src/share/vm/opto/connode.cpp

Mon, 27 May 2013 12:56:34 +0200

author
stefank
date
Mon, 27 May 2013 12:56:34 +0200
changeset 5195
95c00927be11
parent 4889
cc32ccaaf47f
child 5694
7944aba7ba41
permissions
-rw-r--r--

8015428: Remove unused CDS support from StringTable
Summary: The string in StringTable is not used by CDS anymore. Remove the unnecessary code in preparation for 8015422: Large performance hit when the StringTable is walked twice in Parallel Scavenge
Reviewed-by: pliden, tschatzl, coleenp

duke@435 1 /*
kvn@3604 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "opto/addnode.hpp"
stefank@2314 28 #include "opto/compile.hpp"
stefank@2314 29 #include "opto/connode.hpp"
stefank@2314 30 #include "opto/machnode.hpp"
stefank@2314 31 #include "opto/matcher.hpp"
stefank@2314 32 #include "opto/memnode.hpp"
stefank@2314 33 #include "opto/phaseX.hpp"
stefank@2314 34 #include "opto/subnode.hpp"
stefank@2314 35 #include "runtime/sharedRuntime.hpp"
stefank@2314 36
duke@435 37 // Optimization - Graph Style
duke@435 38
duke@435 39 //=============================================================================
duke@435 40 //------------------------------hash-------------------------------------------
duke@435 41 uint ConNode::hash() const {
duke@435 42 return (uintptr_t)in(TypeFunc::Control) + _type->hash();
duke@435 43 }
duke@435 44
duke@435 45 //------------------------------make-------------------------------------------
duke@435 46 ConNode *ConNode::make( Compile* C, const Type *t ) {
duke@435 47 switch( t->basic_type() ) {
roland@4159 48 case T_INT: return new (C) ConINode( t->is_int() );
roland@4159 49 case T_LONG: return new (C) ConLNode( t->is_long() );
roland@4159 50 case T_FLOAT: return new (C) ConFNode( t->is_float_constant() );
roland@4159 51 case T_DOUBLE: return new (C) ConDNode( t->is_double_constant() );
roland@4159 52 case T_VOID: return new (C) ConNode ( Type::TOP );
roland@4159 53 case T_OBJECT: return new (C) ConPNode( t->is_ptr() );
roland@4159 54 case T_ARRAY: return new (C) ConPNode( t->is_aryptr() );
roland@4159 55 case T_ADDRESS: return new (C) ConPNode( t->is_ptr() );
roland@4159 56 case T_NARROWOOP: return new (C) ConNNode( t->is_narrowoop() );
roland@4159 57 case T_NARROWKLASS: return new (C) ConNKlassNode( t->is_narrowklass() );
roland@4159 58 case T_METADATA: return new (C) ConPNode( t->is_ptr() );
duke@435 59 // Expected cases: TypePtr::NULL_PTR, any is_rawptr()
duke@435 60 // Also seen: AnyPtr(TopPTR *+top); from command line:
duke@435 61 // r -XX:+PrintOpto -XX:CIStart=285 -XX:+CompileTheWorld -XX:CompileTheWorldStartAt=660
duke@435 62 // %%%% Stop using TypePtr::NULL_PTR to represent nulls: use either TypeRawPtr::NULL_PTR
duke@435 63 // or else TypeOopPtr::NULL_PTR. Then set Type::_basic_type[AnyPtr] = T_ILLEGAL
duke@435 64 }
duke@435 65 ShouldNotReachHere();
duke@435 66 return NULL;
duke@435 67 }
duke@435 68
duke@435 69 //=============================================================================
duke@435 70 /*
duke@435 71 The major change is for CMoveP and StrComp. They have related but slightly
duke@435 72 different problems. They both take in TWO oops which are both null-checked
duke@435 73 independently before the using Node. After CCP removes the CastPP's they need
duke@435 74 to pick up the guarding test edge - in this case TWO control edges. I tried
duke@435 75 various solutions, all have problems:
duke@435 76
duke@435 77 (1) Do nothing. This leads to a bug where we hoist a Load from a CMoveP or a
duke@435 78 StrComp above a guarding null check. I've seen both cases in normal -Xcomp
duke@435 79 testing.
duke@435 80
duke@435 81 (2) Plug the control edge from 1 of the 2 oops in. Apparent problem here is
duke@435 82 to figure out which test post-dominates. The real problem is that it doesn't
duke@435 83 matter which one you pick. After you pick up, the dominating-test elider in
duke@435 84 IGVN can remove the test and allow you to hoist up to the dominating test on
twisti@1040 85 the chosen oop bypassing the test on the not-chosen oop. Seen in testing.
duke@435 86 Oops.
duke@435 87
duke@435 88 (3) Leave the CastPP's in. This makes the graph more accurate in some sense;
duke@435 89 we get to keep around the knowledge that an oop is not-null after some test.
duke@435 90 Alas, the CastPP's interfere with GVN (some values are the regular oop, some
duke@435 91 are the CastPP of the oop, all merge at Phi's which cannot collapse, etc).
duke@435 92 This cost us 10% on SpecJVM, even when I removed some of the more trivial
duke@435 93 cases in the optimizer. Removing more useless Phi's started allowing Loads to
duke@435 94 illegally float above null checks. I gave up on this approach.
duke@435 95
duke@435 96 (4) Add BOTH control edges to both tests. Alas, too much code knows that
duke@435 97 control edges are in slot-zero ONLY. Many quick asserts fail; no way to do
duke@435 98 this one. Note that I really want to allow the CMoveP to float and add both
duke@435 99 control edges to the dependent Load op - meaning I can select early but I
duke@435 100 cannot Load until I pass both tests.
duke@435 101
duke@435 102 (5) Do not hoist CMoveP and StrComp. To this end I added the v-call
duke@435 103 depends_only_on_test(). No obvious performance loss on Spec, but we are
duke@435 104 clearly conservative on CMoveP (also so on StrComp but that's unlikely to
duke@435 105 matter ever).
duke@435 106
duke@435 107 */
duke@435 108
duke@435 109
duke@435 110 //------------------------------Ideal------------------------------------------
duke@435 111 // Return a node which is more "ideal" than the current node.
duke@435 112 // Move constants to the right.
duke@435 113 Node *CMoveNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 114 if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
kvn@740 115 // Don't bother trying to transform a dead node
kvn@740 116 if( in(0) && in(0)->is_top() ) return NULL;
duke@435 117 assert( !phase->eqv(in(Condition), this) &&
duke@435 118 !phase->eqv(in(IfFalse), this) &&
duke@435 119 !phase->eqv(in(IfTrue), this), "dead loop in CMoveNode::Ideal" );
duke@435 120 if( phase->type(in(Condition)) == Type::TOP )
duke@435 121 return NULL; // return NULL when Condition is dead
duke@435 122
duke@435 123 if( in(IfFalse)->is_Con() && !in(IfTrue)->is_Con() ) {
duke@435 124 if( in(Condition)->is_Bool() ) {
duke@435 125 BoolNode* b = in(Condition)->as_Bool();
duke@435 126 BoolNode* b2 = b->negate(phase);
duke@435 127 return make( phase->C, in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type );
duke@435 128 }
duke@435 129 }
duke@435 130 return NULL;
duke@435 131 }
duke@435 132
duke@435 133 //------------------------------is_cmove_id------------------------------------
duke@435 134 // Helper function to check for CMOVE identity. Shared with PhiNode::Identity
duke@435 135 Node *CMoveNode::is_cmove_id( PhaseTransform *phase, Node *cmp, Node *t, Node *f, BoolNode *b ) {
duke@435 136 // Check for Cmp'ing and CMove'ing same values
duke@435 137 if( (phase->eqv(cmp->in(1),f) &&
duke@435 138 phase->eqv(cmp->in(2),t)) ||
duke@435 139 // Swapped Cmp is OK
duke@435 140 (phase->eqv(cmp->in(2),f) &&
duke@435 141 phase->eqv(cmp->in(1),t)) ) {
cfang@1190 142 // Give up this identity check for floating points because it may choose incorrect
cfang@1190 143 // value around 0.0 and -0.0
cfang@1190 144 if ( cmp->Opcode()==Op_CmpF || cmp->Opcode()==Op_CmpD )
cfang@1190 145 return NULL;
duke@435 146 // Check for "(t==f)?t:f;" and replace with "f"
duke@435 147 if( b->_test._test == BoolTest::eq )
duke@435 148 return f;
duke@435 149 // Allow the inverted case as well
duke@435 150 // Check for "(t!=f)?t:f;" and replace with "t"
duke@435 151 if( b->_test._test == BoolTest::ne )
duke@435 152 return t;
duke@435 153 }
duke@435 154 return NULL;
duke@435 155 }
duke@435 156
duke@435 157 //------------------------------Identity---------------------------------------
duke@435 158 // Conditional-move is an identity if both inputs are the same, or the test
duke@435 159 // true or false.
duke@435 160 Node *CMoveNode::Identity( PhaseTransform *phase ) {
duke@435 161 if( phase->eqv(in(IfFalse),in(IfTrue)) ) // C-moving identical inputs?
duke@435 162 return in(IfFalse); // Then it doesn't matter
duke@435 163 if( phase->type(in(Condition)) == TypeInt::ZERO )
duke@435 164 return in(IfFalse); // Always pick left(false) input
duke@435 165 if( phase->type(in(Condition)) == TypeInt::ONE )
duke@435 166 return in(IfTrue); // Always pick right(true) input
duke@435 167
duke@435 168 // Check for CMove'ing a constant after comparing against the constant.
