src/share/vm/oops/methodDataOop.hpp

Wed, 02 Sep 2009 00:04:29 -0700

author
ysr
date
Wed, 02 Sep 2009 00:04:29 -0700
changeset 1376
8b46c4d82093
parent 631
d1605aabd0a1
child 1383
89e0543e1737
permissions
-rw-r--r--

4957990: Perm heap bloat in JVM
Summary: Treat ProfileData in MDO's as a source of weak, not strong, roots. Fixes the bug for stop-world collection -- the case of concurrent collection will be fixed separately.
Reviewed-by: jcoomes, jmasa, kvn, never

duke@435 1 /*
xdono@631 2 * Copyright 2000-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class BytecodeStream;
duke@435 26
duke@435 27 // The MethodData object collects counts and other profile information
duke@435 28 // during zeroth-tier (interpretive) and first-tier execution.
duke@435 29 // The profile is used later by compilation heuristics. Some heuristics
duke@435 30 // enable use of aggressive (or "heroic") optimizations. An aggressive
duke@435 31 // optimization often has a down-side, a corner case that it handles
duke@435 32 // poorly, but which is thought to be rare. The profile provides
duke@435 33 // evidence of this rarity for a given method or even BCI. It allows
duke@435 34 // the compiler to back out of the optimization at places where it
duke@435 35 // has historically been a poor choice. Other heuristics try to use
duke@435 36 // specific information gathered about types observed at a given site.
duke@435 37 //
duke@435 38 // All data in the profile is approximate. It is expected to be accurate
duke@435 39 // on the whole, but the system expects occasional inaccuraces, due to
duke@435 40 // counter overflow, multiprocessor races during data collection, space
duke@435 41 // limitations, missing MDO blocks, etc. Bad or missing data will degrade
duke@435 42 // optimization quality but will not affect correctness. Also, each MDO
duke@435 43 // is marked with its birth-date ("creation_mileage") which can be used
duke@435 44 // to assess the quality ("maturity") of its data.
duke@435 45 //
duke@435 46 // Short (<32-bit) counters are designed to overflow to a known "saturated"
duke@435 47 // state. Also, certain recorded per-BCI events are given one-bit counters
duke@435 48 // which overflow to a saturated state which applied to all counters at
duke@435 49 // that BCI. In other words, there is a small lattice which approximates
duke@435 50 // the ideal of an infinite-precision counter for each event at each BCI,
duke@435 51 // and the lattice quickly "bottoms out" in a state where all counters
duke@435 52 // are taken to be indefinitely large.
duke@435 53 //
duke@435 54 // The reader will find many data races in profile gathering code, starting
duke@435 55 // with invocation counter incrementation. None of these races harm correct
duke@435 56 // execution of the compiled code.
duke@435 57
ysr@1376 58 // forward decl
ysr@1376 59 class ProfileData;
ysr@1376 60
duke@435 61 // DataLayout
duke@435 62 //
duke@435 63 // Overlay for generic profiling data.
duke@435 64 class DataLayout VALUE_OBJ_CLASS_SPEC {
duke@435 65 private:
duke@435 66 // Every data layout begins with a header. This header
duke@435 67 // contains a tag, which is used to indicate the size/layout
duke@435 68 // of the data, 4 bits of flags, which can be used in any way,
duke@435 69 // 4 bits of trap history (none/one reason/many reasons),
duke@435 70 // and a bci, which is used to tie this piece of data to a
duke@435 71 // specific bci in the bytecodes.
duke@435 72 union {
duke@435 73 intptr_t _bits;
duke@435 74 struct {
duke@435 75 u1 _tag;
duke@435 76 u1 _flags;
duke@435 77 u2 _bci;
duke@435 78 } _struct;
duke@435 79 } _header;
duke@435 80
duke@435 81 // The data layout has an arbitrary number of cells, each sized
duke@435 82 // to accomodate a pointer or an integer.
duke@435 83 intptr_t _cells[1];
duke@435 84
duke@435 85 // Some types of data layouts need a length field.
duke@435 86 static bool needs_array_len(u1 tag);
duke@435 87
duke@435 88 public:
duke@435 89 enum {
duke@435 90 counter_increment = 1
duke@435 91 };
duke@435 92
duke@435 93 enum {
duke@435 94 cell_size = sizeof(intptr_t)
duke@435 95 };
duke@435 96
duke@435 97 // Tag values
duke@435 98 enum {
duke@435 99 no_tag,
duke@435 100 bit_data_tag,
duke@435 101 counter_data_tag,
duke@435 102 jump_data_tag,
duke@435 103 receiver_type_data_tag,
duke@435 104 virtual_call_data_tag,
duke@435 105 ret_data_tag,
duke@435 106 branch_data_tag,
kvn@480 107 multi_branch_data_tag,
kvn@480 108 arg_info_data_tag
duke@435 109 };
duke@435 110
duke@435 111 enum {
duke@435 112 // The _struct._flags word is formatted as [trap_state:4 | flags:4].
duke@435 113 // The trap state breaks down further as [recompile:1 | reason:3].
duke@435 114 // This further breakdown is defined in deoptimization.cpp.
duke@435 115 // See Deoptimization::trap_state_reason for an assert that
duke@435 116 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
duke@435 117 //
duke@435 118 // The trap_state is collected only if ProfileTraps is true.
duke@435 119 trap_bits = 1+3, // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
duke@435 120 trap_shift = BitsPerByte - trap_bits,
duke@435 121 trap_mask = right_n_bits(trap_bits),
duke@435 122 trap_mask_in_place = (trap_mask << trap_shift),
duke@435 123 flag_limit = trap_shift,
duke@435 124 flag_mask = right_n_bits(flag_limit),
duke@435 125 first_flag = 0
duke@435 126 };
duke@435 127
duke@435 128 // Size computation
duke@435 129 static int header_size_in_bytes() {
duke@435 130 return cell_size;
duke@435 131 }
duke@435 132 static int header_size_in_cells() {
duke@435 133 return 1;
duke@435 134 }
duke@435 135
duke@435 136 static int compute_size_in_bytes(int cell_count) {
duke@435 137 return header_size_in_bytes() + cell_count * cell_size;
duke@435 138 }
duke@435 139
duke@435 140 // Initialization
duke@435 141 void initialize(u1 tag, u2 bci, int cell_count);
duke@435 142
duke@435 143 // Accessors
duke@435 144 u1 tag() {
duke@435 145 return _header._struct._tag;
duke@435 146 }
duke@435 147
duke@435 148 // Return a few bits of trap state. Range is [0..trap_mask].
duke@435 149 // The state tells if traps with zero, one, or many reasons have occurred.
duke@435 150 // It also tells whether zero or many recompilations have occurred.
duke@435 151 // The associated trap histogram in the MDO itself tells whether
duke@435 152 // traps are common or not. If a BCI shows that a trap X has
duke@435 153 // occurred, and the MDO shows N occurrences of X, we make the
duke@435 154 // simplifying assumption that all N occurrences can be blamed
duke@435 155 // on that BCI.
