src/share/vm/opto/callnode.hpp

Mon, 27 May 2013 12:56:34 +0200

author
stefank
date
Mon, 27 May 2013 12:56:34 +0200
changeset 5195
95c00927be11
parent 5110
6f3fd5150b67
child 5614
9758d9f36299
child 5626
766fac3395d6
permissions
-rw-r--r--

8015428: Remove unused CDS support from StringTable
Summary: The string in StringTable is not used by CDS anymore. Remove the unnecessary code in preparation for 8015422: Large performance hit when the StringTable is walked twice in Parallel Scavenge
Reviewed-by: pliden, tschatzl, coleenp

duke@435 1 /*
kvn@3651 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_CALLNODE_HPP
stefank@2314 27
stefank@2314 28 #include "opto/connode.hpp"
stefank@2314 29 #include "opto/mulnode.hpp"
stefank@2314 30 #include "opto/multnode.hpp"
stefank@2314 31 #include "opto/opcodes.hpp"
stefank@2314 32 #include "opto/phaseX.hpp"
stefank@2314 33 #include "opto/type.hpp"
stefank@2314 34
duke@435 35 // Portions of code courtesy of Clifford Click
duke@435 36
duke@435 37 // Optimization - Graph Style
duke@435 38
duke@435 39 class Chaitin;
duke@435 40 class NamedCounter;
duke@435 41 class MultiNode;
duke@435 42 class SafePointNode;
duke@435 43 class CallNode;
duke@435 44 class CallJavaNode;
duke@435 45 class CallStaticJavaNode;
duke@435 46 class CallDynamicJavaNode;
duke@435 47 class CallRuntimeNode;
duke@435 48 class CallLeafNode;
duke@435 49 class CallLeafNoFPNode;
duke@435 50 class AllocateNode;
kvn@468 51 class AllocateArrayNode;
kvn@5110 52 class BoxLockNode;
duke@435 53 class LockNode;
duke@435 54 class UnlockNode;
duke@435 55 class JVMState;
duke@435 56 class OopMap;
duke@435 57 class State;
duke@435 58 class StartNode;
duke@435 59 class MachCallNode;
duke@435 60 class FastLockNode;
duke@435 61
duke@435 62 //------------------------------StartNode--------------------------------------
duke@435 63 // The method start node
duke@435 64 class StartNode : public MultiNode {
duke@435 65 virtual uint cmp( const Node &n ) const;
duke@435 66 virtual uint size_of() const; // Size is bigger
duke@435 67 public:
duke@435 68 const TypeTuple *_domain;
duke@435 69 StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
duke@435 70 init_class_id(Class_Start);
duke@435 71 init_req(0,this);
duke@435 72 init_req(1,root);
duke@435 73 }
duke@435 74 virtual int Opcode() const;
duke@435 75 virtual bool pinned() const { return true; };
duke@435 76 virtual const Type *bottom_type() const;
duke@435 77 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
duke@435 78 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 79 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 80 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
duke@435 81 virtual const RegMask &in_RegMask(uint) const;
duke@435 82 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 83 virtual uint ideal_reg() const { return 0; }
duke@435 84 #ifndef PRODUCT
duke@435 85 virtual void dump_spec(outputStream *st) const;
duke@435 86 #endif
duke@435 87 };
duke@435 88
duke@435 89 //------------------------------StartOSRNode-----------------------------------
duke@435 90 // The method start node for on stack replacement code
duke@435 91 class StartOSRNode : public StartNode {
duke@435 92 public:
duke@435 93 StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
duke@435 94 virtual int Opcode() const;
duke@435 95 static const TypeTuple *osr_domain();
duke@435 96 };
duke@435 97
duke@435 98
duke@435 99 //------------------------------ParmNode---------------------------------------
duke@435 100 // Incoming parameters
duke@435 101 class ParmNode : public ProjNode {
duke@435 102 static const char * const names[TypeFunc::Parms+1];
duke@435 103 public:
kvn@468 104 ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
kvn@468 105 init_class_id(Class_Parm);
kvn@468 106 }
duke@435 107 virtual int Opcode() const;
duke@435 108 virtual bool is_CFG() const { return (_con == TypeFunc::Control); }
duke@435 109 virtual uint ideal_reg() const;
duke@435 110 #ifndef PRODUCT
duke@435 111 virtual void dump_spec(outputStream *st) const;
duke@435 112 #endif
duke@435 113 };
duke@435 114
duke@435 115
duke@435 116 //------------------------------ReturnNode-------------------------------------
duke@435 117 // Return from subroutine node
duke@435 118 class ReturnNode : public Node {
duke@435 119 public:
duke@435 120 ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
duke@435 121 virtual int Opcode() const;
duke@435 122 virtual bool is_CFG() const { return true; }
duke@435 123 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
duke@435 124 virtual bool depends_only_on_test() const { return false; }
duke@435 125 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 126 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 127 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 128 virtual uint match_edge(uint idx) const;
duke@435 129 #ifndef PRODUCT
kvn@4478 130 virtual void dump_req(outputStream *st = tty) const;
duke@435 131 #endif
duke@435 132 };
duke@435 133
duke@435 134
duke@435 135 //------------------------------RethrowNode------------------------------------
duke@435 136 // Rethrow of exception at call site. Ends a procedure before rethrowing;
duke@435 137 // ends the current basic block like a ReturnNode. Restores registers and
duke@435 138 // unwinds stack. Rethrow happens in the caller's method.
