePtr {
duke@435 749 protected:
duke@435 750 TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
duke@435 751 public:
duke@435 752 virtual bool eq( const Type *t ) const;
duke@435 753 virtual int hash() const; // Type specific hashing
duke@435 754
duke@435 755 const address _bits; // Constant value, if applicable
duke@435 756
duke@435 757 static const TypeRawPtr *make( PTR ptr );
duke@435 758 static const TypeRawPtr *make( address bits );
duke@435 759
duke@435 760 // Return a 'ptr' version of this type
duke@435 761 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 762
duke@435 763 virtual intptr_t get_con() const;
duke@435 764
kvn@741 765 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 766
duke@435 767 virtual const Type *xmeet( const Type *t ) const;
duke@435 768 virtual const Type *xdual() const; // Compute dual right now.
duke@435 769 // Convenience common pre-built types.
duke@435 770 static const TypeRawPtr *BOTTOM;
duke@435 771 static const TypeRawPtr *NOTNULL;
duke@435 772 #ifndef PRODUCT
duke@435 773 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 774 #endif
duke@435 775 };
duke@435 776
duke@435 777 //------------------------------TypeOopPtr-------------------------------------
duke@435 778 // Some kind of oop (Java pointer), either klass or instance or array.
duke@435 779 class TypeOopPtr : public TypePtr {
duke@435 780 protected:
kvn@598 781 TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
duke@435 782 public:
duke@435 783 virtual bool eq( const Type *t ) const;
duke@435 784 virtual int hash() const; // Type specific hashing
duke@435 785 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 786 enum {
kvn@658 787 InstanceTop = -1, // undefined instance
kvn@658 788 InstanceBot = 0 // any possible instance
duke@435 789 };
duke@435 790 protected:
duke@435 791
duke@435 792 // Oop is NULL, unless this is a constant oop.
duke@435 793 ciObject* _const_oop; // Constant oop
duke@435 794 // If _klass is NULL, then so is _sig. This is an unloaded klass.
duke@435 795 ciKlass* _klass; // Klass object
duke@435 796 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
duke@435 797 bool _klass_is_exact;
kvn@598 798 bool _is_ptr_to_narrowoop;
roland@4159 799 bool _is_ptr_to_narrowklass;
kvn@5110 800 bool _is_ptr_to_boxed_value;
duke@435 801
kvn@658 802 // If not InstanceTop or InstanceBot, indicates that this is
kvn@658 803 // a particular instance of this type which is distinct.
kvn@658 804 // This is the the node index of the allocation node creating this instance.
kvn@658 805 int _instance_id;
duke@435 806
duke@435 807 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
duke@435 808
kvn@658 809 int dual_instance_id() const;
kvn@658 810 int meet_instance_id(int uid) const;
duke@435 811
duke@435 812 public:
duke@435 813 // Creates a type given a klass. Correctly handles multi-dimensional arrays
duke@435 814 // Respects UseUniqueSubclasses.
duke@435 815 // If the klass is final, the resulting type will be exact.
duke@435 816 static const TypeOopPtr* make_from_klass(ciKlass* klass) {
duke@435 817 return make_from_klass_common(klass, true, false);
duke@435 818 }
duke@435 819 // Same as before, but will produce an exact type, even if
duke@435 820 // the klass is not final, as long as it has exactly one implementation.
duke@435 821 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
duke@435 822 return make_from_klass_common(klass, true, true);
duke@435 823 }
duke@435 824 // Same as before, but does not respects UseUniqueSubclasses.
duke@435 825 // Use this only for creating array element types.
duke@435 826 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
duke@435 827 return make_from_klass_common(klass, false, false);
duke@435 828 }
duke@435 829 // Creates a singleton type given an object.
jrose@1424 830 // If the object cannot be rendered as a constant,
jrose@1424 831 // may return a non-singleton type.
jrose@1424 832 // If require_constant, produce a NULL if a singleton is not possible.
kvn@5110 833 static const TypeOopPtr* make_from_constant(ciObject* o,
kvn@5110 834 bool require_constant = false,
kvn@5110 835 bool not_null_elements = false);
duke@435 836
duke@435 837 // Make a generic (unclassed) pointer to an oop.
kvn@1427 838 static const TypeOopPtr* make(PTR ptr, int offset, int instance_id);
duke@435 839
duke@435 840 ciObject* const_oop() const { return _const_oop; }
duke@435 841 virtual ciKlass* klass() const { return _klass; }
duke@435 842 bool klass_is_exact() const { return _klass_is_exact; }
kvn@598 843
kvn@598 844 // Returns true if this pointer points at memory which contains a
kvn@598 845 // compressed oop references.
kvn@598 846 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
roland@4159 847 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
kvn@5110 848 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
kvn@658 849 bool is_known_instance() const { return _instance_id > 0; }
kvn@658 850 int instance_id() const { return _instance_id; }
kvn@658 851 bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
duke@435 852
duke@435 853 virtual intptr_t get_con() const;
duke@435 854
duke@435 855 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 856
duke@435 857 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 858
kvn@658 859 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
duke@435 860
duke@435 861 // corresponding pointer to klass, for a given instance
duke@435 862 const TypeKlassPtr* as_klass_type() const;
duke@435 863
kvn@741 864 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 865
duke@435 866 virtual const Type *xmeet( const Type *t ) const;
duke@435 867 virtual const Type *xdual() const; // Compute dual right now.