duke@435 169 // Happens all the time now, since if we compare equality vs a constant in
duke@435 170 // the parser, we "know" the variable is constant on one path and we force
duke@435 171 // it. Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
duke@435 172 // conditional move: "x = (x==0)?0:x;". Yucko. This fix is slightly more
duke@435 173 // general in that we don't need constants.
duke@435 174 if( in(Condition)->is_Bool() ) {
duke@435 175 BoolNode *b = in(Condition)->as_Bool();
duke@435 176 Node *cmp = b->in(1);
duke@435 177 if( cmp->is_Cmp() ) {
duke@435 178 Node *id = is_cmove_id( phase, cmp, in(IfTrue), in(IfFalse), b );
duke@435 179 if( id ) return id;
duke@435 180 }
duke@435 181 }
duke@435 182
duke@435 183 return this;
duke@435 184 }
duke@435 185
duke@435 186 //------------------------------Value------------------------------------------
duke@435 187 // Result is the meet of inputs
duke@435 188 const Type *CMoveNode::Value( PhaseTransform *phase ) const {
duke@435 189 if( phase->type(in(Condition)) == Type::TOP )
duke@435 190 return Type::TOP;
duke@435 191 return phase->type(in(IfFalse))->meet(phase->type(in(IfTrue)));
duke@435 192 }
duke@435 193
duke@435 194 //------------------------------make-------------------------------------------
duke@435 195 // Make a correctly-flavored CMove. Since _type is directly determined
duke@435 196 // from the inputs we do not need to specify it here.
duke@435 197 CMoveNode *CMoveNode::make( Compile *C, Node *c, Node *bol, Node *left, Node *right, const Type *t ) {
duke@435 198 switch( t->basic_type() ) {
kvn@4115 199 case T_INT: return new (C) CMoveINode( bol, left, right, t->is_int() );
kvn@4115 200 case T_FLOAT: return new (C) CMoveFNode( bol, left, right, t );
kvn@4115 201 case T_DOUBLE: return new (C) CMoveDNode( bol, left, right, t );
kvn@4115 202 case T_LONG: return new (C) CMoveLNode( bol, left, right, t->is_long() );
kvn@4115 203 case T_OBJECT: return new (C) CMovePNode( c, bol, left, right, t->is_oopptr() );
kvn@4115 204 case T_ADDRESS: return new (C) CMovePNode( c, bol, left, right, t->is_ptr() );
kvn@4115 205 case T_NARROWOOP: return new (C) CMoveNNode( c, bol, left, right, t );
duke@435 206 default:
duke@435 207 ShouldNotReachHere();
duke@435 208 return NULL;
duke@435 209 }
duke@435 210 }
duke@435 211
duke@435 212 //=============================================================================
duke@435 213 //------------------------------Ideal------------------------------------------
duke@435 214 // Return a node which is more "ideal" than the current node.
duke@435 215 // Check for conversions to boolean
duke@435 216 Node *CMoveINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 217 // Try generic ideal's first
duke@435 218 Node *x = CMoveNode::Ideal(phase, can_reshape);
duke@435 219 if( x ) return x;
duke@435 220
duke@435 221 // If zero is on the left (false-case, no-move-case) it must mean another
duke@435 222 // constant is on the right (otherwise the shared CMove::Ideal code would
duke@435 223 // have moved the constant to the right). This situation is bad for Intel
duke@435 224 // and a don't-care for Sparc. It's bad for Intel because the zero has to
duke@435 225 // be manifested in a register with a XOR which kills flags, which are live
duke@435 226 // on input to the CMoveI, leading to a situation which causes excessive
duke@435 227 // spilling on Intel. For Sparc, if the zero in on the left the Sparc will
duke@435 228 // zero a register via G0 and conditionally-move the other constant. If the
duke@435 229 // zero is on the right, the Sparc will load the first constant with a
duke@435 230 // 13-bit set-lo and conditionally move G0. See bug 4677505.
duke@435 231 if( phase->type(in(IfFalse)) == TypeInt::ZERO && !(phase->type(in(IfTrue)) == TypeInt::ZERO) ) {
duke@435 232 if( in(Condition)->is_Bool() ) {
duke@435 233 BoolNode* b = in(Condition)->as_Bool();
duke@435 234 BoolNode* b2 = b->negate(phase);
duke@435 235 return make( phase->C, in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type );
duke@435 236 }
duke@435 237 }
duke@435 238
duke@435 239 // Now check for booleans
duke@435 240 int flip = 0;
duke@435 241
duke@435 242 // Check for picking from zero/one
duke@435 243 if( phase->type(in(IfFalse)) == TypeInt::ZERO && phase->type(in(IfTrue)) == TypeInt::ONE ) {
duke@435 244 flip = 1 - flip;
duke@435 245 } else if( phase->type(in(IfFalse)) == TypeInt::ONE && phase->type(in(IfTrue)) == TypeInt::ZERO ) {
duke@435 246 } else return NULL;
duke@435 247
duke@435 248 // Check for eq/ne test
duke@435 249 if( !in(1)->is_Bool() ) return NULL;
duke@435 250 BoolNode *bol = in(1)->as_Bool();
duke@435 251 if( bol->_test._test == BoolTest::eq ) {
duke@435 252 } else if( bol->_test._test == BoolTest::ne ) {
duke@435 253 flip = 1-flip;
duke@435 254 } else return NULL;
duke@435 255
duke@435 256 // Check for vs 0 or 1
duke@435 257 if( !bol->in(1)->is_Cmp() ) return NULL;
duke@435 258 const CmpNode *cmp = bol->in(1)->as_Cmp();
duke@435 259 if( phase->type(cmp->in(2)) == TypeInt::ZERO ) {
duke@435 260 } else if( phase->type(cmp->in(2)) == TypeInt::ONE ) {
duke@435 261 // Allow cmp-vs-1 if the other input is bounded by 0-1
duke@435 262 if( phase->type(cmp->in(1)) != TypeInt::BOOL )
duke@435 263 return NULL;
duke@435 264 flip = 1 - flip;
duke@435 265 } else return NULL;
duke@435 266
duke@435 267 // Convert to a bool (flipped)
duke@435 268 // Build int->bool conversion
duke@435 269 #ifndef PRODUCT
duke@435 270 if( PrintOpto ) tty->print_cr("CMOV to I2B");
duke@435 271 #endif
kvn@4115 272 Node *n = new (phase->C) Conv2BNode( cmp->in(1) );
duke@435 273 if( flip )
kvn@4115 274 n = new (phase->C) XorINode( phase->transform(n), phase->intcon(1) );
duke@435 275
duke@435 276 return n;
duke@435 277 }
duke@435 278
duke@435 279 //=============================================================================
duke@435 280 //------------------------------Ideal------------------------------------------
duke@435 281 // Return a node which is more "ideal" than the current node.
duke@435 282 // Check for absolute value
duke@435 283 Node *CMoveFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 284 // Try generic ideal's first
duke@435 285 Node *x = CMoveNode::Ideal(phase, can_reshape);
duke@435 286 if( x ) return x;
duke@435 287
duke@435 288 int cmp_zero_idx = 0; // Index of compare input where to look for zero
duke@435 289 int phi_x_idx = 0; // Index of phi input where to find naked x
duke@435 290
duke@435 291 // Find the Bool
duke@435 292 if( !in(1)->is_Bool() ) return NULL;
duke@435 293 BoolNode *bol = in(1)->as_Bool();
duke@435 294 // Check bool sense
duke@435 295 switch( bol->_test._test ) {
duke@435 296 case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue; break;
duke@435 297 case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
duke@435 298 case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue; break;
duke@435 299 case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
duke@435 300 default: return NULL; break;
duke@435 301 }
duke@435 302
duke@435 303 // Find zero input of CmpF; the other input is being abs'd
duke@435 304 Node *cmpf = bol->in(1);
duke@435 305 if( cmpf->Opcode() != Op_CmpF ) return NULL;
duke@435 306 Node *X = NULL;
duke@435 307 bool flip = false;
duke@435 308 if( phase->type(cmpf->in(cmp_zero_idx)) == TypeF::ZERO ) {
duke@435 309 X = cmpf->in(3 - cmp_zero_idx);
duke@435 310 } else if (phase->type(cmpf->in(3 - cmp_zero_idx)) == TypeF::ZERO) {
duke@435 311 // The test is inverted, we should invert the result...
duke@435 312 X = cmpf->in(cmp_zero_idx);
duke@435 313 flip = true;
duke@435 314 } else {
duke@435 315 return NULL;
duke@435 316 }
duke@435 317
duke@435 318 // If X is found on the appropriate phi input, find the subtract on the other
duke@435 319 if( X != in(phi_x_idx) ) return NULL;
duke@435 320 int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
duke@435 321 Node *sub = in(phi_sub_idx);
duke@435 322
duke@435 323 // Allow only SubF(0,X) and fail out for all others; NegF is not OK
duke@435 324 if( sub->Opcode() != Op_SubF ||
duke@435 325 sub->in(2) != X ||
duke@435 326 phase->type(sub->in(1)) != TypeF::ZERO ) return NULL;
duke@435 327
kvn@4115 328 Node *abs = new (phase->C) AbsFNode( X );
duke@435 329 if( flip )
kvn@4115 330 abs = new (phase->C) SubFNode(sub->in(1), phase->transform(abs));
duke@435 331
duke@435 332 return abs;
duke@435 333 }
duke@435 334
duke@435 335 //=============================================================================
duke@435 336 //------------------------------Ideal------------------------------------------
duke@435 337 // Return a node which is more "ideal" than the current node.