duke@435 139 class RethrowNode : public Node {
duke@435 140 public:
duke@435 141 RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
duke@435 142 virtual int Opcode() const;
duke@435 143 virtual bool is_CFG() const { return true; }
duke@435 144 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
duke@435 145 virtual bool depends_only_on_test() const { return false; }
duke@435 146 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 147 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 148 virtual uint match_edge(uint idx) const;
duke@435 149 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 150 #ifndef PRODUCT
kvn@4478 151 virtual void dump_req(outputStream *st = tty) const;
duke@435 152 #endif
duke@435 153 };
duke@435 154
duke@435 155
duke@435 156 //------------------------------TailCallNode-----------------------------------
duke@435 157 // Pop stack frame and jump indirect
duke@435 158 class TailCallNode : public ReturnNode {
duke@435 159 public:
duke@435 160 TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
duke@435 161 : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
duke@435 162 init_req(TypeFunc::Parms, target);
duke@435 163 init_req(TypeFunc::Parms+1, moop);
duke@435 164 }
duke@435 165
duke@435 166 virtual int Opcode() const;
duke@435 167 virtual uint match_edge(uint idx) const;
duke@435 168 };
duke@435 169
duke@435 170 //------------------------------TailJumpNode-----------------------------------
duke@435 171 // Pop stack frame and jump indirect
duke@435 172 class TailJumpNode : public ReturnNode {
duke@435 173 public:
duke@435 174 TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
duke@435 175 : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
duke@435 176 init_req(TypeFunc::Parms, target);
duke@435 177 init_req(TypeFunc::Parms+1, ex_oop);
duke@435 178 }
duke@435 179
duke@435 180 virtual int Opcode() const;
duke@435 181 virtual uint match_edge(uint idx) const;
duke@435 182 };
duke@435 183
duke@435 184 //-------------------------------JVMState-------------------------------------
duke@435 185 // A linked list of JVMState nodes captures the whole interpreter state,
duke@435 186 // plus GC roots, for all active calls at some call site in this compilation
duke@435 187 // unit. (If there is no inlining, then the list has exactly one link.)
duke@435 188 // This provides a way to map the optimized program back into the interpreter,
duke@435 189 // or to let the GC mark the stack.
duke@435 190 class JVMState : public ResourceObj {
never@3138 191 friend class VMStructs;
cfang@1335 192 public:
cfang@1335 193 typedef enum {
cfang@1335 194 Reexecute_Undefined = -1, // not defined -- will be translated into false later
cfang@1335 195 Reexecute_False = 0, // false -- do not reexecute
cfang@1335 196 Reexecute_True = 1 // true -- reexecute the bytecode
cfang@1335 197 } ReexecuteState; //Reexecute State
cfang@1335 198
duke@435 199 private:
duke@435 200 JVMState* _caller; // List pointer for forming scope chains
twisti@3969 201 uint _depth; // One more than caller depth, or one.
duke@435 202 uint _locoff; // Offset to locals in input edge mapping
duke@435 203 uint _stkoff; // Offset to stack in input edge mapping
duke@435 204 uint _monoff; // Offset to monitors in input edge mapping
kvn@498 205 uint _scloff; // Offset to fields of scalar objs in input edge mapping
duke@435 206 uint _endoff; // Offset to end of input edge mapping
duke@435 207 uint _sp; // Jave Expression Stack Pointer for this state
duke@435 208 int _bci; // Byte Code Index of this JVM point
cfang@1335 209 ReexecuteState _reexecute; // Whether this bytecode need to be re-executed
duke@435 210 ciMethod* _method; // Method Pointer
duke@435 211 SafePointNode* _map; // Map node associated with this scope
duke@435 212 public:
duke@435 213 friend class Compile;
cfang@1335 214 friend class PreserveReexecuteState;
duke@435 215
duke@435 216 // Because JVMState objects live over the entire lifetime of the
duke@435 217 // Compile object, they are allocated into the comp_arena, which
duke@435 218 // does not get resource marked or reset during the compile process
duke@435 219 void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
duke@435 220 void operator delete( void * ) { } // fast deallocation
duke@435 221
duke@435 222 // Create a new JVMState, ready for abstract interpretation.
duke@435 223 JVMState(ciMethod* method, JVMState* caller);
duke@435 224 JVMState(int stack_size); // root state; has a null method
duke@435 225
duke@435 226 // Access functions for the JVM
twisti@3969 227 // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
twisti@3969 228 // \ locoff \ stkoff \ argoff \ monoff \ scloff \ endoff
duke@435 229 uint locoff() const { return _locoff; }
duke@435 230 uint stkoff() const { return _stkoff; }
duke@435 231 uint argoff() const { return _stkoff + _sp; }
duke@435 232 uint monoff() const { return _monoff; }
kvn@498 233 uint scloff() const { return _scloff; }
duke@435 234 uint endoff() const { return _endoff; }
duke@435 235 uint oopoff() const { return debug_end(); }
duke@435 236
twisti@3969 237 int loc_size() const { return stkoff() - locoff(); }
twisti@3969 238 int stk_size() const { return monoff() - stkoff(); }
twisti@3969 239 int mon_size() const { return scloff() - monoff(); }
twisti@3969 240 int scl_size() const { return endoff() - scloff(); }
duke@435 241
twisti@3969 242 bool is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
twisti@3969 243 bool is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
twisti@3969 244 bool is_mon(uint i) const { return monoff() <= i && i < scloff(); }
twisti@3969 245 bool is_scl(uint i) const { return scloff() <= i && i < endoff(); }
duke@435 246
cfang@1335 247 uint sp() const { return _sp; }
cfang@1335 248 int bci() const { return _bci; }
cfang@1335 249 bool should_reexecute() const { return _reexecute==Reexecute_True; }
cfang@1335 250 bool is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
cfang@1335 251 bool has_method() const { return _method != NULL; }
cfang@1335 252 ciMethod* method() const { assert(has_method(), ""); return _method; }
cfang@1335 253 JVMState* caller() const { return _caller; }
cfang@1335 254 SafePointNode* map() const { return _map; }
cfang@1335 255 uint depth() const { return _depth; }
cfang@1335 256 uint debug_start() const; // returns locoff of root caller
cfang@1335 257 uint debug_end() const; // returns endoff of self
cfang@1335 258 uint debug_size() const {
kvn@498 259 return loc_size() + sp() + mon_size() + scl_size();
kvn@498 260 }
duke@435 261 uint debug_depth() const; // returns sum of debug_size values at all depths
duke@435 262
duke@435 263 // Returns the JVM state at the desired depth (1 == root).
duke@435 264 JVMState* of_depth(int d) const;
duke@435 265
duke@435 266 // Tells if two JVM states have the same call chain (depth, methods, & bcis).
