src/share/vm/opto/connode.cpp

Sun, 13 Apr 2008 17:43:42 -0400

author
coleenp
date
Sun, 13 Apr 2008 17:43:42 -0400
changeset 548
ba764ed4b6f2
parent 471
f34d9da7acb2
child 559
b130b98db9cf
permissions
-rw-r--r--

6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Summary: Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold

duke@435 1 /*
duke@435 2 * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Optimization - Graph Style
duke@435 26
duke@435 27 #include "incls/_precompiled.incl"
duke@435 28 #include "incls/_connode.cpp.incl"
duke@435 29
duke@435 30 //=============================================================================
duke@435 31 //------------------------------hash-------------------------------------------
duke@435 32 uint ConNode::hash() const {
duke@435 33 return (uintptr_t)in(TypeFunc::Control) + _type->hash();
duke@435 34 }
duke@435 35
duke@435 36 //------------------------------make-------------------------------------------
duke@435 37 ConNode *ConNode::make( Compile* C, const Type *t ) {
coleenp@548 38 if (t->isa_narrowoop()) return new (C, 1) ConNNode( t->is_narrowoop() );
duke@435 39 switch( t->basic_type() ) {
duke@435 40 case T_INT: return new (C, 1) ConINode( t->is_int() );
duke@435 41 case T_ARRAY: return new (C, 1) ConPNode( t->is_aryptr() );
duke@435 42 case T_LONG: return new (C, 1) ConLNode( t->is_long() );
duke@435 43 case T_FLOAT: return new (C, 1) ConFNode( t->is_float_constant() );
duke@435 44 case T_DOUBLE: return new (C, 1) ConDNode( t->is_double_constant() );
duke@435 45 case T_VOID: return new (C, 1) ConNode ( Type::TOP );
duke@435 46 case T_OBJECT: return new (C, 1) ConPNode( t->is_oopptr() );
duke@435 47 case T_ADDRESS: return new (C, 1) ConPNode( t->is_ptr() );
duke@435 48 // Expected cases: TypePtr::NULL_PTR, any is_rawptr()
duke@435 49 // Also seen: AnyPtr(TopPTR *+top); from command line:
duke@435 50 // r -XX:+PrintOpto -XX:CIStart=285 -XX:+CompileTheWorld -XX:CompileTheWorldStartAt=660
duke@435 51 // %%%% Stop using TypePtr::NULL_PTR to represent nulls: use either TypeRawPtr::NULL_PTR
duke@435 52 // or else TypeOopPtr::NULL_PTR. Then set Type::_basic_type[AnyPtr] = T_ILLEGAL
duke@435 53 }
duke@435 54 ShouldNotReachHere();
duke@435 55 return NULL;
duke@435 56 }
duke@435 57
duke@435 58 //=============================================================================
duke@435 59 /*
duke@435 60 The major change is for CMoveP and StrComp. They have related but slightly
duke@435 61 different problems. They both take in TWO oops which are both null-checked
duke@435 62 independently before the using Node. After CCP removes the CastPP's they need
duke@435 63 to pick up the guarding test edge - in this case TWO control edges. I tried
duke@435 64 various solutions, all have problems:
duke@435 65
duke@435 66 (1) Do nothing. This leads to a bug where we hoist a Load from a CMoveP or a
duke@435 67 StrComp above a guarding null check. I've seen both cases in normal -Xcomp
duke@435 68 testing.
duke@435 69
duke@435 70 (2) Plug the control edge from 1 of the 2 oops in. Apparent problem here is
duke@435 71 to figure out which test post-dominates. The real problem is that it doesn't
duke@435 72 matter which one you pick. After you pick up, the dominating-test elider in
duke@435 73 IGVN can remove the test and allow you to hoist up to the dominating test on
duke@435 74 the choosen oop bypassing the test on the not-choosen oop. Seen in testing.
duke@435 75 Oops.
duke@435 76
duke@435 77 (3) Leave the CastPP's in. This makes the graph more accurate in some sense;
duke@435 78 we get to keep around the knowledge that an oop is not-null after some test.
duke@435 79 Alas, the CastPP's interfere with GVN (some values are the regular oop, some
duke@435 80 are the CastPP of the oop, all merge at Phi's which cannot collapse, etc).
duke@435 81 This cost us 10% on SpecJVM, even when I removed some of the more trivial
duke@435 82 cases in the optimizer. Removing more useless Phi's started allowing Loads to
duke@435 83 illegally float above null checks. I gave up on this approach.
duke@435 84
duke@435 85 (4) Add BOTH control edges to both tests. Alas, too much code knows that
duke@435 86 control edges are in slot-zero ONLY. Many quick asserts fail; no way to do
duke@435 87 this one. Note that I really want to allow the CMoveP to float and add both
duke@435 88 control edges to the dependent Load op - meaning I can select early but I
duke@435 89 cannot Load until I pass both tests.
duke@435 90
duke@435 91 (5) Do not hoist CMoveP and StrComp. To this end I added the v-call
duke@435 92 depends_only_on_test(). No obvious performance loss on Spec, but we are
duke@435 93 clearly conservative on CMoveP (also so on StrComp but that's unlikely to
duke@435 94 matter ever).
duke@435 95
duke@435 96 */
duke@435 97
duke@435 98
duke@435 99 //------------------------------Ideal------------------------------------------
duke@435 100 // Return a node which is more "ideal" than the current node.
duke@435 101 // Move constants to the right.
duke@435 102 Node *CMoveNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 103 if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
duke@435 104 assert( !phase->eqv(in(Condition), this) &&
duke@435 105 !phase->eqv(in(IfFalse), this) &&
duke@435 106 !phase->eqv(in(IfTrue), this), "dead loop in CMoveNode::Ideal" );
duke@435 107 if( phase->type(in(Condition)) == Type::TOP )
duke@435 108 return NULL; // return NULL when Condition is dead
duke@435 109
duke@435 110 if( in(IfFalse)->is_Con() && !in(IfTrue)->is_Con() ) {
duke@435 111 if( in(Condition)->is_Bool() ) {
duke@435 112 BoolNode* b = in(Condition)->as_Bool();
duke@435 113 BoolNode* b2 = b->negate(phase);
duke@435 114 return make( phase->C, in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type );
duke@435 115 }
duke@435 116 }
duke@435 117 return NULL;
duke@435 118 }
duke@435 119
duke@435 120 //------------------------------is_cmove_id------------------------------------
duke@435 121 // Helper function to check for CMOVE identity. Shared with PhiNode::Identity
duke@435 122 Node *CMoveNode::is_cmove_id( PhaseTransform *phase, Node *cmp, Node *t, Node *f, BoolNode *b ) {
duke@435 123 // Check for Cmp'ing and CMove'ing same values
duke@435 124 if( (phase->eqv(cmp->in(1),f) &&
duke@435 125 phase->eqv(cmp->in(2),t)) ||
duke@435 126 // Swapped Cmp is OK
duke@435 127 (phase->eqv(cmp->in(2),f) &&
duke@435 128 phase->eqv(cmp->in(1),t)) ) {
duke@435 129 // Check for "(t==f)?t:f;" and replace with "f"
duke@435 130 if( b->_test._test == BoolTest::eq )
duke@435 131 return f;
duke@435 132 // Allow the inverted case as well
duke@435 133 // Check for "(t!=f)?t:f;" and replace with "t"
duke@435 134 if( b->_test._test == BoolTest::ne )
duke@435 135 return t;
duke@435 136 }
duke@435 137 return NULL;
duke@435 138 }
duke@435 139
duke@435 140 //------------------------------Identity---------------------------------------
duke@435 141 // Conditional-move is an identity if both inputs are the same, or the test
duke@435 142 // true or false.
duke@435 143 Node *CMoveNode::Identity( PhaseTransform *phase ) {
duke@435 144 if( phase->eqv(in(IfFalse),in(IfTrue)) ) // C-moving identical inputs?
duke@435 145 return in(IfFalse); // Then it doesn't matter
duke@435 146 if( phase->type(in(Condition)) == TypeInt::ZERO )
duke@435 147 return in(IfFalse); // Always pick left(false) input
duke@435 148 if( phase->type(in(Condition)) == TypeInt::ONE )
duke@435 149 return in(IfTrue); // Always pick right(true) input
duke@435 150
duke@435 151 // Check for CMove'ing a constant after comparing against the constant.
