src/share/vm/opto/connode.cpp

Mon, 27 May 2013 12:56:34 +0200

author
stefank
date
Mon, 27 May 2013 12:56:34 +0200
changeset 5195
95c00927be11
parent 4889
cc32ccaaf47f
child 5694
7944aba7ba41
permissions
-rw-r--r--

8015428: Remove unused CDS support from StringTable
Summary: The string in StringTable is not used by CDS anymore. Remove the unnecessary code in preparation for 8015422: Large performance hit when the StringTable is walked twice in Parallel Scavenge
Reviewed-by: pliden, tschatzl, coleenp

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/compile.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/machnode.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/phaseX.hpp"
    34 #include "opto/subnode.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    37 // Optimization - Graph Style
    39 //=============================================================================
    40 //------------------------------hash-------------------------------------------
    41 uint ConNode::hash() const {
    42   return (uintptr_t)in(TypeFunc::Control) + _type->hash();
    43 }
    45 //------------------------------make-------------------------------------------
    46 ConNode *ConNode::make( Compile* C, const Type *t ) {
    47   switch( t->basic_type() ) {
    48   case T_INT:         return new (C) ConINode( t->is_int() );
    49   case T_LONG:        return new (C) ConLNode( t->is_long() );
    50   case T_FLOAT:       return new (C) ConFNode( t->is_float_constant() );
    51   case T_DOUBLE:      return new (C) ConDNode( t->is_double_constant() );
    52   case T_VOID:        return new (C) ConNode ( Type::TOP );
    53   case T_OBJECT:      return new (C) ConPNode( t->is_ptr() );
    54   case T_ARRAY:       return new (C) ConPNode( t->is_aryptr() );
    55   case T_ADDRESS:     return new (C) ConPNode( t->is_ptr() );
    56   case T_NARROWOOP:   return new (C) ConNNode( t->is_narrowoop() );
    57   case T_NARROWKLASS: return new (C) ConNKlassNode( t->is_narrowklass() );
    58   case T_METADATA:    return new (C) ConPNode( t->is_ptr() );
    59     // Expected cases:  TypePtr::NULL_PTR, any is_rawptr()
    60     // Also seen: AnyPtr(TopPTR *+top); from command line:
    61     //   r -XX:+PrintOpto -XX:CIStart=285 -XX:+CompileTheWorld -XX:CompileTheWorldStartAt=660
    62     // %%%% Stop using TypePtr::NULL_PTR to represent nulls:  use either TypeRawPtr::NULL_PTR
    63     // or else TypeOopPtr::NULL_PTR.  Then set Type::_basic_type[AnyPtr] = T_ILLEGAL
    64   }
    65   ShouldNotReachHere();
    66   return NULL;
    67 }
    69 //=============================================================================
    70 /*
    71 The major change is for CMoveP and StrComp.  They have related but slightly
    72 different problems.  They both take in TWO oops which are both null-checked
    73 independently before the using Node.  After CCP removes the CastPP's they need
    74 to pick up the guarding test edge - in this case TWO control edges.  I tried
    75 various solutions, all have problems:
    77 (1) Do nothing.  This leads to a bug where we hoist a Load from a CMoveP or a
    78 StrComp above a guarding null check.  I've seen both cases in normal -Xcomp
    79 testing.
    81 (2) Plug the control edge from 1 of the 2 oops in.  Apparent problem here is
    82 to figure out which test post-dominates.  The real problem is that it doesn't
    83 matter which one you pick.  After you pick up, the dominating-test elider in
    84 IGVN can remove the test and allow you to hoist up to the dominating test on
    85 the chosen oop bypassing the test on the not-chosen oop.  Seen in testing.
    86 Oops.
    88 (3) Leave the CastPP's in.  This makes the graph more accurate in some sense;
    89 we get to keep around the knowledge that an oop is not-null after some test.
    90 Alas, the CastPP's interfere with GVN (some values are the regular oop, some
    91 are the CastPP of the oop, all merge at Phi's which cannot collapse, etc).
    92 This cost us 10% on SpecJVM, even when I removed some of the more trivial
    93 cases in the optimizer.  Removing more useless Phi's started allowing Loads to
    94 illegally float above null checks.  I gave up on this approach.
    96 (4) Add BOTH control edges to both tests.  Alas, too much code knows that
    97 control edges are in slot-zero ONLY.  Many quick asserts fail; no way to do
    98 this one.  Note that I really want to allow the CMoveP to float and add both
    99 control edges to the dependent Load op - meaning I can select early but I
   100 cannot Load until I pass both tests.
   102 (5) Do not hoist CMoveP and StrComp.  To this end I added the v-call
   103 depends_only_on_test().  No obvious performance loss on Spec, but we are
   104 clearly conservative on CMoveP (also so on StrComp but that's unlikely to
   105 matter ever).
   107 */
   110 //------------------------------Ideal------------------------------------------
   111 // Return a node which is more "ideal" than the current node.
   112 // Move constants to the right.
   113 Node *CMoveNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   114   if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
   115   // Don't bother trying to transform a dead node
   116   if( in(0) && in(0)->is_top() )  return NULL;
   117   assert( !phase->eqv(in(Condition), this) &&
   118           !phase->eqv(in(IfFalse), this) &&
   119           !phase->eqv(in(IfTrue), this), "dead loop in CMoveNode::Ideal" );
   120   if( phase->type(in(Condition)) == Type::TOP )
   121     return NULL; // return NULL when Condition is dead
   123   if( in(IfFalse)->is_Con() && !in(IfTrue)->is_Con() ) {
   124     if( in(Condition)->is_Bool() ) {
   125       BoolNode* b  = in(Condition)->as_Bool();
   126       BoolNode* b2 = b->negate(phase);
   127       return make( phase->C, in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type );
   128     }
   129   }
   130   return NULL;
   131 }
   133 //------------------------------is_cmove_id------------------------------------
   134 // Helper function to check for CMOVE identity.  Shared with PhiNode::Identity
   135 Node *CMoveNode::is_cmove_id( PhaseTransform *phase, Node *cmp, Node *t, Node *f, BoolNode *b ) {
   136   // Check for Cmp'ing and CMove'ing same values
   137   if( (phase->eqv(cmp->in(1),f) &&
   138        phase->eqv(cmp->in(2),t)) ||
   139       // Swapped Cmp is OK
   140       (phase->eqv(cmp->in(2),f) &&
   141        phase->eqv(cmp->in(1),t)) ) {
   142     // Give up this identity check for floating points because it may choose incorrect
   143     // value around 0.0 and -0.0
   144     if ( cmp->Opcode()==Op_CmpF || cmp->Opcode()==Op_CmpD )
   145       return NULL;
   146     // Check for "(t==f)?t:f;" and replace with "f"
   147     if( b->_test._test == BoolTest::eq )
   148       return f;
   149     // Allow the inverted case as well
   150     // Check for "(t!=f)?t:f;" and replace with "t"
   151     if( b->_test._test == BoolTest::ne )
   152       return t;
   153   }
   154   return NULL;
   155 }
   157 //------------------------------Identity---------------------------------------
   158 // Conditional-move is an identity if both inputs are the same, or the test
   159 // true or false.
   160 Node *CMoveNode::Identity( PhaseTransform *phase ) {
   161   if( phase->eqv(in(IfFalse),in(IfTrue)) ) // C-moving identical inputs?