duke@435 868
duke@435 869 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 870 virtual const Type *filter( const Type *kills ) const;
duke@435 871
duke@435 872 // Convenience common pre-built type.
duke@435 873 static const TypeOopPtr *BOTTOM;
duke@435 874 #ifndef PRODUCT
duke@435 875 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 876 #endif
duke@435 877 };
duke@435 878
duke@435 879 //------------------------------TypeInstPtr------------------------------------
duke@435 880 // Class of Java object pointers, pointing either to non-array Java instances
coleenp@4037 881 // or to a Klass* (including array klasses).
duke@435 882 class TypeInstPtr : public TypeOopPtr {
duke@435 883 TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
duke@435 884 virtual bool eq( const Type *t ) const;
duke@435 885 virtual int hash() const; // Type specific hashing
duke@435 886
duke@435 887 ciSymbol* _name; // class name
duke@435 888
duke@435 889 public:
duke@435 890 ciSymbol* name() const { return _name; }
duke@435 891
duke@435 892 bool is_loaded() const { return _klass->is_loaded(); }
duke@435 893
duke@435 894 // Make a pointer to a constant oop.
duke@435 895 static const TypeInstPtr *make(ciObject* o) {
duke@435 896 return make(TypePtr::Constant, o->klass(), true, o, 0);
duke@435 897 }
duke@435 898 // Make a pointer to a constant oop with offset.
duke@435 899 static const TypeInstPtr *make(ciObject* o, int offset) {
duke@435 900 return make(TypePtr::Constant, o->klass(), true, o, offset);
duke@435 901 }
duke@435 902
duke@435 903 // Make a pointer to some value of type klass.
duke@435 904 static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
duke@435 905 return make(ptr, klass, false, NULL, 0);
duke@435 906 }
duke@435 907
duke@435 908 // Make a pointer to some non-polymorphic value of exactly type klass.
duke@435 909 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
duke@435 910 return make(ptr, klass, true, NULL, 0);
duke@435 911 }
duke@435 912
duke@435 913 // Make a pointer to some value of type klass with offset.
duke@435 914 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
duke@435 915 return make(ptr, klass, false, NULL, offset);
duke@435 916 }
duke@435 917
duke@435 918 // Make a pointer to an oop.
kvn@658 919 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
duke@435 920
kvn@5110 921 /** Create constant type for a constant boxed value */
kvn@5110 922 const Type* get_const_boxed_value() const;
kvn@5110 923
duke@435 924 // If this is a java.lang.Class constant, return the type for it or NULL.
duke@435 925 // Pass to Type::get_const_type to turn it to a type, which will usually
duke@435 926 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
duke@435 927 ciType* java_mirror_type() const;
duke@435 928
duke@435 929 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 930
duke@435 931 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 932
kvn@658 933 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
duke@435 934
kvn@741 935 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 936
duke@435 937 virtual const Type *xmeet( const Type *t ) const;
duke@435 938 virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
duke@435 939 virtual const Type *xdual() const; // Compute dual right now.
duke@435 940
duke@435 941 // Convenience common pre-built types.
duke@435 942 static const TypeInstPtr *NOTNULL;
duke@435 943 static const TypeInstPtr *BOTTOM;
duke@435 944 static const TypeInstPtr *MIRROR;
duke@435 945 static const TypeInstPtr *MARK;
duke@435 946 static const TypeInstPtr *KLASS;
duke@435 947 #ifndef PRODUCT
duke@435 948 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 949 #endif
duke@435 950 };
duke@435 951
duke@435 952 //------------------------------TypeAryPtr-------------------------------------
duke@435 953 // Class of Java array pointers
duke@435 954 class TypeAryPtr : public TypeOopPtr {
kvn@5110 955 TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
kvn@5110 956 int offset, int instance_id, bool is_autobox_cache )
kvn@5110 957 : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id),
kvn@5110 958 _ary(ary),
kvn@5110 959 _is_autobox_cache(is_autobox_cache)
kvn@5110 960 {
kvn@2116 961 #ifdef ASSERT
kvn@2116 962 if (k != NULL) {
kvn@2116 963 // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
kvn@2116 964 ciKlass* ck = compute_klass(true);
kvn@2147 965 if (k != ck) {
kvn@2116 966 this->dump(); tty->cr();
kvn@2116 967 tty->print(" k: ");
kvn@2116 968 k->print(); tty->cr();
kvn@2116 969 tty->print("ck: ");
kvn@2116 970 if (ck != NULL) ck->print();
kvn@2116 971 else tty->print("<NULL>");
kvn@2116 972 tty->cr();
kvn@2116 973 assert(false, "unexpected TypeAryPtr::_klass");
kvn@2116 974 }
kvn@2116 975 }
kvn@2116 976 #endif
kvn@2116 977 }
duke@435 978 virtual bool eq( const Type *t ) const;
duke@435 979 virtual int hash() const; // Type specific hashing
duke@435 980 const TypeAry *_ary; // Array we point into
kvn@5110 981 const bool _is_autobox_cache;
duke@435 982
kvn@2116 983 ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
kvn@2116 984
duke@435 985 public:
duke@435 986 // Accessors
duke@435 987 ciKlass* klass() const;
duke@435 988 const TypeAry* ary() const { return _ary; }
duke@435 989 const Type* elem() const { return _ary->_elem; }
duke@435 990 const TypeInt* size() const { return _ary->_size; }
duke@435 991
kvn@5110 992 bool is_autobox_cache() const { return _is_autobox_cache; }
kvn@5110 993
kvn@658 994 static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
duke@435 995 // Constant pointer to array
kvn@5110 996 static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, bool is_autobox_cache = false);
duke@435 997
duke@435 998 // Return a 'ptr' version of this type
duke@435 999 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 1000
duke@435 1001 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 1002
kvn@658 1003 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
duke@435 1004
duke@435 1005 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
rasbold@801 1006 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
duke@435 1007
duke@435 1008 virtual bool empty(void) const; // TRUE if type is vacuous
kvn@741 1009 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 1010
duke@435 1011 virtual const Type *xmeet( const Type *t ) const;
duke@435 1012 virtual const Type *xdual() const; // Compute dual right now.