duke@435 338 // Check for absolute value
duke@435 339 Node *CMoveDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 340 // Try generic ideal's first
duke@435 341 Node *x = CMoveNode::Ideal(phase, can_reshape);
duke@435 342 if( x ) return x;
duke@435 343
duke@435 344 int cmp_zero_idx = 0; // Index of compare input where to look for zero
duke@435 345 int phi_x_idx = 0; // Index of phi input where to find naked x
duke@435 346
duke@435 347 // Find the Bool
duke@435 348 if( !in(1)->is_Bool() ) return NULL;
duke@435 349 BoolNode *bol = in(1)->as_Bool();
duke@435 350 // Check bool sense
duke@435 351 switch( bol->_test._test ) {
duke@435 352 case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue; break;
duke@435 353 case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
duke@435 354 case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue; break;
duke@435 355 case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
duke@435 356 default: return NULL; break;
duke@435 357 }
duke@435 358
duke@435 359 // Find zero input of CmpD; the other input is being abs'd
duke@435 360 Node *cmpd = bol->in(1);
duke@435 361 if( cmpd->Opcode() != Op_CmpD ) return NULL;
duke@435 362 Node *X = NULL;
duke@435 363 bool flip = false;
duke@435 364 if( phase->type(cmpd->in(cmp_zero_idx)) == TypeD::ZERO ) {
duke@435 365 X = cmpd->in(3 - cmp_zero_idx);
duke@435 366 } else if (phase->type(cmpd->in(3 - cmp_zero_idx)) == TypeD::ZERO) {
duke@435 367 // The test is inverted, we should invert the result...
duke@435 368 X = cmpd->in(cmp_zero_idx);
duke@435 369 flip = true;
duke@435 370 } else {
duke@435 371 return NULL;
duke@435 372 }
duke@435 373
duke@435 374 // If X is found on the appropriate phi input, find the subtract on the other
duke@435 375 if( X != in(phi_x_idx) ) return NULL;
duke@435 376 int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
duke@435 377 Node *sub = in(phi_sub_idx);
duke@435 378
duke@435 379 // Allow only SubD(0,X) and fail out for all others; NegD is not OK
duke@435 380 if( sub->Opcode() != Op_SubD ||
duke@435 381 sub->in(2) != X ||
duke@435 382 phase->type(sub->in(1)) != TypeD::ZERO ) return NULL;
duke@435 383
kvn@4115 384 Node *abs = new (phase->C) AbsDNode( X );
duke@435 385 if( flip )
kvn@4115 386 abs = new (phase->C) SubDNode(sub->in(1), phase->transform(abs));
duke@435 387
duke@435 388 return abs;
duke@435 389 }
duke@435 390
duke@435 391
duke@435 392 //=============================================================================
duke@435 393 // If input is already higher or equal to cast type, then this is an identity.
duke@435 394 Node *ConstraintCastNode::Identity( PhaseTransform *phase ) {
duke@435 395 return phase->type(in(1))->higher_equal(_type) ? in(1) : this;
duke@435 396 }
duke@435 397
duke@435 398 //------------------------------Value------------------------------------------
duke@435 399 // Take 'join' of input and cast-up type
duke@435 400 const Type *ConstraintCastNode::Value( PhaseTransform *phase ) const {
duke@435 401 if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
duke@435 402 const Type* ft = phase->type(in(1))->filter(_type);
duke@435 403
duke@435 404 #ifdef ASSERT
duke@435 405 // Previous versions of this function had some special case logic,
duke@435 406 // which is no longer necessary. Make sure of the required effects.
duke@435 407 switch (Opcode()) {
duke@435 408 case Op_CastII:
duke@435 409 {
duke@435 410 const Type* t1 = phase->type(in(1));
duke@435 411 if( t1 == Type::TOP ) assert(ft == Type::TOP, "special case #1");
duke@435 412 const Type* rt = t1->join(_type);
duke@435 413 if (rt->empty()) assert(ft == Type::TOP, "special case #2");
duke@435 414 break;
duke@435 415 }
duke@435 416 case Op_CastPP:
duke@435 417 if (phase->type(in(1)) == TypePtr::NULL_PTR &&
duke@435 418 _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
duke@435 419 assert(ft == Type::TOP, "special case #3");
duke@435 420 break;
duke@435 421 }
duke@435 422 #endif //ASSERT
duke@435 423
duke@435 424 return ft;
duke@435 425 }
duke@435 426
duke@435 427 //------------------------------Ideal------------------------------------------
duke@435 428 // Return a node which is more "ideal" than the current node. Strip out
duke@435 429 // control copies
duke@435 430 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 431 return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
duke@435 432 }
duke@435 433
duke@435 434 //------------------------------Ideal_DU_postCCP-------------------------------
duke@435 435 // Throw away cast after constant propagation
duke@435 436 Node *ConstraintCastNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
duke@435 437 const Type *t = ccp->type(in(1));
duke@435 438 ccp->hash_delete(this);
duke@435 439 set_type(t); // Turn into ID function
duke@435 440 ccp->hash_insert(this);
duke@435 441 return this;
duke@435 442 }
duke@435 443
duke@435 444
duke@435 445 //=============================================================================
duke@435 446
duke@435 447 //------------------------------Ideal_DU_postCCP-------------------------------
duke@435 448 // If not converting int->oop, throw away cast after constant propagation
duke@435 449 Node *CastPPNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
duke@435 450 const Type *t = ccp->type(in(1));
roland@4159 451 if (!t->isa_oop_ptr() || ((in(1)->is_DecodeN()) && Matcher::gen_narrow_oop_implicit_null_checks())) {
kvn@803 452 return NULL; // do not transform raw pointers or narrow oops
duke@435 453 }
duke@435 454 return ConstraintCastNode::Ideal_DU_postCCP(ccp);
duke@435 455 }
duke@435 456
duke@435 457
duke@435 458
duke@435 459 //=============================================================================
duke@435 460 //------------------------------Identity---------------------------------------
duke@435 461 // If input is already higher or equal to cast type, then this is an identity.
duke@435 462 Node *CheckCastPPNode::Identity( PhaseTransform *phase ) {
duke@435 463 // Toned down to rescue meeting at a Phi 3 different oops all implementing
duke@435 464 // the same interface. CompileTheWorld starting at 502, kd12rc1.zip.
duke@435 465 return (phase->type(in(1)) == phase->type(this)) ? in(1) : this;
duke@435 466 }
duke@435 467
duke@435 468 //------------------------------Value------------------------------------------
duke@435 469 // Take 'join' of input and cast-up type, unless working with an Interface
duke@435 470 const Type *CheckCastPPNode::Value( PhaseTransform *phase ) const {
duke@435 471 if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
duke@435 472
duke@435 473 const Type *inn = phase->type(in(1));
duke@435 474 if( inn == Type::TOP ) return Type::TOP; // No information yet
duke@435 475
duke@435 476 const TypePtr *in_type = inn->isa_ptr();
duke@435 477 const TypePtr *my_type = _type->isa_ptr();
duke@435 478 const Type *result = _type;
duke@435 479 if( in_type != NULL && my_type != NULL ) {
duke@435 480 TypePtr::PTR in_ptr = in_type->ptr();
duke@435 481 if( in_ptr == TypePtr::Null ) {
duke@435 482 result = in_type;
duke@435 483 } else if( in_ptr == TypePtr::Constant ) {
duke@435 484 // Casting a constant oop to an interface?
duke@435 485 // (i.e., a String to a Comparable?)
duke@435 486 // Then return the interface.
duke@435 487 const TypeOopPtr *jptr = my_type->isa_oopptr();
duke@435 488 assert( jptr, "" );
duke@435 489 result = (jptr->klass()->is_interface() || !in_type->higher_equal(_type))
duke@435 490 ? my_type->cast_to_ptr_type( TypePtr::NotNull )
duke@435 491 : in_type;
duke@435 492 } else {
duke@435 493 result = my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) );
duke@435 494 }
duke@435 495 }
duke@435 496 return result;
duke@435 497
duke@435 498 // JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES.
duke@435 499 // FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR!
duke@435 500
duke@435 501 //
duke@435 502 // Remove this code after overnight run indicates no performance
duke@435 503 // loss from not performing JOIN at CheckCastPPNode
duke@435 504 //
duke@435 505 // const TypeInstPtr *in_oop = in->isa_instptr();
duke@435 506 // const TypeInstPtr *my_oop = _type->isa_instptr();
duke@435 507 // // If either input is an 'interface', return destination type
duke@435 508 // assert (in_oop == NULL || in_oop->klass() != NULL, "");
duke@435 509 // assert (my_oop == NULL || my_oop->klass() != NULL, "");
coleenp@4037 510 // if( (in_oop && in_oop->klass()->is_interface())
coleenp@4037 511 // ||(my_oop && my_oop->klass()->is_interface()) ) {
duke@435 512 // TypePtr::PTR in_ptr = in->isa_ptr() ? in->is_ptr()->_ptr : TypePtr::BotPTR;
duke@435 513 // // Preserve cast away nullness for interfaces
duke@435 514 // if( in_ptr == TypePtr::NotNull && my_oop && my_oop->_ptr == TypePtr::BotPTR ) {
duke@435 515 // return my_oop->cast_to_ptr_type(TypePtr::NotNull);
duke@435 516 // }
duke@435 517 // return _type;
duke@435 518 // }
duke@435 519 //
duke@435 520 // // Neither the input nor the destination type is an interface,
duke@435 521 //
duke@435 522 // // history: JOIN used to cause weird corner case bugs
duke@435 523 // // return (in == TypeOopPtr::NULL_PTR) ? in : _type;
duke@435 524 // // JOIN picks up NotNull in common instance-of/check-cast idioms, both oops.