duke@435 267 bool same_calls_as(const JVMState* that) const;
duke@435 268
duke@435 269 // Monitors (monitors are stored as (boxNode, objNode) pairs
duke@435 270 enum { logMonitorEdges = 1 };
duke@435 271 int nof_monitors() const { return mon_size() >> logMonitorEdges; }
duke@435 272 int monitor_depth() const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
duke@435 273 int monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
duke@435 274 int monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
duke@435 275 bool is_monitor_box(uint off) const {
duke@435 276 assert(is_mon(off), "should be called only for monitor edge");
duke@435 277 return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
duke@435 278 }
duke@435 279 bool is_monitor_use(uint off) const { return (is_mon(off)
duke@435 280 && is_monitor_box(off))
duke@435 281 || (caller() && caller()->is_monitor_use(off)); }
duke@435 282
duke@435 283 // Initialization functions for the JVM
duke@435 284 void set_locoff(uint off) { _locoff = off; }
duke@435 285 void set_stkoff(uint off) { _stkoff = off; }
duke@435 286 void set_monoff(uint off) { _monoff = off; }
kvn@498 287 void set_scloff(uint off) { _scloff = off; }
duke@435 288 void set_endoff(uint off) { _endoff = off; }
kvn@498 289 void set_offsets(uint off) {
kvn@498 290 _locoff = _stkoff = _monoff = _scloff = _endoff = off;
kvn@498 291 }
duke@435 292 void set_map(SafePointNode *map) { _map = map; }
duke@435 293 void set_sp(uint sp) { _sp = sp; }
cfang@1335 294 // _reexecute is initialized to "undefined" for a new bci
cfang@1335 295 void set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
cfang@1335 296 void set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
duke@435 297
duke@435 298 // Miscellaneous utility functions
duke@435 299 JVMState* clone_deep(Compile* C) const; // recursively clones caller chain
duke@435 300 JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
kvn@5110 301 void set_map_deep(SafePointNode *map);// reset map for all callers
duke@435 302
duke@435 303 #ifndef PRODUCT
duke@435 304 void format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
duke@435 305 void dump_spec(outputStream *st) const;
duke@435 306 void dump_on(outputStream* st) const;
duke@435 307 void dump() const {
duke@435 308 dump_on(tty);
duke@435 309 }
duke@435 310 #endif
duke@435 311 };
duke@435 312
duke@435 313 //------------------------------SafePointNode----------------------------------
duke@435 314 // A SafePointNode is a subclass of a MultiNode for convenience (and
duke@435 315 // potential code sharing) only - conceptually it is independent of
duke@435 316 // the Node semantics.
duke@435 317 class SafePointNode : public MultiNode {
duke@435 318 virtual uint cmp( const Node &n ) const;
duke@435 319 virtual uint size_of() const; // Size is bigger
duke@435 320
duke@435 321 public:
duke@435 322 SafePointNode(uint edges, JVMState* jvms,
duke@435 323 // A plain safepoint advertises no memory effects (NULL):
duke@435 324 const TypePtr* adr_type = NULL)
duke@435 325 : MultiNode( edges ),
duke@435 326 _jvms(jvms),
duke@435 327 _oop_map(NULL),
duke@435 328 _adr_type(adr_type)
duke@435 329 {
duke@435 330 init_class_id(Class_SafePoint);
duke@435 331 }
duke@435 332
duke@435 333 OopMap* _oop_map; // Array of OopMap info (8-bit char) for GC
duke@435 334 JVMState* const _jvms; // Pointer to list of JVM State objects
duke@435 335 const TypePtr* _adr_type; // What type of memory does this node produce?
duke@435 336
duke@435 337 // Many calls take *all* of memory as input,
duke@435 338 // but some produce a limited subset of that memory as output.
duke@435 339 // The adr_type reports the call's behavior as a store, not a load.
duke@435 340
duke@435 341 virtual JVMState* jvms() const { return _jvms; }
duke@435 342 void set_jvms(JVMState* s) {
duke@435 343 *(JVMState**)&_jvms = s; // override const attribute in the accessor
duke@435 344 }
duke@435 345 OopMap *oop_map() const { return _oop_map; }
duke@435 346 void set_oop_map(OopMap *om) { _oop_map = om; }
duke@435 347
twisti@4313 348 private:
twisti@4313 349 void verify_input(JVMState* jvms, uint idx) const {
twisti@4313 350 assert(verify_jvms(jvms), "jvms must match");
twisti@4313 351 Node* n = in(idx);
twisti@4313 352 assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
twisti@4313 353 in(idx + 1)->is_top(), "2nd half of long/double");
twisti@4313 354 }
twisti@4313 355
twisti@4313 356 public:
duke@435 357 // Functionality from old debug nodes which has changed
duke@435 358 Node *local(JVMState* jvms, uint idx) const {
twisti@4313 359 verify_input(jvms, jvms->locoff() + idx);
duke@435 360 return in(jvms->locoff() + idx);
duke@435 361 }
duke@435 362 Node *stack(JVMState* jvms, uint idx) const {
twisti@4313 363 verify_input(jvms, jvms->stkoff() + idx);
duke@435 364 return in(jvms->stkoff() + idx);
duke@435 365 }
duke@435 366 Node *argument(JVMState* jvms, uint idx) const {
twisti@4313 367 verify_input(jvms, jvms->argoff() + idx);
duke@435 368 return in(jvms->argoff() + idx);
duke@435 369 }
duke@435 370 Node *monitor_box(JVMState* jvms, uint idx) const {
duke@435 371 assert(verify_jvms(jvms), "jvms must match");
duke@435 372 return in(jvms->monitor_box_offset(idx));
duke@435 373 }
duke@435 374 Node *monitor_obj(JVMState* jvms, uint idx) const {
duke@435 375 assert(verify_jvms(jvms), "jvms must match");
duke@435 376 return in(jvms->monitor_obj_offset(idx));
duke@435 377 }
duke@435 378
duke@435 379 void set_local(JVMState* jvms, uint idx, Node *c);
duke@435 380
duke@435 381 void set_stack(JVMState* jvms, uint idx, Node *c) {
duke@435 382 assert(verify_jvms(jvms), "jvms must match");