   162     return in(IfFalse);         // Then it doesn't matter
   163   if( phase->type(in(Condition)) == TypeInt::ZERO )
   164     return in(IfFalse);         // Always pick left(false) input
   165   if( phase->type(in(Condition)) == TypeInt::ONE )
   166     return in(IfTrue);          // Always pick right(true) input
   168   // Check for CMove'ing a constant after comparing against the constant.
   169   // Happens all the time now, since if we compare equality vs a constant in
   170   // the parser, we "know" the variable is constant on one path and we force
   171   // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
   172   // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
   173   // general in that we don't need constants.
   174   if( in(Condition)->is_Bool() ) {
   175     BoolNode *b = in(Condition)->as_Bool();
   176     Node *cmp = b->in(1);
   177     if( cmp->is_Cmp() ) {
   178       Node *id = is_cmove_id( phase, cmp, in(IfTrue), in(IfFalse), b );
   179       if( id ) return id;
   180     }
   181   }
   183   return this;
   184 }
   186 //------------------------------Value------------------------------------------
   187 // Result is the meet of inputs
   188 const Type *CMoveNode::Value( PhaseTransform *phase ) const {
   189   if( phase->type(in(Condition)) == Type::TOP )
   190     return Type::TOP;
   191   return phase->type(in(IfFalse))->meet(phase->type(in(IfTrue)));
   192 }
   194 //------------------------------make-------------------------------------------
   195 // Make a correctly-flavored CMove.  Since _type is directly determined
   196 // from the inputs we do not need to specify it here.
   197 CMoveNode *CMoveNode::make( Compile *C, Node *c, Node *bol, Node *left, Node *right, const Type *t ) {
   198   switch( t->basic_type() ) {
   199   case T_INT:     return new (C) CMoveINode( bol, left, right, t->is_int() );
   200   case T_FLOAT:   return new (C) CMoveFNode( bol, left, right, t );
   201   case T_DOUBLE:  return new (C) CMoveDNode( bol, left, right, t );
   202   case T_LONG:    return new (C) CMoveLNode( bol, left, right, t->is_long() );
   203   case T_OBJECT:  return new (C) CMovePNode( c, bol, left, right, t->is_oopptr() );
   204   case T_ADDRESS: return new (C) CMovePNode( c, bol, left, right, t->is_ptr() );
   205   case T_NARROWOOP: return new (C) CMoveNNode( c, bol, left, right, t );
   206   default:
   207     ShouldNotReachHere();
   208     return NULL;
   209   }
   210 }
   212 //=============================================================================
   213 //------------------------------Ideal------------------------------------------
   214 // Return a node which is more "ideal" than the current node.
   215 // Check for conversions to boolean
   216 Node *CMoveINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   217   // Try generic ideal's first
   218   Node *x = CMoveNode::Ideal(phase, can_reshape);
   219   if( x ) return x;
   221   // If zero is on the left (false-case, no-move-case) it must mean another
   222   // constant is on the right (otherwise the shared CMove::Ideal code would
   223   // have moved the constant to the right).  This situation is bad for Intel
   224   // and a don't-care for Sparc.  It's bad for Intel because the zero has to
   225   // be manifested in a register with a XOR which kills flags, which are live
   226   // on input to the CMoveI, leading to a situation which causes excessive
   227   // spilling on Intel.  For Sparc, if the zero in on the left the Sparc will
   228   // zero a register via G0 and conditionally-move the other constant.  If the
   229   // zero is on the right, the Sparc will load the first constant with a
   230   // 13-bit set-lo and conditionally move G0.  See bug 4677505.
   231   if( phase->type(in(IfFalse)) == TypeInt::ZERO && !(phase->type(in(IfTrue)) == TypeInt::ZERO) ) {
   232     if( in(Condition)->is_Bool() ) {
   233       BoolNode* b  = in(Condition)->as_Bool();
   234       BoolNode* b2 = b->negate(phase);
   235       return make( phase->C, in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type );
   236     }
   237   }
   239   // Now check for booleans
   240   int flip = 0;
   242   // Check for picking from zero/one
   243   if( phase->type(in(IfFalse)) == TypeInt::ZERO && phase->type(in(IfTrue)) == TypeInt::ONE ) {
   244     flip = 1 - flip;
   245   } else if( phase->type(in(IfFalse)) == TypeInt::ONE && phase->type(in(IfTrue)) == TypeInt::ZERO ) {
   246   } else return NULL;
   248   // Check for eq/ne test
   249   if( !in(1)->is_Bool() ) return NULL;
   250   BoolNode *bol = in(1)->as_Bool();
   251   if( bol->_test._test == BoolTest::eq ) {
   252   } else if( bol->_test._test == BoolTest::ne ) {
   253     flip = 1-flip;
   254   } else return NULL;
   256   // Check for vs 0 or 1
   257   if( !bol->in(1)->is_Cmp() ) return NULL;
   258   const CmpNode *cmp = bol->in(1)->as_Cmp();
   259   if( phase->type(cmp->in(2)) == TypeInt::ZERO ) {
   260   } else if( phase->type(cmp->in(2)) == TypeInt::ONE ) {
   261     // Allow cmp-vs-1 if the other input is bounded by 0-1
   262     if( phase->type(cmp->in(1)) != TypeInt::BOOL )
   263       return NULL;
   264     flip = 1 - flip;
   265   } else return NULL;
   267   // Convert to a bool (flipped)
   268   // Build int->bool conversion
   269 #ifndef PRODUCT
   270   if( PrintOpto ) tty->print_cr("CMOV to I2B");
   271 #endif
   272   Node *n = new (phase->C) Conv2BNode( cmp->in(1) );
   273   if( flip )
   274     n = new (phase->C) XorINode( phase->transform(n), phase->intcon(1) );
   276   return n;
   277 }
   279 //=============================================================================
   280 //------------------------------Ideal------------------------------------------
   281 // Return a node which is more "ideal" than the current node.
   282 // Check for absolute value
   283 Node *CMoveFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   284   // Try generic ideal's first
   285   Node *x = CMoveNode::Ideal(phase, can_reshape);
   286   if( x ) return x;
   288   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
   289   int  phi_x_idx = 0;           // Index of phi input where to find naked x
   291   // Find the Bool
   292   if( !in(1)->is_Bool() ) return NULL;
   293   BoolNode *bol = in(1)->as_Bool();
   294   // Check bool sense
   295   switch( bol->_test._test ) {
   296   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue;  break;
   297   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
   298   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue;  break;
   299   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
   300   default:           return NULL;                           break;
   301   }
   303   // Find zero input of CmpF; the other input is being abs'd
   304   Node *cmpf = bol->in(1);
   305   if( cmpf->Opcode() != Op_CmpF ) return NULL;
   306   Node *X = NULL;
   307   bool flip = false;
   308   if( phase->type(cmpf->in(cmp_zero_idx)) == TypeF::ZERO ) {
   309     X = cmpf->in(3 - cmp_zero_idx);
   310   } else if (phase->type(cmpf->in(3 - cmp_zero_idx)) == TypeF::ZERO) {
   311     // The test is inverted, we should invert the result...