duke@435 156 int trap_state() {
duke@435 157 return ((_header._struct._flags >> trap_shift) & trap_mask);
duke@435 158 }
duke@435 159
duke@435 160 void set_trap_state(int new_state) {
duke@435 161 assert(ProfileTraps, "used only under +ProfileTraps");
duke@435 162 uint old_flags = (_header._struct._flags & flag_mask);
duke@435 163 _header._struct._flags = (new_state << trap_shift) | old_flags;
duke@435 164 }
duke@435 165
duke@435 166 u1 flags() {
duke@435 167 return _header._struct._flags;
duke@435 168 }
duke@435 169
duke@435 170 u2 bci() {
duke@435 171 return _header._struct._bci;
duke@435 172 }
duke@435 173
duke@435 174 void set_header(intptr_t value) {
duke@435 175 _header._bits = value;
duke@435 176 }
duke@435 177 void release_set_header(intptr_t value) {
duke@435 178 OrderAccess::release_store_ptr(&_header._bits, value);
duke@435 179 }
duke@435 180 intptr_t header() {
duke@435 181 return _header._bits;
duke@435 182 }
duke@435 183 void set_cell_at(int index, intptr_t value) {
duke@435 184 _cells[index] = value;
duke@435 185 }
duke@435 186 void release_set_cell_at(int index, intptr_t value) {
duke@435 187 OrderAccess::release_store_ptr(&_cells[index], value);
duke@435 188 }
duke@435 189 intptr_t cell_at(int index) {
duke@435 190 return _cells[index];
duke@435 191 }
duke@435 192 intptr_t* adr_cell_at(int index) {
duke@435 193 return &_cells[index];
duke@435 194 }
duke@435 195 oop* adr_oop_at(int index) {
duke@435 196 return (oop*)&(_cells[index]);
duke@435 197 }
duke@435 198
duke@435 199 void set_flag_at(int flag_number) {
duke@435 200 assert(flag_number < flag_limit, "oob");
duke@435 201 _header._struct._flags |= (0x1 << flag_number);
duke@435 202 }
duke@435 203 bool flag_at(int flag_number) {
duke@435 204 assert(flag_number < flag_limit, "oob");
duke@435 205 return (_header._struct._flags & (0x1 << flag_number)) != 0;
duke@435 206 }
duke@435 207
duke@435 208 // Low-level support for code generation.
duke@435 209 static ByteSize header_offset() {
duke@435 210 return byte_offset_of(DataLayout, _header);
duke@435 211 }
duke@435 212 static ByteSize tag_offset() {
duke@435 213 return byte_offset_of(DataLayout, _header._struct._tag);
duke@435 214 }
duke@435 215 static ByteSize flags_offset() {
duke@435 216 return byte_offset_of(DataLayout, _header._struct._flags);
duke@435 217 }
duke@435 218 static ByteSize bci_offset() {
duke@435 219 return byte_offset_of(DataLayout, _header._struct._bci);
duke@435 220 }
duke@435 221 static ByteSize cell_offset(int index) {
duke@435 222 return byte_offset_of(DataLayout, _cells[index]);
duke@435 223 }
duke@435 224 // Return a value which, when or-ed as a byte into _flags, sets the flag.
duke@435 225 static int flag_number_to_byte_constant(int flag_number) {
duke@435 226 assert(0 <= flag_number && flag_number < flag_limit, "oob");
duke@435 227 DataLayout temp; temp.set_header(0);
duke@435 228 temp.set_flag_at(flag_number);
duke@435 229 return temp._header._struct._flags;
duke@435 230 }
duke@435 231 // Return a value which, when or-ed as a word into _header, sets the flag.
duke@435 232 static intptr_t flag_mask_to_header_mask(int byte_constant) {
duke@435 233 DataLayout temp; temp.set_header(0);
duke@435 234 temp._header._struct._flags = byte_constant;
duke@435 235 return temp._header._bits;
duke@435 236 }
ysr@1376 237
ysr@1376 238 // GC support
ysr@1376 239 ProfileData* data_in();
ysr@1376 240 void follow_weak_refs(BoolObjectClosure* cl);
duke@435 241 };
duke@435 242
duke@435 243
duke@435 244 // ProfileData class hierarchy
duke@435 245 class ProfileData;
duke@435 246 class BitData;
duke@435 247 class CounterData;
duke@435 248 class ReceiverTypeData;
duke@435 249 class VirtualCallData;
duke@435 250 class RetData;
duke@435 251 class JumpData;
duke@435 252 class BranchData;
duke@435 253 class ArrayData;
duke@435 254 class MultiBranchData;
kvn@480 255 class ArgInfoData;
duke@435 256
duke@435 257
duke@435 258 // ProfileData
duke@435 259 //
duke@435 260 // A ProfileData object is created to refer to a section of profiling
duke@435 261 // data in a structured way.
duke@435 262 class ProfileData : public ResourceObj {
duke@435 263 private:
duke@435 264 #ifndef PRODUCT
duke@435 265 enum {
duke@435 266 tab_width_one = 16,
duke@435 267 tab_width_two = 36
duke@435 268 };
duke@435 269 #endif // !PRODUCT
duke@435 270
duke@435 271 // This is a pointer to a section of profiling data.
duke@435 272 DataLayout* _data;
duke@435 273
duke@435 274 protected:
duke@435 275 DataLayout* data() { return _data; }
duke@435 276
duke@435 277 enum {
duke@435 278 cell_size = DataLayout::cell_size
duke@435 279 };
duke@435 280
duke@435 281 public:
duke@435 282 // How many cells are in this?
duke@435 283 virtual int cell_count() {
duke@435 284 ShouldNotReachHere();
duke@435 285 return -1;
duke@435 286 }
duke@435 287
duke@435 288 // Return the size of this data.
duke@435 289 int size_in_bytes() {
duke@435 290 return DataLayout::compute_size_in_bytes(cell_count());
duke@435 291 }
duke@435 292
duke@435 293 protected:
duke@435 294 // Low-level accessors for underlying data
duke@435 295 void set_intptr_at(int index, intptr_t value) {
duke@435 296 assert(0 <= index && index < cell_count(), "oob");
duke@435 297 data()->set_cell_at(index, value);
duke@435 298 }
duke@435 299 void release_set_intptr_at(int index, intptr_t value) {
duke@435 300 assert(0 <= index && index < cell_count(), "oob");
duke@435 301 data()->release_set_cell_at(index, value);
duke@435 302 }
duke@435 303 intptr_t intptr_at(int index) {
duke@435 304 assert(0 <= index && index < cell_count(), "oob");
duke@435 305 return data()->cell_at(index);
duke@435 306 }
duke@435 307 void set_uint_at(int index, uint value) {
duke@435 308 set_intptr_at(index, (intptr_t) value);
duke@435 309 }
duke@435 310 void release_set_uint_at(int index, uint value) {
duke@435 311 release_set_intptr_at(index, (intptr_t) value);
duke@435 312 }
duke@435 313 uint uint_at(int index) {
duke@435 314 return (uint)intptr_at(index);
duke@435 315 }
duke@435 316 void set_int_at(int index, int value) {
duke@435 317 set_intptr_at(index, (intptr_t) value);
duke@435 318 }
duke@435 319 void release_set_int_at(int index, int value) {
duke@435 320 release_set_intptr_at(index, (intptr_t) value);
duke@435 321 }
duke@435 322 int int_at(int index) {
duke@435 323 return (int)intptr_at(index);
duke@435 324 }
duke@435 325 int int_at_unchecked(int index) {
duke@435 326 return (int)data()->cell_at(index);
duke@435 327 }
duke@435 328 void set_oop_at(int index, oop value) {
duke@435 329 set_intptr_at(index, (intptr_t) value);
duke@435 330 }
duke@435 331 oop oop_at(int index) {
duke@435 332 return (oop)intptr_at(index);
duke@435 333 }
duke@435 334 oop* adr_oop_at(int index) {
duke@435 335 assert(0 <= index && index < cell_count(), "oob");
duke@435 336 return data()->adr_oop_at(index);
duke@435 337 }
duke@435 338
duke@435 339 void set_flag_at(int flag_number) {
duke@435 340 data()->set_flag_at(flag_number);
duke@435 341 }
duke@435 342 bool flag_at(int flag_number) {
duke@435 343 return data()->flag_at(flag_number);
duke@435 344 }
duke@435 345
duke@435 346 // two convenient imports for use by subclasses:
duke@435 347 static ByteSize cell_offset(int index) {
duke@435 348 return DataLayout::cell_offset(index);
duke@435 349 }
duke@435 350 static int flag_number_to_byte_constant(int flag_number) {
duke@435 351 return DataLayout::flag_number_to_byte_constant(flag_number);
duke@435 352 }
duke@435 353
duke@435 354 ProfileData(DataLayout* data) {
duke@435 355 _data = data;
duke@435 356 }
duke@435 357
duke@435 358 public:
duke@435 359 // Constructor for invalid ProfileData.