duke@435 525 // // JOIN does not preserve NotNull in other cases, e.g. RawPtr vs InstPtr
duke@435 526 // const Type *join = in->join(_type);
duke@435 527 // // Check if join preserved NotNull'ness for pointers
duke@435 528 // if( join->isa_ptr() && _type->isa_ptr() ) {
duke@435 529 // TypePtr::PTR join_ptr = join->is_ptr()->_ptr;
duke@435 530 // TypePtr::PTR type_ptr = _type->is_ptr()->_ptr;
duke@435 531 // // If there isn't any NotNull'ness to preserve
duke@435 532 // // OR if join preserved NotNull'ness then return it
duke@435 533 // if( type_ptr == TypePtr::BotPTR || type_ptr == TypePtr::Null ||
duke@435 534 // join_ptr == TypePtr::NotNull || join_ptr == TypePtr::Constant ) {
duke@435 535 // return join;
duke@435 536 // }
duke@435 537 // // ELSE return same old type as before
duke@435 538 // return _type;
duke@435 539 // }
duke@435 540 // // Not joining two pointers
duke@435 541 // return join;
duke@435 542 }
duke@435 543
duke@435 544 //------------------------------Ideal------------------------------------------
duke@435 545 // Return a node which is more "ideal" than the current node. Strip out
duke@435 546 // control copies
duke@435 547 Node *CheckCastPPNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 548 return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
duke@435 549 }
duke@435 550
coleenp@548 551
coleenp@548 552 Node* DecodeNNode::Identity(PhaseTransform* phase) {
coleenp@548 553 const Type *t = phase->type( in(1) );
coleenp@548 554 if( t == Type::TOP ) return in(1);
coleenp@548 555
kvn@603 556 if (in(1)->is_EncodeP()) {
coleenp@548 557 // (DecodeN (EncodeP p)) -> p
coleenp@548 558 return in(1)->in(1);
coleenp@548 559 }
coleenp@548 560 return this;
coleenp@548 561 }
coleenp@548 562
kvn@559 563 const Type *DecodeNNode::Value( PhaseTransform *phase ) const {
kvn@651 564 const Type *t = phase->type( in(1) );
kvn@651 565 if (t == Type::TOP) return Type::TOP;
kvn@651 566 if (t == TypeNarrowOop::NULL_PTR) return TypePtr::NULL_PTR;
kvn@651 567
kvn@651 568 assert(t->isa_narrowoop(), "only narrowoop here");
kvn@656 569 return t->make_ptr();
kvn@559 570 }
kvn@559 571
coleenp@548 572 Node* EncodePNode::Identity(PhaseTransform* phase) {
coleenp@548 573 const Type *t = phase->type( in(1) );
coleenp@548 574 if( t == Type::TOP ) return in(1);
coleenp@548 575
kvn@603 576 if (in(1)->is_DecodeN()) {
coleenp@548 577 // (EncodeP (DecodeN p)) -> p
coleenp@548 578 return in(1)->in(1);
coleenp@548 579 }
coleenp@548 580 return this;
coleenp@548 581 }
coleenp@548 582
kvn@559 583 const Type *EncodePNode::Value( PhaseTransform *phase ) const {
kvn@651 584 const Type *t = phase->type( in(1) );
kvn@651 585 if (t == Type::TOP) return Type::TOP;
kvn@651 586 if (t == TypePtr::NULL_PTR) return TypeNarrowOop::NULL_PTR;
kvn@651 587
roland@4159 588 assert(t->isa_oop_ptr(), "only oopptr here");
kvn@656 589 return t->make_narrowoop();
kvn@559 590 }
coleenp@548 591
coleenp@548 592
roland@4159 593 Node *EncodeNarrowPtrNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
kvn@598 594 return MemNode::Ideal_common_DU_postCCP(ccp, this, in(1));
kvn@598 595 }
coleenp@548 596
roland@4159 597 Node* DecodeNKlassNode::Identity(PhaseTransform* phase) {
roland@4159 598 const Type *t = phase->type( in(1) );
roland@4159 599 if( t == Type::TOP ) return in(1);
roland@4159 600
roland@4159 601 if (in(1)->is_EncodePKlass()) {
roland@4159 602 // (DecodeNKlass (EncodePKlass p)) -> p
roland@4159 603 return in(1)->in(1);
roland@4159 604 }
roland@4159 605 return this;
roland@4159 606 }
roland@4159 607
roland@4159 608 const Type *DecodeNKlassNode::Value( PhaseTransform *phase ) const {
roland@4159 609 const Type *t = phase->type( in(1) );
roland@4159 610 if (t == Type::TOP) return Type::TOP;
roland@4159 611 assert(t != TypeNarrowKlass::NULL_PTR, "null klass?");
roland@4159 612
roland@4159 613 assert(t->isa_narrowklass(), "only narrow klass ptr here");
roland@4159 614 return t->make_ptr();
roland@4159 615 }
roland@4159 616
roland@4159 617 Node* EncodePKlassNode::Identity(PhaseTransform* phase) {
roland@4159 618 const Type *t = phase->type( in(1) );
roland@4159 619 if( t == Type::TOP ) return in(1);
roland@4159 620
roland@4159 621 if (in(1)->is_DecodeNKlass()) {
roland@4159 622 // (EncodePKlass (DecodeNKlass p)) -> p
roland@4159 623 return in(1)->in(1);
roland@4159 624 }
roland@4159 625 return this;
roland@4159 626 }
roland@4159 627
roland@4159 628 const Type *EncodePKlassNode::Value( PhaseTransform *phase ) const {
roland@4159 629 const Type *t = phase->type( in(1) );
roland@4159 630 if (t == Type::TOP) return Type::TOP;
roland@4159 631 assert (t != TypePtr::NULL_PTR, "null klass?");
roland@4159 632
roland@4159 633 assert(UseCompressedKlassPointers && t->isa_klassptr(), "only klass ptr here");
roland@4159 634 return t->make_narrowklass();
roland@4159 635 }
roland@4159 636
roland@4159 637
duke@435 638 //=============================================================================
duke@435 639 //------------------------------Identity---------------------------------------
duke@435 640 Node *Conv2BNode::Identity( PhaseTransform *phase ) {
duke@435 641 const Type *t = phase->type( in(1) );
duke@435 642 if( t == Type::TOP ) return in(1);
duke@435 643 if( t == TypeInt::ZERO ) return in(1);
duke@435 644 if( t == TypeInt::ONE ) return in(1);
duke@435 645 if( t == TypeInt::BOOL ) return in(1);
duke@435 646 return this;
duke@435 647 }
duke@435 648
duke@435 649 //------------------------------Value------------------------------------------
duke@435 650 const Type *Conv2BNode::Value( PhaseTransform *phase ) const {
duke@435 651 const Type *t = phase->type( in(1) );
duke@435 652 if( t == Type::TOP ) return Type::TOP;
duke@435 653 if( t == TypeInt::ZERO ) return TypeInt::ZERO;
duke@435 654 if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
duke@435 655 const TypePtr *tp = t->isa_ptr();
duke@435 656 if( tp != NULL ) {
duke@435 657 if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
duke@435 658 if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
duke@435 659 if (tp->ptr() == TypePtr::NotNull) return TypeInt::ONE;
duke@435 660 return TypeInt::BOOL;
duke@435 661 }
duke@435 662 if (t->base() != Type::Int) return TypeInt::BOOL;
duke@435 663 const TypeInt *ti = t->is_int();
duke@435 664 if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
duke@435 665 return TypeInt::BOOL;
duke@435 666 }
duke@435 667
duke@435 668
duke@435 669 // The conversions operations are all Alpha sorted. Please keep it that way!
duke@435 670 //=============================================================================
duke@435 671 //------------------------------Value------------------------------------------
duke@435 672 const Type *ConvD2FNode::Value( PhaseTransform *phase ) const {
duke@435 673 const Type *t = phase->type( in(1) );
duke@435 674 if( t == Type::TOP ) return Type::TOP;
duke@435 675 if( t == Type::DOUBLE ) return Type::FLOAT;
duke@435 676 const TypeD *td = t->is_double_constant();
duke@435 677 return TypeF::make( (float)td->getd() );
duke@435 678 }
duke@435 679
duke@435 680 //------------------------------Identity---------------------------------------
duke@435 681 // Float's can be converted to doubles with no loss of bits. Hence
duke@435 682 // converting a float to a double and back to a float is a NOP.