duke@435 152 // Happens all the time now, since if we compare equality vs a constant in
duke@435 153 // the parser, we "know" the variable is constant on one path and we force
duke@435 154 // it. Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
duke@435 155 // conditional move: "x = (x==0)?0:x;". Yucko. This fix is slightly more
duke@435 156 // general in that we don't need constants.
duke@435 157 if( in(Condition)->is_Bool() ) {
duke@435 158 BoolNode *b = in(Condition)->as_Bool();
duke@435 159 Node *cmp = b->in(1);
duke@435 160 if( cmp->is_Cmp() ) {
duke@435 161 Node *id = is_cmove_id( phase, cmp, in(IfTrue), in(IfFalse), b );
duke@435 162 if( id ) return id;
duke@435 163 }
duke@435 164 }
duke@435 165
duke@435 166 return this;
duke@435 167 }
duke@435 168
duke@435 169 //------------------------------Value------------------------------------------
duke@435 170 // Result is the meet of inputs
duke@435 171 const Type *CMoveNode::Value( PhaseTransform *phase ) const {
duke@435 172 if( phase->type(in(Condition)) == Type::TOP )
duke@435 173 return Type::TOP;
duke@435 174 return phase->type(in(IfFalse))->meet(phase->type(in(IfTrue)));
duke@435 175 }
duke@435 176
duke@435 177 //------------------------------make-------------------------------------------
duke@435 178 // Make a correctly-flavored CMove. Since _type is directly determined
duke@435 179 // from the inputs we do not need to specify it here.
duke@435 180 CMoveNode *CMoveNode::make( Compile *C, Node *c, Node *bol, Node *left, Node *right, const Type *t ) {
duke@435 181 switch( t->basic_type() ) {
duke@435 182 case T_INT: return new (C, 4) CMoveINode( bol, left, right, t->is_int() );
duke@435 183 case T_FLOAT: return new (C, 4) CMoveFNode( bol, left, right, t );
duke@435 184 case T_DOUBLE: return new (C, 4) CMoveDNode( bol, left, right, t );
duke@435 185 case T_LONG: return new (C, 4) CMoveLNode( bol, left, right, t->is_long() );
duke@435 186 case T_OBJECT: return new (C, 4) CMovePNode( c, bol, left, right, t->is_oopptr() );
duke@435 187 case T_ADDRESS: return new (C, 4) CMovePNode( c, bol, left, right, t->is_ptr() );
duke@435 188 default:
duke@435 189 ShouldNotReachHere();
duke@435 190 return NULL;
duke@435 191 }
duke@435 192 }
duke@435 193
duke@435 194 //=============================================================================
duke@435 195 //------------------------------Ideal------------------------------------------
duke@435 196 // Return a node which is more "ideal" than the current node.
duke@435 197 // Check for conversions to boolean
duke@435 198 Node *CMoveINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 199 // Try generic ideal's first
duke@435 200 Node *x = CMoveNode::Ideal(phase, can_reshape);
duke@435 201 if( x ) return x;
duke@435 202
duke@435 203 // If zero is on the left (false-case, no-move-case) it must mean another
duke@435 204 // constant is on the right (otherwise the shared CMove::Ideal code would
duke@435 205 // have moved the constant to the right). This situation is bad for Intel
duke@435 206 // and a don't-care for Sparc. It's bad for Intel because the zero has to
duke@435 207 // be manifested in a register with a XOR which kills flags, which are live
duke@435 208 // on input to the CMoveI, leading to a situation which causes excessive
duke@435 209 // spilling on Intel. For Sparc, if the zero in on the left the Sparc will
duke@435 210 // zero a register via G0 and conditionally-move the other constant. If the
duke@435 211 // zero is on the right, the Sparc will load the first constant with a
duke@435 212 // 13-bit set-lo and conditionally move G0. See bug 4677505.
duke@435 213 if( phase->type(in(IfFalse)) == TypeInt::ZERO && !(phase->type(in(IfTrue)) == TypeInt::ZERO) ) {
duke@435 214 if( in(Condition)->is_Bool() ) {
duke@435 215 BoolNode* b = in(Condition)->as_Bool();
duke@435 216 BoolNode* b2 = b->negate(phase);
duke@435 217 return make( phase->C, in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type );
duke@435 218 }
duke@435 219 }
duke@435 220
duke@435 221 // Now check for booleans
duke@435 222 int flip = 0;
duke@435 223
duke@435 224 // Check for picking from zero/one
duke@435 225 if( phase->type(in(IfFalse)) == TypeInt::ZERO && phase->type(in(IfTrue)) == TypeInt::ONE ) {
duke@435 226 flip = 1 - flip;
duke@435 227 } else if( phase->type(in(IfFalse)) == TypeInt::ONE && phase->type(in(IfTrue)) == TypeInt::ZERO ) {
duke@435 228 } else return NULL;
duke@435 229
duke@435 230 // Check for eq/ne test
duke@435 231 if( !in(1)->is_Bool() ) return NULL;
duke@435 232 BoolNode *bol = in(1)->as_Bool();
duke@435 233 if( bol->_test._test == BoolTest::eq ) {
duke@435 234 } else if( bol->_test._test == BoolTest::ne ) {
duke@435 235 flip = 1-flip;
duke@435 236 } else return NULL;
duke@435 237
duke@435 238 // Check for vs 0 or 1
duke@435 239 if( !bol->in(1)->is_Cmp() ) return NULL;
duke@435 240 const CmpNode *cmp = bol->in(1)->as_Cmp();
duke@435 241 if( phase->type(cmp->in(2)) == TypeInt::ZERO ) {
duke@435 242 } else if( phase->type(cmp->in(2)) == TypeInt::ONE ) {
duke@435 243 // Allow cmp-vs-1 if the other input is bounded by 0-1
duke@435 244 if( phase->type(cmp->in(1)) != TypeInt::BOOL )
duke@435 245 return NULL;
duke@435 246 flip = 1 - flip;
duke@435 247 } else return NULL;
duke@435 248
duke@435 249 // Convert to a bool (flipped)
duke@435 250 // Build int->bool conversion
duke@435 251 #ifndef PRODUCT
duke@435 252 if( PrintOpto ) tty->print_cr("CMOV to I2B");
duke@435 253 #endif
duke@435 254 Node *n = new (phase->C, 2) Conv2BNode( cmp->in(1) );
duke@435 255 if( flip )
duke@435 256 n = new (phase->C, 3) XorINode( phase->transform(n), phase->intcon(1) );
duke@435 257
duke@435 258 return n;
duke@435 259 }
duke@435 260
duke@435 261 //=============================================================================
duke@435 262 //------------------------------Ideal------------------------------------------
duke@435 263 // Return a node which is more "ideal" than the current node.
duke@435 264 // Check for absolute value
duke@435 265 Node *CMoveFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 266 // Try generic ideal's first
duke@435 267 Node *x = CMoveNode::Ideal(phase, can_reshape);
duke@435 268 if( x ) return x;
duke@435 269
duke@435 270 int cmp_zero_idx = 0; // Index of compare input where to look for zero
duke@435 271 int phi_x_idx = 0; // Index of phi input where to find naked x
duke@435 272
duke@435 273 // Find the Bool
duke@435 274 if( !in(1)->is_Bool() ) return NULL;
duke@435 275 BoolNode *bol = in(1)->as_Bool();
duke@435 276 // Check bool sense
duke@435 277 switch( bol->_test._test ) {
duke@435 278 case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue; break;
duke@435 279 case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
duke@435 280 case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue; break;
duke@435 281 case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
duke@435 282 default: return NULL; break;
duke@435 283 }
duke@435 284
duke@435 285 // Find zero input of CmpF; the other input is being abs'd
duke@435 286 Node *cmpf = bol->in(1);
duke@435 287 if( cmpf->Opcode() != Op_CmpF ) return NULL;
duke@435 288 Node *X = NULL;
duke@435 289 bool flip = false;
duke@435 290 if( phase->type(cmpf->in(cmp_zero_idx)) == TypeF::ZERO ) {
duke@435 291 X = cmpf->in(3 - cmp_zero_idx);
duke@435 292 } else if (phase->type(cmpf->in(3 - cmp_zero_idx)) == TypeF::ZERO) {
duke@435 293 // The test is inverted, we should invert the result...