duke@435 360 ProfileData();
duke@435 361
duke@435 362 u2 bci() {
duke@435 363 return data()->bci();
duke@435 364 }
duke@435 365
duke@435 366 address dp() {
duke@435 367 return (address)_data;
duke@435 368 }
duke@435 369
duke@435 370 int trap_state() {
duke@435 371 return data()->trap_state();
duke@435 372 }
duke@435 373 void set_trap_state(int new_state) {
duke@435 374 data()->set_trap_state(new_state);
duke@435 375 }
duke@435 376
duke@435 377 // Type checking
duke@435 378 virtual bool is_BitData() { return false; }
duke@435 379 virtual bool is_CounterData() { return false; }
duke@435 380 virtual bool is_JumpData() { return false; }
duke@435 381 virtual bool is_ReceiverTypeData(){ return false; }
duke@435 382 virtual bool is_VirtualCallData() { return false; }
duke@435 383 virtual bool is_RetData() { return false; }
duke@435 384 virtual bool is_BranchData() { return false; }
duke@435 385 virtual bool is_ArrayData() { return false; }
duke@435 386 virtual bool is_MultiBranchData() { return false; }
kvn@480 387 virtual bool is_ArgInfoData() { return false; }
kvn@480 388
duke@435 389
duke@435 390 BitData* as_BitData() {
duke@435 391 assert(is_BitData(), "wrong type");
duke@435 392 return is_BitData() ? (BitData*) this : NULL;
duke@435 393 }
duke@435 394 CounterData* as_CounterData() {
duke@435 395 assert(is_CounterData(), "wrong type");
duke@435 396 return is_CounterData() ? (CounterData*) this : NULL;
duke@435 397 }
duke@435 398 JumpData* as_JumpData() {
duke@435 399 assert(is_JumpData(), "wrong type");
duke@435 400 return is_JumpData() ? (JumpData*) this : NULL;
duke@435 401 }
duke@435 402 ReceiverTypeData* as_ReceiverTypeData() {
duke@435 403 assert(is_ReceiverTypeData(), "wrong type");
duke@435 404 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
duke@435 405 }
duke@435 406 VirtualCallData* as_VirtualCallData() {
duke@435 407 assert(is_VirtualCallData(), "wrong type");
duke@435 408 return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
duke@435 409 }
duke@435 410 RetData* as_RetData() {
duke@435 411 assert(is_RetData(), "wrong type");
duke@435 412 return is_RetData() ? (RetData*) this : NULL;
duke@435 413 }
duke@435 414 BranchData* as_BranchData() {
duke@435 415 assert(is_BranchData(), "wrong type");
duke@435 416 return is_BranchData() ? (BranchData*) this : NULL;
duke@435 417 }
duke@435 418 ArrayData* as_ArrayData() {
duke@435 419 assert(is_ArrayData(), "wrong type");
duke@435 420 return is_ArrayData() ? (ArrayData*) this : NULL;
duke@435 421 }
duke@435 422 MultiBranchData* as_MultiBranchData() {
duke@435 423 assert(is_MultiBranchData(), "wrong type");
duke@435 424 return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
duke@435 425 }
kvn@480 426 ArgInfoData* as_ArgInfoData() {
kvn@480 427 assert(is_ArgInfoData(), "wrong type");
kvn@480 428 return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
kvn@480 429 }
duke@435 430
duke@435 431
duke@435 432 // Subclass specific initialization
duke@435 433 virtual void post_initialize(BytecodeStream* stream, methodDataOop mdo) {}
duke@435 434
duke@435 435 // GC support
duke@435 436 virtual void follow_contents() {}
duke@435 437 virtual void oop_iterate(OopClosure* blk) {}
duke@435 438 virtual void oop_iterate_m(OopClosure* blk, MemRegion mr) {}
duke@435 439 virtual void adjust_pointers() {}
ysr@1376 440 virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure) {}
duke@435 441
duke@435 442 #ifndef SERIALGC
duke@435 443 // Parallel old support
duke@435 444 virtual void follow_contents(ParCompactionManager* cm) {}
duke@435 445 virtual void update_pointers() {}
duke@435 446 virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {}
duke@435 447 #endif // SERIALGC
duke@435 448
duke@435 449 // CI translation: ProfileData can represent both MethodDataOop data
duke@435 450 // as well as CIMethodData data. This function is provided for translating
duke@435 451 // an oop in a ProfileData to the ci equivalent. Generally speaking,
duke@435 452 // most ProfileData don't require any translation, so we provide the null
duke@435 453 // translation here, and the required translators are in the ci subclasses.
duke@435 454 virtual void translate_from(ProfileData* data) {}
duke@435 455
duke@435 456 virtual void print_data_on(outputStream* st) {
duke@435 457 ShouldNotReachHere();
duke@435 458 }
duke@435 459
duke@435 460 #ifndef PRODUCT
duke@435 461 void print_shared(outputStream* st, const char* name);
duke@435 462 void tab(outputStream* st);
duke@435 463 #endif
duke@435 464 };
duke@435 465
duke@435 466 // BitData
duke@435 467 //
duke@435 468 // A BitData holds a flag or two in its header.
duke@435 469 class BitData : public ProfileData {
duke@435 470 protected:
duke@435 471 enum {
duke@435 472 // null_seen:
duke@435 473 // saw a null operand (cast/aastore/instanceof)
duke@435 474 null_seen_flag = DataLayout::first_flag + 0
duke@435 475 };
duke@435 476 enum { bit_cell_count = 0 }; // no additional data fields needed.
duke@435 477 public:
duke@435 478 BitData(DataLayout* layout) : ProfileData(layout) {
duke@435 479 }
duke@435 480
duke@435 481 virtual bool is_BitData() { return true; }
duke@435 482
duke@435 483 static int static_cell_count() {
duke@435 484 return bit_cell_count;
duke@435 485 }
duke@435 486
duke@435 487 virtual int cell_count() {
duke@435 488 return static_cell_count();
duke@435 489 }
duke@435 490
duke@435 491 // Accessor
duke@435 492
duke@435 493 // The null_seen flag bit is specially known to the interpreter.
duke@435 494 // Consulting it allows the compiler to avoid setting up null_check traps.
duke@435 495 bool null_seen() { return flag_at(null_seen_flag); }
duke@435 496 void set_null_seen() { set_flag_at(null_seen_flag); }
duke@435 497
duke@435 498
duke@435 499 // Code generation support
duke@435 500 static int null_seen_byte_constant() {
duke@435 501 return flag_number_to_byte_constant(null_seen_flag);
duke@435 502 }
duke@435 503
duke@435 504 static ByteSize bit_data_size() {
duke@435 505 return cell_offset(bit_cell_count);
duke@435 506 }
duke@435 507
duke@435 508 #ifndef PRODUCT
duke@435 509 void print_data_on(outputStream* st);
duke@435 510 #endif
duke@435 511 };
duke@435 512
duke@435 513 // CounterData
duke@435 514 //
duke@435 515 // A CounterData corresponds to a simple counter.