duke@435 383 set_req(jvms->stkoff() + idx, c);
duke@435 384 }
duke@435 385 void set_argument(JVMState* jvms, uint idx, Node *c) {
duke@435 386 assert(verify_jvms(jvms), "jvms must match");
duke@435 387 set_req(jvms->argoff() + idx, c);
duke@435 388 }
duke@435 389 void ensure_stack(JVMState* jvms, uint stk_size) {
duke@435 390 assert(verify_jvms(jvms), "jvms must match");
duke@435 391 int grow_by = (int)stk_size - (int)jvms->stk_size();
duke@435 392 if (grow_by > 0) grow_stack(jvms, grow_by);
duke@435 393 }
duke@435 394 void grow_stack(JVMState* jvms, uint grow_by);
duke@435 395 // Handle monitor stack
duke@435 396 void push_monitor( const FastLockNode *lock );
duke@435 397 void pop_monitor ();
duke@435 398 Node *peek_monitor_box() const;
duke@435 399 Node *peek_monitor_obj() const;
duke@435 400
duke@435 401 // Access functions for the JVM
duke@435 402 Node *control () const { return in(TypeFunc::Control ); }
duke@435 403 Node *i_o () const { return in(TypeFunc::I_O ); }
duke@435 404 Node *memory () const { return in(TypeFunc::Memory ); }
duke@435 405 Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
duke@435 406 Node *frameptr () const { return in(TypeFunc::FramePtr ); }
duke@435 407
duke@435 408 void set_control ( Node *c ) { set_req(TypeFunc::Control,c); }
duke@435 409 void set_i_o ( Node *c ) { set_req(TypeFunc::I_O ,c); }
duke@435 410 void set_memory ( Node *c ) { set_req(TypeFunc::Memory ,c); }
duke@435 411
duke@435 412 MergeMemNode* merged_memory() const {
duke@435 413 return in(TypeFunc::Memory)->as_MergeMem();
duke@435 414 }
duke@435 415
duke@435 416 // The parser marks useless maps as dead when it's done with them:
duke@435 417 bool is_killed() { return in(TypeFunc::Control) == NULL; }
duke@435 418
duke@435 419 // Exception states bubbling out of subgraphs such as inlined calls
duke@435 420 // are recorded here. (There might be more than one, hence the "next".)
duke@435 421 // This feature is used only for safepoints which serve as "maps"
duke@435 422 // for JVM states during parsing, intrinsic expansion, etc.
duke@435 423 SafePointNode* next_exception() const;
duke@435 424 void set_next_exception(SafePointNode* n);
duke@435 425 bool has_exceptions() const { return next_exception() != NULL; }
duke@435 426
duke@435 427 // Standard Node stuff
duke@435 428 virtual int Opcode() const;
duke@435 429 virtual bool pinned() const { return true; }
duke@435 430 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 431 virtual const Type *bottom_type() const { return Type::CONTROL; }
duke@435 432 virtual const TypePtr *adr_type() const { return _adr_type; }
duke@435 433 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 434 virtual Node *Identity( PhaseTransform *phase );
duke@435 435 virtual uint ideal_reg() const { return 0; }
duke@435 436 virtual const RegMask &in_RegMask(uint) const;
duke@435 437 virtual const RegMask &out_RegMask() const;
duke@435 438 virtual uint match_edge(uint idx) const;
duke@435 439
duke@435 440 static bool needs_polling_address_input();
duke@435 441
duke@435 442 #ifndef PRODUCT
kvn@5110 443 virtual void dump_spec(outputStream *st) const;
duke@435 444 #endif
duke@435 445 };
duke@435 446
kvn@498 447 //------------------------------SafePointScalarObjectNode----------------------
kvn@498 448 // A SafePointScalarObjectNode represents the state of a scalarized object
kvn@498 449 // at a safepoint.
kvn@498 450
kvn@498 451 class SafePointScalarObjectNode: public TypeNode {
kvn@498 452 uint _first_index; // First input edge index of a SafePoint node where
kvn@498 453 // states of the scalarized object fields are collected.
kvn@498 454 uint _n_fields; // Number of non-static fields of the scalarized object.
kvn@509 455 DEBUG_ONLY(AllocateNode* _alloc;)
kvn@3311 456
kvn@3311 457 virtual uint hash() const ; // { return NO_HASH; }
kvn@3311 458 virtual uint cmp( const Node &n ) const;
kvn@3311 459
kvn@498 460 public:
kvn@498 461 SafePointScalarObjectNode(const TypeOopPtr* tp,
kvn@498 462 #ifdef ASSERT
kvn@498 463 AllocateNode* alloc,
kvn@498 464 #endif
kvn@498 465 uint first_index, uint n_fields);
kvn@498 466 virtual int Opcode() const;
kvn@498 467 virtual uint ideal_reg() const;
kvn@498 468 virtual const RegMask &in_RegMask(uint) const;
kvn@498 469 virtual const RegMask &out_RegMask() const;
kvn@498 470 virtual uint match_edge(uint idx) const;
kvn@498 471
kvn@498 472 uint first_index() const { return _first_index; }
kvn@498 473 uint n_fields() const { return _n_fields; }
kvn@498 474
kvn@3311 475 #ifdef ASSERT
kvn@3311 476 AllocateNode* alloc() const { return _alloc; }
kvn@3311 477 #endif
kvn@1036 478
kvn@498 479 virtual uint size_of() const { return sizeof(*this); }
kvn@498 480
kvn@498 481 // Assumes that "this" is an argument to a safepoint node "s", and that
kvn@498 482 // "new_call" is being created to correspond to "s". But the difference
kvn@498 483 // between the start index of the jvmstates of "new_call" and "s" is
kvn@498 484 // "jvms_adj". Produce and return a SafePointScalarObjectNode that
kvn@498 485 // corresponds appropriately to "this" in "new_call". Assumes that
kvn@498 486 // "sosn_map" is a map, specific to the translation of "s" to "new_call",
kvn@498 487 // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
kvn@498 488 SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
kvn@498 489
kvn@498 490 #ifndef PRODUCT
kvn@498 491 virtual void dump_spec(outputStream *st) const;
kvn@498 492 #endif
kvn@498 493 };
kvn@498 494
never@1515 495
never@1515 496 // Simple container for the outgoing projections of a call. Useful
never@1515 497 // for serious surgery on calls.