duke@435 294 X = cmpf->in(cmp_zero_idx);
duke@435 295 flip = true;
duke@435 296 } else {
duke@435 297 return NULL;
duke@435 298 }
duke@435 299
duke@435 300 // If X is found on the appropriate phi input, find the subtract on the other
duke@435 301 if( X != in(phi_x_idx) ) return NULL;
duke@435 302 int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
duke@435 303 Node *sub = in(phi_sub_idx);
duke@435 304
duke@435 305 // Allow only SubF(0,X) and fail out for all others; NegF is not OK
duke@435 306 if( sub->Opcode() != Op_SubF ||
duke@435 307 sub->in(2) != X ||
duke@435 308 phase->type(sub->in(1)) != TypeF::ZERO ) return NULL;
duke@435 309
duke@435 310 Node *abs = new (phase->C, 2) AbsFNode( X );
duke@435 311 if( flip )
duke@435 312 abs = new (phase->C, 3) SubFNode(sub->in(1), phase->transform(abs));
duke@435 313
duke@435 314 return abs;
duke@435 315 }
duke@435 316
duke@435 317 //=============================================================================
duke@435 318 //------------------------------Ideal------------------------------------------
duke@435 319 // Return a node which is more "ideal" than the current node.
duke@435 320 // Check for absolute value
duke@435 321 Node *CMoveDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 322 // Try generic ideal's first
duke@435 323 Node *x = CMoveNode::Ideal(phase, can_reshape);
duke@435 324 if( x ) return x;
duke@435 325
duke@435 326 int cmp_zero_idx = 0; // Index of compare input where to look for zero
duke@435 327 int phi_x_idx = 0; // Index of phi input where to find naked x
duke@435 328
duke@435 329 // Find the Bool
duke@435 330 if( !in(1)->is_Bool() ) return NULL;
duke@435 331 BoolNode *bol = in(1)->as_Bool();
duke@435 332 // Check bool sense
duke@435 333 switch( bol->_test._test ) {
duke@435 334 case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue; break;
duke@435 335 case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
duke@435 336 case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue; break;
duke@435 337 case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
duke@435 338 default: return NULL; break;
duke@435 339 }
duke@435 340
duke@435 341 // Find zero input of CmpD; the other input is being abs'd
duke@435 342 Node *cmpd = bol->in(1);
duke@435 343 if( cmpd->Opcode() != Op_CmpD ) return NULL;
duke@435 344 Node *X = NULL;
duke@435 345 bool flip = false;
duke@435 346 if( phase->type(cmpd->in(cmp_zero_idx)) == TypeD::ZERO ) {
duke@435 347 X = cmpd->in(3 - cmp_zero_idx);
duke@435 348 } else if (phase->type(cmpd->in(3 - cmp_zero_idx)) == TypeD::ZERO) {
duke@435 349 // The test is inverted, we should invert the result...
duke@435 350 X = cmpd->in(cmp_zero_idx);
duke@435 351 flip = true;
duke@435 352 } else {
duke@435 353 return NULL;
duke@435 354 }
duke@435 355
duke@435 356 // If X is found on the appropriate phi input, find the subtract on the other
duke@435 357 if( X != in(phi_x_idx) ) return NULL;
duke@435 358 int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
duke@435 359 Node *sub = in(phi_sub_idx);
duke@435 360
duke@435 361 // Allow only SubD(0,X) and fail out for all others; NegD is not OK
duke@435 362 if( sub->Opcode() != Op_SubD ||
duke@435 363 sub->in(2) != X ||
duke@435 364 phase->type(sub->in(1)) != TypeD::ZERO ) return NULL;
duke@435 365
duke@435 366 Node *abs = new (phase->C, 2) AbsDNode( X );
duke@435 367 if( flip )
duke@435 368 abs = new (phase->C, 3) SubDNode(sub->in(1), phase->transform(abs));
duke@435 369
duke@435 370 return abs;
duke@435 371 }
duke@435 372
duke@435 373
duke@435 374 //=============================================================================
duke@435 375 // If input is already higher or equal to cast type, then this is an identity.
duke@435 376 Node *ConstraintCastNode::Identity( PhaseTransform *phase ) {
duke@435 377 return phase->type(in(1))->higher_equal(_type) ? in(1) : this;
duke@435 378 }
duke@435 379
duke@435 380 //------------------------------Value------------------------------------------
duke@435 381 // Take 'join' of input and cast-up type
duke@435 382 const Type *ConstraintCastNode::Value( PhaseTransform *phase ) const {
duke@435 383 if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
duke@435 384 const Type* ft = phase->type(in(1))->filter(_type);
duke@435 385
duke@435 386 #ifdef ASSERT
duke@435 387 // Previous versions of this function had some special case logic,
duke@435 388 // which is no longer necessary. Make sure of the required effects.
duke@435 389 switch (Opcode()) {
duke@435 390 case Op_CastII:
duke@435 391 {
duke@435 392 const Type* t1 = phase->type(in(1));
duke@435 393 if( t1 == Type::TOP ) assert(ft == Type::TOP, "special case #1");
duke@435 394 const Type* rt = t1->join(_type);
duke@435 395 if (rt->empty()) assert(ft == Type::TOP, "special case #2");
duke@435 396 break;
duke@435 397 }
duke@435 398 case Op_CastPP:
duke@435 399 if (phase->type(in(1)) == TypePtr::NULL_PTR &&
duke@435 400 _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
duke@435 401 assert(ft == Type::TOP, "special case #3");
duke@435 402 break;
duke@435 403 }
duke@435 404 #endif //ASSERT
duke@435 405
duke@435 406 return ft;
duke@435 407 }
duke@435 408
duke@435 409 //------------------------------Ideal------------------------------------------
duke@435 410 // Return a node which is more "ideal" than the current node. Strip out
duke@435 411 // control copies
duke@435 412 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 413 return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
duke@435 414 }
duke@435 415
duke@435 416 //------------------------------Ideal_DU_postCCP-------------------------------
duke@435 417 // Throw away cast after constant propagation
duke@435 418 Node *ConstraintCastNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
duke@435 419 const Type *t = ccp->type(in(1));
duke@435 420 ccp->hash_delete(this);
duke@435 421 set_type(t); // Turn into ID function
duke@435 422 ccp->hash_insert(this);
duke@435 423 return this;
duke@435 424 }
duke@435 425
duke@435 426
duke@435 427 //=============================================================================
duke@435 428
duke@435 429 //------------------------------Ideal_DU_postCCP-------------------------------
duke@435 430 // If not converting int->oop, throw away cast after constant propagation
duke@435 431 Node *CastPPNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
duke@435 432 const Type *t = ccp->type(in(1));
duke@435 433 if (!t->isa_oop_ptr()) {
duke@435 434 return NULL; // do not transform raw pointers
duke@435 435 }
duke@435 436 return ConstraintCastNode::Ideal_DU_postCCP(ccp);
duke@435 437 }
duke@435 438
duke@435 439
duke@435 440
duke@435 441 //=============================================================================
duke@435 442 //------------------------------Identity---------------------------------------
duke@435 443 // If input is already higher or equal to cast type, then this is an identity.
duke@435 444 Node *CheckCastPPNode::Identity( PhaseTransform *phase ) {
duke@435 445 // Toned down to rescue meeting at a Phi 3 different oops all implementing
duke@435 446 // the same interface. CompileTheWorld starting at 502, kd12rc1.zip.
duke@435 447 return (phase->type(in(1)) == phase->type(this)) ? in(1) : this;
duke@435 448 }
duke@435 449
duke@435 450 // Determine whether "n" is a node which can cause an alias of one of its inputs. Node types
duke@435 451 // which can create aliases are: CheckCastPP, Phi, and any store (if there is also a load from
duke@435 452 // the location.)
duke@435 453 // Note: this checks for aliases created in this compilation, not ones which may
duke@435 454 // be potentially created at call sites.
