src/share/vm/oops/methodDataOop.hpp

Tue, 11 Mar 2008 19:00:38 -0700

author
kvn
date
Tue, 11 Mar 2008 19:00:38 -0700
changeset 480
48a3fa21394b
parent 435
a61af66fc99e
child 513
e1e86702e43e
permissions
-rw-r--r--

6667615: (Escape Analysis) extend MDO to cache arguments escape state
Summary: Use MDO to cache arguments escape state determined by the byte code escape analyzer.
Reviewed-by: never

duke@435 1 /*
duke@435 2 * Copyright 2000-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class BytecodeStream;
duke@435 26
duke@435 27 // The MethodData object collects counts and other profile information
duke@435 28 // during zeroth-tier (interpretive) and first-tier execution.
duke@435 29 // The profile is used later by compilation heuristics. Some heuristics
duke@435 30 // enable use of aggressive (or "heroic") optimizations. An aggressive
duke@435 31 // optimization often has a down-side, a corner case that it handles
duke@435 32 // poorly, but which is thought to be rare. The profile provides
duke@435 33 // evidence of this rarity for a given method or even BCI. It allows
duke@435 34 // the compiler to back out of the optimization at places where it
duke@435 35 // has historically been a poor choice. Other heuristics try to use
duke@435 36 // specific information gathered about types observed at a given site.
duke@435 37 //
duke@435 38 // All data in the profile is approximate. It is expected to be accurate
duke@435 39 // on the whole, but the system expects occasional inaccuraces, due to
duke@435 40 // counter overflow, multiprocessor races during data collection, space
duke@435 41 // limitations, missing MDO blocks, etc. Bad or missing data will degrade
duke@435 42 // optimization quality but will not affect correctness. Also, each MDO
duke@435 43 // is marked with its birth-date ("creation_mileage") which can be used
duke@435 44 // to assess the quality ("maturity") of its data.
duke@435 45 //
duke@435 46 // Short (<32-bit) counters are designed to overflow to a known "saturated"
duke@435 47 // state. Also, certain recorded per-BCI events are given one-bit counters
duke@435 48 // which overflow to a saturated state which applied to all counters at
duke@435 49 // that BCI. In other words, there is a small lattice which approximates
duke@435 50 // the ideal of an infinite-precision counter for each event at each BCI,
duke@435 51 // and the lattice quickly "bottoms out" in a state where all counters
duke@435 52 // are taken to be indefinitely large.
duke@435 53 //
duke@435 54 // The reader will find many data races in profile gathering code, starting
duke@435 55 // with invocation counter incrementation. None of these races harm correct
duke@435 56 // execution of the compiled code.
duke@435 57
duke@435 58 // DataLayout
duke@435 59 //
duke@435 60 // Overlay for generic profiling data.
duke@435 61 class DataLayout VALUE_OBJ_CLASS_SPEC {
duke@435 62 private:
duke@435 63 // Every data layout begins with a header. This header
duke@435 64 // contains a tag, which is used to indicate the size/layout
duke@435 65 // of the data, 4 bits of flags, which can be used in any way,
duke@435 66 // 4 bits of trap history (none/one reason/many reasons),
duke@435 67 // and a bci, which is used to tie this piece of data to a
duke@435 68 // specific bci in the bytecodes.
duke@435 69 union {
duke@435 70 intptr_t _bits;
duke@435 71 struct {
duke@435 72 u1 _tag;
duke@435 73 u1 _flags;
duke@435 74 u2 _bci;
duke@435 75 } _struct;
duke@435 76 } _header;
duke@435 77
duke@435 78 // The data layout has an arbitrary number of cells, each sized
duke@435 79 // to accomodate a pointer or an integer.
duke@435 80 intptr_t _cells[1];
duke@435 81
duke@435 82 // Some types of data layouts need a length field.
duke@435 83 static bool needs_array_len(u1 tag);
duke@435 84
duke@435 85 public:
duke@435 86 enum {
duke@435 87 counter_increment = 1
duke@435 88 };
duke@435 89
duke@435 90 enum {
duke@435 91 cell_size = sizeof(intptr_t)
duke@435 92 };
duke@435 93
duke@435 94 // Tag values
duke@435 95 enum {
duke@435 96 no_tag,
duke@435 97 bit_data_tag,
duke@435 98 counter_data_tag,
duke@435 99 jump_data_tag,
duke@435 100 receiver_type_data_tag,
duke@435 101 virtual_call_data_tag,
duke@435 102 ret_data_tag,
duke@435 103 branch_data_tag,
kvn@480 104 multi_branch_data_tag,
kvn@480 105 arg_info_data_tag
duke@435 106 };
duke@435 107
duke@435 108 enum {
duke@435 109 // The _struct._flags word is formatted as [trap_state:4 | flags:4].
duke@435 110 // The trap state breaks down further as [recompile:1 | reason:3].
duke@435 111 // This further breakdown is defined in deoptimization.cpp.
duke@435 112 // See Deoptimization::trap_state_reason for an assert that
duke@435 113 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
duke@435 114 //
duke@435 115 // The trap_state is collected only if ProfileTraps is true.