   312     X = cmpf->in(cmp_zero_idx);
   313     flip = true;
   314   } else {
   315     return NULL;
   316   }
   318   // If X is found on the appropriate phi input, find the subtract on the other
   319   if( X != in(phi_x_idx) ) return NULL;
   320   int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
   321   Node *sub = in(phi_sub_idx);
   323   // Allow only SubF(0,X) and fail out for all others; NegF is not OK
   324   if( sub->Opcode() != Op_SubF ||
   325       sub->in(2) != X ||
   326       phase->type(sub->in(1)) != TypeF::ZERO ) return NULL;
   328   Node *abs = new (phase->C) AbsFNode( X );
   329   if( flip )
   330     abs = new (phase->C) SubFNode(sub->in(1), phase->transform(abs));
   332   return abs;
   333 }
   335 //=============================================================================
   336 //------------------------------Ideal------------------------------------------
   337 // Return a node which is more "ideal" than the current node.
   338 // Check for absolute value
   339 Node *CMoveDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   340   // Try generic ideal's first
   341   Node *x = CMoveNode::Ideal(phase, can_reshape);
   342   if( x ) return x;
   344   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
   345   int  phi_x_idx = 0;           // Index of phi input where to find naked x
   347   // Find the Bool
   348   if( !in(1)->is_Bool() ) return NULL;
   349   BoolNode *bol = in(1)->as_Bool();
   350   // Check bool sense
   351   switch( bol->_test._test ) {
   352   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue;  break;
   353   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
   354   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue;  break;
   355   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
   356   default:           return NULL;                           break;
   357   }
   359   // Find zero input of CmpD; the other input is being abs'd
   360   Node *cmpd = bol->in(1);
   361   if( cmpd->Opcode() != Op_CmpD ) return NULL;
   362   Node *X = NULL;
   363   bool flip = false;
   364   if( phase->type(cmpd->in(cmp_zero_idx)) == TypeD::ZERO ) {
   365     X = cmpd->in(3 - cmp_zero_idx);
   366   } else if (phase->type(cmpd->in(3 - cmp_zero_idx)) == TypeD::ZERO) {
   367     // The test is inverted, we should invert the result...
   368     X = cmpd->in(cmp_zero_idx);
   369     flip = true;
   370   } else {
   371     return NULL;
   372   }
   374   // If X is found on the appropriate phi input, find the subtract on the other
   375   if( X != in(phi_x_idx) ) return NULL;
   376   int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
   377   Node *sub = in(phi_sub_idx);
   379   // Allow only SubD(0,X) and fail out for all others; NegD is not OK
   380   if( sub->Opcode() != Op_SubD ||
   381       sub->in(2) != X ||
   382       phase->type(sub->in(1)) != TypeD::ZERO ) return NULL;
   384   Node *abs = new (phase->C) AbsDNode( X );
   385   if( flip )
   386     abs = new (phase->C) SubDNode(sub->in(1), phase->transform(abs));
   388   return abs;
   389 }
   392 //=============================================================================
   393 // If input is already higher or equal to cast type, then this is an identity.
   394 Node *ConstraintCastNode::Identity( PhaseTransform *phase ) {
   395   return phase->type(in(1))->higher_equal(_type) ? in(1) : this;
   396 }
   398 //------------------------------Value------------------------------------------
   399 // Take 'join' of input and cast-up type
   400 const Type *ConstraintCastNode::Value( PhaseTransform *phase ) const {
   401   if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
   402   const Type* ft = phase->type(in(1))->filter(_type);
   404 #ifdef ASSERT
   405   // Previous versions of this function had some special case logic,
   406   // which is no longer necessary.  Make sure of the required effects.
   407   switch (Opcode()) {
   408   case Op_CastII:
   409     {
   410       const Type* t1 = phase->type(in(1));
   411       if( t1 == Type::TOP )  assert(ft == Type::TOP, "special case #1");
   412       const Type* rt = t1->join(_type);
   413       if (rt->empty())       assert(ft == Type::TOP, "special case #2");
   414       break;
   415     }
   416   case Op_CastPP:
   417     if (phase->type(in(1)) == TypePtr::NULL_PTR &&
   418         _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
   419       assert(ft == Type::TOP, "special case #3");
   420     break;
   421   }
   422 #endif //ASSERT
   424   return ft;
   425 }
   427 //------------------------------Ideal------------------------------------------
   428 // Return a node which is more "ideal" than the current node.  Strip out
   429 // control copies
   430 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape){
   431   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
   432 }
   434 //------------------------------Ideal_DU_postCCP-------------------------------
   435 // Throw away cast after constant propagation
   436 Node *ConstraintCastNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   437   const Type *t = ccp->type(in(1));
   438   ccp->hash_delete(this);
   439   set_type(t);                   // Turn into ID function
   440   ccp->hash_insert(this);
   441   return this;
   442 }
   445 //=============================================================================
   447 //------------------------------Ideal_DU_postCCP-------------------------------
   448 // If not converting int->oop, throw away cast after constant propagation
   449 Node *CastPPNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   450   const Type *t = ccp->type(in(1));
   451   if (!t->isa_oop_ptr() || ((in(1)->is_DecodeN()) && Matcher::gen_narrow_oop_implicit_null_checks())) {
   452     return NULL; // do not transform raw pointers or narrow oops
   453   }
   454   return ConstraintCastNode::Ideal_DU_postCCP(ccp);
   455 }
   459 //=============================================================================
   460 //------------------------------Identity---------------------------------------
   461 // If input is already higher or equal to cast type, then this is an identity.
   462 Node *CheckCastPPNode::Identity( PhaseTransform *phase ) {
   463   // Toned down to rescue meeting at a Phi 3 different oops all implementing
   464   // the same interface.  CompileTheWorld starting at 502, kd12rc1.zip.
   465   return (phase->type(in(1)) == phase->type(this)) ? in(1) : this;
   466 }
   468 //------------------------------Value------------------------------------------
   469 // Take 'join' of input and cast-up type, unless working with an Interface
   470 const Type *CheckCastPPNode::Value( PhaseTransform *phase ) const {
   471   if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
   473   const Type *inn = phase->type(in(1));
   474   if( inn == Type::TOP ) return Type::TOP;  // No information yet
   476   const TypePtr *in_type   = inn->isa_ptr();
   477   const TypePtr *my_type   = _type->isa_ptr();
   478   const Type *result = _type;
   479   if( in_type != NULL && my_type != NULL ) {
   480     TypePtr::PTR   in_ptr    = in_type->ptr();
   481     if( in_ptr == TypePtr::Null ) {
   482       result = in_type;
   483     } else if( in_ptr == TypePtr::Constant ) {
   484       // Casting a constant oop to an interface?
   485       // (i.e., a String to a Comparable?)
   486       // Then return the interface.
   487       const TypeOopPtr *jptr = my_type->isa_oopptr();
   488       assert( jptr, "" );
   489       result =  (jptr->klass()->is_interface() || !in_type->higher_equal(_type))
   490         ? my_type->cast_to_ptr_type( TypePtr::NotNull )
   491         : in_type;
   492     } else {
   493       result =  my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) );
   494     }
   495   }
   496   return result;
   498   // JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES.
   499   // FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR!