never@1515 498 class CallProjections : public StackObj {
never@1515 499 public:
never@1515 500 Node* fallthrough_proj;
never@1515 501 Node* fallthrough_catchproj;
never@1515 502 Node* fallthrough_memproj;
never@1515 503 Node* fallthrough_ioproj;
never@1515 504 Node* catchall_catchproj;
never@1515 505 Node* catchall_memproj;
never@1515 506 Node* catchall_ioproj;
never@1515 507 Node* resproj;
never@1515 508 Node* exobj;
never@1515 509 };
never@1515 510
roland@4409 511 class CallGenerator;
never@1515 512
duke@435 513 //------------------------------CallNode---------------------------------------
duke@435 514 // Call nodes now subsume the function of debug nodes at callsites, so they
duke@435 515 // contain the functionality of a full scope chain of debug nodes.
duke@435 516 class CallNode : public SafePointNode {
never@3138 517 friend class VMStructs;
duke@435 518 public:
duke@435 519 const TypeFunc *_tf; // Function type
duke@435 520 address _entry_point; // Address of method being called
duke@435 521 float _cnt; // Estimate of number of times called
roland@4409 522 CallGenerator* _generator; // corresponding CallGenerator for some late inline calls
duke@435 523
duke@435 524 CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
duke@435 525 : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
duke@435 526 _tf(tf),
duke@435 527 _entry_point(addr),
roland@4409 528 _cnt(COUNT_UNKNOWN),
roland@4409 529 _generator(NULL)
duke@435 530 {
duke@435 531 init_class_id(Class_Call);
duke@435 532 }
duke@435 533
roland@4409 534 const TypeFunc* tf() const { return _tf; }
roland@4409 535 const address entry_point() const { return _entry_point; }
roland@4409 536 const float cnt() const { return _cnt; }
roland@4409 537 CallGenerator* generator() const { return _generator; }
duke@435 538
roland@4409 539 void set_tf(const TypeFunc* tf) { _tf = tf; }
roland@4409 540 void set_entry_point(address p) { _entry_point = p; }
roland@4409 541 void set_cnt(float c) { _cnt = c; }
roland@4409 542 void set_generator(CallGenerator* cg) { _generator = cg; }
duke@435 543
duke@435 544 virtual const Type *bottom_type() const;
duke@435 545 virtual const Type *Value( PhaseTransform *phase ) const;
roland@4409 546 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 547 virtual Node *Identity( PhaseTransform *phase ) { return this; }
duke@435 548 virtual uint cmp( const Node &n ) const;
duke@435 549 virtual uint size_of() const = 0;
duke@435 550 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
duke@435 551 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 552 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 553 // Are we guaranteed that this node is a safepoint? Not true for leaf calls and
duke@435 554 // for some macro nodes whose expansion does not have a safepoint on the fast path.
duke@435 555 virtual bool guaranteed_safepoint() { return true; }
duke@435 556 // For macro nodes, the JVMState gets modified during expansion, so when cloning
duke@435 557 // the node the JVMState must be cloned.
kvn@5110 558 virtual void clone_jvms(Compile* C) { } // default is not to clone
duke@435 559
kvn@500 560 // Returns true if the call may modify n
kvn@5110 561 virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
kvn@500 562 // Does this node have a use of n other than in debug information?
kvn@603 563 bool has_non_debug_use(Node *n);
kvn@500 564 // Returns the unique CheckCastPP of a call
kvn@500 565 // or result projection is there are several CheckCastPP
kvn@500 566 // or returns NULL if there is no one.
kvn@500 567 Node *result_cast();
kvn@3651 568 // Does this node returns pointer?
kvn@3651 569 bool returns_pointer() const {
kvn@3651 570 const TypeTuple *r = tf()->range();
kvn@3651 571 return (r->cnt() > TypeFunc::Parms &&
kvn@3651 572 r->field_at(TypeFunc::Parms)->isa_ptr());
kvn@3651 573 }
kvn@500 574
never@1515 575 // Collect all the interesting edges from a call for use in
never@1515 576 // replacing the call by something else. Used by macro expansion
never@1515 577 // and the late inlining support.
never@1515 578 void extract_projections(CallProjections* projs, bool separate_io_proj);
never@1515 579
duke@435 580 virtual uint match_edge(uint idx) const;
duke@435 581
duke@435 582 #ifndef PRODUCT
kvn@4478 583 virtual void dump_req(outputStream *st = tty) const;
duke@435 584 virtual void dump_spec(outputStream *st) const;
duke@435 585 #endif
duke@435 586 };
duke@435 587
never@1515 588
duke@435 589 //------------------------------CallJavaNode-----------------------------------
duke@435 590 // Make a static or dynamic subroutine call node using Java calling
duke@435 591 // convention. (The "Java" calling convention is the compiler's calling
duke@435 592 // convention, as opposed to the interpreter's or that of native C.)
duke@435 593 class CallJavaNode : public CallNode {
never@3138 594 friend class VMStructs;
duke@435 595 protected:
duke@435 596 virtual uint cmp( const Node &n ) const;
duke@435 597 virtual uint size_of() const; // Size is bigger
duke@435 598
duke@435 599 bool _optimized_virtual;
twisti@1572 600 bool _method_handle_invoke;
duke@435 601 ciMethod* _method; // Method being direct called
duke@435 602 public:
duke@435 603 const int _bci; // Byte Code Index of call byte code
duke@435 604 CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
duke@435 605 : CallNode(tf, addr, TypePtr::BOTTOM),
twisti@1572 606 _method(method), _bci(bci),
twisti@1572 607 _optimized_virtual(false),
twisti@1572 608 _method_handle_invoke(false)
duke@435 609 {
duke@435 610 init_class_id(Class_CallJava);
duke@435 611 }
duke@435 612
duke@435 613 virtual int Opcode() const;
duke@435 614 ciMethod* method() const { return _method; }
duke@435 615 void set_method(ciMethod *m) { _method = m; }
duke@435 616 void set_optimized_virtual(bool f) { _optimized_virtual = f; }
duke@435 617 bool is_optimized_virtual() const { return _optimized_virtual; }
twisti@1572 618 void set_method_handle_invoke(bool f) { _method_handle_invoke = f; }
twisti@1572 619 bool is_method_handle_invoke() const { return _method_handle_invoke; }
duke@435 620
duke@435 621 #ifndef PRODUCT
duke@435 622 virtual void dump_spec(outputStream *st) const;
duke@435 623 #endif
duke@435 624 };
duke@435 625
duke@435 626 //------------------------------CallStaticJavaNode-----------------------------
duke@435 627 // Make a direct subroutine call using Java calling convention (for static
duke@435 628 // calls and optimized virtual calls, plus calls to wrappers for run-time
duke@435 629 // routines); generates static stub.