duke@435 1013
duke@435 1014 // Convenience common pre-built types.
duke@435 1015 static const TypeAryPtr *RANGE;
duke@435 1016 static const TypeAryPtr *OOPS;
kvn@598 1017 static const TypeAryPtr *NARROWOOPS;
duke@435 1018 static const TypeAryPtr *BYTES;
duke@435 1019 static const TypeAryPtr *SHORTS;
duke@435 1020 static const TypeAryPtr *CHARS;
duke@435 1021 static const TypeAryPtr *INTS;
duke@435 1022 static const TypeAryPtr *LONGS;
duke@435 1023 static const TypeAryPtr *FLOATS;
duke@435 1024 static const TypeAryPtr *DOUBLES;
duke@435 1025 // selects one of the above:
duke@435 1026 static const TypeAryPtr *get_array_body_type(BasicType elem) {
duke@435 1027 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
duke@435 1028 return _array_body_type[elem];
duke@435 1029 }
duke@435 1030 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
duke@435 1031 // sharpen the type of an int which is used as an array size
kvn@1255 1032 #ifdef ASSERT
kvn@1255 1033 // One type is interface, the other is oop
kvn@1255 1034 virtual bool interface_vs_oop(const Type *t) const;
kvn@1255 1035 #endif
duke@435 1036 #ifndef PRODUCT
duke@435 1037 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 1038 #endif
duke@435 1039 };
duke@435 1040
coleenp@4037 1041 //------------------------------TypeMetadataPtr-------------------------------------
coleenp@4037 1042 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
coleenp@4037 1043 class TypeMetadataPtr : public TypePtr {
coleenp@4037 1044 protected:
coleenp@4037 1045 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
coleenp@4037 1046 public:
coleenp@4037 1047 virtual bool eq( const Type *t ) const;
coleenp@4037 1048 virtual int hash() const; // Type specific hashing
coleenp@4037 1049 virtual bool singleton(void) const; // TRUE if type is a singleton
coleenp@4037 1050
coleenp@4037 1051 private:
coleenp@4037 1052 ciMetadata* _metadata;
coleenp@4037 1053
coleenp@4037 1054 public:
coleenp@4037 1055 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
coleenp@4037 1056
coleenp@4037 1057 static const TypeMetadataPtr* make(ciMethod* m);
coleenp@4037 1058 static const TypeMetadataPtr* make(ciMethodData* m);
coleenp@4037 1059
coleenp@4037 1060 ciMetadata* metadata() const { return _metadata; }
coleenp@4037 1061
coleenp@4037 1062 virtual const Type *cast_to_ptr_type(PTR ptr) const;
coleenp@4037 1063
coleenp@4037 1064 virtual const TypePtr *add_offset( intptr_t offset ) const;
coleenp@4037 1065
coleenp@4037 1066 virtual const Type *xmeet( const Type *t ) const;
coleenp@4037 1067 virtual const Type *xdual() const; // Compute dual right now.
coleenp@4037 1068
coleenp@4037 1069 virtual intptr_t get_con() const;
coleenp@4037 1070
coleenp@4037 1071 // Do not allow interface-vs.-noninterface joins to collapse to top.
coleenp@4037 1072 virtual const Type *filter( const Type *kills ) const;
coleenp@4037 1073
coleenp@4037 1074 // Convenience common pre-built types.