duke@435 455 static bool can_cause_alias(Node *n, PhaseTransform *phase) {
duke@435 456 bool possible_alias = false;
duke@435 457
duke@435 458 if (n->is_Store()) {
duke@435 459 possible_alias = !n->as_Store()->value_never_loaded(phase);
duke@435 460 } else {
duke@435 461 int opc = n->Opcode();
duke@435 462 possible_alias = n->is_Phi() ||
duke@435 463 opc == Op_CheckCastPP ||
duke@435 464 opc == Op_StorePConditional ||
coleenp@548 465 opc == Op_CompareAndSwapP ||
coleenp@548 466 opc == Op_CompareAndSwapN;
duke@435 467 }
duke@435 468 return possible_alias;
duke@435 469 }
duke@435 470
duke@435 471 //------------------------------Value------------------------------------------
duke@435 472 // Take 'join' of input and cast-up type, unless working with an Interface
duke@435 473 const Type *CheckCastPPNode::Value( PhaseTransform *phase ) const {
duke@435 474 if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
duke@435 475
duke@435 476 const Type *inn = phase->type(in(1));
duke@435 477 if( inn == Type::TOP ) return Type::TOP; // No information yet
duke@435 478
duke@435 479 const TypePtr *in_type = inn->isa_ptr();
duke@435 480 const TypePtr *my_type = _type->isa_ptr();
duke@435 481 const Type *result = _type;
duke@435 482 if( in_type != NULL && my_type != NULL ) {
duke@435 483 TypePtr::PTR in_ptr = in_type->ptr();
duke@435 484 if( in_ptr == TypePtr::Null ) {
duke@435 485 result = in_type;
duke@435 486 } else if( in_ptr == TypePtr::Constant ) {
duke@435 487 // Casting a constant oop to an interface?
duke@435 488 // (i.e., a String to a Comparable?)
duke@435 489 // Then return the interface.
duke@435 490 const TypeOopPtr *jptr = my_type->isa_oopptr();
duke@435 491 assert( jptr, "" );
duke@435 492 result = (jptr->klass()->is_interface() || !in_type->higher_equal(_type))
duke@435 493 ? my_type->cast_to_ptr_type( TypePtr::NotNull )
duke@435 494 : in_type;
duke@435 495 } else {
duke@435 496 result = my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) );
duke@435 497 }
duke@435 498 }
duke@435 499 return result;
duke@435 500
duke@435 501 // JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES.
duke@435 502 // FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR!
duke@435 503
duke@435 504 //
duke@435 505 // Remove this code after overnight run indicates no performance
duke@435 506 // loss from not performing JOIN at CheckCastPPNode
duke@435 507 //
duke@435 508 // const TypeInstPtr *in_oop = in->isa_instptr();
duke@435 509 // const TypeInstPtr *my_oop = _type->isa_instptr();
duke@435 510 // // If either input is an 'interface', return destination type
duke@435 511 // assert (in_oop == NULL || in_oop->klass() != NULL, "");
duke@435 512 // assert (my_oop == NULL || my_oop->klass() != NULL, "");
duke@435 513 // if( (in_oop && in_oop->klass()->klass_part()->is_interface())
duke@435 514 // ||(my_oop && my_oop->klass()->klass_part()->is_interface()) ) {
duke@435 515 // TypePtr::PTR in_ptr = in->isa_ptr() ? in->is_ptr()->_ptr : TypePtr::BotPTR;
duke@435 516 // // Preserve cast away nullness for interfaces
duke@435 517 // if( in_ptr == TypePtr::NotNull && my_oop && my_oop->_ptr == TypePtr::BotPTR ) {
duke@435 518 // return my_oop->cast_to_ptr_type(TypePtr::NotNull);
duke@435 519 // }
duke@435 520 // return _type;
duke@435 521 // }
duke@435 522 //
duke@435 523 // // Neither the input nor the destination type is an interface,
duke@435 524 //
duke@435 525 // // history: JOIN used to cause weird corner case bugs
duke@435 526 // // return (in == TypeOopPtr::NULL_PTR) ? in : _type;
duke@435 527 // // JOIN picks up NotNull in common instance-of/check-cast idioms, both oops.
duke@435 528 // // JOIN does not preserve NotNull in other cases, e.g. RawPtr vs InstPtr
duke@435 529 // const Type *join = in->join(_type);
duke@435 530 // // Check if join preserved NotNull'ness for pointers
duke@435 531 // if( join->isa_ptr() && _type->isa_ptr() ) {
duke@435 532 // TypePtr::PTR join_ptr = join->is_ptr()->_ptr;
duke@435 533 // TypePtr::PTR type_ptr = _type->is_ptr()->_ptr;
duke@435 534 // // If there isn't any NotNull'ness to preserve
duke@435 535 // // OR if join preserved NotNull'ness then return it
duke@435 536 // if( type_ptr == TypePtr::BotPTR || type_ptr == TypePtr::Null ||
duke@435 537 // join_ptr == TypePtr::NotNull || join_ptr == TypePtr::Constant ) {
duke@435 538 // return join;
duke@435 539 // }
duke@435 540 // // ELSE return same old type as before
duke@435 541 // return _type;
duke@435 542 // }
duke@435 543 // // Not joining two pointers
duke@435 544 // return join;
duke@435 545 }
duke@435 546
duke@435 547 //------------------------------Ideal------------------------------------------
duke@435 548 // Return a node which is more "ideal" than the current node. Strip out
duke@435 549 // control copies
duke@435 550 Node *CheckCastPPNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 551 return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
duke@435 552 }
duke@435 553
coleenp@548 554
coleenp@548 555 Node* DecodeNNode::Identity(PhaseTransform* phase) {
coleenp@548 556 const Type *t = phase->type( in(1) );
coleenp@548 557 if( t == Type::TOP ) return in(1);
coleenp@548 558
coleenp@548 559 if (in(1)->Opcode() == Op_EncodeP) {
coleenp@548 560 // (DecodeN (EncodeP p)) -> p
coleenp@548 561 return in(1)->in(1);
coleenp@548 562 }
coleenp@548 563 return this;
coleenp@548 564 }
coleenp@548 565
coleenp@548 566 Node* EncodePNode::Identity(PhaseTransform* phase) {
coleenp@548 567 const Type *t = phase->type( in(1) );
coleenp@548 568 if( t == Type::TOP ) return in(1);
coleenp@548 569
coleenp@548 570 if (in(1)->Opcode() == Op_DecodeN) {
coleenp@548 571 // (EncodeP (DecodeN p)) -> p
coleenp@548 572 return in(1)->in(1);
coleenp@548 573 }
coleenp@548 574 return this;
coleenp@548 575 }
coleenp@548 576
coleenp@548 577
coleenp@548 578 Node* EncodePNode::encode(PhaseGVN* phase, Node* value) {
coleenp@548 579 const Type* newtype = value->bottom_type();
coleenp@548 580 if (newtype == TypePtr::NULL_PTR) {
coleenp@548 581 return phase->transform(new (phase->C, 1) ConNNode(TypeNarrowOop::NULL_PTR));
coleenp@548 582 } else {
coleenp@548 583 return phase->transform(new (phase->C, 2) EncodePNode(value,
coleenp@548 584 newtype->is_oopptr()->make_narrowoop()));
coleenp@548 585 }
coleenp@548 586 }
coleenp@548 587
coleenp@548 588
duke@435 589 //=============================================================================
duke@435 590 //------------------------------Identity---------------------------------------
duke@435 591 Node *Conv2BNode::Identity( PhaseTransform *phase ) {
duke@435 592 const Type *t = phase->type( in(1) );
duke@435 593 if( t == Type::TOP ) return in(1);
duke@435 594 if( t == TypeInt::ZERO ) return in(1);
duke@435 595 if( t == TypeInt::ONE ) return in(1);
duke@435 596 if( t == TypeInt::BOOL ) return in(1);
duke@435 597 return this;
duke@435 598 }
duke@435 599
duke@435 600 //------------------------------Value------------------------------------------
duke@435 601 const Type *Conv2BNode::Value( PhaseTransform *phase ) const {
duke@435 602 const Type *t = phase->type( in(1) );
duke@435 603 if( t == Type::TOP ) return Type::TOP;
duke@435 604 if( t == TypeInt::ZERO ) return TypeInt::ZERO;
duke@435 605 if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
duke@435 606 const TypePtr *tp = t->isa_ptr();
duke@435 607 if( tp != NULL ) {
duke@435 608 if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
duke@435 609 if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
duke@435 610 if (tp->ptr() == TypePtr::NotNull) return TypeInt::ONE;
duke@435 611 return TypeInt::BOOL;
duke@435 612 }
duke@435 613 if (t->base() != Type::Int) return TypeInt::BOOL;
duke@435 614 const TypeInt *ti = t->is_int();
duke@435 615 if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
duke@435 616 return TypeInt::BOOL;
duke@435 617 }
duke@435 618
duke@435 619
duke@435 620 // The conversions operations are all Alpha sorted. Please keep it that way!