duke@435 683 Node *ConvD2FNode::Identity(PhaseTransform *phase) {
duke@435 684 return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
duke@435 685 }
duke@435 686
duke@435 687 //=============================================================================
duke@435 688 //------------------------------Value------------------------------------------
duke@435 689 const Type *ConvD2INode::Value( PhaseTransform *phase ) const {
duke@435 690 const Type *t = phase->type( in(1) );
duke@435 691 if( t == Type::TOP ) return Type::TOP;
duke@435 692 if( t == Type::DOUBLE ) return TypeInt::INT;
duke@435 693 const TypeD *td = t->is_double_constant();
duke@435 694 return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
duke@435 695 }
duke@435 696
duke@435 697 //------------------------------Ideal------------------------------------------
duke@435 698 // If converting to an int type, skip any rounding nodes
duke@435 699 Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 700 if( in(1)->Opcode() == Op_RoundDouble )
duke@435 701 set_req(1,in(1)->in(1));
duke@435 702 return NULL;
duke@435 703 }
duke@435 704
duke@435 705 //------------------------------Identity---------------------------------------
duke@435 706 // Int's can be converted to doubles with no loss of bits. Hence
duke@435 707 // converting an integer to a double and back to an integer is a NOP.
duke@435 708 Node *ConvD2INode::Identity(PhaseTransform *phase) {
duke@435 709 return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
duke@435 710 }
duke@435 711
duke@435 712 //=============================================================================
duke@435 713 //------------------------------Value------------------------------------------
duke@435 714 const Type *ConvD2LNode::Value( PhaseTransform *phase ) const {
duke@435 715 const Type *t = phase->type( in(1) );
duke@435 716 if( t == Type::TOP ) return Type::TOP;
duke@435 717 if( t == Type::DOUBLE ) return TypeLong::LONG;
duke@435 718 const TypeD *td = t->is_double_constant();
duke@435 719 return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
duke@435 720 }
duke@435 721
duke@435 722 //------------------------------Identity---------------------------------------
duke@435 723 Node *ConvD2LNode::Identity(PhaseTransform *phase) {
duke@435 724 // Remove ConvD2L->ConvL2D->ConvD2L sequences.
duke@435 725 if( in(1) ->Opcode() == Op_ConvL2D &&
duke@435 726 in(1)->in(1)->Opcode() == Op_ConvD2L )
duke@435 727 return in(1)->in(1);
duke@435 728 return this;
duke@435 729 }
duke@435 730
duke@435 731 //------------------------------Ideal------------------------------------------
duke@435 732 // If converting to an int type, skip any rounding nodes
duke@435 733 Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 734 if( in(1)->Opcode() == Op_RoundDouble )
duke@435 735 set_req(1,in(1)->in(1));
duke@435 736 return NULL;
duke@435 737 }
duke@435 738
duke@435 739 //=============================================================================
duke@435 740 //------------------------------Value------------------------------------------
duke@435 741 const Type *ConvF2DNode::Value( PhaseTransform *phase ) const {
duke@435 742 const Type *t = phase->type( in(1) );
duke@435 743 if( t == Type::TOP ) return Type::TOP;
duke@435 744 if( t == Type::FLOAT ) return Type::DOUBLE;
duke@435 745 const TypeF *tf = t->is_float_constant();
duke@435 746 return TypeD::make( (double)tf->getf() );
duke@435 747 }
duke@435 748
duke@435 749 //=============================================================================
duke@435 750 //------------------------------Value------------------------------------------
duke@435 751 const Type *ConvF2INode::Value( PhaseTransform *phase ) const {
duke@435 752 const Type *t = phase->type( in(1) );
duke@435 753 if( t == Type::TOP ) return Type::TOP;
duke@435 754 if( t == Type::FLOAT ) return TypeInt::INT;
duke@435 755 const TypeF *tf = t->is_float_constant();
duke@435 756 return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
duke@435 757 }
duke@435 758
duke@435 759 //------------------------------Identity---------------------------------------
duke@435 760 Node *ConvF2INode::Identity(PhaseTransform *phase) {
duke@435 761 // Remove ConvF2I->ConvI2F->ConvF2I sequences.
duke@435 762 if( in(1) ->Opcode() == Op_ConvI2F &&
duke@435 763 in(1)->in(1)->Opcode() == Op_ConvF2I )
duke@435 764 return in(1)->in(1);
duke@435 765 return this;
duke@435 766 }
duke@435 767
duke@435 768 //------------------------------Ideal------------------------------------------
duke@435 769 // If converting to an int type, skip any rounding nodes
duke@435 770 Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 771 if( in(1)->Opcode() == Op_RoundFloat )
duke@435 772 set_req(1,in(1)->in(1));
duke@435 773 return NULL;
duke@435 774 }
duke@435 775
duke@435 776 //=============================================================================
duke@435 777 //------------------------------Value------------------------------------------
duke@435 778 const Type *ConvF2LNode::Value( PhaseTransform *phase ) const {
duke@435 779 const Type *t = phase->type( in(1) );
duke@435 780 if( t == Type::TOP ) return Type::TOP;
duke@435 781 if( t == Type::FLOAT ) return TypeLong::LONG;
duke@435 782 const TypeF *tf = t->is_float_constant();
duke@435 783 return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
duke@435 784 }
duke@435 785
duke@435 786 //------------------------------Identity---------------------------------------
duke@435 787 Node *ConvF2LNode::Identity(PhaseTransform *phase) {
duke@435 788 // Remove ConvF2L->ConvL2F->ConvF2L sequences.
duke@435 789 if( in(1) ->Opcode() == Op_ConvL2F &&
duke@435 790 in(1)->in(1)->Opcode() == Op_ConvF2L )
duke@435 791 return in(1)->in(1);
duke@435 792 return this;
duke@435 793 }
duke@435 794
duke@435 795 //------------------------------Ideal------------------------------------------
duke@435 796 // If converting to an int type, skip any rounding nodes
duke@435 797 Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 798 if( in(1)->Opcode() == Op_RoundFloat )
duke@435 799 set_req(1,in(1)->in(1));
duke@435 800 return NULL;
duke@435 801 }
duke@435 802
duke@435 803 //=============================================================================
duke@435 804 //------------------------------Value------------------------------------------
duke@435 805 const Type *ConvI2DNode::Value( PhaseTransform *phase ) const {
duke@435 806 const Type *t = phase->type( in(1) );
duke@435 807 if( t == Type::TOP ) return Type::TOP;
duke@435 808 const TypeInt *ti = t->is_int();
duke@435 809 if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
duke@435 810 return bottom_type();
duke@435 811 }
duke@435 812
duke@435 813 //=============================================================================
duke@435 814 //------------------------------Value------------------------------------------
duke@435 815 const Type *ConvI2FNode::Value( PhaseTransform *phase ) const {
duke@435 816 const Type *t = phase->type( in(1) );
duke@435 817 if( t == Type::TOP ) return Type::TOP;
duke@435 818 const TypeInt *ti = t->is_int();
duke@435 819 if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
duke@435 820 return bottom_type();
duke@435 821 }
duke@435 822
duke@435 823 //------------------------------Identity---------------------------------------
duke@435 824 Node *ConvI2FNode::Identity(PhaseTransform *phase) {
duke@435 825 // Remove ConvI2F->ConvF2I->ConvI2F sequences.
duke@435 826 if( in(1) ->Opcode() == Op_ConvF2I &&
duke@435 827 in(1)->in(1)->Opcode() == Op_ConvI2F )
duke@435 828 return in(1)->in(1);
duke@435 829 return this;
duke@435 830 }
duke@435 831
duke@435 832 //=============================================================================
duke@435 833 //------------------------------Value------------------------------------------
duke@435 834 const Type *ConvI2LNode::Value( PhaseTransform *phase ) const {
duke@435 835 const Type *t = phase->type( in(1) );
duke@435 836 if( t == Type::TOP ) return Type::TOP;
duke@435 837 const TypeInt *ti = t->is_int();
duke@435 838 const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
duke@435 839 // Join my declared type against my incoming type.
duke@435 840 tl = tl->filter(_type);
duke@435 841 return tl;
duke@435 842 }
duke@435 843
duke@435 844 #ifdef _LP64
duke@435 845 static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
duke@435 846 jlong lo2, jlong hi2) {
duke@435 847 // Two ranges overlap iff one range's low point falls in the other range.
duke@435 848 return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
duke@435 849 }
duke@435 850 #endif
duke@435 851
duke@435 852 //------------------------------Ideal------------------------------------------
duke@435 853 Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 854 const TypeLong* this_type = this->type()->is_long();
duke@435 855 Node* this_changed = NULL;
duke@435 856
duke@435 857 // If _major_progress, then more loop optimizations follow. Do NOT
duke@435 858 // remove this node's type assertion until no more loop ops can happen.
duke@435 859 // The progress bit is set in the major loop optimizations THEN comes the
duke@435 860 // call to IterGVN and any chance of hitting this code. Cf. Opaque1Node.
duke@435 861 if (can_reshape && !phase->C->major_progress()) {
duke@435 862 const TypeInt* in_type = phase->type(in(1))->isa_int();
duke@435 863 if (in_type != NULL && this_type != NULL &&
duke@435 864 (in_type->_lo != this_type->_lo ||
duke@435 865 in_type->_hi != this_type->_hi)) {
duke@435 866 // Although this WORSENS the type, it increases GVN opportunities,
duke@435 867 // because I2L nodes with the same input will common up, regardless
duke@435 868 // of slightly differing type assertions. Such slight differences
duke@435 869 // arise routinely as a result of loop unrolling, so this is a
duke@435 870 // post-unrolling graph cleanup. Choose a type which depends only
duke@435 871 // on my input. (Exception: Keep a range assertion of >=0 or <0.)