coleenp@4037 1075 static const TypeMetadataPtr *BOTTOM;
coleenp@4037 1076
coleenp@4037 1077 #ifndef PRODUCT
coleenp@4037 1078 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
coleenp@4037 1079 #endif
coleenp@4037 1080 };
coleenp@4037 1081
duke@435 1082 //------------------------------TypeKlassPtr-----------------------------------
duke@435 1083 // Class of Java Klass pointers
coleenp@4037 1084 class TypeKlassPtr : public TypePtr {
duke@435 1085 TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
duke@435 1086
coleenp@4037 1087 public:
duke@435 1088 virtual bool eq( const Type *t ) const;
duke@435 1089 virtual int hash() const; // Type specific hashing
coleenp@4037 1090 virtual bool singleton(void) const; // TRUE if type is a singleton
coleenp@4037 1091 private:
coleenp@4037 1092
coleenp@4037 1093 static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
coleenp@4037 1094
coleenp@4037 1095 ciKlass* _klass;
coleenp@4037 1096
coleenp@4037 1097 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
coleenp@4037 1098 bool _klass_is_exact;
duke@435 1099
duke@435 1100 public:
coleenp@4037 1101 ciSymbol* name() const { return klass()->name(); }
duke@435 1102
coleenp@4037 1103 ciKlass* klass() const { return _klass; }
coleenp@4037 1104 bool klass_is_exact() const { return _klass_is_exact; }
coleenp@4037 1105
coleenp@4037 1106 bool is_loaded() const { return klass()->is_loaded(); }
coleenp@4037 1107
coleenp@4037 1108 // Creates a type given a klass. Correctly handles multi-dimensional arrays
coleenp@4037 1109 // Respects UseUniqueSubclasses.
coleenp@4037 1110 // If the klass is final, the resulting type will be exact.
coleenp@4037 1111 static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
coleenp@4037 1112 return make_from_klass_common(klass, true, false);
coleenp@4037 1113 }
coleenp@4037 1114 // Same as before, but will produce an exact type, even if
coleenp@4037 1115 // the klass is not final, as long as it has exactly one implementation.
coleenp@4037 1116 static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
coleenp@4037 1117 return make_from_klass_common(klass, true, true);
coleenp@4037 1118 }
coleenp@4037 1119 // Same as before, but does not respects UseUniqueSubclasses.
coleenp@4037 1120 // Use this only for creating array element types.
coleenp@4037 1121 static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
coleenp@4037 1122 return make_from_klass_common(klass, false, false);
coleenp@4037 1123 }
coleenp@4037 1124
coleenp@4037 1125 // Make a generic (unclassed) pointer to metadata.
coleenp@4037 1126 static const TypeKlassPtr* make(PTR ptr, int offset);
never@990 1127
duke@435 1128 // ptr to klass 'k'
duke@435 1129 static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
duke@435 1130 // ptr to klass 'k' with offset
duke@435 1131 static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
duke@435 1132 // ptr to klass 'k' or sub-klass
duke@435 1133 static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
duke@435 1134
duke@435 1135 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 1136
duke@435 1137 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 1138
duke@435 1139 // corresponding pointer to instance, for a given class
duke@435 1140 const TypeOopPtr* as_instance_type() const;
duke@435 1141
kvn@741 1142 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 1143 virtual const Type *xmeet( const Type *t ) const;
duke@435 1144 virtual const Type *xdual() const; // Compute dual right now.
duke@435 1145
coleenp@4037 1146 virtual intptr_t get_con() const;
coleenp@4037 1147
duke@435 1148 // Convenience common pre-built types.
duke@435 1149 static const TypeKlassPtr* OBJECT; // Not-null object klass or below
duke@435 1150 static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
duke@435 1151 #ifndef PRODUCT
duke@435 1152 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 1153 #endif
duke@435 1154 };
duke@435 1155
roland@4159 1156 class TypeNarrowPtr : public Type {
coleenp@548 1157 protected:
never@1262 1158 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
coleenp@548 1159
roland@4159 1160 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
roland@4159 1161 Type(t) {
never@1262 1162 assert(ptrtype->offset() == 0 ||
never@1262 1163 ptrtype->offset() == OffsetBot ||
never@1262 1164 ptrtype->offset() == OffsetTop, "no real offsets");
coleenp@548 1165 }
roland@4159 1166
roland@4159 1167 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
roland@4159 1168 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
roland@4159 1169 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
roland@4159 1170 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
coleenp@548 1171 public:
coleenp@548 1172 virtual bool eq( const Type *t ) const;
coleenp@548 1173 virtual int hash() const; // Type specific hashing
coleenp@548 1174 virtual bool singleton(void) const; // TRUE if type is a singleton
coleenp@548 1175
coleenp@548 1176 virtual const Type *xmeet( const Type *t ) const;
coleenp@548 1177 virtual const Type *xdual() const; // Compute dual right now.
coleenp@548 1178
coleenp@548 1179 virtual intptr_t get_con() const;
coleenp@548 1180
coleenp@548 1181 // Do not allow interface-vs.-noninterface joins to collapse to top.
coleenp@548 1182 virtual const Type *filter( const Type *kills ) const;
coleenp@548 1183
coleenp@548 1184 virtual bool empty(void) const; // TRUE if type is vacuous
coleenp@548 1185
roland@4159 1186 // returns the equivalent ptr type for this compressed pointer
roland@4159 1187 const TypePtr *get_ptrtype() const {
roland@4159 1188 return _ptrtype;
roland@4159 1189 }
roland@4159 1190
roland@4159 1191 #ifndef PRODUCT
roland@4159 1192 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
roland@4159 1193 #endif
roland@4159 1194 };
roland@4159 1195
roland@4159 1196 //------------------------------TypeNarrowOop----------------------------------
roland@4159 1197 // A compressed reference to some kind of Oop. This type wraps around
roland@4159 1198 // a preexisting TypeOopPtr and forwards most of it's operations to
roland@4159 1199 // the underlying type. It's only real purpose is to track the
roland@4159 1200 // oopness of the compressed oop value when we expose the conversion
roland@4159 1201 // between the normal and the compressed form.