duke@435 621 //=============================================================================
duke@435 622 //------------------------------Value------------------------------------------
duke@435 623 const Type *ConvD2FNode::Value( PhaseTransform *phase ) const {
duke@435 624 const Type *t = phase->type( in(1) );
duke@435 625 if( t == Type::TOP ) return Type::TOP;
duke@435 626 if( t == Type::DOUBLE ) return Type::FLOAT;
duke@435 627 const TypeD *td = t->is_double_constant();
duke@435 628 return TypeF::make( (float)td->getd() );
duke@435 629 }
duke@435 630
duke@435 631 //------------------------------Identity---------------------------------------
duke@435 632 // Float's can be converted to doubles with no loss of bits. Hence
duke@435 633 // converting a float to a double and back to a float is a NOP.
duke@435 634 Node *ConvD2FNode::Identity(PhaseTransform *phase) {
duke@435 635 return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
duke@435 636 }
duke@435 637
duke@435 638 //=============================================================================
duke@435 639 //------------------------------Value------------------------------------------
duke@435 640 const Type *ConvD2INode::Value( PhaseTransform *phase ) const {
duke@435 641 const Type *t = phase->type( in(1) );
duke@435 642 if( t == Type::TOP ) return Type::TOP;
duke@435 643 if( t == Type::DOUBLE ) return TypeInt::INT;
duke@435 644 const TypeD *td = t->is_double_constant();
duke@435 645 return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
duke@435 646 }
duke@435 647
duke@435 648 //------------------------------Ideal------------------------------------------
duke@435 649 // If converting to an int type, skip any rounding nodes
duke@435 650 Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 651 if( in(1)->Opcode() == Op_RoundDouble )
duke@435 652 set_req(1,in(1)->in(1));
duke@435 653 return NULL;
duke@435 654 }
duke@435 655
duke@435 656 //------------------------------Identity---------------------------------------
duke@435 657 // Int's can be converted to doubles with no loss of bits. Hence
duke@435 658 // converting an integer to a double and back to an integer is a NOP.
duke@435 659 Node *ConvD2INode::Identity(PhaseTransform *phase) {
duke@435 660 return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
duke@435 661 }
duke@435 662
duke@435 663 //=============================================================================
duke@435 664 //------------------------------Value------------------------------------------
duke@435 665 const Type *ConvD2LNode::Value( PhaseTransform *phase ) const {
duke@435 666 const Type *t = phase->type( in(1) );
duke@435 667 if( t == Type::TOP ) return Type::TOP;
duke@435 668 if( t == Type::DOUBLE ) return TypeLong::LONG;
duke@435 669 const TypeD *td = t->is_double_constant();
duke@435 670 return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
duke@435 671 }
duke@435 672
duke@435 673 //------------------------------Identity---------------------------------------
duke@435 674 Node *ConvD2LNode::Identity(PhaseTransform *phase) {
duke@435 675 // Remove ConvD2L->ConvL2D->ConvD2L sequences.
duke@435 676 if( in(1) ->Opcode() == Op_ConvL2D &&
duke@435 677 in(1)->in(1)->Opcode() == Op_ConvD2L )
duke@435 678 return in(1)->in(1);
duke@435 679 return this;
duke@435 680 }
duke@435 681
duke@435 682 //------------------------------Ideal------------------------------------------
duke@435 683 // If converting to an int type, skip any rounding nodes
duke@435 684 Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 685 if( in(1)->Opcode() == Op_RoundDouble )
duke@435 686 set_req(1,in(1)->in(1));
duke@435 687 return NULL;
duke@435 688 }
duke@435 689
duke@435 690 //=============================================================================
duke@435 691 //------------------------------Value------------------------------------------
duke@435 692 const Type *ConvF2DNode::Value( PhaseTransform *phase ) const {
duke@435 693 const Type *t = phase->type( in(1) );
duke@435 694 if( t == Type::TOP ) return Type::TOP;
duke@435 695 if( t == Type::FLOAT ) return Type::DOUBLE;
duke@435 696 const TypeF *tf = t->is_float_constant();
duke@435 697 #ifndef IA64
duke@435 698 return TypeD::make( (double)tf->getf() );
duke@435 699 #else
duke@435 700 float x = tf->getf();
duke@435 701 return TypeD::make( (x == 0.0f) ? (double)x : (double)x + ia64_double_zero );
duke@435 702 #endif
duke@435 703 }
duke@435 704
duke@435 705 //=============================================================================
duke@435 706 //------------------------------Value------------------------------------------
duke@435 707 const Type *ConvF2INode::Value( PhaseTransform *phase ) const {
duke@435 708 const Type *t = phase->type( in(1) );
duke@435 709 if( t == Type::TOP ) return Type::TOP;
duke@435 710 if( t == Type::FLOAT ) return TypeInt::INT;
duke@435 711 const TypeF *tf = t->is_float_constant();
duke@435 712 return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
duke@435 713 }
duke@435 714
duke@435 715 //------------------------------Identity---------------------------------------
duke@435 716 Node *ConvF2INode::Identity(PhaseTransform *phase) {
duke@435 717 // Remove ConvF2I->ConvI2F->ConvF2I sequences.
duke@435 718 if( in(1) ->Opcode() == Op_ConvI2F &&
duke@435 719 in(1)->in(1)->Opcode() == Op_ConvF2I )
duke@435 720 return in(1)->in(1);
duke@435 721 return this;
duke@435 722 }
duke@435 723
duke@435 724 //------------------------------Ideal------------------------------------------
duke@435 725 // If converting to an int type, skip any rounding nodes
duke@435 726 Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 727 if( in(1)->Opcode() == Op_RoundFloat )
duke@435 728 set_req(1,in(1)->in(1));
duke@435 729 return NULL;
duke@435 730 }
duke@435 731
duke@435 732 //=============================================================================
duke@435 733 //------------------------------Value------------------------------------------
duke@435 734 const Type *ConvF2LNode::Value( PhaseTransform *phase ) const {
duke@435 735 const Type *t = phase->type( in(1) );
duke@435 736 if( t == Type::TOP ) return Type::TOP;
duke@435 737 if( t == Type::FLOAT ) return TypeLong::LONG;
duke@435 738 const TypeF *tf = t->is_float_constant();
duke@435 739 return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
duke@435 740 }
duke@435 741
duke@435 742 //------------------------------Identity---------------------------------------
duke@435 743 Node *ConvF2LNode::Identity(PhaseTransform *phase) {
duke@435 744 // Remove ConvF2L->ConvL2F->ConvF2L sequences.
duke@435 745 if( in(1) ->Opcode() == Op_ConvL2F &&
duke@435 746 in(1)->in(1)->Opcode() == Op_ConvF2L )
duke@435 747 return in(1)->in(1);
duke@435 748 return this;
duke@435 749 }
duke@435 750
duke@435 751 //------------------------------Ideal------------------------------------------
duke@435 752 // If converting to an int type, skip any rounding nodes
duke@435 753 Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 754 if( in(1)->Opcode() == Op_RoundFloat )
duke@435 755 set_req(1,in(1)->in(1));
duke@435 756 return NULL;
duke@435 757 }
duke@435 758
duke@435 759 //=============================================================================
duke@435 760 //------------------------------Value------------------------------------------
duke@435 761 const Type *ConvI2DNode::Value( PhaseTransform *phase ) const {
duke@435 762 const Type *t = phase->type( in(1) );
duke@435 763 if( t == Type::TOP ) return Type::TOP;
duke@435 764 const TypeInt *ti = t->is_int();
duke@435 765 if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
duke@435 766 return bottom_type();
duke@435 767 }
duke@435 768
duke@435 769 //=============================================================================
duke@435 770 //------------------------------Value------------------------------------------
duke@435 771 const Type *ConvI2FNode::Value( PhaseTransform *phase ) const {
duke@435 772 const Type *t = phase->type( in(1) );
duke@435 773 if( t == Type::TOP ) return Type::TOP;
duke@435 774 const TypeInt *ti = t->is_int();
duke@435 775 if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
duke@435 776 return bottom_type();
duke@435 777 }
duke@435 778
duke@435 779 //------------------------------Identity---------------------------------------
duke@435 780 Node *ConvI2FNode::Identity(PhaseTransform *phase) {
duke@435 781 // Remove ConvI2F->ConvF2I->ConvI2F sequences.