duke@435 630 class CallStaticJavaNode : public CallJavaNode {
duke@435 631 virtual uint cmp( const Node &n ) const;
duke@435 632 virtual uint size_of() const; // Size is bigger
duke@435 633 public:
kvn@5110 634 CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
duke@435 635 : CallJavaNode(tf, addr, method, bci), _name(NULL) {
duke@435 636 init_class_id(Class_CallStaticJava);
kvn@5110 637 if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
kvn@5110 638 init_flags(Flag_is_macro);
kvn@5110 639 C->add_macro_node(this);
kvn@5110 640 }
kvn@5110 641 _is_scalar_replaceable = false;
kvn@5110 642 _is_non_escaping = false;
duke@435 643 }
duke@435 644 CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
duke@435 645 const TypePtr* adr_type)
duke@435 646 : CallJavaNode(tf, addr, NULL, bci), _name(name) {
duke@435 647 init_class_id(Class_CallStaticJava);
duke@435 648 // This node calls a runtime stub, which often has narrow memory effects.
duke@435 649 _adr_type = adr_type;
kvn@5110 650 _is_scalar_replaceable = false;
kvn@5110 651 _is_non_escaping = false;
duke@435 652 }
kvn@5110 653 const char *_name; // Runtime wrapper name
kvn@5110 654
kvn@5110 655 // Result of Escape Analysis
kvn@5110 656 bool _is_scalar_replaceable;
kvn@5110 657 bool _is_non_escaping;
duke@435 658
duke@435 659 // If this is an uncommon trap, return the request code, else zero.
duke@435 660 int uncommon_trap_request() const;
duke@435 661 static int extract_uncommon_trap_request(const Node* call);
duke@435 662
kvn@5110 663 bool is_boxing_method() const {
kvn@5110 664 return is_macro() && (method() != NULL) && method()->is_boxing_method();
kvn@5110 665 }
kvn@5110 666 // Later inlining modifies the JVMState, so we need to clone it
kvn@5110 667 // when the call node is cloned (because it is macro node).
kvn@5110 668 virtual void clone_jvms(Compile* C) {
kvn@5110 669 if ((jvms() != NULL) && is_boxing_method()) {
kvn@5110 670 set_jvms(jvms()->clone_deep(C));
kvn@5110 671 jvms()->set_map_deep(this);
kvn@5110 672 }
kvn@5110 673 }
kvn@5110 674
duke@435 675 virtual int Opcode() const;
duke@435 676 #ifndef PRODUCT
duke@435 677 virtual void dump_spec(outputStream *st) const;
duke@435 678 #endif
duke@435 679 };
duke@435 680
duke@435 681 //------------------------------CallDynamicJavaNode----------------------------
duke@435 682 // Make a dispatched call using Java calling convention.
duke@435 683 class CallDynamicJavaNode : public CallJavaNode {
duke@435 684 virtual uint cmp( const Node &n ) const;
duke@435 685 virtual uint size_of() const; // Size is bigger
duke@435 686 public:
duke@435 687 CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
duke@435 688 init_class_id(Class_CallDynamicJava);
duke@435 689 }
duke@435 690
duke@435 691 int _vtable_index;
duke@435 692 virtual int Opcode() const;
duke@435 693 #ifndef PRODUCT
duke@435 694 virtual void dump_spec(outputStream *st) const;
duke@435 695 #endif
duke@435 696 };
duke@435 697
duke@435 698 //------------------------------CallRuntimeNode--------------------------------
duke@435 699 // Make a direct subroutine call node into compiled C++ code.
duke@435 700 class CallRuntimeNode : public CallNode {
duke@435 701 virtual uint cmp( const Node &n ) const;
duke@435 702 virtual uint size_of() const; // Size is bigger
duke@435 703 public:
duke@435 704 CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
duke@435 705 const TypePtr* adr_type)
duke@435 706 : CallNode(tf, addr, adr_type),
duke@435 707 _name(name)
duke@435 708 {
duke@435 709 init_class_id(Class_CallRuntime);
duke@435 710 }
duke@435 711
duke@435 712 const char *_name; // Printable name, if _method is NULL
duke@435 713 virtual int Opcode() const;
duke@435 714 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
duke@435 715
duke@435 716 #ifndef PRODUCT
duke@435 717 virtual void dump_spec(outputStream *st) const;
duke@435 718 #endif
duke@435 719 };
duke@435 720
duke@435 721 //------------------------------CallLeafNode-----------------------------------
duke@435 722 // Make a direct subroutine call node into compiled C++ code, without
duke@435 723 // safepoints
duke@435 724 class CallLeafNode : public CallRuntimeNode {
duke@435 725 public:
duke@435 726 CallLeafNode(const TypeFunc* tf, address addr, const char* name,
duke@435 727 const TypePtr* adr_type)
duke@435 728 : CallRuntimeNode(tf, addr, name, adr_type)
duke@435 729 {
duke@435 730 init_class_id(Class_CallLeaf);
duke@435 731 }
duke@435 732 virtual int Opcode() const;
duke@435 733 virtual bool guaranteed_safepoint() { return false; }
duke@435 734 #ifndef PRODUCT
duke@435 735 virtual void dump_spec(outputStream *st) const;
duke@435 736 #endif
duke@435 737 };
duke@435 738
duke@435 739 //------------------------------CallLeafNoFPNode-------------------------------
duke@435 740 // CallLeafNode, not using floating point or using it in the same manner as
duke@435 741 // the generated code
duke@435 742 class CallLeafNoFPNode : public CallLeafNode {
duke@435 743 public:
duke@435 744 CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
duke@435 745 const TypePtr* adr_type)
duke@435 746 : CallLeafNode(tf, addr, name, adr_type)
duke@435 747 {
duke@435 748 }
duke@435 749 virtual int Opcode() const;
duke@435 750 };
duke@435 751
duke@435 752
duke@435 753 //------------------------------Allocate---------------------------------------
duke@435 754 // High-level memory allocation
duke@435 755 //
duke@435 756 // AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
duke@435 757 // get expanded into a code sequence containing a call. Unlike other CallNodes,
duke@435 758 // they have 2 memory projections and 2 i_o projections (which are distinguished by
duke@435 759 // the _is_io_use flag in the projection.) This is needed when expanding the node in
duke@435 760 // order to differentiate the uses of the projection on the normal control path from
duke@435 761 // those on the exception return path.