duke@435 116 trap_bits = 1+3, // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
duke@435 117 trap_shift = BitsPerByte - trap_bits,
duke@435 118 trap_mask = right_n_bits(trap_bits),
duke@435 119 trap_mask_in_place = (trap_mask << trap_shift),
duke@435 120 flag_limit = trap_shift,
duke@435 121 flag_mask = right_n_bits(flag_limit),
duke@435 122 first_flag = 0
duke@435 123 };
duke@435 124
duke@435 125 // Size computation
duke@435 126 static int header_size_in_bytes() {
duke@435 127 return cell_size;
duke@435 128 }
duke@435 129 static int header_size_in_cells() {
duke@435 130 return 1;
duke@435 131 }
duke@435 132
duke@435 133 static int compute_size_in_bytes(int cell_count) {
duke@435 134 return header_size_in_bytes() + cell_count * cell_size;
duke@435 135 }
duke@435 136
duke@435 137 // Initialization
duke@435 138 void initialize(u1 tag, u2 bci, int cell_count);
duke@435 139
duke@435 140 // Accessors
duke@435 141 u1 tag() {
duke@435 142 return _header._struct._tag;
duke@435 143 }
duke@435 144
duke@435 145 // Return a few bits of trap state. Range is [0..trap_mask].
duke@435 146 // The state tells if traps with zero, one, or many reasons have occurred.
duke@435 147 // It also tells whether zero or many recompilations have occurred.
duke@435 148 // The associated trap histogram in the MDO itself tells whether
duke@435 149 // traps are common or not. If a BCI shows that a trap X has
duke@435 150 // occurred, and the MDO shows N occurrences of X, we make the
duke@435 151 // simplifying assumption that all N occurrences can be blamed
duke@435 152 // on that BCI.
duke@435 153 int trap_state() {
duke@435 154 return ((_header._struct._flags >> trap_shift) & trap_mask);
duke@435 155 }
duke@435 156
duke@435 157 void set_trap_state(int new_state) {
duke@435 158 assert(ProfileTraps, "used only under +ProfileTraps");
duke@435 159 uint old_flags = (_header._struct._flags & flag_mask);
duke@435 160 _header._struct._flags = (new_state << trap_shift) | old_flags;
duke@435 161 assert(trap_state() == new_state, "sanity");
duke@435 162 }
duke@435 163
duke@435 164 u1 flags() {
duke@435 165 return _header._struct._flags;
duke@435 166 }
duke@435 167
duke@435 168 u2 bci() {
duke@435 169 return _header._struct._bci;
duke@435 170 }
duke@435 171
duke@435 172 void set_header(intptr_t value) {
duke@435 173 _header._bits = value;
duke@435 174 }
duke@435 175 void release_set_header(intptr_t value) {
duke@435 176 OrderAccess::release_store_ptr(&_header._bits, value);
duke@435 177 }
duke@435 178 intptr_t header() {
duke@435 179 return _header._bits;
duke@435 180 }
duke@435 181 void set_cell_at(int index, intptr_t value) {
duke@435 182 _cells[index] = value;
duke@435 183 }
duke@435 184 void release_set_cell_at(int index, intptr_t value) {
duke@435 185 OrderAccess::release_store_ptr(&_cells[index], value);
duke@435 186 }
duke@435 187 intptr_t cell_at(int index) {
duke@435 188 return _cells[index];
duke@435 189 }
duke@435 190 intptr_t* adr_cell_at(int index) {
duke@435 191 return &_cells[index];
duke@435 192 }
duke@435 193 oop* adr_oop_at(int index) {
duke@435 194 return (oop*)&(_cells[index]);
duke@435 195 }
duke@435 196
duke@435 197 void set_flag_at(int flag_number) {
duke@435 198 assert(flag_number < flag_limit, "oob");
duke@435 199 _header._struct._flags |= (0x1 << flag_number);
duke@435 200 }
duke@435 201 bool flag_at(int flag_number) {
duke@435 202 assert(flag_number < flag_limit, "oob");
duke@435 203 return (_header._struct._flags & (0x1 << flag_number)) != 0;
duke@435 204 }
duke@435 205
duke@435 206 // Low-level support for code generation.
duke@435 207 static ByteSize header_offset() {
duke@435 208 return byte_offset_of(DataLayout, _header);
duke@435 209 }
duke@435 210 static ByteSize tag_offset() {
duke@435 211 return byte_offset_of(DataLayout, _header._struct._tag);
duke@435 212 }
duke@435 213 static ByteSize flags_offset() {
duke@435 214 return byte_offset_of(DataLayout, _header._struct._flags);
duke@435 215 }
duke@435 216 static ByteSize bci_offset() {
duke@435 217 return byte_offset_of(DataLayout, _header._struct._bci);
duke@435 218 }
duke@435 219 static ByteSize cell_offset(int index) {
duke@435 220 return byte_offset_of(DataLayout, _cells[index]);
duke@435 221 }
duke@435 222 // Return a value which, when or-ed as a byte into _flags, sets the flag.