duke@435 516 class CounterData : public BitData {
duke@435 517 protected:
duke@435 518 enum {
duke@435 519 count_off,
duke@435 520 counter_cell_count
duke@435 521 };
duke@435 522 public:
duke@435 523 CounterData(DataLayout* layout) : BitData(layout) {}
duke@435 524
duke@435 525 virtual bool is_CounterData() { return true; }
duke@435 526
duke@435 527 static int static_cell_count() {
duke@435 528 return counter_cell_count;
duke@435 529 }
duke@435 530
duke@435 531 virtual int cell_count() {
duke@435 532 return static_cell_count();
duke@435 533 }
duke@435 534
duke@435 535 // Direct accessor
duke@435 536 uint count() {
duke@435 537 return uint_at(count_off);
duke@435 538 }
duke@435 539
duke@435 540 // Code generation support
duke@435 541 static ByteSize count_offset() {
duke@435 542 return cell_offset(count_off);
duke@435 543 }
duke@435 544 static ByteSize counter_data_size() {
duke@435 545 return cell_offset(counter_cell_count);
duke@435 546 }
duke@435 547
duke@435 548 #ifndef PRODUCT
duke@435 549 void print_data_on(outputStream* st);
duke@435 550 #endif
duke@435 551 };
duke@435 552
duke@435 553 // JumpData
duke@435 554 //
duke@435 555 // A JumpData is used to access profiling information for a direct
duke@435 556 // branch. It is a counter, used for counting the number of branches,
duke@435 557 // plus a data displacement, used for realigning the data pointer to
duke@435 558 // the corresponding target bci.
duke@435 559 class JumpData : public ProfileData {
duke@435 560 protected:
duke@435 561 enum {
duke@435 562 taken_off_set,
duke@435 563 displacement_off_set,
duke@435 564 jump_cell_count
duke@435 565 };
duke@435 566
duke@435 567 void set_displacement(int displacement) {
duke@435 568 set_int_at(displacement_off_set, displacement);
duke@435 569 }
duke@435 570
duke@435 571 public:
duke@435 572 JumpData(DataLayout* layout) : ProfileData(layout) {
duke@435 573 assert(layout->tag() == DataLayout::jump_data_tag ||
duke@435 574 layout->tag() == DataLayout::branch_data_tag, "wrong type");
duke@435 575 }
duke@435 576
duke@435 577 virtual bool is_JumpData() { return true; }
duke@435 578
duke@435 579 static int static_cell_count() {
duke@435 580 return jump_cell_count;
duke@435 581 }
duke@435 582
duke@435 583 virtual int cell_count() {
duke@435 584 return static_cell_count();
duke@435 585 }
duke@435 586
duke@435 587 // Direct accessor
duke@435 588 uint taken() {
duke@435 589 return uint_at(taken_off_set);
duke@435 590 }
duke@435 591 // Saturating counter
duke@435 592 uint inc_taken() {
duke@435 593 uint cnt = taken() + 1;
duke@435 594 // Did we wrap? Will compiler screw us??
duke@435 595 if (cnt == 0) cnt--;
duke@435 596 set_uint_at(taken_off_set, cnt);
duke@435 597 return cnt;
duke@435 598 }
duke@435 599
duke@435 600 int displacement() {
duke@435 601 return int_at(displacement_off_set);
duke@435 602 }
duke@435 603
duke@435 604 // Code generation support
duke@435 605 static ByteSize taken_offset() {
duke@435 606 return cell_offset(taken_off_set);
duke@435 607 }
duke@435 608
duke@435 609 static ByteSize displacement_offset() {
duke@435 610 return cell_offset(displacement_off_set);
duke@435 611 }
duke@435 612
duke@435 613 // Specific initialization.
duke@435 614 void post_initialize(BytecodeStream* stream, methodDataOop mdo);
duke@435 615
duke@435 616 #ifndef PRODUCT
duke@435 617 void print_data_on(outputStream* st);
duke@435 618 #endif
duke@435 619 };
duke@435 620
duke@435 621 // ReceiverTypeData
duke@435 622 //
duke@435 623 // A ReceiverTypeData is used to access profiling information about a
duke@435 624 // dynamic type check. It consists of a counter which counts the total times
duke@435 625 // that the check is reached, and a series of (klassOop, count) pairs
duke@435 626 // which are used to store a type profile for the receiver of the check.
duke@435 627 class ReceiverTypeData : public CounterData {
duke@435 628 protected:
duke@435 629 enum {
duke@435 630 receiver0_offset = counter_cell_count,
duke@435 631 count0_offset,
duke@435 632 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
duke@435 633 };
duke@435 634
duke@435 635 public:
duke@435 636 ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
duke@435 637 assert(layout->tag() == DataLayout::receiver_type_data_tag ||
duke@435 638 layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
duke@435 639 }
duke@435 640
duke@435 641 virtual bool is_ReceiverTypeData() { return true; }
duke@435 642
duke@435 643 static int static_cell_count() {
duke@435 644 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
duke@435 645 }
duke@435 646
duke@435 647 virtual int cell_count() {
duke@435 648 return static_cell_count();
duke@435 649 }
duke@435 650
duke@435 651 // Direct accessors
duke@435 652 static uint row_limit() {
duke@435 653 return TypeProfileWidth;
duke@435 654 }
duke@435 655 static int receiver_cell_index(uint row) {
duke@435 656 return receiver0_offset + row * receiver_type_row_cell_count;
duke@435 657 }
duke@435 658 static int receiver_count_cell_index(uint row) {
duke@435 659 return count0_offset + row * receiver_type_row_cell_count;
duke@435 660 }
duke@435 661
duke@435 662 // Get the receiver at row. The 'unchecked' version is needed by parallel old
duke@435 663 // gc; it does not assert the receiver is a klass. During compaction of the
duke@435 664 // perm gen, the klass may already have moved, so the is_klass() predicate
duke@435 665 // would fail. The 'normal' version should be used whenever possible.
duke@435 666 klassOop receiver_unchecked(uint row) {
duke@435 667 assert(row < row_limit(), "oob");
duke@435 668 oop recv = oop_at(receiver_cell_index(row));
duke@435 669 return (klassOop)recv;
duke@435 670 }
duke@435 671
duke@435 672 klassOop receiver(uint row) {
duke@435 673 klassOop recv = receiver_unchecked(row);
duke@435 674 assert(recv == NULL || ((oop)recv)->is_klass(), "wrong type");
duke@435 675 return recv;
duke@435 676 }
duke@435 677
ysr@1376 678 void set_receiver(uint row, oop p) {
ysr@1376 679 assert((uint)row < row_limit(), "oob");
ysr@1376 680 set_oop_at(receiver_cell_index(row), p);
ysr@1376 681 }
ysr@1376 682
duke@435 683 uint receiver_count(uint row) {
duke@435 684 assert(row < row_limit(), "oob");
duke@435 685 return uint_at(receiver_count_cell_index(row));
duke@435 686 }
duke@435 687
ysr@1376 688 void set_receiver_count(uint row, uint count) {
ysr@1376 689 assert(row < row_limit(), "oob");
ysr@1376 690 set_uint_at(receiver_count_cell_index(row), count);
ysr@1376 691 }
ysr@1376 692
ysr@1376 693 void clear_row(uint row) {
ysr@1376 694 assert(row < row_limit(), "oob");
ysr@1376 695 set_receiver(row, NULL);
ysr@1376 696 set_receiver_count(row, 0);
ysr@1376 697 }
ysr@1376 698
duke@435 699 // Code generation support
duke@435 700 static ByteSize receiver_offset(uint row) {
duke@435 701 return cell_offset(receiver_cell_index(row));
duke@435 702 }
duke@435 703 static ByteSize receiver_count_offset(uint row) {
duke@435 704 return cell_offset(receiver_count_cell_index(row));
duke@435 705 }
duke@435 706 static ByteSize receiver_type_data_size() {
duke@435 707 return cell_offset(static_cell_count());
duke@435 708 }
duke@435 709
duke@435 710 // GC support
duke@435 711 virtual void follow_contents();
duke@435 712 virtual void oop_iterate(OopClosure* blk);
duke@435 713 virtual void oop_iterate_m(OopClosure* blk, MemRegion mr);
duke@435 714 virtual void adjust_pointers();
ysr@1376 715 virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure);
duke@435 716
duke@435 717 #ifndef SERIALGC
duke@435 718 // Parallel old support
duke@435 719 virtual void follow_contents(ParCompactionManager* cm);
duke@435 720 virtual void update_pointers();
duke@435 721 virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr);
duke@435 722 #endif // SERIALGC
duke@435 723
duke@435 724 oop* adr_receiver(uint row) {
duke@435 725 return adr_oop_at(receiver_cell_index(row));
duke@435 726 }
duke@435 727
duke@435 728 #ifndef PRODUCT
duke@435 729 void print_receiver_data_on(outputStream* st);
duke@435 730 void print_data_on(outputStream* st);
duke@435 731 #endif
duke@435 732 };
duke@435 733
duke@435 734 // VirtualCallData
duke@435 735 //
duke@435 736 // A VirtualCallData is used to access profiling information about a
duke@435 737 // virtual call. For now, it has nothing more than a ReceiverTypeData.