duke@435 872 jlong lo1 = this_type->_lo;
duke@435 873 jlong hi1 = this_type->_hi;
duke@435 874 int w1 = this_type->_widen;
duke@435 875 if (lo1 != (jint)lo1 ||
duke@435 876 hi1 != (jint)hi1 ||
duke@435 877 lo1 > hi1) {
duke@435 878 // Overflow leads to wraparound, wraparound leads to range saturation.
duke@435 879 lo1 = min_jint; hi1 = max_jint;
duke@435 880 } else if (lo1 >= 0) {
duke@435 881 // Keep a range assertion of >=0.
duke@435 882 lo1 = 0; hi1 = max_jint;
duke@435 883 } else if (hi1 < 0) {
duke@435 884 // Keep a range assertion of <0.
duke@435 885 lo1 = min_jint; hi1 = -1;
duke@435 886 } else {
duke@435 887 lo1 = min_jint; hi1 = max_jint;
duke@435 888 }
duke@435 889 const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
duke@435 890 MIN2((jlong)in_type->_hi, hi1),
duke@435 891 MAX2((int)in_type->_widen, w1));
duke@435 892 if (wtype != type()) {
duke@435 893 set_type(wtype);
duke@435 894 // Note: this_type still has old type value, for the logic below.
duke@435 895 this_changed = this;
duke@435 896 }
duke@435 897 }
duke@435 898 }
duke@435 899
duke@435 900 #ifdef _LP64
duke@435 901 // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y)) ,
duke@435 902 // but only if x and y have subranges that cannot cause 32-bit overflow,
duke@435 903 // under the assumption that x+y is in my own subrange this->type().
duke@435 904
duke@435 905 // This assumption is based on a constraint (i.e., type assertion)
duke@435 906 // established in Parse::array_addressing or perhaps elsewhere.
duke@435 907 // This constraint has been adjoined to the "natural" type of
duke@435 908 // the incoming argument in(0). We know (because of runtime
duke@435 909 // checks) - that the result value I2L(x+y) is in the joined range.
duke@435 910 // Hence we can restrict the incoming terms (x, y) to values such
duke@435 911 // that their sum also lands in that range.
duke@435 912
duke@435 913 // This optimization is useful only on 64-bit systems, where we hope
duke@435 914 // the addition will end up subsumed in an addressing mode.
duke@435 915 // It is necessary to do this when optimizing an unrolled array
duke@435 916 // copy loop such as x[i++] = y[i++].
duke@435 917
duke@435 918 // On 32-bit systems, it's better to perform as much 32-bit math as
duke@435 919 // possible before the I2L conversion, because 32-bit math is cheaper.
duke@435 920 // There's no common reason to "leak" a constant offset through the I2L.
duke@435 921 // Addressing arithmetic will not absorb it as part of a 64-bit AddL.
duke@435 922
duke@435 923 Node* z = in(1);
duke@435 924 int op = z->Opcode();
duke@435 925 if (op == Op_AddI || op == Op_SubI) {
duke@435 926 Node* x = z->in(1);
duke@435 927 Node* y = z->in(2);
duke@435 928 assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
duke@435 929 if (phase->type(x) == Type::TOP) return this_changed;
duke@435 930 if (phase->type(y) == Type::TOP) return this_changed;
duke@435 931 const TypeInt* tx = phase->type(x)->is_int();
duke@435 932 const TypeInt* ty = phase->type(y)->is_int();
duke@435 933 const TypeLong* tz = this_type;
duke@435 934 jlong xlo = tx->_lo;
duke@435 935 jlong xhi = tx->_hi;
duke@435 936 jlong ylo = ty->_lo;
duke@435 937 jlong yhi = ty->_hi;
duke@435 938 jlong zlo = tz->_lo;
duke@435 939 jlong zhi = tz->_hi;
duke@435 940 jlong vbit = CONST64(1) << BitsPerInt;
duke@435 941 int widen = MAX2(tx->_widen, ty->_widen);
duke@435 942 if (op == Op_SubI) {
duke@435 943 jlong ylo0 = ylo;
duke@435 944 ylo = -yhi;
duke@435 945 yhi = -ylo0;
duke@435 946 }
duke@435 947 // See if x+y can cause positive overflow into z+2**32
duke@435 948 if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) {
duke@435 949 return this_changed;
duke@435 950 }
duke@435 951 // See if x+y can cause negative overflow into z-2**32
duke@435 952 if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) {
duke@435 953 return this_changed;
duke@435 954 }
duke@435 955 // Now it's always safe to assume x+y does not overflow.
duke@435 956 // This is true even if some pairs x,y might cause overflow, as long
duke@435 957 // as that overflow value cannot fall into [zlo,zhi].
duke@435 958
duke@435 959 // Confident that the arithmetic is "as if infinite precision",
duke@435 960 // we can now use z's range to put constraints on those of x and y.
duke@435 961 // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
duke@435 962 // more "restricted" range by intersecting [xlo,xhi] with the
duke@435 963 // range obtained by subtracting y's range from the asserted range
duke@435 964 // of the I2L conversion. Here's the interval arithmetic algebra:
duke@435 965 // x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
duke@435 966 // => x in [zlo-yhi, zhi-ylo]
duke@435 967 // => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
duke@435 968 // => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
duke@435 969 jlong rxlo = MAX2(xlo, zlo - yhi);
duke@435 970 jlong rxhi = MIN2(xhi, zhi - ylo);
duke@435 971 // And similarly, x changing place with y:
duke@435 972 jlong rylo = MAX2(ylo, zlo - xhi);
duke@435 973 jlong ryhi = MIN2(yhi, zhi - xlo);
duke@435 974 if (rxlo > rxhi || rylo > ryhi) {
duke@435 975 return this_changed; // x or y is dying; don't mess w/ it
duke@435 976 }
duke@435 977 if (op == Op_SubI) {
duke@435 978 jlong rylo0 = rylo;
duke@435 979 rylo = -ryhi;
duke@435 980 ryhi = -rylo0;
duke@435 981 }
duke@435 982
kvn@4115 983 Node* cx = phase->transform( new (phase->C) ConvI2LNode(x, TypeLong::make(rxlo, rxhi, widen)) );
kvn@4115 984 Node* cy = phase->transform( new (phase->C) ConvI2LNode(y, TypeLong::make(rylo, ryhi, widen)) );
duke@435 985 switch (op) {
kvn@4115 986 case Op_AddI: return new (phase->C) AddLNode(cx, cy);
kvn@4115 987 case Op_SubI: return new (phase->C) SubLNode(cx, cy);
duke@435 988 default: ShouldNotReachHere();
duke@435 989 }
duke@435 990 }
duke@435 991 #endif //_LP64
duke@435 992
duke@435 993 return this_changed;
duke@435 994 }
duke@435 995
duke@435 996 //=============================================================================
duke@435 997 //------------------------------Value------------------------------------------
duke@435 998 const Type *ConvL2DNode::Value( PhaseTransform *phase ) const {
duke@435 999 const Type *t = phase->type( in(1) );
duke@435 1000 if( t == Type::TOP ) return Type::TOP;
duke@435 1001 const TypeLong *tl = t->is_long();
duke@435 1002 if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
duke@435 1003 return bottom_type();
duke@435 1004 }
duke@435 1005
duke@435 1006 //=============================================================================
duke@435 1007 //------------------------------Value------------------------------------------
duke@435 1008 const Type *ConvL2FNode::Value( PhaseTransform *phase ) const {
duke@435 1009 const Type *t = phase->type( in(1) );
duke@435 1010 if( t == Type::TOP ) return Type::TOP;
duke@435 1011 const TypeLong *tl = t->is_long();
duke@435 1012 if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
duke@435 1013 return bottom_type();
duke@435 1014 }
duke@435 1015
duke@435 1016 //=============================================================================
duke@435 1017 //----------------------------Identity-----------------------------------------
duke@435 1018 Node *ConvL2INode::Identity( PhaseTransform *phase ) {
duke@435 1019 // Convert L2I(I2L(x)) => x
duke@435 1020 if (in(1)->Opcode() == Op_ConvI2L) return in(1)->in(1);
duke@435 1021 return this;
duke@435 1022 }
duke@435 1023
duke@435 1024 //------------------------------Value------------------------------------------
duke@435 1025 const Type *ConvL2INode::Value( PhaseTransform *phase ) const {
duke@435 1026 const Type *t = phase->type( in(1) );
duke@435 1027 if( t == Type::TOP ) return Type::TOP;
duke@435 1028 const TypeLong *tl = t->is_long();
duke@435 1029 if (tl->is_con())
duke@435 1030 // Easy case.
duke@435 1031 return TypeInt::make((jint)tl->get_con());
duke@435 1032 return bottom_type();
duke@435 1033 }
duke@435 1034
duke@435 1035 //------------------------------Ideal------------------------------------------
duke@435 1036 // Return a node which is more "ideal" than the current node.
duke@435 1037 // Blow off prior masking to int
duke@435 1038 Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1039 Node *andl = in(1);
duke@435 1040 uint andl_op = andl->Opcode();
duke@435 1041 if( andl_op == Op_AndL ) {
duke@435 1042 // Blow off prior masking to int
duke@435 1043 if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
duke@435 1044 set_req(1,andl->in(1));
duke@435 1045 return this;
duke@435 1046 }
duke@435 1047 }
duke@435 1048
duke@435 1049 // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
duke@435 1050 // This replaces an 'AddL' with an 'AddI'.