duke@435 223 static int flag_number_to_byte_constant(int flag_number) {
duke@435 224 assert(0 <= flag_number && flag_number < flag_limit, "oob");
duke@435 225 DataLayout temp; temp.set_header(0);
duke@435 226 temp.set_flag_at(flag_number);
duke@435 227 return temp._header._struct._flags;
duke@435 228 }
duke@435 229 // Return a value which, when or-ed as a word into _header, sets the flag.
duke@435 230 static intptr_t flag_mask_to_header_mask(int byte_constant) {
duke@435 231 DataLayout temp; temp.set_header(0);
duke@435 232 temp._header._struct._flags = byte_constant;
duke@435 233 return temp._header._bits;
duke@435 234 }
duke@435 235 };
duke@435 236
duke@435 237
duke@435 238 // ProfileData class hierarchy
duke@435 239 class ProfileData;
duke@435 240 class BitData;
duke@435 241 class CounterData;
duke@435 242 class ReceiverTypeData;
duke@435 243 class VirtualCallData;
duke@435 244 class RetData;
duke@435 245 class JumpData;
duke@435 246 class BranchData;
duke@435 247 class ArrayData;
duke@435 248 class MultiBranchData;
kvn@480 249 class ArgInfoData;
duke@435 250
duke@435 251
duke@435 252 // ProfileData
duke@435 253 //
duke@435 254 // A ProfileData object is created to refer to a section of profiling
duke@435 255 // data in a structured way.
duke@435 256 class ProfileData : public ResourceObj {
duke@435 257 private:
duke@435 258 #ifndef PRODUCT
duke@435 259 enum {
duke@435 260 tab_width_one = 16,
duke@435 261 tab_width_two = 36
duke@435 262 };
duke@435 263 #endif // !PRODUCT
duke@435 264
duke@435 265 // This is a pointer to a section of profiling data.
duke@435 266 DataLayout* _data;
duke@435 267
duke@435 268 protected:
duke@435 269 DataLayout* data() { return _data; }
duke@435 270
duke@435 271 enum {
duke@435 272 cell_size = DataLayout::cell_size
duke@435 273 };
duke@435 274
duke@435 275 public:
duke@435 276 // How many cells are in this?
duke@435 277 virtual int cell_count() {
duke@435 278 ShouldNotReachHere();
duke@435 279 return -1;
duke@435 280 }
duke@435 281
duke@435 282 // Return the size of this data.
duke@435 283 int size_in_bytes() {
duke@435 284 return DataLayout::compute_size_in_bytes(cell_count());
duke@435 285 }
duke@435 286
duke@435 287 protected:
duke@435 288 // Low-level accessors for underlying data
duke@435 289 void set_intptr_at(int index, intptr_t value) {
duke@435 290 assert(0 <= index && index < cell_count(), "oob");
duke@435 291 data()->set_cell_at(index, value);
duke@435 292 }
duke@435 293 void release_set_intptr_at(int index, intptr_t value) {
duke@435 294 assert(0 <= index && index < cell_count(), "oob");
duke@435 295 data()->release_set_cell_at(index, value);
duke@435 296 }
duke@435 297 intptr_t intptr_at(int index) {
duke@435 298 assert(0 <= index && index < cell_count(), "oob");
duke@435 299 return data()->cell_at(index);
duke@435 300 }
duke@435 301 void set_uint_at(int index, uint value) {
duke@435 302 set_intptr_at(index, (intptr_t) value);
duke@435 303 }
duke@435 304 void release_set_uint_at(int index, uint value) {
duke@435 305 release_set_intptr_at(index, (intptr_t) value);
duke@435 306 }
duke@435 307 uint uint_at(int index) {
duke@435 308 return (uint)intptr_at(index);
duke@435 309 }
duke@435 310 void set_int_at(int index, int value) {
duke@435 311 set_intptr_at(index, (intptr_t) value);
duke@435 312 }
duke@435 313 void release_set_int_at(int index, int value) {
duke@435 314 release_set_intptr_at(index, (intptr_t) value);
duke@435 315 }
duke@435 316 int int_at(int index) {
duke@435 317 return (int)intptr_at(index);
duke@435 318 }
duke@435 319 int int_at_unchecked(int index) {
duke@435 320 return (int)data()->cell_at(index);
duke@435 321 }
duke@435 322 void set_oop_at(int index, oop value) {
duke@435 323 set_intptr_at(index, (intptr_t) value);
duke@435 324 }
duke@435 325 oop oop_at(int index) {
duke@435 326 return (oop)intptr_at(index);
duke@435 327 }
duke@435 328 oop* adr_oop_at(int index) {
duke@435 329 assert(0 <= index && index < cell_count(), "oob");
duke@435 330 return data()->adr_oop_at(index);
duke@435 331 }
duke@435 332
duke@435 333 void set_flag_at(int flag_number) {
duke@435 334 data()->set_flag_at(flag_number);
duke@435 335 }
duke@435 336 bool flag_at(int flag_number) {
duke@435 337 return data()->flag_at(flag_number);
duke@435 338 }
duke@435 339
duke@435 340 // two convenient imports for use by subclasses:
duke@435 341 static ByteSize cell_offset(int index) {
duke@435 342 return DataLayout::cell_offset(index);
duke@435 343 }
duke@435 344 static int flag_number_to_byte_constant(int flag_number) {
duke@435 345 return DataLayout::flag_number_to_byte_constant(flag_number);
duke@435 346 }
duke@435 347
duke@435 348 ProfileData(DataLayout* data) {
duke@435 349 _data = data;
duke@435 350 }
duke@435 351
duke@435 352 public:
duke@435 353 // Constructor for invalid ProfileData.