duke@435 738 class VirtualCallData : public ReceiverTypeData {
duke@435 739 public:
duke@435 740 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
duke@435 741 assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
duke@435 742 }
duke@435 743
duke@435 744 virtual bool is_VirtualCallData() { return true; }
duke@435 745
duke@435 746 static int static_cell_count() {
duke@435 747 // At this point we could add more profile state, e.g., for arguments.
duke@435 748 // But for now it's the same size as the base record type.
duke@435 749 return ReceiverTypeData::static_cell_count();
duke@435 750 }
duke@435 751
duke@435 752 virtual int cell_count() {
duke@435 753 return static_cell_count();
duke@435 754 }
duke@435 755
duke@435 756 // Direct accessors
duke@435 757 static ByteSize virtual_call_data_size() {
duke@435 758 return cell_offset(static_cell_count());
duke@435 759 }
duke@435 760
duke@435 761 #ifndef PRODUCT
duke@435 762 void print_data_on(outputStream* st);
duke@435 763 #endif
duke@435 764 };
duke@435 765
duke@435 766 // RetData
duke@435 767 //
duke@435 768 // A RetData is used to access profiling information for a ret bytecode.
duke@435 769 // It is composed of a count of the number of times that the ret has
duke@435 770 // been executed, followed by a series of triples of the form
duke@435 771 // (bci, count, di) which count the number of times that some bci was the
duke@435 772 // target of the ret and cache a corresponding data displacement.
duke@435 773 class RetData : public CounterData {
duke@435 774 protected:
duke@435 775 enum {
duke@435 776 bci0_offset = counter_cell_count,
duke@435 777 count0_offset,
duke@435 778 displacement0_offset,
duke@435 779 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
duke@435 780 };
duke@435 781
duke@435 782 void set_bci(uint row, int bci) {
duke@435 783 assert((uint)row < row_limit(), "oob");
duke@435 784 set_int_at(bci0_offset + row * ret_row_cell_count, bci);
duke@435 785 }
duke@435 786 void release_set_bci(uint row, int bci) {
duke@435 787 assert((uint)row < row_limit(), "oob");
duke@435 788 // 'release' when setting the bci acts as a valid flag for other
duke@435 789 // threads wrt bci_count and bci_displacement.
duke@435 790 release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
duke@435 791 }
duke@435 792 void set_bci_count(uint row, uint count) {
duke@435 793 assert((uint)row < row_limit(), "oob");
duke@435 794 set_uint_at(count0_offset + row * ret_row_cell_count, count);
duke@435 795 }
duke@435 796 void set_bci_displacement(uint row, int disp) {
duke@435 797 set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
duke@435 798 }
duke@435 799
duke@435 800 public:
duke@435 801 RetData(DataLayout* layout) : CounterData(layout) {
duke@435 802 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
duke@435 803 }
duke@435 804
duke@435 805 virtual bool is_RetData() { return true; }
duke@435 806
duke@435 807 enum {
duke@435 808 no_bci = -1 // value of bci when bci1/2 are not in use.
duke@435 809 };
duke@435 810
duke@435 811 static int static_cell_count() {
duke@435 812 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
duke@435 813 }
duke@435 814
duke@435 815 virtual int cell_count() {
duke@435 816 return static_cell_count();
duke@435 817 }
duke@435 818
duke@435 819 static uint row_limit() {
duke@435 820 return BciProfileWidth;
duke@435 821 }
duke@435 822 static int bci_cell_index(uint row) {
duke@435 823 return bci0_offset + row * ret_row_cell_count;
duke@435 824 }
duke@435 825 static int bci_count_cell_index(uint row) {
duke@435 826 return count0_offset + row * ret_row_cell_count;
duke@435 827 }
duke@435 828 static int bci_displacement_cell_index(uint row) {
duke@435 829 return displacement0_offset + row * ret_row_cell_count;
duke@435 830 }
duke@435 831
duke@435 832 // Direct accessors
duke@435 833 int bci(uint row) {
duke@435 834 return int_at(bci_cell_index(row));
duke@435 835 }
duke@435 836 uint bci_count(uint row) {
duke@435 837 return uint_at(bci_count_cell_index(row));
duke@435 838 }
duke@435 839 int bci_displacement(uint row) {
duke@435 840 return int_at(bci_displacement_cell_index(row));
duke@435 841 }
duke@435 842
duke@435 843 // Interpreter Runtime support
duke@435 844 address fixup_ret(int return_bci, methodDataHandle mdo);
duke@435 845
duke@435 846 // Code generation support
duke@435 847 static ByteSize bci_offset(uint row) {
duke@435 848 return cell_offset(bci_cell_index(row));
duke@435 849 }
duke@435 850 static ByteSize bci_count_offset(uint row) {
duke@435 851 return cell_offset(bci_count_cell_index(row));
duke@435 852 }
duke@435 853 static ByteSize bci_displacement_offset(uint row) {
duke@435 854 return cell_offset(bci_displacement_cell_index(row));
duke@435 855 }
duke@435 856
duke@435 857 // Specific initialization.
duke@435 858 void post_initialize(BytecodeStream* stream, methodDataOop mdo);
duke@435 859
duke@435 860 #ifndef PRODUCT
duke@435 861 void print_data_on(outputStream* st);
duke@435 862 #endif
duke@435 863 };
duke@435 864
duke@435 865 // BranchData
duke@435 866 //
duke@435 867 // A BranchData is used to access profiling data for a two-way branch.
duke@435 868 // It consists of taken and not_taken counts as well as a data displacement
duke@435 869 // for the taken case.
duke@435 870 class BranchData : public JumpData {
duke@435 871 protected:
duke@435 872 enum {
duke@435 873 not_taken_off_set = jump_cell_count,
duke@435 874 branch_cell_count
duke@435 875 };
duke@435 876
duke@435 877 void set_displacement(int displacement) {
duke@435 878 set_int_at(displacement_off_set, displacement);
duke@435 879 }
duke@435 880
duke@435 881 public:
duke@435 882 BranchData(DataLayout* layout) : JumpData(layout) {
duke@435 883 assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
duke@435 884 }
duke@435 885
duke@435 886 virtual bool is_BranchData() { return true; }
duke@435 887
duke@435 888 static int static_cell_count() {
duke@435 889 return branch_cell_count;
duke@435 890 }
duke@435 891
duke@435 892 virtual int cell_count() {
duke@435 893 return static_cell_count();
duke@435 894 }
duke@435 895
duke@435 896 // Direct accessor
duke@435 897 uint not_taken() {
duke@435 898 return uint_at(not_taken_off_set);
duke@435 899 }
duke@435 900
duke@435 901 uint inc_not_taken() {
duke@435 902 uint cnt = not_taken() + 1;
duke@435 903 // Did we wrap? Will compiler screw us??