roland@4159 1202 class TypeNarrowOop : public TypeNarrowPtr {
roland@4159 1203 protected:
roland@4159 1204 TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
roland@4159 1205 }
roland@4159 1206
roland@4159 1207 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
roland@4159 1208 return t->isa_narrowoop();
roland@4159 1209 }
roland@4159 1210
roland@4159 1211 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
roland@4159 1212 return t->is_narrowoop();
roland@4159 1213 }
roland@4159 1214
roland@4159 1215 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
roland@4159 1216 return new TypeNarrowOop(t);
roland@4159 1217 }
roland@4159 1218
roland@4159 1219 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
roland@4159 1220 return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
roland@4159 1221 }
roland@4159 1222
roland@4159 1223 public:
roland@4159 1224
coleenp@548 1225 static const TypeNarrowOop *make( const TypePtr* type);
coleenp@548 1226
jcoomes@2661 1227 static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
jcoomes@2661 1228 return make(TypeOopPtr::make_from_constant(con, require_constant));
coleenp@548 1229 }
coleenp@548 1230
roland@4159 1231 static const TypeNarrowOop *BOTTOM;
roland@4159 1232 static const TypeNarrowOop *NULL_PTR;
roland@4159 1233
roland@4159 1234 #ifndef PRODUCT
roland@4159 1235 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
roland@4159 1236 #endif
roland@4159 1237 };
roland@4159 1238
roland@4159 1239 //------------------------------TypeNarrowKlass----------------------------------
roland@4159 1240 // A compressed reference to klass pointer. This type wraps around a
roland@4159 1241 // preexisting TypeKlassPtr and forwards most of it's operations to
roland@4159 1242 // the underlying type.
roland@4159 1243 class TypeNarrowKlass : public TypeNarrowPtr {
roland@4159 1244 protected:
roland@4159 1245 TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
coleenp@548 1246 }
coleenp@548 1247
roland@4159 1248 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
roland@4159 1249 return t->isa_narrowklass();
roland@4159 1250 }
roland@4159 1251
roland@4159 1252 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
roland@4159 1253 return t->is_narrowklass();
roland@4159 1254 }
roland@4159 1255
roland@4159 1256 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
roland@4159 1257 return new TypeNarrowKlass(t);
roland@4159 1258 }
roland@4159 1259
roland@4159 1260 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
roland@4159 1261 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
roland@4159 1262 }
roland@4159 1263
roland@4159 1264 public:
roland@4159 1265 static const TypeNarrowKlass *make( const TypePtr* type);
roland@4159 1266
roland@4159 1267 // static const TypeNarrowKlass *BOTTOM;
roland@4159 1268 static const TypeNarrowKlass *NULL_PTR;
coleenp@548 1269
coleenp@548 1270 #ifndef PRODUCT
coleenp@548 1271 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
coleenp@548 1272 #endif
coleenp@548 1273 };
coleenp@548 1274
duke@435 1275 //------------------------------TypeFunc---------------------------------------
duke@435 1276 // Class of Array Types
duke@435 1277 class TypeFunc : public Type {
duke@435 1278 TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {}
duke@435 1279 virtual bool eq( const Type *t ) const;
duke@435 1280 virtual int hash() const; // Type specific hashing
duke@435 1281 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 1282 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 1283 public:
duke@435 1284 // Constants are shared among ADLC and VM
duke@435 1285 enum { Control = AdlcVMDeps::Control,
duke@435 1286 I_O = AdlcVMDeps::I_O,
duke@435 1287 Memory = AdlcVMDeps::Memory,
duke@435 1288 FramePtr = AdlcVMDeps::FramePtr,
duke@435 1289 ReturnAdr = AdlcVMDeps::ReturnAdr,
duke@435 1290 Parms = AdlcVMDeps::Parms
duke@435 1291 };
duke@435 1292
duke@435 1293 const TypeTuple* const _domain; // Domain of inputs
duke@435 1294 const TypeTuple* const _range; // Range of results
duke@435 1295
duke@435 1296 // Accessors:
duke@435 1297 const TypeTuple* domain() const { return _domain; }
duke@435 1298 const TypeTuple* range() const { return _range; }
duke@435 1299
duke@435 1300 static const TypeFunc *make(ciMethod* method);
duke@435 1301 static const TypeFunc *make(ciSignature signature, const Type* extra);
duke@435 1302 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
duke@435 1303
duke@435 1304 virtual const Type *xmeet( const Type *t ) const;
duke@435 1305 virtual const Type *xdual() const; // Compute dual right now.
duke@435 1306
duke@435 1307 BasicType return_type() const;
duke@435 1308
duke@435 1309 #ifndef PRODUCT
duke@435 1310 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 1311 #endif
duke@435 1312 // Convenience common pre-built types.