duke@435 354 ProfileData();
duke@435 355
duke@435 356 u2 bci() {
duke@435 357 return data()->bci();
duke@435 358 }
duke@435 359
duke@435 360 address dp() {
duke@435 361 return (address)_data;
duke@435 362 }
duke@435 363
duke@435 364 int trap_state() {
duke@435 365 return data()->trap_state();
duke@435 366 }
duke@435 367 void set_trap_state(int new_state) {
duke@435 368 data()->set_trap_state(new_state);
duke@435 369 }
duke@435 370
duke@435 371 // Type checking
duke@435 372 virtual bool is_BitData() { return false; }
duke@435 373 virtual bool is_CounterData() { return false; }
duke@435 374 virtual bool is_JumpData() { return false; }
duke@435 375 virtual bool is_ReceiverTypeData(){ return false; }
duke@435 376 virtual bool is_VirtualCallData() { return false; }
duke@435 377 virtual bool is_RetData() { return false; }
duke@435 378 virtual bool is_BranchData() { return false; }
duke@435 379 virtual bool is_ArrayData() { return false; }
duke@435 380 virtual bool is_MultiBranchData() { return false; }
kvn@480 381 virtual bool is_ArgInfoData() { return false; }
kvn@480 382
duke@435 383
duke@435 384 BitData* as_BitData() {
duke@435 385 assert(is_BitData(), "wrong type");
duke@435 386 return is_BitData() ? (BitData*) this : NULL;
duke@435 387 }
duke@435 388 CounterData* as_CounterData() {
duke@435 389 assert(is_CounterData(), "wrong type");
duke@435 390 return is_CounterData() ? (CounterData*) this : NULL;
duke@435 391 }
duke@435 392 JumpData* as_JumpData() {
duke@435 393 assert(is_JumpData(), "wrong type");
duke@435 394 return is_JumpData() ? (JumpData*) this : NULL;
duke@435 395 }
duke@435 396 ReceiverTypeData* as_ReceiverTypeData() {
duke@435 397 assert(is_ReceiverTypeData(), "wrong type");
duke@435 398 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
duke@435 399 }
duke@435 400 VirtualCallData* as_VirtualCallData() {
duke@435 401 assert(is_VirtualCallData(), "wrong type");
duke@435 402 return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
duke@435 403 }
duke@435 404 RetData* as_RetData() {
duke@435 405 assert(is_RetData(), "wrong type");
duke@435 406 return is_RetData() ? (RetData*) this : NULL;
duke@435 407 }
duke@435 408 BranchData* as_BranchData() {
duke@435 409 assert(is_BranchData(), "wrong type");
duke@435 410 return is_BranchData() ? (BranchData*) this : NULL;
duke@435 411 }
duke@435 412 ArrayData* as_ArrayData() {
duke@435 413 assert(is_ArrayData(), "wrong type");
duke@435 414 return is_ArrayData() ? (ArrayData*) this : NULL;
duke@435 415 }
duke@435 416 MultiBranchData* as_MultiBranchData() {
duke@435 417 assert(is_MultiBranchData(), "wrong type");
duke@435 418 return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
duke@435 419 }
kvn@480 420 ArgInfoData* as_ArgInfoData() {
kvn@480 421 assert(is_ArgInfoData(), "wrong type");
kvn@480 422 return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
kvn@480 423 }
duke@435 424
duke@435 425
duke@435 426 // Subclass specific initialization
duke@435 427 virtual void post_initialize(BytecodeStream* stream, methodDataOop mdo) {}
duke@435 428
duke@435 429 // GC support
duke@435 430 virtual void follow_contents() {}
duke@435 431 virtual void oop_iterate(OopClosure* blk) {}
duke@435 432 virtual void oop_iterate_m(OopClosure* blk, MemRegion mr) {}
duke@435 433 virtual void adjust_pointers() {}
duke@435 434
duke@435 435 #ifndef SERIALGC
duke@435 436 // Parallel old support
duke@435 437 virtual void follow_contents(ParCompactionManager* cm) {}
duke@435 438 virtual void update_pointers() {}
duke@435 439 virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {}
duke@435 440 #endif // SERIALGC
duke@435 441
duke@435 442 // CI translation: ProfileData can represent both MethodDataOop data
duke@435 443 // as well as CIMethodData data. This function is provided for translating
duke@435 444 // an oop in a ProfileData to the ci equivalent. Generally speaking,
duke@435 445 // most ProfileData don't require any translation, so we provide the null
duke@435 446 // translation here, and the required translators are in the ci subclasses.
duke@435 447 virtual void translate_from(ProfileData* data) {}
duke@435 448
duke@435 449 virtual void print_data_on(outputStream* st) {
duke@435 450 ShouldNotReachHere();
duke@435 451 }
duke@435 452
duke@435 453 #ifndef PRODUCT
duke@435 454 void print_shared(outputStream* st, const char* name);
duke@435 455 void tab(outputStream* st);
duke@435 456 #endif
duke@435 457 };
duke@435 458
duke@435 459 // BitData
duke@435 460 //
duke@435 461 // A BitData holds a flag or two in its header.