duke@435 904 if (cnt == 0) cnt--;
duke@435 905 set_uint_at(not_taken_off_set, cnt);
duke@435 906 return cnt;
duke@435 907 }
duke@435 908
duke@435 909 // Code generation support
duke@435 910 static ByteSize not_taken_offset() {
duke@435 911 return cell_offset(not_taken_off_set);
duke@435 912 }
duke@435 913 static ByteSize branch_data_size() {
duke@435 914 return cell_offset(branch_cell_count);
duke@435 915 }
duke@435 916
duke@435 917 // Specific initialization.
duke@435 918 void post_initialize(BytecodeStream* stream, methodDataOop mdo);
duke@435 919
duke@435 920 #ifndef PRODUCT
duke@435 921 void print_data_on(outputStream* st);
duke@435 922 #endif
duke@435 923 };
duke@435 924
duke@435 925 // ArrayData
duke@435 926 //
duke@435 927 // A ArrayData is a base class for accessing profiling data which does
duke@435 928 // not have a statically known size. It consists of an array length
duke@435 929 // and an array start.
duke@435 930 class ArrayData : public ProfileData {
duke@435 931 protected:
duke@435 932 friend class DataLayout;
duke@435 933
duke@435 934 enum {
duke@435 935 array_len_off_set,
duke@435 936 array_start_off_set
duke@435 937 };
duke@435 938
duke@435 939 uint array_uint_at(int index) {
duke@435 940 int aindex = index + array_start_off_set;
duke@435 941 return uint_at(aindex);
duke@435 942 }
duke@435 943 int array_int_at(int index) {
duke@435 944 int aindex = index + array_start_off_set;
duke@435 945 return int_at(aindex);
duke@435 946 }
duke@435 947 oop array_oop_at(int index) {
duke@435 948 int aindex = index + array_start_off_set;
duke@435 949 return oop_at(aindex);
duke@435 950 }
duke@435 951 void array_set_int_at(int index, int value) {
duke@435 952 int aindex = index + array_start_off_set;
duke@435 953 set_int_at(aindex, value);
duke@435 954 }
duke@435 955
duke@435 956 // Code generation support for subclasses.
duke@435 957 static ByteSize array_element_offset(int index) {
duke@435 958 return cell_offset(array_start_off_set + index);
duke@435 959 }
duke@435 960
duke@435 961 public:
duke@435 962 ArrayData(DataLayout* layout) : ProfileData(layout) {}
duke@435 963
duke@435 964 virtual bool is_ArrayData() { return true; }
duke@435 965
duke@435 966 static int static_cell_count() {
duke@435 967 return -1;
duke@435 968 }
duke@435 969
duke@435 970 int array_len() {
duke@435 971 return int_at_unchecked(array_len_off_set);
duke@435 972 }
duke@435 973
duke@435 974 virtual int cell_count() {
duke@435 975 return array_len() + 1;
duke@435 976 }
duke@435 977
duke@435 978 // Code generation support
duke@435 979 static ByteSize array_len_offset() {
duke@435 980 return cell_offset(array_len_off_set);
duke@435 981 }
duke@435 982 static ByteSize array_start_offset() {
duke@435 983 return cell_offset(array_start_off_set);
duke@435 984 }
duke@435 985 };
duke@435 986
duke@435 987 // MultiBranchData
duke@435 988 //
duke@435 989 // A MultiBranchData is used to access profiling information for
duke@435 990 // a multi-way branch (*switch bytecodes). It consists of a series
duke@435 991 // of (count, displacement) pairs, which count the number of times each
duke@435 992 // case was taken and specify the data displacment for each branch target.
duke@435 993 class MultiBranchData : public ArrayData {
duke@435 994 protected:
duke@435 995 enum {
duke@435 996 default_count_off_set,
duke@435 997 default_disaplacement_off_set,
duke@435 998 case_array_start
duke@435 999 };
duke@435 1000 enum {
duke@435 1001 relative_count_off_set,
duke@435 1002 relative_displacement_off_set,
duke@435 1003 per_case_cell_count
duke@435 1004 };
duke@435 1005
duke@435 1006 void set_default_displacement(int displacement) {
duke@435 1007 array_set_int_at(default_disaplacement_off_set, displacement);
duke@435 1008 }
duke@435 1009 void set_displacement_at(int index, int displacement) {
duke@435 1010 array_set_int_at(case_array_start +
duke@435 1011 index * per_case_cell_count +
duke@435 1012 relative_displacement_off_set,
duke@435 1013 displacement);
duke@435 1014 }
duke@435 1015
duke@435 1016 public:
duke@435 1017 MultiBranchData(DataLayout* layout) : ArrayData(layout) {
duke@435 1018 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
duke@435 1019 }
duke@435 1020
duke@435 1021 virtual bool is_MultiBranchData() { return true; }
duke@435 1022
duke@435 1023 static int compute_cell_count(BytecodeStream* stream);
duke@435 1024
duke@435 1025 int number_of_cases() {
duke@435 1026 int alen = array_len() - 2; // get rid of default case here.
duke@435 1027 assert(alen % per_case_cell_count == 0, "must be even");
duke@435 1028 return (alen / per_case_cell_count);
duke@435 1029 }
duke@435 1030
duke@435 1031 uint default_count() {
duke@435 1032 return array_uint_at(default_count_off_set);
duke@435 1033 }
duke@435 1034 int default_displacement() {
duke@435 1035 return array_int_at(default_disaplacement_off_set);
duke@435 1036 }
duke@435 1037
duke@435 1038 uint count_at(int index) {
duke@435 1039 return array_uint_at(case_array_start +
duke@435 1040 index * per_case_cell_count +
duke@435 1041 relative_count_off_set);
duke@435 1042 }
duke@435 1043 int displacement_at(int index) {
duke@435 1044 return array_int_at(case_array_start +
duke@435 1045 index * per_case_cell_count +
duke@435 1046 relative_displacement_off_set);
duke@435 1047 }
duke@435 1048
duke@435 1049 // Code generation support
duke@435 1050 static ByteSize default_count_offset() {
duke@435 1051 return array_element_offset(default_count_off_set);
duke@435 1052 }
duke@435 1053 static ByteSize default_displacement_offset() {
duke@435 1054 return array_element_offset(default_disaplacement_off_set);
duke@435 1055 }
duke@435 1056 static ByteSize case_count_offset(int index) {
duke@435 1057 return case_array_offset() +
duke@435 1058 (per_case_size() * index) +
duke@435 1059 relative_count_offset();
duke@435 1060 }
duke@435 1061 static ByteSize case_array_offset() {
duke@435 1062 return array_element_offset(case_array_start);
duke@435 1063 }
duke@435 1064 static ByteSize per_case_size() {
duke@435 1065 return in_ByteSize(per_case_cell_count) * cell_size;
duke@435 1066 }
duke@435 1067 static ByteSize relative_count_offset() {
duke@435 1068 return in_ByteSize(relative_count_off_set) * cell_size;
duke@435 1069 }
duke@435 1070 static ByteSize relative_displacement_offset() {
duke@435 1071 return in_ByteSize(relative_displacement_off_set) * cell_size;
duke@435 1072 }
duke@435 1073
duke@435 1074 // Specific initialization.