duke@435 1313 };
duke@435 1314
duke@435 1315 //------------------------------accessors--------------------------------------
kvn@598 1316 inline bool Type::is_ptr_to_narrowoop() const {
kvn@598 1317 #ifdef _LP64
kvn@598 1318 return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
kvn@598 1319 #else
kvn@598 1320 return false;
kvn@598 1321 #endif
kvn@598 1322 }
kvn@598 1323
roland@4159 1324 inline bool Type::is_ptr_to_narrowklass() const {
roland@4159 1325 #ifdef _LP64
roland@4159 1326 return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
roland@4159 1327 #else
roland@4159 1328 return false;
roland@4159 1329 #endif
roland@4159 1330 }
roland@4159 1331
duke@435 1332 inline float Type::getf() const {
duke@435 1333 assert( _base == FloatCon, "Not a FloatCon" );
duke@435 1334 return ((TypeF*)this)->_f;
duke@435 1335 }
duke@435 1336
duke@435 1337 inline double Type::getd() const {
duke@435 1338 assert( _base == DoubleCon, "Not a DoubleCon" );
duke@435 1339 return ((TypeD*)this)->_d;
duke@435 1340 }
duke@435 1341
duke@435 1342 inline const TypeInt *Type::is_int() const {
duke@435 1343 assert( _base == Int, "Not an Int" );
duke@435 1344 return (TypeInt*)this;
duke@435 1345 }
duke@435 1346
duke@435 1347 inline const TypeInt *Type::isa_int() const {
duke@435 1348 return ( _base == Int ? (TypeInt*)this : NULL);
duke@435 1349 }
duke@435 1350
duke@435 1351 inline const TypeLong *Type::is_long() const {
duke@435 1352 assert( _base == Long, "Not a Long" );
duke@435 1353 return (TypeLong*)this;
duke@435 1354 }
duke@435 1355
duke@435 1356 inline const TypeLong *Type::isa_long() const {
duke@435 1357 return ( _base == Long ? (TypeLong*)this : NULL);
duke@435 1358 }
duke@435 1359
twisti@4313 1360 inline const TypeF *Type::isa_float() const {
twisti@4313 1361 return ((_base == FloatTop ||
twisti@4313 1362 _base == FloatCon ||
twisti@4313 1363 _base == FloatBot) ? (TypeF*)this : NULL);
twisti@4313 1364 }
twisti@4313 1365
twisti@4313 1366 inline const TypeF *Type::is_float_constant() const {
twisti@4313 1367 assert( _base == FloatCon, "Not a Float" );
twisti@4313 1368 return (TypeF*)this;
twisti@4313 1369 }
twisti@4313 1370
twisti@4313 1371 inline const TypeF *Type::isa_float_constant() const {
twisti@4313 1372 return ( _base == FloatCon ? (TypeF*)this : NULL);
twisti@4313 1373 }
twisti@4313 1374
twisti@4313 1375 inline const TypeD *Type::isa_double() const {
twisti@4313 1376 return ((_base == DoubleTop ||
twisti@4313 1377 _base == DoubleCon ||
twisti@4313 1378 _base == DoubleBot) ? (TypeD*)this : NULL);
twisti@4313 1379 }
twisti@4313 1380
twisti@4313 1381 inline const TypeD *Type::is_double_constant() const {
twisti@4313 1382 assert( _base == DoubleCon, "Not a Double" );
twisti@4313 1383 return (TypeD*)this;
twisti@4313 1384 }
twisti@4313 1385
twisti@4313 1386 inline const TypeD *Type::isa_double_constant() const {
twisti@4313 1387 return ( _base == DoubleCon ? (TypeD*)this : NULL);
twisti@4313 1388 }
twisti@4313 1389
duke@435 1390 inline const TypeTuple *Type::is_tuple() const {
duke@435 1391 assert( _base == Tuple, "Not a Tuple" );
duke@435 1392 return (TypeTuple*)this;
duke@435 1393 }
duke@435 1394
duke@435 1395 inline const TypeAry *Type::is_ary() const {
duke@435 1396 assert( _base == Array , "Not an Array" );
duke@435 1397 return (TypeAry*)this;
duke@435 1398 }
duke@435 1399
kvn@3882 1400 inline const TypeVect *Type::is_vect() const {
kvn@3882 1401 assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
kvn@3882 1402 return (TypeVect*)this;
kvn@3882 1403 }
kvn@3882 1404
kvn@3882 1405 inline const TypeVect *Type::isa_vect() const {
kvn@3882 1406 return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
kvn@3882 1407 }
kvn@3882 1408
duke@435 1409 inline const TypePtr *Type::is_ptr() const {
duke@435 1410 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
duke@435 1411 assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
duke@435 1412 return (TypePtr*)this;
duke@435 1413 }
duke@435 1414
duke@435 1415 inline const TypePtr *Type::isa_ptr() const {
duke@435 1416 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
duke@435 1417 return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
duke@435 1418 }
duke@435 1419
duke@435 1420 inline const TypeOopPtr *Type::is_oopptr() const {
duke@435 1421 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@4037 1422 assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
duke@435 1423 return (TypeOopPtr*)this;
duke@435 1424 }
duke@435 1425
duke@435 1426 inline const TypeOopPtr *Type::isa_oopptr() const {
duke@435 1427 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@4037 1428 return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
duke@435 1429 }
duke@435 1430
coleenp@548 1431 inline const TypeRawPtr *Type::isa_rawptr() const {