duke@435 462 class BitData : public ProfileData {
duke@435 463 protected:
duke@435 464 enum {
duke@435 465 // null_seen:
duke@435 466 // saw a null operand (cast/aastore/instanceof)
duke@435 467 null_seen_flag = DataLayout::first_flag + 0
duke@435 468 };
duke@435 469 enum { bit_cell_count = 0 }; // no additional data fields needed.
duke@435 470 public:
duke@435 471 BitData(DataLayout* layout) : ProfileData(layout) {
duke@435 472 }
duke@435 473
duke@435 474 virtual bool is_BitData() { return true; }
duke@435 475
duke@435 476 static int static_cell_count() {
duke@435 477 return bit_cell_count;
duke@435 478 }
duke@435 479
duke@435 480 virtual int cell_count() {
duke@435 481 return static_cell_count();
duke@435 482 }
duke@435 483
duke@435 484 // Accessor
duke@435 485
duke@435 486 // The null_seen flag bit is specially known to the interpreter.
duke@435 487 // Consulting it allows the compiler to avoid setting up null_check traps.
duke@435 488 bool null_seen() { return flag_at(null_seen_flag); }
duke@435 489 void set_null_seen() { set_flag_at(null_seen_flag); }
duke@435 490
duke@435 491
duke@435 492 // Code generation support
duke@435 493 static int null_seen_byte_constant() {
duke@435 494 return flag_number_to_byte_constant(null_seen_flag);
duke@435 495 }
duke@435 496
duke@435 497 static ByteSize bit_data_size() {
duke@435 498 return cell_offset(bit_cell_count);
duke@435 499 }
duke@435 500
duke@435 501 #ifndef PRODUCT
duke@435 502 void print_data_on(outputStream* st);
duke@435 503 #endif
duke@435 504 };
duke@435 505
duke@435 506 // CounterData
duke@435 507 //
duke@435 508 // A CounterData corresponds to a simple counter.
duke@435 509 class CounterData : public BitData {
duke@435 510 protected:
duke@435 511 enum {
duke@435 512 count_off,
duke@435 513 counter_cell_count
duke@435 514 };
duke@435 515 public:
duke@435 516 CounterData(DataLayout* layout) : BitData(layout) {}
duke@435 517
duke@435 518 virtual bool is_CounterData() { return true; }
duke@435 519
duke@435 520 static int static_cell_count() {
duke@435 521 return counter_cell_count;
duke@435 522 }
duke@435 523
duke@435 524 virtual int cell_count() {
duke@435 525 return static_cell_count();
duke@435 526 }
duke@435 527
duke@435 528 // Direct accessor
duke@435 529 uint count() {
duke@435 530 return uint_at(count_off);
duke@435 531 }
duke@435 532
duke@435 533 // Code generation support
duke@435 534 static ByteSize count_offset() {
duke@435 535 return cell_offset(count_off);
duke@435 536 }
duke@435 537 static ByteSize counter_data_size() {
duke@435 538 return cell_offset(counter_cell_count);
duke@435 539 }
duke@435 540
duke@435 541 #ifndef PRODUCT
duke@435 542 void print_data_on(outputStream* st);
duke@435 543 #endif
duke@435 544 };
duke@435 545
duke@435 546 // JumpData
duke@435 547 //
duke@435 548 // A JumpData is used to access profiling information for a direct
duke@435 549 // branch. It is a counter, used for counting the number of branches,
duke@435 550 // plus a data displacement, used for realigning the data pointer to
duke@435 551 // the corresponding target bci.
duke@435 552 class JumpData : public ProfileData {
duke@435 553 protected:
duke@435 554 enum {
duke@435 555 taken_off_set,
duke@435 556 displacement_off_set,
duke@435 557 jump_cell_count
duke@435 558 };
duke@435 559
duke@435 560 void set_displacement(int displacement) {
duke@435 561 set_int_at(displacement_off_set, displacement);
duke@435 562 }
duke@435 563
duke@435 564 public:
duke@435 565 JumpData(DataLayout* layout) : ProfileData(layout) {
duke@435 566 assert(layout->tag() == DataLayout::jump_data_tag ||
duke@435 567 layout->tag() == DataLayout::branch_data_tag, "wrong type");
duke@435 568 }
duke@435 569
duke@435 570 virtual bool is_JumpData() { return true; }
duke@435 571
duke@435 572 static int static_cell_count() {
duke@435 573 return jump_cell_count;
duke@435 574 }
duke@435 575
duke@435 576 virtual int cell_count() {
duke@435 577 return static_cell_count();
duke@435 578 }
duke@435 579
duke@435 580 // Direct accessor
duke@435 581 uint taken() {
duke@435 582 return uint_at(taken_off_set);
duke@435 583 }
duke@435 584 // Saturating counter
duke@435 585 uint inc_taken() {
duke@435 586 uint cnt = taken() + 1;
duke@435 587 // Did we wrap? Will compiler screw us??