duke@435 762 //
duke@435 763 class AllocateNode : public CallNode {
duke@435 764 public:
duke@435 765 enum {
duke@435 766 // Output:
duke@435 767 RawAddress = TypeFunc::Parms, // the newly-allocated raw address
duke@435 768 // Inputs:
duke@435 769 AllocSize = TypeFunc::Parms, // size (in bytes) of the new object
duke@435 770 KlassNode, // type (maybe dynamic) of the obj.
duke@435 771 InitialTest, // slow-path test (may be constant)
duke@435 772 ALength, // array length (or TOP if none)
duke@435 773 ParmLimit
duke@435 774 };
duke@435 775
kvn@5110 776 static const TypeFunc* alloc_type(const Type* t) {
duke@435 777 const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
duke@435 778 fields[AllocSize] = TypeInt::POS;
duke@435 779 fields[KlassNode] = TypeInstPtr::NOTNULL;
duke@435 780 fields[InitialTest] = TypeInt::BOOL;
kvn@5110 781 fields[ALength] = t; // length (can be a bad length)
duke@435 782
duke@435 783 const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
duke@435 784
duke@435 785 // create result type (range)
duke@435 786 fields = TypeTuple::fields(1);
duke@435 787 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 788
duke@435 789 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 790
duke@435 791 return TypeFunc::make(domain, range);
duke@435 792 }
duke@435 793
kvn@5110 794 // Result of Escape Analysis
kvn@5110 795 bool _is_scalar_replaceable;
kvn@5110 796 bool _is_non_escaping;
kvn@474 797
duke@435 798 virtual uint size_of() const; // Size is bigger
duke@435 799 AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
duke@435 800 Node *size, Node *klass_node, Node *initial_test);
duke@435 801 // Expansion modifies the JVMState, so we need to clone it
kvn@5110 802 virtual void clone_jvms(Compile* C) {
kvn@5110 803 if (jvms() != NULL) {
kvn@5110 804 set_jvms(jvms()->clone_deep(C));
kvn@5110 805 jvms()->set_map_deep(this);
kvn@5110 806 }
duke@435 807 }
duke@435 808 virtual int Opcode() const;
duke@435 809 virtual uint ideal_reg() const { return Op_RegP; }
duke@435 810 virtual bool guaranteed_safepoint() { return false; }
duke@435 811
kvn@500 812 // allocations do not modify their arguments
kvn@5110 813 virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
kvn@500 814
duke@435 815 // Pattern-match a possible usage of AllocateNode.
duke@435 816 // Return null if no allocation is recognized.
duke@435 817 // The operand is the pointer produced by the (possible) allocation.
duke@435 818 // It must be a projection of the Allocate or its subsequent CastPP.
duke@435 819 // (Note: This function is defined in file graphKit.cpp, near
duke@435 820 // GraphKit::new_instance/new_array, whose output it recognizes.)
duke@435 821 // The 'ptr' may not have an offset unless the 'offset' argument is given.
duke@435 822 static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
duke@435 823
duke@435 824 // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
duke@435 825 // an offset, which is reported back to the caller.
duke@435 826 // (Note: AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
duke@435 827 static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
duke@435 828 intptr_t& offset);
duke@435 829
duke@435 830 // Dig the klass operand out of a (possible) allocation site.
duke@435 831 static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
duke@435 832 AllocateNode* allo = Ideal_allocation(ptr, phase);
duke@435 833 return (allo == NULL) ? NULL : allo->in(KlassNode);
duke@435 834 }
duke@435 835
duke@435 836 // Conservatively small estimate of offset of first non-header byte.
duke@435 837 int minimum_header_size() {
coleenp@548 838 return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
coleenp@548 839 instanceOopDesc::base_offset_in_bytes();
duke@435 840 }
duke@435 841
duke@435 842 // Return the corresponding initialization barrier (or null if none).
duke@435 843 // Walks out edges to find it...
duke@435 844 // (Note: Both InitializeNode::allocation and AllocateNode::initialization
duke@435 845 // are defined in graphKit.cpp, which sets up the bidirectional relation.)
duke@435 846 InitializeNode* initialization();
duke@435 847
duke@435 848 // Convenience for initialization->maybe_set_complete(phase)
duke@435 849 bool maybe_set_complete(PhaseGVN* phase);
duke@435 850 };
duke@435 851
duke@435 852 //------------------------------AllocateArray---------------------------------
duke@435 853 //
duke@435 854 // High-level array allocation
duke@435 855 //
duke@435 856 class AllocateArrayNode : public AllocateNode {
duke@435 857 public:
duke@435 858 AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
duke@435 859 Node* size, Node* klass_node, Node* initial_test,
duke@435 860 Node* count_val
duke@435 861 )
duke@435 862 : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
duke@435 863 initial_test)
duke@435 864 {
duke@435 865 init_class_id(Class_AllocateArray);
duke@435 866 set_req(AllocateNode::ALength, count_val);
duke@435 867 }
duke@435 868 virtual int Opcode() const;
kvn@1139 869 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 870
rasbold@801 871 // Dig the length operand out of a array allocation site.
rasbold@801 872 Node* Ideal_length() {
rasbold@801 873 return in(AllocateNode::ALength);
rasbold@801 874 }
rasbold@801 875
rasbold@801 876 // Dig the length operand out of a array allocation site and narrow the
rasbold@801 877 // type with a CastII, if necesssary
rasbold@801 878 Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
rasbold@801 879
duke@435 880 // Pattern-match a possible usage of AllocateArrayNode.
duke@435 881 // Return null if no allocation is recognized.