duke@435 1051 if( andl_op == Op_AddL ) {
duke@435 1052 // Don't do this for nodes which have more than one user since
duke@435 1053 // we'll end up computing the long add anyway.
duke@435 1054 if (andl->outcnt() > 1) return NULL;
duke@435 1055
duke@435 1056 Node* x = andl->in(1);
duke@435 1057 Node* y = andl->in(2);
duke@435 1058 assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
duke@435 1059 if (phase->type(x) == Type::TOP) return NULL;
duke@435 1060 if (phase->type(y) == Type::TOP) return NULL;
kvn@4115 1061 Node *add1 = phase->transform(new (phase->C) ConvL2INode(x));
kvn@4115 1062 Node *add2 = phase->transform(new (phase->C) ConvL2INode(y));
kvn@4115 1063 return new (phase->C) AddINode(add1,add2);
duke@435 1064 }
duke@435 1065
kvn@471 1066 // Disable optimization: LoadL->ConvL2I ==> LoadI.
kvn@471 1067 // It causes problems (sizes of Load and Store nodes do not match)
kvn@471 1068 // in objects initialization code and Escape Analysis.
duke@435 1069 return NULL;
duke@435 1070 }
duke@435 1071
duke@435 1072 //=============================================================================
duke@435 1073 //------------------------------Value------------------------------------------
duke@435 1074 const Type *CastX2PNode::Value( PhaseTransform *phase ) const {
duke@435 1075 const Type* t = phase->type(in(1));
kvn@3604 1076 if (t == Type::TOP) return Type::TOP;
duke@435 1077 if (t->base() == Type_X && t->singleton()) {
duke@435 1078 uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
duke@435 1079 if (bits == 0) return TypePtr::NULL_PTR;
duke@435 1080 return TypeRawPtr::make((address) bits);
duke@435 1081 }
duke@435 1082 return CastX2PNode::bottom_type();
duke@435 1083 }
duke@435 1084
duke@435 1085 //------------------------------Idealize---------------------------------------
duke@435 1086 static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
duke@435 1087 if (t == Type::TOP) return false;
duke@435 1088 const TypeX* tl = t->is_intptr_t();
duke@435 1089 jint lo = min_jint;
duke@435 1090 jint hi = max_jint;
duke@435 1091 if (but_not_min_int) ++lo; // caller wants to negate the value w/o overflow
duke@435 1092 return (tl->_lo >= lo) && (tl->_hi <= hi);
duke@435 1093 }
duke@435 1094
duke@435 1095 static inline Node* addP_of_X2P(PhaseGVN *phase,
duke@435 1096 Node* base,
duke@435 1097 Node* dispX,
duke@435 1098 bool negate = false) {
duke@435 1099 if (negate) {
kvn@4115 1100 dispX = new (phase->C) SubXNode(phase->MakeConX(0), phase->transform(dispX));
duke@435 1101 }
kvn@4115 1102 return new (phase->C) AddPNode(phase->C->top(),
kvn@4115 1103 phase->transform(new (phase->C) CastX2PNode(base)),
duke@435 1104 phase->transform(dispX));
duke@435 1105 }
duke@435 1106
duke@435 1107 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1108 // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
duke@435 1109 int op = in(1)->Opcode();
duke@435 1110 Node* x;
duke@435 1111 Node* y;
duke@435 1112 switch (op) {
duke@435 1113 case Op_SubX:
duke@435 1114 x = in(1)->in(1);
kvn@1430 1115 // Avoid ideal transformations ping-pong between this and AddP for raw pointers.
kvn@1430 1116 if (phase->find_intptr_t_con(x, -1) == 0)
kvn@1430 1117 break;
duke@435 1118 y = in(1)->in(2);
duke@435 1119 if (fits_in_int(phase->type(y), true)) {
duke@435 1120 return addP_of_X2P(phase, x, y, true);
duke@435 1121 }
duke@435 1122 break;
duke@435 1123 case Op_AddX:
duke@435 1124 x = in(1)->in(1);
duke@435 1125 y = in(1)->in(2);
duke@435 1126 if (fits_in_int(phase->type(y))) {
duke@435 1127 return addP_of_X2P(phase, x, y);
duke@435 1128 }
duke@435 1129 if (fits_in_int(phase->type(x))) {
duke@435 1130 return addP_of_X2P(phase, y, x);
duke@435 1131 }
duke@435 1132 break;
duke@435 1133 }
duke@435 1134 return NULL;
duke@435 1135 }
duke@435 1136
duke@435 1137 //------------------------------Identity---------------------------------------
duke@435 1138 Node *CastX2PNode::Identity( PhaseTransform *phase ) {
duke@435 1139 if (in(1)->Opcode() == Op_CastP2X) return in(1)->in(1);
duke@435 1140 return this;
duke@435 1141 }
duke@435 1142
duke@435 1143 //=============================================================================
duke@435 1144 //------------------------------Value------------------------------------------
duke@435 1145 const Type *CastP2XNode::Value( PhaseTransform *phase ) const {
duke@435 1146 const Type* t = phase->type(in(1));
kvn@3604 1147 if (t == Type::TOP) return Type::TOP;
duke@435 1148 if (t->base() == Type::RawPtr && t->singleton()) {
duke@435 1149 uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
duke@435 1150 return TypeX::make(bits);
duke@435 1151 }
duke@435 1152 return CastP2XNode::bottom_type();
duke@435 1153 }
duke@435 1154
duke@435 1155 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1156 return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
duke@435 1157 }
duke@435 1158
duke@435 1159 //------------------------------Identity---------------------------------------
duke@435 1160 Node *CastP2XNode::Identity( PhaseTransform *phase ) {
duke@435 1161 if (in(1)->Opcode() == Op_CastX2P) return in(1)->in(1);
duke@435 1162 return this;
duke@435 1163 }
duke@435 1164
duke@435 1165
duke@435 1166 //=============================================================================
duke@435 1167 //------------------------------Identity---------------------------------------
duke@435 1168 // Remove redundant roundings
duke@435 1169 Node *RoundFloatNode::Identity( PhaseTransform *phase ) {
duke@435 1170 assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
duke@435 1171 // Do not round constants
duke@435 1172 if (phase->type(in(1))->base() == Type::FloatCon) return in(1);
duke@435 1173 int op = in(1)->Opcode();
duke@435 1174 // Redundant rounding
duke@435 1175 if( op == Op_RoundFloat ) return in(1);
duke@435 1176 // Already rounded
duke@435 1177 if( op == Op_Parm ) return in(1);
duke@435 1178 if( op == Op_LoadF ) return in(1);
duke@435 1179 return this;
duke@435 1180 }
duke@435 1181
duke@435 1182 //------------------------------Value------------------------------------------
duke@435 1183 const Type *RoundFloatNode::Value( PhaseTransform *phase ) const {
duke@435 1184 return phase->type( in(1) );
duke@435 1185 }
duke@435 1186
duke@435 1187 //=============================================================================
duke@435 1188 //------------------------------Identity---------------------------------------
duke@435 1189 // Remove redundant roundings. Incoming arguments are already rounded.
duke@435 1190 Node *RoundDoubleNode::Identity( PhaseTransform *phase ) {
duke@435 1191 assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
duke@435 1192 // Do not round constants
duke@435 1193 if (phase->type(in(1))->base() == Type::DoubleCon) return in(1);
duke@435 1194 int op = in(1)->Opcode();
duke@435 1195 // Redundant rounding
duke@435 1196 if( op == Op_RoundDouble ) return in(1);
duke@435 1197 // Already rounded
duke@435 1198 if( op == Op_Parm ) return in(1);
duke@435 1199 if( op == Op_LoadD ) return in(1);
duke@435 1200 if( op == Op_ConvF2D ) return in(1);
duke@435 1201 if( op == Op_ConvI2D ) return in(1);
duke@435 1202 return this;
duke@435 1203 }
duke@435 1204
duke@435 1205 //------------------------------Value------------------------------------------
duke@435 1206 const Type *RoundDoubleNode::Value( PhaseTransform *phase ) const {
duke@435 1207 return phase->type( in(1) );
duke@435 1208 }
duke@435 1209
duke@435 1210
duke@435 1211 //=============================================================================
duke@435 1212 // Do not allow value-numbering
duke@435 1213 uint Opaque1Node::hash() const { return NO_HASH; }
duke@435 1214 uint Opaque1Node::cmp( const Node &n ) const {
duke@435 1215 return (&n == this); // Always fail except on self
duke@435 1216 }
duke@435 1217
duke@435 1218 //------------------------------Identity---------------------------------------
duke@435 1219 // If _major_progress, then more loop optimizations follow. Do NOT remove
duke@435 1220 // the opaque Node until no more loop ops can happen. Note the timing of
duke@435 1221 // _major_progress; it's set in the major loop optimizations THEN comes the
duke@435 1222 // call to IterGVN and any chance of hitting this code. Hence there's no
duke@435 1223 // phase-ordering problem with stripping Opaque1 in IGVN followed by some
duke@435 1224 // more loop optimizations that require it.