duke@435 588 if (cnt == 0) cnt--;
duke@435 589 set_uint_at(taken_off_set, cnt);
duke@435 590 return cnt;
duke@435 591 }
duke@435 592
duke@435 593 int displacement() {
duke@435 594 return int_at(displacement_off_set);
duke@435 595 }
duke@435 596
duke@435 597 // Code generation support
duke@435 598 static ByteSize taken_offset() {
duke@435 599 return cell_offset(taken_off_set);
duke@435 600 }
duke@435 601
duke@435 602 static ByteSize displacement_offset() {
duke@435 603 return cell_offset(displacement_off_set);
duke@435 604 }
duke@435 605
duke@435 606 // Specific initialization.
duke@435 607 void post_initialize(BytecodeStream* stream, methodDataOop mdo);
duke@435 608
duke@435 609 #ifndef PRODUCT
duke@435 610 void print_data_on(outputStream* st);
duke@435 611 #endif
duke@435 612 };
duke@435 613
duke@435 614 // ReceiverTypeData
duke@435 615 //
duke@435 616 // A ReceiverTypeData is used to access profiling information about a
duke@435 617 // dynamic type check. It consists of a counter which counts the total times
duke@435 618 // that the check is reached, and a series of (klassOop, count) pairs
duke@435 619 // which are used to store a type profile for the receiver of the check.
duke@435 620 class ReceiverTypeData : public CounterData {
duke@435 621 protected:
duke@435 622 enum {
duke@435 623 receiver0_offset = counter_cell_count,
duke@435 624 count0_offset,
duke@435 625 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
duke@435 626 };
duke@435 627
duke@435 628 public:
duke@435 629 ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
duke@435 630 assert(layout->tag() == DataLayout::receiver_type_data_tag ||
duke@435 631 layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
duke@435 632 }
duke@435 633
duke@435 634 virtual bool is_ReceiverTypeData() { return true; }
duke@435 635
duke@435 636 static int static_cell_count() {
duke@435 637 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
duke@435 638 }
duke@435 639
duke@435 640 virtual int cell_count() {
duke@435 641 return static_cell_count();
duke@435 642 }
duke@435 643
duke@435 644 // Direct accessors
duke@435 645 static uint row_limit() {
duke@435 646 return TypeProfileWidth;
duke@435 647 }
duke@435 648 static int receiver_cell_index(uint row) {
duke@435 649 return receiver0_offset + row * receiver_type_row_cell_count;
duke@435 650 }
duke@435 651 static int receiver_count_cell_index(uint row) {
duke@435 652 return count0_offset + row * receiver_type_row_cell_count;
duke@435 653 }
duke@435 654
duke@435 655 // Get the receiver at row. The 'unchecked' version is needed by parallel old
duke@435 656 // gc; it does not assert the receiver is a klass. During compaction of the
duke@435 657 // perm gen, the klass may already have moved, so the is_klass() predicate
duke@435 658 // would fail. The 'normal' version should be used whenever possible.
duke@435 659 klassOop receiver_unchecked(uint row) {
duke@435 660 assert(row < row_limit(), "oob");
duke@435 661 oop recv = oop_at(receiver_cell_index(row));
duke@435 662 return (klassOop)recv;
duke@435 663 }
duke@435 664
duke@435 665 klassOop receiver(uint row) {
duke@435 666 klassOop recv = receiver_unchecked(row);
duke@435 667 assert(recv == NULL || ((oop)recv)->is_klass(), "wrong type");
duke@435 668 return recv;
duke@435 669 }
duke@435 670
duke@435 671 uint receiver_count(uint row) {
duke@435 672 assert(row < row_limit(), "oob");
duke@435 673 return uint_at(receiver_count_cell_index(row));
duke@435 674 }
duke@435 675
duke@435 676 // Code generation support
duke@435 677 static ByteSize receiver_offset(uint row) {
duke@435 678 return cell_offset(receiver_cell_index(row));
duke@435 679 }
duke@435 680 static ByteSize receiver_count_offset(uint row) {
duke@435 681 return cell_offset(receiver_count_cell_index(row));
duke@435 682 }
duke@435 683 static ByteSize receiver_type_data_size() {
duke@435 684 return cell_offset(static_cell_count());
duke@435 685 }
duke@435 686
duke@435 687 // GC support
duke@435 688 virtual void follow_contents();
duke@435 689 virtual void oop_iterate(OopClosure* blk);
duke@435 690 virtual void oop_iterate_m(OopClosure* blk, MemRegion mr);
duke@435 691 virtual void adjust_pointers();
duke@435 692
duke@435 693 #ifndef SERIALGC
duke@435 694 // Parallel old support
duke@435 695 virtual void follow_contents(ParCompactionManager* cm);
duke@435 696 virtual void update_pointers();
duke@435 697 virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr);
duke@435 698 #endif // SERIALGC
duke@435 699
duke@435 700 oop* adr_receiver(uint row) {
duke@435 701 return adr_oop_at(receiver_cell_index(row));
duke@435 702 }
duke@435 703
duke@435 704 #ifndef PRODUCT
duke@435 705 void print_receiver_data_on(outputStream* st);
duke@435 706 void print_data_on(outputStream* st);
duke@435 707 #endif
duke@435 708 };
duke@435 709
duke@435 710 // VirtualCallData
duke@435 711 //
duke@435 712 // A VirtualCallData is used to access profiling information about a
duke@435 713 // virtual call. For now, it has nothing more than a ReceiverTypeData.