duke@435 1075 void post_initialize(BytecodeStream* stream, methodDataOop mdo);
duke@435 1076
duke@435 1077 #ifndef PRODUCT
duke@435 1078 void print_data_on(outputStream* st);
duke@435 1079 #endif
duke@435 1080 };
duke@435 1081
kvn@480 1082 class ArgInfoData : public ArrayData {
kvn@480 1083
kvn@480 1084 public:
kvn@480 1085 ArgInfoData(DataLayout* layout) : ArrayData(layout) {
kvn@480 1086 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
kvn@480 1087 }
kvn@480 1088
kvn@480 1089 virtual bool is_ArgInfoData() { return true; }
kvn@480 1090
kvn@480 1091
kvn@480 1092 int number_of_args() {
kvn@480 1093 return array_len();
kvn@480 1094 }
kvn@480 1095
kvn@480 1096 uint arg_modified(int arg) {
kvn@480 1097 return array_uint_at(arg);
kvn@480 1098 }
kvn@480 1099
kvn@480 1100 void set_arg_modified(int arg, uint val) {
kvn@480 1101 array_set_int_at(arg, val);
kvn@480 1102 }
kvn@480 1103
kvn@480 1104 #ifndef PRODUCT
kvn@480 1105 void print_data_on(outputStream* st);
kvn@480 1106 #endif
kvn@480 1107 };
kvn@480 1108
duke@435 1109 // methodDataOop
duke@435 1110 //
duke@435 1111 // A methodDataOop holds information which has been collected about
duke@435 1112 // a method. Its layout looks like this:
duke@435 1113 //
duke@435 1114 // -----------------------------
duke@435 1115 // | header |
duke@435 1116 // | klass |
duke@435 1117 // -----------------------------
duke@435 1118 // | method |
duke@435 1119 // | size of the methodDataOop |
duke@435 1120 // -----------------------------
duke@435 1121 // | Data entries... |
duke@435 1122 // | (variable size) |
duke@435 1123 // | |
duke@435 1124 // . .
duke@435 1125 // . .
duke@435 1126 // . .
duke@435 1127 // | |
duke@435 1128 // -----------------------------
duke@435 1129 //
duke@435 1130 // The data entry area is a heterogeneous array of DataLayouts. Each
duke@435 1131 // DataLayout in the array corresponds to a specific bytecode in the
duke@435 1132 // method. The entries in the array are sorted by the corresponding
duke@435 1133 // bytecode. Access to the data is via resource-allocated ProfileData,
duke@435 1134 // which point to the underlying blocks of DataLayout structures.
duke@435 1135 //
duke@435 1136 // During interpretation, if profiling in enabled, the interpreter
duke@435 1137 // maintains a method data pointer (mdp), which points at the entry
duke@435 1138 // in the array corresponding to the current bci. In the course of
duke@435 1139 // intepretation, when a bytecode is encountered that has profile data
duke@435 1140 // associated with it, the entry pointed to by mdp is updated, then the
duke@435 1141 // mdp is adjusted to point to the next appropriate DataLayout. If mdp
duke@435 1142 // is NULL to begin with, the interpreter assumes that the current method
duke@435 1143 // is not (yet) being profiled.
duke@435 1144 //
duke@435 1145 // In methodDataOop parlance, "dp" is a "data pointer", the actual address
duke@435 1146 // of a DataLayout element. A "di" is a "data index", the offset in bytes
duke@435 1147 // from the base of the data entry array. A "displacement" is the byte offset
duke@435 1148 // in certain ProfileData objects that indicate the amount the mdp must be
duke@435 1149 // adjusted in the event of a change in control flow.
duke@435 1150 //
duke@435 1151
duke@435 1152 class methodDataOopDesc : public oopDesc {
duke@435 1153 friend class VMStructs;
duke@435 1154 private:
duke@435 1155 friend class ProfileData;
duke@435 1156
duke@435 1157 // Back pointer to the methodOop
duke@435 1158 methodOop _method;
duke@435 1159
duke@435 1160 // Size of this oop in bytes
duke@435 1161 int _size;
duke@435 1162
duke@435 1163 // Cached hint for bci_to_dp and bci_to_data
duke@435 1164 int _hint_di;
duke@435 1165
duke@435 1166 // Whole-method sticky bits and flags
duke@435 1167 public:
duke@435 1168 enum {
duke@435 1169 _trap_hist_limit = 16, // decoupled from Deoptimization::Reason_LIMIT
duke@435 1170 _trap_hist_mask = max_jubyte,
duke@435 1171 _extra_data_count = 4 // extra DataLayout headers, for trap history
duke@435 1172 }; // Public flag values
duke@435 1173 private:
duke@435 1174 uint _nof_decompiles; // count of all nmethod removals
duke@435 1175 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits
duke@435 1176 uint _nof_overflow_traps; // trap count, excluding _trap_hist
duke@435 1177 union {
duke@435 1178 intptr_t _align;
duke@435 1179 u1 _array[_trap_hist_limit];
duke@435 1180 } _trap_hist;
duke@435 1181
duke@435 1182 // Support for interprocedural escape analysis, from Thomas Kotzmann.
duke@435 1183 intx _eflags; // flags on escape information
duke@435 1184 intx _arg_local; // bit set of non-escaping arguments
duke@435 1185 intx _arg_stack; // bit set of stack-allocatable arguments
duke@435 1186 intx _arg_returned; // bit set of returned arguments
duke@435 1187
duke@435 1188 int _creation_mileage; // method mileage at MDO creation
duke@435 1189
duke@435 1190 // Size of _data array in bytes. (Excludes header and extra_data fields.)
duke@435 1191 int _data_size;
duke@435 1192
duke@435 1193 // Beginning of the data entries
duke@435 1194 intptr_t _data[1];
duke@435 1195
duke@435 1196 // Helper for size computation
duke@435 1197 static int compute_data_size(BytecodeStream* stream);
duke@435 1198 static int bytecode_cell_count(Bytecodes::Code code);
duke@435 1199 enum { no_profile_data = -1, variable_cell_count = -2 };
duke@435 1200
duke@435 1201 // Helper for initialization
duke@435 1202 DataLayout* data_layout_at(int data_index) {
duke@435 1203 assert(data_index % sizeof(intptr_t) == 0, "unaligned");
duke@435 1204 return (DataLayout*) (((address)_data) + data_index);
duke@435 1205 }
duke@435 1206
duke@435 1207 // Initialize an individual data segment. Returns the size of
duke@435 1208 // the segment in bytes.
duke@435 1209 int initialize_data(BytecodeStream* stream, int data_index);
duke@435 1210
duke@435 1211 // Helper for data_at
duke@435 1212 DataLayout* limit_data_position() {
duke@435 1213 return (DataLayout*)((address)data_base() + _data_size);
duke@435 1214 }
duke@435 1215 bool out_of_bounds(int data_index) {
duke@435 1216 return data_index >= data_size();
duke@435 1217 }
duke@435 1218
duke@435 1219 // Give each of the data entries a chance to perform specific
duke@435 1220 // data initialization.
duke@435 1221 void post_initialize(BytecodeStream* stream);
duke@435 1222
duke@435 1223 // hint accessors
duke@435 1224 int hint_di() const { return _hint_di; }
duke@435 1225 void set_hint_di(int di) {
duke@435 1226 assert(!out_of_bounds(di), "hint_di out of bounds");
duke@435 1227 _hint_di = di;
duke@435 1228 }
duke@435 1229 ProfileData* data_before(int bci) {
duke@435 1230 // avoid SEGV on this edge case
duke@435 1231 if (data_size() == 0)
duke@435 1232 return NULL;
duke@435 1233 int hint = hint_di();
duke@435 1234 if (data_layout_at(hint)->bci() <= bci)
duke@435 1235 return data_at(hint);
duke@435 1236 return first_data();
duke@435 1237 }
duke@435 1238
duke@435 1239 // What is the index of the first data entry?
duke@435 1240 int first_di() { return 0; }
duke@435 1241
duke@435 1242 // Find or create an extra ProfileData:
duke@435 1243 ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
duke@435 1244
kvn@480 1245 // return the argument info cell
kvn@480 1246 ArgInfoData *arg_info();
kvn@480 1247
duke@435 1248 public:
duke@435 1249 static int header_size() {
duke@435 1250 return sizeof(methodDataOopDesc)/wordSize;
duke@435 1251 }
duke@435 1252
duke@435 1253 // Compute the size of a methodDataOop before it is created.