duke@435 782 if( in(1) ->Opcode() == Op_ConvF2I &&
duke@435 783 in(1)->in(1)->Opcode() == Op_ConvI2F )
duke@435 784 return in(1)->in(1);
duke@435 785 return this;
duke@435 786 }
duke@435 787
duke@435 788 //=============================================================================
duke@435 789 //------------------------------Value------------------------------------------
duke@435 790 const Type *ConvI2LNode::Value( PhaseTransform *phase ) const {
duke@435 791 const Type *t = phase->type( in(1) );
duke@435 792 if( t == Type::TOP ) return Type::TOP;
duke@435 793 const TypeInt *ti = t->is_int();
duke@435 794 const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
duke@435 795 // Join my declared type against my incoming type.
duke@435 796 tl = tl->filter(_type);
duke@435 797 return tl;
duke@435 798 }
duke@435 799
duke@435 800 #ifdef _LP64
duke@435 801 static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
duke@435 802 jlong lo2, jlong hi2) {
duke@435 803 // Two ranges overlap iff one range's low point falls in the other range.
duke@435 804 return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
duke@435 805 }
duke@435 806 #endif
duke@435 807
duke@435 808 //------------------------------Ideal------------------------------------------
duke@435 809 Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 810 const TypeLong* this_type = this->type()->is_long();
duke@435 811 Node* this_changed = NULL;
duke@435 812
duke@435 813 // If _major_progress, then more loop optimizations follow. Do NOT
duke@435 814 // remove this node's type assertion until no more loop ops can happen.
duke@435 815 // The progress bit is set in the major loop optimizations THEN comes the
duke@435 816 // call to IterGVN and any chance of hitting this code. Cf. Opaque1Node.
duke@435 817 if (can_reshape && !phase->C->major_progress()) {
duke@435 818 const TypeInt* in_type = phase->type(in(1))->isa_int();
duke@435 819 if (in_type != NULL && this_type != NULL &&
duke@435 820 (in_type->_lo != this_type->_lo ||
duke@435 821 in_type->_hi != this_type->_hi)) {
duke@435 822 // Although this WORSENS the type, it increases GVN opportunities,
duke@435 823 // because I2L nodes with the same input will common up, regardless
duke@435 824 // of slightly differing type assertions. Such slight differences
duke@435 825 // arise routinely as a result of loop unrolling, so this is a
duke@435 826 // post-unrolling graph cleanup. Choose a type which depends only
duke@435 827 // on my input. (Exception: Keep a range assertion of >=0 or <0.)
duke@435 828 jlong lo1 = this_type->_lo;
duke@435 829 jlong hi1 = this_type->_hi;
duke@435 830 int w1 = this_type->_widen;
duke@435 831 if (lo1 != (jint)lo1 ||
duke@435 832 hi1 != (jint)hi1 ||
duke@435 833 lo1 > hi1) {
duke@435 834 // Overflow leads to wraparound, wraparound leads to range saturation.
duke@435 835 lo1 = min_jint; hi1 = max_jint;
duke@435 836 } else if (lo1 >= 0) {
duke@435 837 // Keep a range assertion of >=0.
duke@435 838 lo1 = 0; hi1 = max_jint;
duke@435 839 } else if (hi1 < 0) {
duke@435 840 // Keep a range assertion of <0.
duke@435 841 lo1 = min_jint; hi1 = -1;
duke@435 842 } else {
duke@435 843 lo1 = min_jint; hi1 = max_jint;
duke@435 844 }
duke@435 845 const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
duke@435 846 MIN2((jlong)in_type->_hi, hi1),
duke@435 847 MAX2((int)in_type->_widen, w1));
duke@435 848 if (wtype != type()) {
duke@435 849 set_type(wtype);
duke@435 850 // Note: this_type still has old type value, for the logic below.
duke@435 851 this_changed = this;
duke@435 852 }
duke@435 853 }
duke@435 854 }
duke@435 855
duke@435 856 #ifdef _LP64
duke@435 857 // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y)) ,
duke@435 858 // but only if x and y have subranges that cannot cause 32-bit overflow,
duke@435 859 // under the assumption that x+y is in my own subrange this->type().
duke@435 860
duke@435 861 // This assumption is based on a constraint (i.e., type assertion)
duke@435 862 // established in Parse::array_addressing or perhaps elsewhere.
duke@435 863 // This constraint has been adjoined to the "natural" type of
duke@435 864 // the incoming argument in(0). We know (because of runtime
duke@435 865 // checks) - that the result value I2L(x+y) is in the joined range.
duke@435 866 // Hence we can restrict the incoming terms (x, y) to values such
duke@435 867 // that their sum also lands in that range.
duke@435 868
duke@435 869 // This optimization is useful only on 64-bit systems, where we hope
duke@435 870 // the addition will end up subsumed in an addressing mode.
duke@435 871 // It is necessary to do this when optimizing an unrolled array
duke@435 872 // copy loop such as x[i++] = y[i++].
duke@435 873
duke@435 874 // On 32-bit systems, it's better to perform as much 32-bit math as
duke@435 875 // possible before the I2L conversion, because 32-bit math is cheaper.
duke@435 876 // There's no common reason to "leak" a constant offset through the I2L.
duke@435 877 // Addressing arithmetic will not absorb it as part of a 64-bit AddL.
duke@435 878
duke@435 879 Node* z = in(1);
duke@435 880 int op = z->Opcode();
duke@435 881 if (op == Op_AddI || op == Op_SubI) {
duke@435 882 Node* x = z->in(1);
duke@435 883 Node* y = z->in(2);
duke@435 884 assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
duke@435 885 if (phase->type(x) == Type::TOP) return this_changed;
duke@435 886 if (phase->type(y) == Type::TOP) return this_changed;
duke@435 887 const TypeInt* tx = phase->type(x)->is_int();
duke@435 888 const TypeInt* ty = phase->type(y)->is_int();
duke@435 889 const TypeLong* tz = this_type;
duke@435 890 jlong xlo = tx->_lo;
duke@435 891 jlong xhi = tx->_hi;
duke@435 892 jlong ylo = ty->_lo;
duke@435 893 jlong yhi = ty->_hi;
duke@435 894 jlong zlo = tz->_lo;
duke@435 895 jlong zhi = tz->_hi;
duke@435 896 jlong vbit = CONST64(1) << BitsPerInt;
duke@435 897 int widen = MAX2(tx->_widen, ty->_widen);
duke@435 898 if (op == Op_SubI) {
duke@435 899 jlong ylo0 = ylo;
duke@435 900 ylo = -yhi;
duke@435 901 yhi = -ylo0;
duke@435 902 }
duke@435 903 // See if x+y can cause positive overflow into z+2**32
duke@435 904 if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) {
duke@435 905 return this_changed;
duke@435 906 }
duke@435 907 // See if x+y can cause negative overflow into z-2**32
duke@435 908 if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) {
duke@435 909 return this_changed;
duke@435 910 }
duke@435 911 // Now it's always safe to assume x+y does not overflow.
duke@435 912 // This is true even if some pairs x,y might cause overflow, as long
duke@435 913 // as that overflow value cannot fall into [zlo,zhi].
duke@435 914
duke@435 915 // Confident that the arithmetic is "as if infinite precision",
duke@435 916 // we can now use z's range to put constraints on those of x and y.