   501   //
   502   // Remove this code after overnight run indicates no performance
   503   // loss from not performing JOIN at CheckCastPPNode
   504   //
   505   // const TypeInstPtr *in_oop = in->isa_instptr();
   506   // const TypeInstPtr *my_oop = _type->isa_instptr();
   507   // // If either input is an 'interface', return destination type
   508   // assert (in_oop == NULL || in_oop->klass() != NULL, "");
   509   // assert (my_oop == NULL || my_oop->klass() != NULL, "");
   510   // if( (in_oop && in_oop->klass()->is_interface())
   511   //   ||(my_oop && my_oop->klass()->is_interface()) ) {
   512   //   TypePtr::PTR  in_ptr = in->isa_ptr() ? in->is_ptr()->_ptr : TypePtr::BotPTR;
   513   //   // Preserve cast away nullness for interfaces
   514   //   if( in_ptr == TypePtr::NotNull && my_oop && my_oop->_ptr == TypePtr::BotPTR ) {
   515   //     return my_oop->cast_to_ptr_type(TypePtr::NotNull);
   516   //   }
   517   //   return _type;
   518   // }
   519   //
   520   // // Neither the input nor the destination type is an interface,
   521   //
   522   // // history: JOIN used to cause weird corner case bugs
   523   // //          return (in == TypeOopPtr::NULL_PTR) ? in : _type;
   524   // // JOIN picks up NotNull in common instance-of/check-cast idioms, both oops.
   525   // // JOIN does not preserve NotNull in other cases, e.g. RawPtr vs InstPtr
   526   // const Type *join = in->join(_type);
   527   // // Check if join preserved NotNull'ness for pointers
   528   // if( join->isa_ptr() && _type->isa_ptr() ) {
   529   //   TypePtr::PTR join_ptr = join->is_ptr()->_ptr;
   530   //   TypePtr::PTR type_ptr = _type->is_ptr()->_ptr;
   531   //   // If there isn't any NotNull'ness to preserve
   532   //   // OR if join preserved NotNull'ness then return it
   533   //   if( type_ptr == TypePtr::BotPTR  || type_ptr == TypePtr::Null ||
   534   //       join_ptr == TypePtr::NotNull || join_ptr == TypePtr::Constant ) {
   535   //     return join;
   536   //   }
   537   //   // ELSE return same old type as before
   538   //   return _type;
   539   // }
   540   // // Not joining two pointers
   541   // return join;
   542 }
   544 //------------------------------Ideal------------------------------------------
   545 // Return a node which is more "ideal" than the current node.  Strip out
   546 // control copies
   547 Node *CheckCastPPNode::Ideal(PhaseGVN *phase, bool can_reshape){
   548   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
   549 }
   552 Node* DecodeNNode::Identity(PhaseTransform* phase) {
   553   const Type *t = phase->type( in(1) );
   554   if( t == Type::TOP ) return in(1);
   556   if (in(1)->is_EncodeP()) {
   557     // (DecodeN (EncodeP p)) -> p
   558     return in(1)->in(1);
   559   }
   560   return this;
   561 }
   563 const Type *DecodeNNode::Value( PhaseTransform *phase ) const {
   564   const Type *t = phase->type( in(1) );
   565   if (t == Type::TOP) return Type::TOP;
   566   if (t == TypeNarrowOop::NULL_PTR) return TypePtr::NULL_PTR;
   568   assert(t->isa_narrowoop(), "only  narrowoop here");
   569   return t->make_ptr();
   570 }
   572 Node* EncodePNode::Identity(PhaseTransform* phase) {
   573   const Type *t = phase->type( in(1) );
   574   if( t == Type::TOP ) return in(1);
   576   if (in(1)->is_DecodeN()) {
   577     // (EncodeP (DecodeN p)) -> p
   578     return in(1)->in(1);
   579   }
   580   return this;
   581 }
   583 const Type *EncodePNode::Value( PhaseTransform *phase ) const {
   584   const Type *t = phase->type( in(1) );
   585   if (t == Type::TOP) return Type::TOP;
   586   if (t == TypePtr::NULL_PTR) return TypeNarrowOop::NULL_PTR;
   588   assert(t->isa_oop_ptr(), "only oopptr here");
   589   return t->make_narrowoop();
   590 }
   593 Node *EncodeNarrowPtrNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   594   return MemNode::Ideal_common_DU_postCCP(ccp, this, in(1));
   595 }
   597 Node* DecodeNKlassNode::Identity(PhaseTransform* phase) {
   598   const Type *t = phase->type( in(1) );
   599   if( t == Type::TOP ) return in(1);
   601   if (in(1)->is_EncodePKlass()) {
   602     // (DecodeNKlass (EncodePKlass p)) -> p
   603     return in(1)->in(1);
   604   }
   605   return this;
   606 }
   608 const Type *DecodeNKlassNode::Value( PhaseTransform *phase ) const {
   609   const Type *t = phase->type( in(1) );
   610   if (t == Type::TOP) return Type::TOP;
   611   assert(t != TypeNarrowKlass::NULL_PTR, "null klass?");
   613   assert(t->isa_narrowklass(), "only narrow klass ptr here");
   614   return t->make_ptr();
   615 }
   617 Node* EncodePKlassNode::Identity(PhaseTransform* phase) {
   618   const Type *t = phase->type( in(1) );
   619   if( t == Type::TOP ) return in(1);
   621   if (in(1)->is_DecodeNKlass()) {
   622     // (EncodePKlass (DecodeNKlass p)) -> p
   623     return in(1)->in(1);
   624   }
   625   return this;
   626 }
   628 const Type *EncodePKlassNode::Value( PhaseTransform *phase ) const {
   629   const Type *t = phase->type( in(1) );
   630   if (t == Type::TOP) return Type::TOP;
   631   assert (t != TypePtr::NULL_PTR, "null klass?");
   633   assert(UseCompressedKlassPointers && t->isa_klassptr(), "only klass ptr here");
   634   return t->make_narrowklass();
   635 }
   638 //=============================================================================
   639 //------------------------------Identity---------------------------------------
   640 Node *Conv2BNode::Identity( PhaseTransform *phase ) {
   641   const Type *t = phase->type( in(1) );
   642   if( t == Type::TOP ) return in(1);
   643   if( t == TypeInt::ZERO ) return in(1);
   644   if( t == TypeInt::ONE ) return in(1);
   645   if( t == TypeInt::BOOL ) return in(1);
   646   return this;
   647 }
   649 //------------------------------Value------------------------------------------
   650 const Type *Conv2BNode::Value( PhaseTransform *phase ) const {
   651   const Type *t = phase->type( in(1) );
   652   if( t == Type::TOP ) return Type::TOP;
   653   if( t == TypeInt::ZERO ) return TypeInt::ZERO;
   654   if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
   655   const TypePtr *tp = t->isa_ptr();
   656   if( tp != NULL ) {
   657     if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
   658     if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
   659     if (tp->ptr() == TypePtr::NotNull)  return TypeInt::ONE;
   660     return TypeInt::BOOL;
   661   }
   662   if (t->base() != Type::Int) return TypeInt::BOOL;
   663   const TypeInt *ti = t->is_int();
   664   if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
   665   return TypeInt::BOOL;
   666 }
   669 // The conversions operations are all Alpha sorted.  Please keep it that way!
   670 //=============================================================================
   671 //------------------------------Value------------------------------------------
   672 const Type *ConvD2FNode::Value( PhaseTransform *phase ) const {
   673   const Type *t = phase->type( in(1) );
   674   if( t == Type::TOP ) return Type::TOP;
   675   if( t == Type::DOUBLE ) return Type::FLOAT;
   676   const TypeD *td = t->is_double_constant();
   677   return TypeF::make( (float)td->getd() );
   678 }
   680 //------------------------------Identity---------------------------------------
   681 // Float's can be converted to doubles with no loss of bits.  Hence
   682 // converting a float to a double and back to a float is a NOP.