duke@435 714 class VirtualCallData : public ReceiverTypeData {
duke@435 715 public:
duke@435 716 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
duke@435 717 assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
duke@435 718 }
duke@435 719
duke@435 720 virtual bool is_VirtualCallData() { return true; }
duke@435 721
duke@435 722 static int static_cell_count() {
duke@435 723 // At this point we could add more profile state, e.g., for arguments.
duke@435 724 // But for now it's the same size as the base record type.
duke@435 725 return ReceiverTypeData::static_cell_count();
duke@435 726 }
duke@435 727
duke@435 728 virtual int cell_count() {
duke@435 729 return static_cell_count();
duke@435 730 }
duke@435 731
duke@435 732 // Direct accessors
duke@435 733 static ByteSize virtual_call_data_size() {
duke@435 734 return cell_offset(static_cell_count());
duke@435 735 }
duke@435 736
duke@435 737 #ifndef PRODUCT
duke@435 738 void print_data_on(outputStream* st);
duke@435 739 #endif
duke@435 740 };
duke@435 741
duke@435 742 // RetData
duke@435 743 //
duke@435 744 // A RetData is used to access profiling information for a ret bytecode.
duke@435 745 // It is composed of a count of the number of times that the ret has
duke@435 746 // been executed, followed by a series of triples of the form
duke@435 747 // (bci, count, di) which count the number of times that some bci was the
duke@435 748 // target of the ret and cache a corresponding data displacement.
duke@435 749 class RetData : public CounterData {
duke@435 750 protected:
duke@435 751 enum {
duke@435 752 bci0_offset = counter_cell_count,
duke@435 753 count0_offset,
duke@435 754 displacement0_offset,
duke@435 755 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
duke@435 756 };
duke@435 757
duke@435 758 void set_bci(uint row, int bci) {
duke@435 759 assert((uint)row < row_limit(), "oob");
duke@435 760 set_int_at(bci0_offset + row * ret_row_cell_count, bci);
duke@435 761 }
duke@435 762 void release_set_bci(uint row, int bci) {
duke@435 763 assert((uint)row < row_limit(), "oob");
duke@435 764 // 'release' when setting the bci acts as a valid flag for other
duke@435 765 // threads wrt bci_count and bci_displacement.
duke@435 766 release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
duke@435 767 }
duke@435 768 void set_bci_count(uint row, uint count) {
duke@435 769 assert((uint)row < row_limit(), "oob");
duke@435 770 set_uint_at(count0_offset + row * ret_row_cell_count, count);
duke@435 771 }
duke@435 772 void set_bci_displacement(uint row, int disp) {
duke@435 773 set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
duke@435 774 }
duke@435 775
duke@435 776 public:
duke@435 777 RetData(DataLayout* layout) : CounterData(layout) {
duke@435 778 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
duke@435 779 }
duke@435 780
duke@435 781 virtual bool is_RetData() { return true; }
duke@435 782
duke@435 783 enum {
duke@435 784 no_bci = -1 // value of bci when bci1/2 are not in use.
duke@435 785 };
duke@435 786
duke@435 787 static int static_cell_count() {
duke@435 788 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
duke@435 789 }
duke@435 790
duke@435 791 virtual int cell_count() {
duke@435 792 return static_cell_count();
duke@435 793 }
duke@435 794
duke@435 795 static uint row_limit() {
duke@435 796 return BciProfileWidth;
duke@435 797 }
duke@435 798 static int bci_cell_index(uint row) {
duke@435 799 return bci0_offset + row * ret_row_cell_count;
duke@435 800 }
duke@435 801 static int bci_count_cell_index(uint row) {
duke@435 802 return count0_offset + row * ret_row_cell_count;
duke@435 803 }
duke@435 804 static int bci_displacement_cell_index(uint row) {
duke@435 805 return displacement0_offset + row * ret_row_cell_count;
duke@435 806 }
duke@435 807
duke@435 808 // Direct accessors
duke@435 809 int bci(uint row) {
duke@435 810 return int_at(bci_cell_index(row));
duke@435 811 }
duke@435 812 uint bci_count(uint row) {
duke@435 813 return uint_at(bci_count_cell_index(row));
duke@435 814 }
duke@435 815 int bci_displacement(uint row) {
duke@435 816 return int_at(bci_displacement_cell_index(row));
duke@435 817 }
duke@435 818
duke@435 819 // Interpreter Runtime support
duke@435 820 address fixup_ret(int return_bci, methodDataHandle mdo);
duke@435 821
duke@435 822 // Code generation support
duke@435 823 static ByteSize bci_offset(uint row) {
duke@435 824 return cell_offset(bci_cell_index(row));
duke@435 825 }
duke@435 826 static ByteSize bci_count_offset(uint row) {
duke@435 827 return cell_offset(bci_count_cell_index(row));
duke@435 828 }
duke@435 829 static ByteSize bci_displacement_offset(uint row) {
duke@435 830 return cell_offset(bci_displacement_cell_index(row));
duke@435 831 }
duke@435 832
duke@435 833 // Specific initialization.