duke@435 917 // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
duke@435 918 // more "restricted" range by intersecting [xlo,xhi] with the
duke@435 919 // range obtained by subtracting y's range from the asserted range
duke@435 920 // of the I2L conversion. Here's the interval arithmetic algebra:
duke@435 921 // x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
duke@435 922 // => x in [zlo-yhi, zhi-ylo]
duke@435 923 // => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
duke@435 924 // => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
duke@435 925 jlong rxlo = MAX2(xlo, zlo - yhi);
duke@435 926 jlong rxhi = MIN2(xhi, zhi - ylo);
duke@435 927 // And similarly, x changing place with y:
duke@435 928 jlong rylo = MAX2(ylo, zlo - xhi);
duke@435 929 jlong ryhi = MIN2(yhi, zhi - xlo);
duke@435 930 if (rxlo > rxhi || rylo > ryhi) {
duke@435 931 return this_changed; // x or y is dying; don't mess w/ it
duke@435 932 }
duke@435 933 if (op == Op_SubI) {
duke@435 934 jlong rylo0 = rylo;
duke@435 935 rylo = -ryhi;
duke@435 936 ryhi = -rylo0;
duke@435 937 }
duke@435 938
duke@435 939 Node* cx = phase->transform( new (phase->C, 2) ConvI2LNode(x, TypeLong::make(rxlo, rxhi, widen)) );
duke@435 940 Node* cy = phase->transform( new (phase->C, 2) ConvI2LNode(y, TypeLong::make(rylo, ryhi, widen)) );
duke@435 941 switch (op) {
duke@435 942 case Op_AddI: return new (phase->C, 3) AddLNode(cx, cy);
duke@435 943 case Op_SubI: return new (phase->C, 3) SubLNode(cx, cy);
duke@435 944 default: ShouldNotReachHere();
duke@435 945 }
duke@435 946 }
duke@435 947 #endif //_LP64
duke@435 948
duke@435 949 return this_changed;
duke@435 950 }
duke@435 951
duke@435 952 //=============================================================================
duke@435 953 //------------------------------Value------------------------------------------
duke@435 954 const Type *ConvL2DNode::Value( PhaseTransform *phase ) const {
duke@435 955 const Type *t = phase->type( in(1) );
duke@435 956 if( t == Type::TOP ) return Type::TOP;
duke@435 957 const TypeLong *tl = t->is_long();
duke@435 958 if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
duke@435 959 return bottom_type();
duke@435 960 }
duke@435 961
duke@435 962 //=============================================================================
duke@435 963 //------------------------------Value------------------------------------------
duke@435 964 const Type *ConvL2FNode::Value( PhaseTransform *phase ) const {
duke@435 965 const Type *t = phase->type( in(1) );
duke@435 966 if( t == Type::TOP ) return Type::TOP;
duke@435 967 const TypeLong *tl = t->is_long();
duke@435 968 if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
duke@435 969 return bottom_type();
duke@435 970 }
duke@435 971
duke@435 972 //=============================================================================
duke@435 973 //----------------------------Identity-----------------------------------------
duke@435 974 Node *ConvL2INode::Identity( PhaseTransform *phase ) {
duke@435 975 // Convert L2I(I2L(x)) => x
duke@435 976 if (in(1)->Opcode() == Op_ConvI2L) return in(1)->in(1);
duke@435 977 return this;
duke@435 978 }
duke@435 979
duke@435 980 //------------------------------Value------------------------------------------
duke@435 981 const Type *ConvL2INode::Value( PhaseTransform *phase ) const {
duke@435 982 const Type *t = phase->type( in(1) );
duke@435 983 if( t == Type::TOP ) return Type::TOP;
duke@435 984 const TypeLong *tl = t->is_long();
duke@435 985 if (tl->is_con())
duke@435 986 // Easy case.
duke@435 987 return TypeInt::make((jint)tl->get_con());
duke@435 988 return bottom_type();
duke@435 989 }
duke@435 990
duke@435 991 //------------------------------Ideal------------------------------------------
duke@435 992 // Return a node which is more "ideal" than the current node.
duke@435 993 // Blow off prior masking to int
duke@435 994 Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 995 Node *andl = in(1);
duke@435 996 uint andl_op = andl->Opcode();
duke@435 997 if( andl_op == Op_AndL ) {
duke@435 998 // Blow off prior masking to int
duke@435 999 if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
duke@435 1000 set_req(1,andl->in(1));
duke@435 1001 return this;
duke@435 1002 }
duke@435 1003 }
duke@435 1004
duke@435 1005 // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
duke@435 1006 // This replaces an 'AddL' with an 'AddI'.
duke@435 1007 if( andl_op == Op_AddL ) {
duke@435 1008 // Don't do this for nodes which have more than one user since
duke@435 1009 // we'll end up computing the long add anyway.
duke@435 1010 if (andl->outcnt() > 1) return NULL;
duke@435 1011
duke@435 1012 Node* x = andl->in(1);
duke@435 1013 Node* y = andl->in(2);
duke@435 1014 assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
duke@435 1015 if (phase->type(x) == Type::TOP) return NULL;
duke@435 1016 if (phase->type(y) == Type::TOP) return NULL;
duke@435 1017 Node *add1 = phase->transform(new (phase->C, 2) ConvL2INode(x));
duke@435 1018 Node *add2 = phase->transform(new (phase->C, 2) ConvL2INode(y));
duke@435 1019 return new (phase->C, 3) AddINode(add1,add2);
duke@435 1020 }
duke@435 1021
kvn@471 1022 // Disable optimization: LoadL->ConvL2I ==> LoadI.
kvn@471 1023 // It causes problems (sizes of Load and Store nodes do not match)
kvn@471 1024 // in objects initialization code and Escape Analysis.
duke@435 1025 return NULL;
duke@435 1026 }
duke@435 1027
duke@435 1028 //=============================================================================
duke@435 1029 //------------------------------Value------------------------------------------
duke@435 1030 const Type *CastX2PNode::Value( PhaseTransform *phase ) const {
duke@435 1031 const Type* t = phase->type(in(1));
duke@435 1032 if (t->base() == Type_X && t->singleton()) {
duke@435 1033 uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
duke@435 1034 if (bits == 0) return TypePtr::NULL_PTR;
duke@435 1035 return TypeRawPtr::make((address) bits);
duke@435 1036 }
duke@435 1037 return CastX2PNode::bottom_type();
duke@435 1038 }
duke@435 1039
duke@435 1040 //------------------------------Idealize---------------------------------------
duke@435 1041 static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
duke@435 1042 if (t == Type::TOP) return false;
duke@435 1043 const TypeX* tl = t->is_intptr_t();
duke@435 1044 jint lo = min_jint;
duke@435 1045 jint hi = max_jint;
duke@435 1046 if (but_not_min_int) ++lo; // caller wants to negate the value w/o overflow
duke@435 1047 return (tl->_lo >= lo) && (tl->_hi <= hi);
duke@435 1048 }
duke@435 1049
duke@435 1050 static inline Node* addP_of_X2P(PhaseGVN *phase,
duke@435 1051 Node* base,
duke@435 1052 Node* dispX,
duke@435 1053 bool negate = false) {
duke@435 1054 if (negate) {
duke@435 1055 dispX = new (phase->C, 3) SubXNode(phase->MakeConX(0), phase->transform(dispX));
duke@435 1056 }
duke@435 1057 return new (phase->C, 4) AddPNode(phase->C->top(),
duke@435 1058 phase->transform(new (phase->C, 2) CastX2PNode(base)),
duke@435 1059 phase->transform(dispX));
duke@435 1060 }
duke@435 1061
duke@435 1062 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1063 // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
duke@435 1064 int op = in(1)->Opcode();
duke@435 1065 Node* x;
duke@435 1066 Node* y;
duke@435 1067 switch (op) {
duke@435 1068 case Op_SubX:
duke@435 1069 x = in(1)->in(1);
duke@435 1070 y = in(1)->in(2);
duke@435 1071 if (fits_in_int(phase->type(y), true)) {
duke@435 1072 return addP_of_X2P(phase, x, y, true);
duke@435 1073 }
duke@435 1074 break;
duke@435 1075 case Op_AddX:
duke@435 1076 x = in(1)->in(1);
duke@435 1077 y = in(1)->in(2);
duke@435 1078 if (fits_in_int(phase->type(y))) {
duke@435 1079 return addP_of_X2P(phase, x, y);
duke@435 1080 }
duke@435 1081 if (fits_in_int(phase->type(x))) {
duke@435 1082 return addP_of_X2P(phase, y, x);
duke@435 1083 }
duke@435 1084 break;
duke@435 1085 }
duke@435 1086 return NULL;
duke@435 1087 }
duke@435 1088
duke@435 1089 //------------------------------Identity---------------------------------------
duke@435 1090 Node *CastX2PNode::Identity( PhaseTransform *phase ) {
duke@435 1091 if (in(1)->Opcode() == Op_CastP2X) return in(1)->in(1);
duke@435 1092 return this;
duke@435 1093 }
duke@435 1094
duke@435 1095 //=============================================================================
duke@435 1096 //------------------------------Value------------------------------------------
duke@435 1097 const Type *CastP2XNode::Value( PhaseTransform *phase ) const {
duke@435 1098 const Type* t = phase->type(in(1));
duke@435 1099 if (t->base() == Type::RawPtr && t->singleton()) {
duke@435 1100 uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
duke@435 1101 return TypeX::make(bits);
duke@435 1102 }
duke@435 1103 return CastP2XNode::bottom_type();
duke@435 1104 }
duke@435 1105
duke@435 1106 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1107 return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
duke@435 1108 }
duke@435 1109
duke@435 1110 //------------------------------Identity---------------------------------------
duke@435 1111 Node *CastP2XNode::Identity( PhaseTransform *phase ) {
duke@435 1112 if (in(1)->Opcode() == Op_CastX2P) return in(1)->in(1);
duke@435 1113 return this;
duke@435 1114 }
duke@435 1115
duke@435 1116
duke@435 1117 //=============================================================================
duke@435 1118 //------------------------------Identity---------------------------------------
duke@435 1119 // Remove redundant roundings
duke@435 1120 Node *RoundFloatNode::Identity( PhaseTransform *phase ) {
duke@435 1121 assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
duke@435 1122 // Do not round constants
duke@435 1123 if (phase->type(in(1))->base() == Type::FloatCon) return in(1);
duke@435 1124 int op = in(1)->Opcode();
duke@435 1125 // Redundant rounding
duke@435 1126 if( op == Op_RoundFloat ) return in(1);
duke@435 1127 // Already rounded
duke@435 1128 if( op == Op_Parm ) return in(1);
duke@435 1129 if( op == Op_LoadF ) return in(1);
duke@435 1130 return this;
duke@435 1131 }
duke@435 1132
duke@435 1133 //------------------------------Value------------------------------------------
duke@435 1134 const Type *RoundFloatNode::Value( PhaseTransform *phase ) const {
duke@435 1135 return phase->type( in(1) );
duke@435 1136 }
duke@435 1137
duke@435 1138 //=============================================================================
duke@435 1139 //------------------------------Identity---------------------------------------
duke@435 1140 // Remove redundant roundings. Incoming arguments are already rounded.