   683 Node *ConvD2FNode::Identity(PhaseTransform *phase) {
   684   return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
   685 }
   687 //=============================================================================
   688 //------------------------------Value------------------------------------------
   689 const Type *ConvD2INode::Value( PhaseTransform *phase ) const {
   690   const Type *t = phase->type( in(1) );
   691   if( t == Type::TOP ) return Type::TOP;
   692   if( t == Type::DOUBLE ) return TypeInt::INT;
   693   const TypeD *td = t->is_double_constant();
   694   return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
   695 }
   697 //------------------------------Ideal------------------------------------------
   698 // If converting to an int type, skip any rounding nodes
   699 Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
   700   if( in(1)->Opcode() == Op_RoundDouble )
   701     set_req(1,in(1)->in(1));
   702   return NULL;
   703 }
   705 //------------------------------Identity---------------------------------------
   706 // Int's can be converted to doubles with no loss of bits.  Hence
   707 // converting an integer to a double and back to an integer is a NOP.
   708 Node *ConvD2INode::Identity(PhaseTransform *phase) {
   709   return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
   710 }
   712 //=============================================================================
   713 //------------------------------Value------------------------------------------
   714 const Type *ConvD2LNode::Value( PhaseTransform *phase ) const {
   715   const Type *t = phase->type( in(1) );
   716   if( t == Type::TOP ) return Type::TOP;
   717   if( t == Type::DOUBLE ) return TypeLong::LONG;
   718   const TypeD *td = t->is_double_constant();
   719   return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
   720 }
   722 //------------------------------Identity---------------------------------------
   723 Node *ConvD2LNode::Identity(PhaseTransform *phase) {
   724   // Remove ConvD2L->ConvL2D->ConvD2L sequences.
   725   if( in(1)       ->Opcode() == Op_ConvL2D &&
   726       in(1)->in(1)->Opcode() == Op_ConvD2L )
   727     return in(1)->in(1);
   728   return this;
   729 }
   731 //------------------------------Ideal------------------------------------------
   732 // If converting to an int type, skip any rounding nodes
   733 Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   734   if( in(1)->Opcode() == Op_RoundDouble )
   735     set_req(1,in(1)->in(1));
   736   return NULL;
   737 }
   739 //=============================================================================
   740 //------------------------------Value------------------------------------------
   741 const Type *ConvF2DNode::Value( PhaseTransform *phase ) const {
   742   const Type *t = phase->type( in(1) );
   743   if( t == Type::TOP ) return Type::TOP;
   744   if( t == Type::FLOAT ) return Type::DOUBLE;
   745   const TypeF *tf = t->is_float_constant();
   746   return TypeD::make( (double)tf->getf() );
   747 }
   749 //=============================================================================
   750 //------------------------------Value------------------------------------------
   751 const Type *ConvF2INode::Value( PhaseTransform *phase ) const {
   752   const Type *t = phase->type( in(1) );
   753   if( t == Type::TOP )       return Type::TOP;
   754   if( t == Type::FLOAT ) return TypeInt::INT;
   755   const TypeF *tf = t->is_float_constant();
   756   return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
   757 }
   759 //------------------------------Identity---------------------------------------
   760 Node *ConvF2INode::Identity(PhaseTransform *phase) {
   761   // Remove ConvF2I->ConvI2F->ConvF2I sequences.
   762   if( in(1)       ->Opcode() == Op_ConvI2F &&
   763       in(1)->in(1)->Opcode() == Op_ConvF2I )
   764     return in(1)->in(1);
   765   return this;
   766 }
   768 //------------------------------Ideal------------------------------------------
   769 // If converting to an int type, skip any rounding nodes
   770 Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
   771   if( in(1)->Opcode() == Op_RoundFloat )
   772     set_req(1,in(1)->in(1));
   773   return NULL;
   774 }
   776 //=============================================================================
   777 //------------------------------Value------------------------------------------
   778 const Type *ConvF2LNode::Value( PhaseTransform *phase ) const {
   779   const Type *t = phase->type( in(1) );
   780   if( t == Type::TOP )       return Type::TOP;
   781   if( t == Type::FLOAT ) return TypeLong::LONG;
   782   const TypeF *tf = t->is_float_constant();
   783   return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
   784 }
   786 //------------------------------Identity---------------------------------------
   787 Node *ConvF2LNode::Identity(PhaseTransform *phase) {
   788   // Remove ConvF2L->ConvL2F->ConvF2L sequences.
   789   if( in(1)       ->Opcode() == Op_ConvL2F &&
   790       in(1)->in(1)->Opcode() == Op_ConvF2L )
   791     return in(1)->in(1);
   792   return this;
   793 }
   795 //------------------------------Ideal------------------------------------------
   796 // If converting to an int type, skip any rounding nodes
   797 Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   798   if( in(1)->Opcode() == Op_RoundFloat )
   799     set_req(1,in(1)->in(1));
   800   return NULL;
   801 }
   803 //=============================================================================
   804 //------------------------------Value------------------------------------------
   805 const Type *ConvI2DNode::Value( PhaseTransform *phase ) const {
   806   const Type *t = phase->type( in(1) );
   807   if( t == Type::TOP ) return Type::TOP;
   808   const TypeInt *ti = t->is_int();
   809   if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
   810   return bottom_type();
   811 }
   813 //=============================================================================
   814 //------------------------------Value------------------------------------------
   815 const Type *ConvI2FNode::Value( PhaseTransform *phase ) const {
   816   const Type *t = phase->type( in(1) );
   817   if( t == Type::TOP ) return Type::TOP;
   818   const TypeInt *ti = t->is_int();
   819   if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
   820   return bottom_type();
   821 }
   823 //------------------------------Identity---------------------------------------
   824 Node *ConvI2FNode::Identity(PhaseTransform *phase) {
   825   // Remove ConvI2F->ConvF2I->ConvI2F sequences.
   826   if( in(1)       ->Opcode() == Op_ConvF2I &&
   827       in(1)->in(1)->Opcode() == Op_ConvI2F )
   828     return in(1)->in(1);
   829   return this;
   830 }
   832 //=============================================================================
   833 //------------------------------Value------------------------------------------
   834 const Type *ConvI2LNode::Value( PhaseTransform *phase ) const {
   835   const Type *t = phase->type( in(1) );
   836   if( t == Type::TOP ) return Type::TOP;
   837   const TypeInt *ti = t->is_int();
   838   const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
   839   // Join my declared type against my incoming type.
   840   tl = tl->filter(_type);
   841   return tl;
   842 }
   844 #ifdef _LP64
   845 static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
   846                                        jlong lo2, jlong hi2) {
   847   // Two ranges overlap iff one range's low point falls in the other range.
   848   return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
   849 }
   850 #endif
   852 //------------------------------Ideal------------------------------------------
   853 Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   854   const TypeLong* this_type = this->type()->is_long();
   855   Node* this_changed = NULL;
   857   // If _major_progress, then more loop optimizations follow.  Do NOT
   858   // remove this node's type assertion until no more loop ops can happen.
   859   // The progress bit is set in the major loop optimizations THEN comes the
   860   // call to IterGVN and any chance of hitting this code.  Cf. Opaque1Node.