duke@435 882 static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
duke@435 883 AllocateNode* allo = Ideal_allocation(ptr, phase);
duke@435 884 return (allo == NULL || !allo->is_AllocateArray())
duke@435 885 ? NULL : allo->as_AllocateArray();
duke@435 886 }
duke@435 887 };
duke@435 888
duke@435 889 //------------------------------AbstractLockNode-----------------------------------
duke@435 890 class AbstractLockNode: public CallNode {
duke@435 891 private:
kvn@3406 892 enum {
kvn@3406 893 Regular = 0, // Normal lock
kvn@3406 894 NonEscObj, // Lock is used for non escaping object
kvn@3406 895 Coarsened, // Lock was coarsened
kvn@3406 896 Nested // Nested lock
kvn@3406 897 } _kind;
duke@435 898 #ifndef PRODUCT
duke@435 899 NamedCounter* _counter;
duke@435 900 #endif
duke@435 901
duke@435 902 protected:
duke@435 903 // helper functions for lock elimination
duke@435 904 //
duke@435 905
duke@435 906 bool find_matching_unlock(const Node* ctrl, LockNode* lock,
duke@435 907 GrowableArray<AbstractLockNode*> &lock_ops);
duke@435 908 bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
duke@435 909 GrowableArray<AbstractLockNode*> &lock_ops);
duke@435 910 bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
duke@435 911 GrowableArray<AbstractLockNode*> &lock_ops);
duke@435 912 LockNode *find_matching_lock(UnlockNode* unlock);
duke@435 913
kvn@3406 914 // Update the counter to indicate that this lock was eliminated.
kvn@3406 915 void set_eliminated_lock_counter() PRODUCT_RETURN;
duke@435 916
duke@435 917 public:
duke@435 918 AbstractLockNode(const TypeFunc *tf)
duke@435 919 : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
kvn@3406 920 _kind(Regular)
duke@435 921 {
duke@435 922 #ifndef PRODUCT
duke@435 923 _counter = NULL;
duke@435 924 #endif
duke@435 925 }
duke@435 926 virtual int Opcode() const = 0;
duke@435 927 Node * obj_node() const {return in(TypeFunc::Parms + 0); }
duke@435 928 Node * box_node() const {return in(TypeFunc::Parms + 1); }
duke@435 929 Node * fastlock_node() const {return in(TypeFunc::Parms + 2); }
kvn@3406 930 void set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
kvn@3406 931
duke@435 932 const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
duke@435 933
duke@435 934 virtual uint size_of() const { return sizeof(*this); }
duke@435 935
kvn@3406 936 bool is_eliminated() const { return (_kind != Regular); }
kvn@3406 937 bool is_non_esc_obj() const { return (_kind == NonEscObj); }
kvn@3406 938 bool is_coarsened() const { return (_kind == Coarsened); }
kvn@3406 939 bool is_nested() const { return (_kind == Nested); }
duke@435 940
kvn@3406 941 void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
kvn@3406 942 void set_coarsened() { _kind = Coarsened; set_eliminated_lock_counter(); }
kvn@3406 943 void set_nested() { _kind = Nested; set_eliminated_lock_counter(); }
kvn@895 944
kvn@500 945 // locking does not modify its arguments
kvn@5110 946 virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
kvn@500 947
duke@435 948 #ifndef PRODUCT
duke@435 949 void create_lock_counter(JVMState* s);
duke@435 950 NamedCounter* counter() const { return _counter; }
duke@435 951 #endif
duke@435 952 };
duke@435 953
duke@435 954 //------------------------------Lock---------------------------------------
duke@435 955 // High-level lock operation
duke@435 956 //
duke@435 957 // This is a subclass of CallNode because it is a macro node which gets expanded
duke@435 958 // into a code sequence containing a call. This node takes 3 "parameters":
duke@435 959 // 0 - object to lock
duke@435 960 // 1 - a BoxLockNode
duke@435 961 // 2 - a FastLockNode
duke@435 962 //
duke@435 963 class LockNode : public AbstractLockNode {
duke@435 964 public:
duke@435 965
duke@435 966 static const TypeFunc *lock_type() {
duke@435 967 // create input type (domain)
duke@435 968 const Type **fields = TypeTuple::fields(3);
duke@435 969 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 970 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 971 fields[TypeFunc::Parms+2] = TypeInt::BOOL; // FastLock
duke@435 972 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
duke@435 973
duke@435 974 // create result type (range)
duke@435 975 fields = TypeTuple::fields(0);
duke@435 976
duke@435 977 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 978
duke@435 979 return TypeFunc::make(domain,range);
duke@435 980 }
duke@435 981
duke@435 982 virtual int Opcode() const;
duke@435 983 virtual uint size_of() const; // Size is bigger
duke@435 984 LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
duke@435 985 init_class_id(Class_Lock);
duke@435 986 init_flags(Flag_is_macro);
duke@435 987 C->add_macro_node(this);
duke@435 988 }
duke@435 989 virtual bool guaranteed_safepoint() { return false; }
duke@435 990
duke@435 991 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 992 // Expansion modifies the JVMState, so we need to clone it
kvn@5110 993 virtual void clone_jvms(Compile* C) {
kvn@5110 994 if (jvms() != NULL) {
kvn@5110 995 set_jvms(jvms()->clone_deep(C));
kvn@5110 996 jvms()->set_map_deep(this);
kvn@5110 997 }
duke@435 998 }
kvn@3406 999
kvn@3406 1000 bool is_nested_lock_region(); // Is this Lock nested?
duke@435 1001 };
duke@435 1002
duke@435 1003 //------------------------------Unlock---------------------------------------
duke@435 1004 // High-level unlock operation
duke@435 1005 class UnlockNode : public AbstractLockNode {
duke@435 1006 public:
duke@435 1007 virtual int Opcode() const;
duke@435 1008 virtual uint size_of() const; // Size is bigger
duke@435 1009 UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
duke@435 1010 init_class_id(Class_Unlock);
duke@435 1011 init_flags(Flag_is_macro);
duke@435 1012 C->add_macro_node(this);
duke@435 1013 }
duke@435 1014 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 1015 // unlock is never a safepoint
duke@435 1016 virtual bool guaranteed_safepoint() { return false; }
duke@435 1017 };
stefank@2314 1018
stefank@2314 1019 #endif // SHARE_VM_OPTO_CALLNODE_HPP

mercurial