coleenp@548 1432 return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
coleenp@548 1433 }
coleenp@548 1434
duke@435 1435 inline const TypeRawPtr *Type::is_rawptr() const {
duke@435 1436 assert( _base == RawPtr, "Not a raw pointer" );
duke@435 1437 return (TypeRawPtr*)this;
duke@435 1438 }
duke@435 1439
duke@435 1440 inline const TypeInstPtr *Type::isa_instptr() const {
duke@435 1441 return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
duke@435 1442 }
duke@435 1443
duke@435 1444 inline const TypeInstPtr *Type::is_instptr() const {
duke@435 1445 assert( _base == InstPtr, "Not an object pointer" );
duke@435 1446 return (TypeInstPtr*)this;
duke@435 1447 }
duke@435 1448
duke@435 1449 inline const TypeAryPtr *Type::isa_aryptr() const {
duke@435 1450 return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
duke@435 1451 }
duke@435 1452
duke@435 1453 inline const TypeAryPtr *Type::is_aryptr() const {
duke@435 1454 assert( _base == AryPtr, "Not an array pointer" );
duke@435 1455 return (TypeAryPtr*)this;
duke@435 1456 }
duke@435 1457
coleenp@548 1458 inline const TypeNarrowOop *Type::is_narrowoop() const {
coleenp@548 1459 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@548 1460 assert(_base == NarrowOop, "Not a narrow oop" ) ;
coleenp@548 1461 return (TypeNarrowOop*)this;
coleenp@548 1462 }
coleenp@548 1463
coleenp@548 1464 inline const TypeNarrowOop *Type::isa_narrowoop() const {
coleenp@548 1465 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@548 1466 return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
coleenp@548 1467 }
coleenp@548 1468
roland@4159 1469 inline const TypeNarrowKlass *Type::is_narrowklass() const {
roland@4159 1470 assert(_base == NarrowKlass, "Not a narrow oop" ) ;
roland@4159 1471 return (TypeNarrowKlass*)this;
roland@4159 1472 }
roland@4159 1473
roland@4159 1474 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
roland@4159 1475 return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
roland@4159 1476 }
roland@4159 1477
coleenp@4037 1478 inline const TypeMetadataPtr *Type::is_metadataptr() const {
coleenp@4037 1479 // MetadataPtr is the first and CPCachePtr the last
coleenp@4037 1480 assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
coleenp@4037 1481 return (TypeMetadataPtr*)this;
coleenp@4037 1482 }
coleenp@4037 1483
coleenp@4037 1484 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
coleenp@4037 1485 return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
coleenp@4037 1486 }
coleenp@4037 1487
duke@435 1488 inline const TypeKlassPtr *Type::isa_klassptr() const {
duke@435 1489 return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
duke@435 1490 }
duke@435 1491
duke@435 1492 inline const TypeKlassPtr *Type::is_klassptr() const {
duke@435 1493 assert( _base == KlassPtr, "Not a klass pointer" );
duke@435 1494 return (TypeKlassPtr*)this;
duke@435 1495 }
duke@435 1496
kvn@656 1497 inline const TypePtr* Type::make_ptr() const {
never@1262 1498 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
roland@4159 1499 ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
roland@4159 1500 (isa_ptr() ? is_ptr() : NULL));
kvn@656 1501 }
kvn@656 1502
never@1262 1503 inline const TypeOopPtr* Type::make_oopptr() const {
never@1262 1504 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
never@1262 1505 }
never@1262 1506
kvn@656 1507 inline const TypeNarrowOop* Type::make_narrowoop() const {
kvn@656 1508 return (_base == NarrowOop) ? is_narrowoop() :
kvn@656 1509 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
kvn@656 1510 }
kvn@656 1511
roland@4159 1512 inline const TypeNarrowKlass* Type::make_narrowklass() const {
roland@4159 1513 return (_base == NarrowKlass) ? is_narrowklass() :
roland@4159 1514 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
roland@4159 1515 }
roland@4159 1516
duke@435 1517 inline bool Type::is_floatingpoint() const {
duke@435 1518 if( (_base == FloatCon) || (_base == FloatBot) ||
duke@435 1519 (_base == DoubleCon) || (_base == DoubleBot) )
duke@435 1520 return true;
duke@435 1521 return false;
duke@435 1522 }
duke@435 1523
kvn@5110 1524 inline bool Type::is_ptr_to_boxing_obj() const {
kvn@5110 1525 const TypeInstPtr* tp = isa_instptr();
kvn@5110 1526 return (tp != NULL) && (tp->offset() == 0) &&
kvn@5110 1527 tp->klass()->is_instance_klass() &&
kvn@5110 1528 tp->klass()->as_instance_klass()->is_box_klass();
kvn@5110 1529 }
kvn@5110 1530
duke@435 1531
duke@435 1532 // ===============================================================
duke@435 1533 // Things that need to be 64-bits in the 64-bit build but
duke@435 1534 // 32-bits in the 32-bit build. Done this way to get full
duke@435 1535 // optimization AND strong typing.