   861   if (can_reshape && !phase->C->major_progress()) {
   862     const TypeInt* in_type = phase->type(in(1))->isa_int();
   863     if (in_type != NULL && this_type != NULL &&
   864         (in_type->_lo != this_type->_lo ||
   865          in_type->_hi != this_type->_hi)) {
   866       // Although this WORSENS the type, it increases GVN opportunities,
   867       // because I2L nodes with the same input will common up, regardless
   868       // of slightly differing type assertions.  Such slight differences
   869       // arise routinely as a result of loop unrolling, so this is a
   870       // post-unrolling graph cleanup.  Choose a type which depends only
   871       // on my input.  (Exception:  Keep a range assertion of >=0 or <0.)
   872       jlong lo1 = this_type->_lo;
   873       jlong hi1 = this_type->_hi;
   874       int   w1  = this_type->_widen;
   875       if (lo1 != (jint)lo1 ||
   876           hi1 != (jint)hi1 ||
   877           lo1 > hi1) {
   878         // Overflow leads to wraparound, wraparound leads to range saturation.
   879         lo1 = min_jint; hi1 = max_jint;
   880       } else if (lo1 >= 0) {
   881         // Keep a range assertion of >=0.
   882         lo1 = 0;        hi1 = max_jint;
   883       } else if (hi1 < 0) {
   884         // Keep a range assertion of <0.
   885         lo1 = min_jint; hi1 = -1;
   886       } else {
   887         lo1 = min_jint; hi1 = max_jint;
   888       }
   889       const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
   890                                              MIN2((jlong)in_type->_hi, hi1),
   891                                              MAX2((int)in_type->_widen, w1));
   892       if (wtype != type()) {
   893         set_type(wtype);
   894         // Note: this_type still has old type value, for the logic below.
   895         this_changed = this;
   896       }
   897     }
   898   }
   900 #ifdef _LP64
   901   // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y)) ,
   902   // but only if x and y have subranges that cannot cause 32-bit overflow,
   903   // under the assumption that x+y is in my own subrange this->type().
   905   // This assumption is based on a constraint (i.e., type assertion)
   906   // established in Parse::array_addressing or perhaps elsewhere.
   907   // This constraint has been adjoined to the "natural" type of
   908   // the incoming argument in(0).  We know (because of runtime
   909   // checks) - that the result value I2L(x+y) is in the joined range.
   910   // Hence we can restrict the incoming terms (x, y) to values such
   911   // that their sum also lands in that range.
   913   // This optimization is useful only on 64-bit systems, where we hope
   914   // the addition will end up subsumed in an addressing mode.
   915   // It is necessary to do this when optimizing an unrolled array
   916   // copy loop such as x[i++] = y[i++].
   918   // On 32-bit systems, it's better to perform as much 32-bit math as
   919   // possible before the I2L conversion, because 32-bit math is cheaper.
   920   // There's no common reason to "leak" a constant offset through the I2L.
   921   // Addressing arithmetic will not absorb it as part of a 64-bit AddL.
   923   Node* z = in(1);
   924   int op = z->Opcode();
   925   if (op == Op_AddI || op == Op_SubI) {
   926     Node* x = z->in(1);
   927     Node* y = z->in(2);
   928     assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
   929     if (phase->type(x) == Type::TOP)  return this_changed;
   930     if (phase->type(y) == Type::TOP)  return this_changed;
   931     const TypeInt*  tx = phase->type(x)->is_int();
   932     const TypeInt*  ty = phase->type(y)->is_int();
   933     const TypeLong* tz = this_type;
   934     jlong xlo = tx->_lo;
   935     jlong xhi = tx->_hi;
   936     jlong ylo = ty->_lo;
   937     jlong yhi = ty->_hi;
   938     jlong zlo = tz->_lo;
   939     jlong zhi = tz->_hi;
   940     jlong vbit = CONST64(1) << BitsPerInt;
   941     int widen =  MAX2(tx->_widen, ty->_widen);
   942     if (op == Op_SubI) {
   943       jlong ylo0 = ylo;
   944       ylo = -yhi;
   945       yhi = -ylo0;
   946     }
   947     // See if x+y can cause positive overflow into z+2**32
   948     if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) {
   949       return this_changed;
   950     }
   951     // See if x+y can cause negative overflow into z-2**32
   952     if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) {
   953       return this_changed;
   954     }
   955     // Now it's always safe to assume x+y does not overflow.
   956     // This is true even if some pairs x,y might cause overflow, as long
   957     // as that overflow value cannot fall into [zlo,zhi].
   959     // Confident that the arithmetic is "as if infinite precision",
   960     // we can now use z's range to put constraints on those of x and y.
   961     // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
   962     // more "restricted" range by intersecting [xlo,xhi] with the
   963     // range obtained by subtracting y's range from the asserted range
   964     // of the I2L conversion.  Here's the interval arithmetic algebra:
   965     //    x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
   966     //    => x in [zlo-yhi, zhi-ylo]
   967     //    => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
   968     //    => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
   969     jlong rxlo = MAX2(xlo, zlo - yhi);
   970     jlong rxhi = MIN2(xhi, zhi - ylo);
   971     // And similarly, x changing place with y:
   972     jlong rylo = MAX2(ylo, zlo - xhi);
   973     jlong ryhi = MIN2(yhi, zhi - xlo);
   974     if (rxlo > rxhi || rylo > ryhi) {
   975       return this_changed;  // x or y is dying; don't mess w/ it
   976     }
   977     if (op == Op_SubI) {
   978       jlong rylo0 = rylo;
   979       rylo = -ryhi;
   980       ryhi = -rylo0;
   981     }
   983     Node* cx = phase->transform( new (phase->C) ConvI2LNode(x, TypeLong::make(rxlo, rxhi, widen)) );
   984     Node* cy = phase->transform( new (phase->C) ConvI2LNode(y, TypeLong::make(rylo, ryhi, widen)) );
   985     switch (op) {
   986     case Op_AddI:  return new (phase->C) AddLNode(cx, cy);
   987     case Op_SubI:  return new (phase->C) SubLNode(cx, cy);
   988     default:       ShouldNotReachHere();
   989     }
   990   }
   991 #endif //_LP64
   993   return this_changed;
   994 }
   996 //=============================================================================
   997 //------------------------------Value------------------------------------------
   998 const Type *ConvL2DNode::Value( PhaseTransform *phase ) const {
   999   const Type *t = phase->type( in(1) );
  1000   if( t == Type::TOP ) return Type::TOP;
  1001   const TypeLong *tl = t->is_long();
  1002   if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
  1003   return bottom_type();
  1006 //=============================================================================
  1007 //------------------------------Value------------------------------------------
  1008 const Type *ConvL2FNode::Value( PhaseTransform *phase ) const {
  1009   const Type *t = phase->type( in(1) );
  1010   if( t == Type::TOP ) return Type::TOP;
  1011   const TypeLong *tl = t->is_long();
  1012   if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
  1013   return bottom_type();
  1016 //=============================================================================
  1017 //----------------------------Identity-----------------------------------------
  1018 Node *ConvL2INode::Identity( PhaseTransform *phase ) {
  1019   // Convert L2I(I2L(x)) => x
  1020   if (in(1)->Opcode() == Op_ConvI2L)  return in(1)->in(1);
  1021   return this;
  1024 //------------------------------Value------------------------------------------
  1025 const Type *ConvL2INode::Value( PhaseTransform *phase ) const {
  1026   const Type *t = phase->type( in(1) );
  1027   if( t == Type::TOP ) return Type::TOP;
  1028   const TypeLong *tl = t->is_long();
  1029   if (tl->is_con())
  1030     // Easy case.