duke@435 1141 Node *RoundDoubleNode::Identity( PhaseTransform *phase ) {
duke@435 1142 assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
duke@435 1143 // Do not round constants
duke@435 1144 if (phase->type(in(1))->base() == Type::DoubleCon) return in(1);
duke@435 1145 int op = in(1)->Opcode();
duke@435 1146 // Redundant rounding
duke@435 1147 if( op == Op_RoundDouble ) return in(1);
duke@435 1148 // Already rounded
duke@435 1149 if( op == Op_Parm ) return in(1);
duke@435 1150 if( op == Op_LoadD ) return in(1);
duke@435 1151 if( op == Op_ConvF2D ) return in(1);
duke@435 1152 if( op == Op_ConvI2D ) return in(1);
duke@435 1153 return this;
duke@435 1154 }
duke@435 1155
duke@435 1156 //------------------------------Value------------------------------------------
duke@435 1157 const Type *RoundDoubleNode::Value( PhaseTransform *phase ) const {
duke@435 1158 return phase->type( in(1) );
duke@435 1159 }
duke@435 1160
duke@435 1161
duke@435 1162 //=============================================================================
duke@435 1163 // Do not allow value-numbering
duke@435 1164 uint Opaque1Node::hash() const { return NO_HASH; }
duke@435 1165 uint Opaque1Node::cmp( const Node &n ) const {
duke@435 1166 return (&n == this); // Always fail except on self
duke@435 1167 }
duke@435 1168
duke@435 1169 //------------------------------Identity---------------------------------------
duke@435 1170 // If _major_progress, then more loop optimizations follow. Do NOT remove
duke@435 1171 // the opaque Node until no more loop ops can happen. Note the timing of
duke@435 1172 // _major_progress; it's set in the major loop optimizations THEN comes the
duke@435 1173 // call to IterGVN and any chance of hitting this code. Hence there's no
duke@435 1174 // phase-ordering problem with stripping Opaque1 in IGVN followed by some
duke@435 1175 // more loop optimizations that require it.
duke@435 1176 Node *Opaque1Node::Identity( PhaseTransform *phase ) {
duke@435 1177 return phase->C->major_progress() ? this : in(1);
duke@435 1178 }
duke@435 1179
duke@435 1180 //=============================================================================
duke@435 1181 // A node to prevent unwanted optimizations. Allows constant folding. Stops
duke@435 1182 // value-numbering, most Ideal calls or Identity functions. This Node is
duke@435 1183 // specifically designed to prevent the pre-increment value of a loop trip
duke@435 1184 // counter from being live out of the bottom of the loop (hence causing the
duke@435 1185 // pre- and post-increment values both being live and thus requiring an extra
duke@435 1186 // temp register and an extra move). If we "accidentally" optimize through
duke@435 1187 // this kind of a Node, we'll get slightly pessimal, but correct, code. Thus
duke@435 1188 // it's OK to be slightly sloppy on optimizations here.
duke@435 1189
duke@435 1190 // Do not allow value-numbering
duke@435 1191 uint Opaque2Node::hash() const { return NO_HASH; }
duke@435 1192 uint Opaque2Node::cmp( const Node &n ) const {
duke@435 1193 return (&n == this); // Always fail except on self
duke@435 1194 }
duke@435 1195
duke@435 1196
duke@435 1197 //------------------------------Value------------------------------------------
duke@435 1198 const Type *MoveL2DNode::Value( PhaseTransform *phase ) const {
duke@435 1199 const Type *t = phase->type( in(1) );
duke@435 1200 if( t == Type::TOP ) return Type::TOP;
duke@435 1201 const TypeLong *tl = t->is_long();
duke@435 1202 if( !tl->is_con() ) return bottom_type();
duke@435 1203 JavaValue v;
duke@435 1204 v.set_jlong(tl->get_con());
duke@435 1205 return TypeD::make( v.get_jdouble() );
duke@435 1206 }
duke@435 1207
duke@435 1208 //------------------------------Value------------------------------------------
duke@435 1209 const Type *MoveI2FNode::Value( PhaseTransform *phase ) const {
duke@435 1210 const Type *t = phase->type( in(1) );
duke@435 1211 if( t == Type::TOP ) return Type::TOP;
duke@435 1212 const TypeInt *ti = t->is_int();
duke@435 1213 if( !ti->is_con() ) return bottom_type();
duke@435 1214 JavaValue v;
duke@435 1215 v.set_jint(ti->get_con());
duke@435 1216 return TypeF::make( v.get_jfloat() );
duke@435 1217 }
duke@435 1218
duke@435 1219 //------------------------------Value------------------------------------------
duke@435 1220 const Type *MoveF2INode::Value( PhaseTransform *phase ) const {
duke@435 1221 const Type *t = phase->type( in(1) );
duke@435 1222 if( t == Type::TOP ) return Type::TOP;
duke@435 1223 if( t == Type::FLOAT ) return TypeInt::INT;
duke@435 1224 const TypeF *tf = t->is_float_constant();
duke@435 1225 JavaValue v;
duke@435 1226 v.set_jfloat(tf->getf());
duke@435 1227 return TypeInt::make( v.get_jint() );
duke@435 1228 }
duke@435 1229
duke@435 1230 //------------------------------Value------------------------------------------
duke@435 1231 const Type *MoveD2LNode::Value( PhaseTransform *phase ) const {
duke@435 1232 const Type *t = phase->type( in(1) );
duke@435 1233 if( t == Type::TOP ) return Type::TOP;
duke@435 1234 if( t == Type::DOUBLE ) return TypeLong::LONG;
duke@435 1235 const TypeD *td = t->is_double_constant();
duke@435 1236 JavaValue v;
duke@435 1237 v.set_jdouble(td->getd());
duke@435 1238 return TypeLong::make( v.get_jlong() );
duke@435 1239 }

mercurial