duke@435 1254 static int compute_allocation_size_in_bytes(methodHandle method);
duke@435 1255 static int compute_allocation_size_in_words(methodHandle method);
duke@435 1256 static int compute_extra_data_count(int data_size, int empty_bc_count);
duke@435 1257
duke@435 1258 // Determine if a given bytecode can have profile information.
duke@435 1259 static bool bytecode_has_profile(Bytecodes::Code code) {
duke@435 1260 return bytecode_cell_count(code) != no_profile_data;
duke@435 1261 }
duke@435 1262
duke@435 1263 // Perform initialization of a new methodDataOop
duke@435 1264 void initialize(methodHandle method);
duke@435 1265
duke@435 1266 // My size
duke@435 1267 int object_size_in_bytes() { return _size; }
duke@435 1268 int object_size() {
duke@435 1269 return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord);
duke@435 1270 }
duke@435 1271
duke@435 1272 int creation_mileage() const { return _creation_mileage; }
duke@435 1273 void set_creation_mileage(int x) { _creation_mileage = x; }
duke@435 1274 bool is_mature() const; // consult mileage and ProfileMaturityPercentage
duke@435 1275 static int mileage_of(methodOop m);
duke@435 1276
duke@435 1277 // Support for interprocedural escape analysis, from Thomas Kotzmann.
duke@435 1278 enum EscapeFlag {
duke@435 1279 estimated = 1 << 0,
kvn@513 1280 return_local = 1 << 1,
kvn@513 1281 return_allocated = 1 << 2,
kvn@513 1282 allocated_escapes = 1 << 3,
kvn@513 1283 unknown_modified = 1 << 4
duke@435 1284 };
duke@435 1285
duke@435 1286 intx eflags() { return _eflags; }
duke@435 1287 intx arg_local() { return _arg_local; }
duke@435 1288 intx arg_stack() { return _arg_stack; }
duke@435 1289 intx arg_returned() { return _arg_returned; }
kvn@480 1290 uint arg_modified(int a) { ArgInfoData *aid = arg_info();
kvn@480 1291 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
kvn@480 1292 return aid->arg_modified(a); }
duke@435 1293
duke@435 1294 void set_eflags(intx v) { _eflags = v; }
duke@435 1295 void set_arg_local(intx v) { _arg_local = v; }
duke@435 1296 void set_arg_stack(intx v) { _arg_stack = v; }
duke@435 1297 void set_arg_returned(intx v) { _arg_returned = v; }
kvn@480 1298 void set_arg_modified(int a, uint v) { ArgInfoData *aid = arg_info();
kvn@480 1299 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
kvn@480 1300
kvn@480 1301 aid->set_arg_modified(a, v); }
duke@435 1302
duke@435 1303 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
duke@435 1304
duke@435 1305 // Location and size of data area
duke@435 1306 address data_base() const {
duke@435 1307 return (address) _data;
duke@435 1308 }
duke@435 1309 int data_size() {
duke@435 1310 return _data_size;
duke@435 1311 }
duke@435 1312
duke@435 1313 // Accessors
duke@435 1314 methodOop method() { return _method; }
duke@435 1315
duke@435 1316 // Get the data at an arbitrary (sort of) data index.
duke@435 1317 ProfileData* data_at(int data_index);
duke@435 1318
duke@435 1319 // Walk through the data in order.
duke@435 1320 ProfileData* first_data() { return data_at(first_di()); }
duke@435 1321 ProfileData* next_data(ProfileData* current);
duke@435 1322 bool is_valid(ProfileData* current) { return current != NULL; }
duke@435 1323
duke@435 1324 // Convert a dp (data pointer) to a di (data index).
duke@435 1325 int dp_to_di(address dp) {
duke@435 1326 return dp - ((address)_data);
duke@435 1327 }
duke@435 1328
duke@435 1329 address di_to_dp(int di) {
duke@435 1330 return (address)data_layout_at(di);
duke@435 1331 }
duke@435 1332
duke@435 1333 // bci to di/dp conversion.
duke@435 1334 address bci_to_dp(int bci);
duke@435 1335 int bci_to_di(int bci) {
duke@435 1336 return dp_to_di(bci_to_dp(bci));
duke@435 1337 }
duke@435 1338
duke@435 1339 // Get the data at an arbitrary bci, or NULL if there is none.
duke@435 1340 ProfileData* bci_to_data(int bci);
duke@435 1341
duke@435 1342 // Same, but try to create an extra_data record if one is needed:
duke@435 1343 ProfileData* allocate_bci_to_data(int bci) {
duke@435 1344 ProfileData* data = bci_to_data(bci);
duke@435 1345 return (data != NULL) ? data : bci_to_extra_data(bci, true);
duke@435 1346 }
duke@435 1347
duke@435 1348 // Add a handful of extra data records, for trap tracking.
duke@435 1349 DataLayout* extra_data_base() { return limit_data_position(); }
duke@435 1350 DataLayout* extra_data_limit() { return (DataLayout*)((address)this + object_size_in_bytes()); }
duke@435 1351 int extra_data_size() { return (address)extra_data_limit()
duke@435 1352 - (address)extra_data_base(); }
duke@435 1353 static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
duke@435 1354
duke@435 1355 // Return (uint)-1 for overflow.
duke@435 1356 uint trap_count(int reason) const {
duke@435 1357 assert((uint)reason < _trap_hist_limit, "oob");
duke@435 1358 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
duke@435 1359 }
duke@435 1360 // For loops:
duke@435 1361 static uint trap_reason_limit() { return _trap_hist_limit; }
duke@435 1362 static uint trap_count_limit() { return _trap_hist_mask; }
duke@435 1363 uint inc_trap_count(int reason) {
duke@435 1364 // Count another trap, anywhere in this method.
duke@435 1365 assert(reason >= 0, "must be single trap");
duke@435 1366 if ((uint)reason < _trap_hist_limit) {
duke@435 1367 uint cnt1 = 1 + _trap_hist._array[reason];
duke@435 1368 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow...
duke@435 1369 _trap_hist._array[reason] = cnt1;
duke@435 1370 return cnt1;
duke@435 1371 } else {
duke@435 1372 return _trap_hist_mask + (++_nof_overflow_traps);
duke@435 1373 }
duke@435 1374 } else {
duke@435 1375 // Could not represent the count in the histogram.
duke@435 1376 return (++_nof_overflow_traps);
duke@435 1377 }
duke@435 1378 }
duke@435 1379
duke@435 1380 uint overflow_trap_count() const {
duke@435 1381 return _nof_overflow_traps;
duke@435 1382 }
duke@435 1383 uint overflow_recompile_count() const {
duke@435 1384 return _nof_overflow_recompiles;
duke@435 1385 }
duke@435 1386 void inc_overflow_recompile_count() {
duke@435 1387 _nof_overflow_recompiles += 1;
duke@435 1388 }
duke@435 1389 uint decompile_count() const {
duke@435 1390 return _nof_decompiles;
duke@435 1391 }
duke@435 1392 void inc_decompile_count() {
duke@435 1393 _nof_decompiles += 1;
duke@435 1394 }
duke@435 1395
duke@435 1396 // Support for code generation
duke@435 1397 static ByteSize data_offset() {
duke@435 1398 return byte_offset_of(methodDataOopDesc, _data[0]);
duke@435 1399 }
duke@435 1400
duke@435 1401 // GC support
duke@435 1402 oop* adr_method() const { return (oop*)&_method; }
duke@435 1403 bool object_is_parsable() const { return _size != 0; }
duke@435 1404 void set_object_is_parsable(int object_size_in_bytes) { _size = object_size_in_bytes; }
duke@435 1405
duke@435 1406 #ifndef PRODUCT
duke@435 1407 // printing support for method data
duke@435 1408 void print_data_on(outputStream* st);
duke@435 1409 #endif
duke@435 1410
duke@435 1411 // verification
duke@435 1412 void verify_data_on(outputStream* st);
duke@435 1413 };

mercurial