duke@435 1225 Node *Opaque1Node::Identity( PhaseTransform *phase ) {
duke@435 1226 return phase->C->major_progress() ? this : in(1);
duke@435 1227 }
duke@435 1228
duke@435 1229 //=============================================================================
duke@435 1230 // A node to prevent unwanted optimizations. Allows constant folding. Stops
duke@435 1231 // value-numbering, most Ideal calls or Identity functions. This Node is
duke@435 1232 // specifically designed to prevent the pre-increment value of a loop trip
duke@435 1233 // counter from being live out of the bottom of the loop (hence causing the
duke@435 1234 // pre- and post-increment values both being live and thus requiring an extra
duke@435 1235 // temp register and an extra move). If we "accidentally" optimize through
duke@435 1236 // this kind of a Node, we'll get slightly pessimal, but correct, code. Thus
duke@435 1237 // it's OK to be slightly sloppy on optimizations here.
duke@435 1238
duke@435 1239 // Do not allow value-numbering
duke@435 1240 uint Opaque2Node::hash() const { return NO_HASH; }
duke@435 1241 uint Opaque2Node::cmp( const Node &n ) const {
duke@435 1242 return (&n == this); // Always fail except on self
duke@435 1243 }
duke@435 1244
duke@435 1245
duke@435 1246 //------------------------------Value------------------------------------------
duke@435 1247 const Type *MoveL2DNode::Value( PhaseTransform *phase ) const {
duke@435 1248 const Type *t = phase->type( in(1) );
duke@435 1249 if( t == Type::TOP ) return Type::TOP;
duke@435 1250 const TypeLong *tl = t->is_long();
duke@435 1251 if( !tl->is_con() ) return bottom_type();
duke@435 1252 JavaValue v;
duke@435 1253 v.set_jlong(tl->get_con());
duke@435 1254 return TypeD::make( v.get_jdouble() );
duke@435 1255 }
duke@435 1256
duke@435 1257 //------------------------------Value------------------------------------------
duke@435 1258 const Type *MoveI2FNode::Value( PhaseTransform *phase ) const {
duke@435 1259 const Type *t = phase->type( in(1) );
duke@435 1260 if( t == Type::TOP ) return Type::TOP;
duke@435 1261 const TypeInt *ti = t->is_int();
duke@435 1262 if( !ti->is_con() ) return bottom_type();
duke@435 1263 JavaValue v;
duke@435 1264 v.set_jint(ti->get_con());
duke@435 1265 return TypeF::make( v.get_jfloat() );
duke@435 1266 }
duke@435 1267
duke@435 1268 //------------------------------Value------------------------------------------
duke@435 1269 const Type *MoveF2INode::Value( PhaseTransform *phase ) const {
duke@435 1270 const Type *t = phase->type( in(1) );
duke@435 1271 if( t == Type::TOP ) return Type::TOP;
duke@435 1272 if( t == Type::FLOAT ) return TypeInt::INT;
duke@435 1273 const TypeF *tf = t->is_float_constant();
duke@435 1274 JavaValue v;
duke@435 1275 v.set_jfloat(tf->getf());
duke@435 1276 return TypeInt::make( v.get_jint() );
duke@435 1277 }
duke@435 1278
duke@435 1279 //------------------------------Value------------------------------------------
duke@435 1280 const Type *MoveD2LNode::Value( PhaseTransform *phase ) const {
duke@435 1281 const Type *t = phase->type( in(1) );
duke@435 1282 if( t == Type::TOP ) return Type::TOP;
duke@435 1283 if( t == Type::DOUBLE ) return TypeLong::LONG;
duke@435 1284 const TypeD *td = t->is_double_constant();
duke@435 1285 JavaValue v;
duke@435 1286 v.set_jdouble(td->getd());
duke@435 1287 return TypeLong::make( v.get_jlong() );
duke@435 1288 }
twisti@1210 1289
twisti@1210 1290 //------------------------------Value------------------------------------------
twisti@1210 1291 const Type* CountLeadingZerosINode::Value(PhaseTransform* phase) const {
twisti@1210 1292 const Type* t = phase->type(in(1));
twisti@1210 1293 if (t == Type::TOP) return Type::TOP;
twisti@1210 1294 const TypeInt* ti = t->isa_int();
twisti@1210 1295 if (ti && ti->is_con()) {
twisti@1210 1296 jint i = ti->get_con();
twisti@1210 1297 // HD, Figure 5-6
twisti@1210 1298 if (i == 0)
twisti@1210 1299 return TypeInt::make(BitsPerInt);
twisti@1210 1300 int n = 1;
twisti@1210 1301 unsigned int x = i;
twisti@1210 1302 if (x >> 16 == 0) { n += 16; x <<= 16; }
twisti@1210 1303 if (x >> 24 == 0) { n += 8; x <<= 8; }
twisti@1210 1304 if (x >> 28 == 0) { n += 4; x <<= 4; }
twisti@1210 1305 if (x >> 30 == 0) { n += 2; x <<= 2; }
twisti@1210 1306 n -= x >> 31;
twisti@1210 1307 return TypeInt::make(n);
twisti@1210 1308 }
twisti@1210 1309 return TypeInt::INT;
twisti@1210 1310 }
twisti@1210 1311
twisti@1210 1312 //------------------------------Value------------------------------------------
twisti@1210 1313 const Type* CountLeadingZerosLNode::Value(PhaseTransform* phase) const {
twisti@1210 1314 const Type* t = phase->type(in(1));
twisti@1210 1315 if (t == Type::TOP) return Type::TOP;
twisti@1210 1316 const TypeLong* tl = t->isa_long();
twisti@1210 1317 if (tl && tl->is_con()) {
twisti@1210 1318 jlong l = tl->get_con();
twisti@1210 1319 // HD, Figure 5-6
twisti@1210 1320 if (l == 0)
twisti@1210 1321 return TypeInt::make(BitsPerLong);
twisti@1210 1322 int n = 1;
twisti@1210 1323 unsigned int x = (((julong) l) >> 32);
twisti@1210 1324 if (x == 0) { n += 32; x = (int) l; }
twisti@1210 1325 if (x >> 16 == 0) { n += 16; x <<= 16; }
twisti@1210 1326 if (x >> 24 == 0) { n += 8; x <<= 8; }
twisti@1210 1327 if (x >> 28 == 0) { n += 4; x <<= 4; }
twisti@1210 1328 if (x >> 30 == 0) { n += 2; x <<= 2; }
twisti@1210 1329 n -= x >> 31;
twisti@1210 1330 return TypeInt::make(n);
twisti@1210 1331 }
twisti@1210 1332 return TypeInt::INT;
twisti@1210 1333 }
twisti@1210 1334
twisti@1210 1335 //------------------------------Value------------------------------------------
twisti@1210 1336 const Type* CountTrailingZerosINode::Value(PhaseTransform* phase) const {
twisti@1210 1337 const Type* t = phase->type(in(1));
twisti@1210 1338 if (t == Type::TOP) return Type::TOP;
twisti@1210 1339 const TypeInt* ti = t->isa_int();
twisti@1210 1340 if (ti && ti->is_con()) {
twisti@1210 1341 jint i = ti->get_con();
twisti@1210 1342 // HD, Figure 5-14
twisti@1210 1343 int y;
twisti@1210 1344 if (i == 0)
twisti@1210 1345 return TypeInt::make(BitsPerInt);
twisti@1210 1346 int n = 31;
twisti@1210 1347 y = i << 16; if (y != 0) { n = n - 16; i = y; }
twisti@1210 1348 y = i << 8; if (y != 0) { n = n - 8; i = y; }
twisti@1210 1349 y = i << 4; if (y != 0) { n = n - 4; i = y; }
twisti@1210 1350 y = i << 2; if (y != 0) { n = n - 2; i = y; }
twisti@1210 1351 y = i << 1; if (y != 0) { n = n - 1; }
twisti@1210 1352 return TypeInt::make(n);
twisti@1210 1353 }
twisti@1210 1354 return TypeInt::INT;
twisti@1210 1355 }
twisti@1210 1356
twisti@1210 1357 //------------------------------Value------------------------------------------
twisti@1210 1358 const Type* CountTrailingZerosLNode::Value(PhaseTransform* phase) const {
twisti@1210 1359 const Type* t = phase->type(in(1));
twisti@1210 1360 if (t == Type::TOP) return Type::TOP;
twisti@1210 1361 const TypeLong* tl = t->isa_long();
twisti@1210 1362 if (tl && tl->is_con()) {
twisti@1210 1363 jlong l = tl->get_con();
twisti@1210 1364 // HD, Figure 5-14
twisti@1210 1365 int x, y;
twisti@1210 1366 if (l == 0)
twisti@1210 1367 return TypeInt::make(BitsPerLong);
twisti@1210 1368 int n = 63;
twisti@1210 1369 y = (int) l; if (y != 0) { n = n - 32; x = y; } else x = (((julong) l) >> 32);
twisti@1210 1370 y = x << 16; if (y != 0) { n = n - 16; x = y; }
twisti@1210 1371 y = x << 8; if (y != 0) { n = n - 8; x = y; }
twisti@1210 1372 y = x << 4; if (y != 0) { n = n - 4; x = y; }
twisti@1210 1373 y = x << 2; if (y != 0) { n = n - 2; x = y; }
twisti@1210 1374 y = x << 1; if (y != 0) { n = n - 1; }
twisti@1210 1375 return TypeInt::make(n);
twisti@1210 1376 }
twisti@1210 1377 return TypeInt::INT;
twisti@1210 1378 }

mercurial