  1031     return TypeInt::make((jint)tl->get_con());
  1032   return bottom_type();
  1035 //------------------------------Ideal------------------------------------------
  1036 // Return a node which is more "ideal" than the current node.
  1037 // Blow off prior masking to int
  1038 Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1039   Node *andl = in(1);
  1040   uint andl_op = andl->Opcode();
  1041   if( andl_op == Op_AndL ) {
  1042     // Blow off prior masking to int
  1043     if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
  1044       set_req(1,andl->in(1));
  1045       return this;
  1049   // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
  1050   // This replaces an 'AddL' with an 'AddI'.
  1051   if( andl_op == Op_AddL ) {
  1052     // Don't do this for nodes which have more than one user since
  1053     // we'll end up computing the long add anyway.
  1054     if (andl->outcnt() > 1) return NULL;
  1056     Node* x = andl->in(1);
  1057     Node* y = andl->in(2);
  1058     assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
  1059     if (phase->type(x) == Type::TOP)  return NULL;
  1060     if (phase->type(y) == Type::TOP)  return NULL;
  1061     Node *add1 = phase->transform(new (phase->C) ConvL2INode(x));
  1062     Node *add2 = phase->transform(new (phase->C) ConvL2INode(y));
  1063     return new (phase->C) AddINode(add1,add2);
  1066   // Disable optimization: LoadL->ConvL2I ==> LoadI.
  1067   // It causes problems (sizes of Load and Store nodes do not match)
  1068   // in objects initialization code and Escape Analysis.
  1069   return NULL;
  1072 //=============================================================================
  1073 //------------------------------Value------------------------------------------
  1074 const Type *CastX2PNode::Value( PhaseTransform *phase ) const {
  1075   const Type* t = phase->type(in(1));
  1076   if (t == Type::TOP) return Type::TOP;
  1077   if (t->base() == Type_X && t->singleton()) {
  1078     uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
  1079     if (bits == 0)   return TypePtr::NULL_PTR;
  1080     return TypeRawPtr::make((address) bits);
  1082   return CastX2PNode::bottom_type();
  1085 //------------------------------Idealize---------------------------------------
  1086 static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
  1087   if (t == Type::TOP)  return false;
  1088   const TypeX* tl = t->is_intptr_t();
  1089   jint lo = min_jint;
  1090   jint hi = max_jint;
  1091   if (but_not_min_int)  ++lo;  // caller wants to negate the value w/o overflow
  1092   return (tl->_lo >= lo) && (tl->_hi <= hi);
  1095 static inline Node* addP_of_X2P(PhaseGVN *phase,
  1096                                 Node* base,
  1097                                 Node* dispX,
  1098                                 bool negate = false) {
  1099   if (negate) {
  1100     dispX = new (phase->C) SubXNode(phase->MakeConX(0), phase->transform(dispX));
  1102   return new (phase->C) AddPNode(phase->C->top(),
  1103                           phase->transform(new (phase->C) CastX2PNode(base)),
  1104                           phase->transform(dispX));
  1107 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1108   // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
  1109   int op = in(1)->Opcode();
  1110   Node* x;
  1111   Node* y;
  1112   switch (op) {
  1113   case Op_SubX:
  1114     x = in(1)->in(1);
  1115     // Avoid ideal transformations ping-pong between this and AddP for raw pointers.
  1116     if (phase->find_intptr_t_con(x, -1) == 0)
  1117       break;
  1118     y = in(1)->in(2);
  1119     if (fits_in_int(phase->type(y), true)) {
  1120       return addP_of_X2P(phase, x, y, true);
  1122     break;
  1123   case Op_AddX:
  1124     x = in(1)->in(1);
  1125     y = in(1)->in(2);
  1126     if (fits_in_int(phase->type(y))) {
  1127       return addP_of_X2P(phase, x, y);
  1129     if (fits_in_int(phase->type(x))) {
  1130       return addP_of_X2P(phase, y, x);
  1132     break;
  1134   return NULL;
  1137 //------------------------------Identity---------------------------------------
  1138 Node *CastX2PNode::Identity( PhaseTransform *phase ) {
  1139   if (in(1)->Opcode() == Op_CastP2X)  return in(1)->in(1);
  1140   return this;
  1143 //=============================================================================
  1144 //------------------------------Value------------------------------------------
  1145 const Type *CastP2XNode::Value( PhaseTransform *phase ) const {
  1146   const Type* t = phase->type(in(1));
  1147   if (t == Type::TOP) return Type::TOP;
  1148   if (t->base() == Type::RawPtr && t->singleton()) {
  1149     uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
  1150     return TypeX::make(bits);
  1152   return CastP2XNode::bottom_type();
  1155 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1156   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
  1159 //------------------------------Identity---------------------------------------
  1160 Node *CastP2XNode::Identity( PhaseTransform *phase ) {
  1161   if (in(1)->Opcode() == Op_CastX2P)  return in(1)->in(1);
  1162   return this;
  1166 //=============================================================================
  1167 //------------------------------Identity---------------------------------------
  1168 // Remove redundant roundings
  1169 Node *RoundFloatNode::Identity( PhaseTransform *phase ) {
  1170   assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
  1171   // Do not round constants
  1172   if (phase->type(in(1))->base() == Type::FloatCon)  return in(1);
  1173   int op = in(1)->Opcode();
  1174   // Redundant rounding
  1175   if( op == Op_RoundFloat ) return in(1);
  1176   // Already rounded
  1177   if( op == Op_Parm ) return in(1);
  1178   if( op == Op_LoadF ) return in(1);
  1179   return this;
  1182 //------------------------------Value------------------------------------------
  1183 const Type *RoundFloatNode::Value( PhaseTransform *phase ) const {
  1184   return phase->type( in(1) );
  1187 //=============================================================================
  1188 //------------------------------Identity---------------------------------------
  1189 // Remove redundant roundings.  Incoming arguments are already rounded.
  1190 Node *RoundDoubleNode::Identity( PhaseTransform *phase ) {
  1191   assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
  1192   // Do not round constants
  1193   if (phase->type(in(1))->base() == Type::DoubleCon)  return in(1);
  1194   int op = in(1)->Opcode();
  1195   // Redundant rounding
  1196   if( op == Op_RoundDouble ) return in(1);
  1197   // Already rounded
  1198   if( op == Op_Parm ) return in(1);
  1199   if( op == Op_LoadD ) return in(1);
  1200   if( op == Op_ConvF2D ) return in(1);
  1201   if( op == Op_ConvI2D ) return in(1);
  1202   return this;
  1205 //------------------------------Value------------------------------------------
  1206 const Type *RoundDoubleNode::Value( PhaseTransform *phase ) const {
  1207   return phase->type( in(1) );
  1211 //=============================================================================
  1212 // Do not allow value-numbering
  1213 uint Opaque1Node::hash() const { return NO_HASH; }
  1214 uint Opaque1Node::cmp( const Node &n ) const {
  1215   return (&n == this);          // Always fail except on self
  1218 //------------------------------Identity---------------------------------------
  1219 // If _major_progress, then more loop optimizations follow.  Do NOT remove
  1220 // the opaque Node until no more loop ops can happen.  Note the timing of
  1221 // _major_progress; it's set in the major loop optimizations THEN comes the
  1222 // call to IterGVN and any chance of hitting this code.  Hence there's no
  1223 // phase-ordering problem with stripping Opaque1 in IGVN followed by some
  1224 // more loop optimizations that require it.