duke@435 1536 #ifdef _LP64
duke@435 1537
duke@435 1538 // For type queries and asserts
duke@435 1539 #define is_intptr_t is_long
duke@435 1540 #define isa_intptr_t isa_long
duke@435 1541 #define find_intptr_t_type find_long_type
duke@435 1542 #define find_intptr_t_con find_long_con
duke@435 1543 #define TypeX TypeLong
duke@435 1544 #define Type_X Type::Long
duke@435 1545 #define TypeX_X TypeLong::LONG
duke@435 1546 #define TypeX_ZERO TypeLong::ZERO
duke@435 1547 // For 'ideal_reg' machine registers
duke@435 1548 #define Op_RegX Op_RegL
duke@435 1549 // For phase->intcon variants
duke@435 1550 #define MakeConX longcon
duke@435 1551 #define ConXNode ConLNode
duke@435 1552 // For array index arithmetic
duke@435 1553 #define MulXNode MulLNode
duke@435 1554 #define AndXNode AndLNode
duke@435 1555 #define OrXNode OrLNode
duke@435 1556 #define CmpXNode CmpLNode
duke@435 1557 #define SubXNode SubLNode
duke@435 1558 #define LShiftXNode LShiftLNode
duke@435 1559 // For object size computation:
duke@435 1560 #define AddXNode AddLNode
never@452 1561 #define RShiftXNode RShiftLNode
duke@435 1562 // For card marks and hashcodes
duke@435 1563 #define URShiftXNode URShiftLNode
kvn@855 1564 // UseOptoBiasInlining
kvn@855 1565 #define XorXNode XorLNode
kvn@855 1566 #define StoreXConditionalNode StoreLConditionalNode
duke@435 1567 // Opcodes
duke@435 1568 #define Op_LShiftX Op_LShiftL
duke@435 1569 #define Op_AndX Op_AndL
duke@435 1570 #define Op_AddX Op_AddL
duke@435 1571 #define Op_SubX Op_SubL
kvn@1286 1572 #define Op_XorX Op_XorL
kvn@1286 1573 #define Op_URShiftX Op_URShiftL
duke@435 1574 // conversions
duke@435 1575 #define ConvI2X(x) ConvI2L(x)
duke@435 1576 #define ConvL2X(x) (x)
duke@435 1577 #define ConvX2I(x) ConvL2I(x)
duke@435 1578 #define ConvX2L(x) (x)
duke@435 1579
duke@435 1580 #else
duke@435 1581
duke@435 1582 // For type queries and asserts
duke@435 1583 #define is_intptr_t is_int
duke@435 1584 #define isa_intptr_t isa_int
duke@435 1585 #define find_intptr_t_type find_int_type
duke@435 1586 #define find_intptr_t_con find_int_con
duke@435 1587 #define TypeX TypeInt
duke@435 1588 #define Type_X Type::Int
duke@435 1589 #define TypeX_X TypeInt::INT
duke@435 1590 #define TypeX_ZERO TypeInt::ZERO
duke@435 1591 // For 'ideal_reg' machine registers
duke@435 1592 #define Op_RegX Op_RegI
duke@435 1593 // For phase->intcon variants
duke@435 1594 #define MakeConX intcon
duke@435 1595 #define ConXNode ConINode
duke@435 1596 // For array index arithmetic
duke@435 1597 #define MulXNode MulINode
duke@435 1598 #define AndXNode AndINode
duke@435 1599 #define OrXNode OrINode
duke@435 1600 #define CmpXNode CmpINode
duke@435 1601 #define SubXNode SubINode
duke@435 1602 #define LShiftXNode LShiftINode
duke@435 1603 // For object size computation:
duke@435 1604 #define AddXNode AddINode
never@452 1605 #define RShiftXNode RShiftINode
duke@435 1606 // For card marks and hashcodes
duke@435 1607 #define URShiftXNode URShiftINode
kvn@855 1608 // UseOptoBiasInlining
kvn@855 1609 #define XorXNode XorINode
kvn@855 1610 #define StoreXConditionalNode StoreIConditionalNode
duke@435 1611 // Opcodes
duke@435 1612 #define Op_LShiftX Op_LShiftI
duke@435 1613 #define Op_AndX Op_AndI
duke@435 1614 #define Op_AddX Op_AddI
duke@435 1615 #define Op_SubX Op_SubI
kvn@1286 1616 #define Op_XorX Op_XorI
kvn@1286 1617 #define Op_URShiftX Op_URShiftI
duke@435 1618 // conversions
duke@435 1619 #define ConvI2X(x) (x)
duke@435 1620 #define ConvL2X(x) ConvL2I(x)
duke@435 1621 #define ConvX2I(x) (x)
duke@435 1622 #define ConvX2L(x) ConvI2L(x)
duke@435 1623
duke@435 1624 #endif
stefank@2314 1625
stefank@2314 1626 #endif // SHARE_VM_OPTO_TYPE_HPP

mercurial