  1225 Node *Opaque1Node::Identity( PhaseTransform *phase ) {
  1226   return phase->C->major_progress() ? this : in(1);
  1229 //=============================================================================
  1230 // A node to prevent unwanted optimizations.  Allows constant folding.  Stops
  1231 // value-numbering, most Ideal calls or Identity functions.  This Node is
  1232 // specifically designed to prevent the pre-increment value of a loop trip
  1233 // counter from being live out of the bottom of the loop (hence causing the
  1234 // pre- and post-increment values both being live and thus requiring an extra
  1235 // temp register and an extra move).  If we "accidentally" optimize through
  1236 // this kind of a Node, we'll get slightly pessimal, but correct, code.  Thus
  1237 // it's OK to be slightly sloppy on optimizations here.
  1239 // Do not allow value-numbering
  1240 uint Opaque2Node::hash() const { return NO_HASH; }
  1241 uint Opaque2Node::cmp( const Node &n ) const {
  1242   return (&n == this);          // Always fail except on self
  1246 //------------------------------Value------------------------------------------
  1247 const Type *MoveL2DNode::Value( PhaseTransform *phase ) const {
  1248   const Type *t = phase->type( in(1) );
  1249   if( t == Type::TOP ) return Type::TOP;
  1250   const TypeLong *tl = t->is_long();
  1251   if( !tl->is_con() ) return bottom_type();
  1252   JavaValue v;
  1253   v.set_jlong(tl->get_con());
  1254   return TypeD::make( v.get_jdouble() );
  1257 //------------------------------Value------------------------------------------
  1258 const Type *MoveI2FNode::Value( PhaseTransform *phase ) const {
  1259   const Type *t = phase->type( in(1) );
  1260   if( t == Type::TOP ) return Type::TOP;
  1261   const TypeInt *ti = t->is_int();
  1262   if( !ti->is_con() )   return bottom_type();
  1263   JavaValue v;
  1264   v.set_jint(ti->get_con());
  1265   return TypeF::make( v.get_jfloat() );
  1268 //------------------------------Value------------------------------------------
  1269 const Type *MoveF2INode::Value( PhaseTransform *phase ) const {
  1270   const Type *t = phase->type( in(1) );
  1271   if( t == Type::TOP )       return Type::TOP;
  1272   if( t == Type::FLOAT ) return TypeInt::INT;
  1273   const TypeF *tf = t->is_float_constant();
  1274   JavaValue v;
  1275   v.set_jfloat(tf->getf());
  1276   return TypeInt::make( v.get_jint() );
  1279 //------------------------------Value------------------------------------------
  1280 const Type *MoveD2LNode::Value( PhaseTransform *phase ) const {
  1281   const Type *t = phase->type( in(1) );
  1282   if( t == Type::TOP ) return Type::TOP;
  1283   if( t == Type::DOUBLE ) return TypeLong::LONG;
  1284   const TypeD *td = t->is_double_constant();
  1285   JavaValue v;
  1286   v.set_jdouble(td->getd());
  1287   return TypeLong::make( v.get_jlong() );
  1290 //------------------------------Value------------------------------------------
  1291 const Type* CountLeadingZerosINode::Value(PhaseTransform* phase) const {
  1292   const Type* t = phase->type(in(1));
  1293   if (t == Type::TOP) return Type::TOP;
  1294   const TypeInt* ti = t->isa_int();
  1295   if (ti && ti->is_con()) {
  1296     jint i = ti->get_con();
  1297     // HD, Figure 5-6
  1298     if (i == 0)
  1299       return TypeInt::make(BitsPerInt);
  1300     int n = 1;
  1301     unsigned int x = i;
  1302     if (x >> 16 == 0) { n += 16; x <<= 16; }
  1303     if (x >> 24 == 0) { n +=  8; x <<=  8; }
  1304     if (x >> 28 == 0) { n +=  4; x <<=  4; }
  1305     if (x >> 30 == 0) { n +=  2; x <<=  2; }
  1306     n -= x >> 31;
  1307     return TypeInt::make(n);
  1309   return TypeInt::INT;
  1312 //------------------------------Value------------------------------------------
  1313 const Type* CountLeadingZerosLNode::Value(PhaseTransform* phase) const {
  1314   const Type* t = phase->type(in(1));
  1315   if (t == Type::TOP) return Type::TOP;
  1316   const TypeLong* tl = t->isa_long();
  1317   if (tl && tl->is_con()) {
  1318     jlong l = tl->get_con();
  1319     // HD, Figure 5-6
  1320     if (l == 0)
  1321       return TypeInt::make(BitsPerLong);
  1322     int n = 1;
  1323     unsigned int x = (((julong) l) >> 32);
  1324     if (x == 0) { n += 32; x = (int) l; }
  1325     if (x >> 16 == 0) { n += 16; x <<= 16; }
  1326     if (x >> 24 == 0) { n +=  8; x <<=  8; }
  1327     if (x >> 28 == 0) { n +=  4; x <<=  4; }
  1328     if (x >> 30 == 0) { n +=  2; x <<=  2; }
  1329     n -= x >> 31;
  1330     return TypeInt::make(n);
  1332   return TypeInt::INT;
  1335 //------------------------------Value------------------------------------------
  1336 const Type* CountTrailingZerosINode::Value(PhaseTransform* phase) const {
  1337   const Type* t = phase->type(in(1));
  1338   if (t == Type::TOP) return Type::TOP;
  1339   const TypeInt* ti = t->isa_int();
  1340   if (ti && ti->is_con()) {
  1341     jint i = ti->get_con();
  1342     // HD, Figure 5-14
  1343     int y;
  1344     if (i == 0)
  1345       return TypeInt::make(BitsPerInt);
  1346     int n = 31;
  1347     y = i << 16; if (y != 0) { n = n - 16; i = y; }
  1348     y = i <<  8; if (y != 0) { n = n -  8; i = y; }
  1349     y = i <<  4; if (y != 0) { n = n -  4; i = y; }
  1350     y = i <<  2; if (y != 0) { n = n -  2; i = y; }
  1351     y = i <<  1; if (y != 0) { n = n -  1; }
  1352     return TypeInt::make(n);
  1354   return TypeInt::INT;
  1357 //------------------------------Value------------------------------------------
  1358 const Type* CountTrailingZerosLNode::Value(PhaseTransform* phase) const {
  1359   const Type* t = phase->type(in(1));
  1360   if (t == Type::TOP) return Type::TOP;
  1361   const TypeLong* tl = t->isa_long();
  1362   if (tl && tl->is_con()) {
  1363     jlong l = tl->get_con();
  1364     // HD, Figure 5-14
  1365     int x, y;
  1366     if (l == 0)
  1367       return TypeInt::make(BitsPerLong);
  1368     int n = 63;
  1369     y = (int) l; if (y != 0) { n = n - 32; x = y; } else x = (((julong) l) >> 32);
  1370     y = x << 16; if (y != 0) { n = n - 16; x = y; }
  1371     y = x <<  8; if (y != 0) { n = n -  8; x = y; }
  1372     y = x <<  4; if (y != 0) { n = n -  4; x = y; }
  1373     y = x <<  2; if (y != 0) { n = n -  2; x = y; }
  1374     y = x <<  1; if (y != 0) { n = n -  1; }
  1375     return TypeInt::make(n);
  1377   return TypeInt::INT;

mercurial