duke@435 834 void post_initialize(BytecodeStream* stream, methodDataOop mdo);
duke@435 835
duke@435 836 #ifndef PRODUCT
duke@435 837 void print_data_on(outputStream* st);
duke@435 838 #endif
duke@435 839 };
duke@435 840
duke@435 841 // BranchData
duke@435 842 //
duke@435 843 // A BranchData is used to access profiling data for a two-way branch.
duke@435 844 // It consists of taken and not_taken counts as well as a data displacement
duke@435 845 // for the taken case.
duke@435 846 class BranchData : public JumpData {
duke@435 847 protected:
duke@435 848 enum {
duke@435 849 not_taken_off_set = jump_cell_count,
duke@435 850 branch_cell_count
duke@435 851 };
duke@435 852
duke@435 853 void set_displacement(int displacement) {
duke@435 854 set_int_at(displacement_off_set, displacement);
duke@435 855 }
duke@435 856
duke@435 857 public:
duke@435 858 BranchData(DataLayout* layout) : JumpData(layout) {
duke@435 859 assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
duke@435 860 }
duke@435 861
duke@435 862 virtual bool is_BranchData() { return true; }
duke@435 863
duke@435 864 static int static_cell_count() {
duke@435 865 return branch_cell_count;
duke@435 866 }
duke@435 867
duke@435 868 virtual int cell_count() {
duke@435 869 return static_cell_count();
duke@435 870 }
duke@435 871
duke@435 872 // Direct accessor
duke@435 873 uint not_taken() {
duke@435 874 return uint_at(not_taken_off_set);
duke@435 875 }
duke@435 876
duke@435 877 uint inc_not_taken() {
duke@435 878 uint cnt = not_taken() + 1;
duke@435 879 // Did we wrap? Will compiler screw us??
duke@435 880 if (cnt == 0) cnt--;
duke@435 881 set_uint_at(not_taken_off_set, cnt);
duke@435 882 return cnt;
duke@435 883 }
duke@435 884
duke@435 885 // Code generation support
duke@435 886 static ByteSize not_taken_offset() {
duke@435 887 return cell_offset(not_taken_off_set);
duke@435 888 }
duke@435 889 static ByteSize branch_data_size() {
duke@435 890 return cell_offset(branch_cell_count);
duke@435 891 }
duke@435 892
duke@435 893 // Specific initialization.
duke@435 894 void post_initialize(BytecodeStream* stream, methodDataOop mdo);
duke@435 895
duke@435 896 #ifndef PRODUCT
duke@435 897 void print_data_on(outputStream* st);
duke@435 898 #endif
duke@435 899 };
duke@435 900
duke@435 901 // ArrayData
duke@435 902 //
duke@435 903 // A ArrayData is a base class for accessing profiling data which does
duke@435 904 // not have a statically known size. It consists of an array length
duke@435 905 // and an array start.
duke@435 906 class ArrayData : public ProfileData {
duke@435 907 protected:
duke@435 908 friend class DataLayout;
duke@435 909
duke@435 910 enum {
duke@435 911 array_len_off_set,
duke@435 912 array_start_off_set
duke@435 913 };
duke@435 914
duke@435 915 uint array_uint_at(int index) {
duke@435 916 int aindex = index + array_start_off_set;
duke@435 917 return uint_at(aindex);
duke@435 918 }
duke@435 919 int array_int_at(int index) {
duke@435 920 int aindex = index + array_start_off_set;
duke@435 921 return int_at(aindex);
duke@435 922 }
duke@435 923 oop array_oop_at(int index) {
duke@435 924 int aindex = index + array_start_off_set;
duke@435 925 return oop_at(aindex);
duke@435 926 }
duke@435 927 void array_set_int_at(int index, int value) {
duke@435 928 int aindex = index + array_start_off_set;
duke@435 929 set_int_at(aindex, value);
duke@435 930 }
duke@435 931
duke@435 932 // Code generation support for subclasses.
duke@435 933 static ByteSize array_element_offset(int index) {
duke@435 934 return cell_offset(array_start_off_set + index);
duke@435 935 }
duke@435 936
duke@435 937 public:
duke@435 938 ArrayData(DataLayout* layout) : ProfileData(layout) {}
duke@435 939
duke@435 940 virtual bool is_ArrayData() { return true; }
duke@435 941
duke@435 942 static int static_cell_count() {
duke@435 943 return -1;
duke@435 944 }
duke@435 945
duke@435 946 int array_len() {
duke@435 947 return int_at_unchecked(array_len_off_set);
duke@435 948 }
duke@435 949
duke@435 950 virtual int cell_count() {
duke@435 951 return array_len() + 1;
duke@435 952 }
duke@435 953
duke@435 954 // Code generation support
duke@435 955 static ByteSize array_len_offset() {
duke@435 956 return cell_offset(array_len_off_set);
duke@435 957 }
duke@435 958 static ByteSize array_start_offset() {
duke@435 959 return cell_offset(array_start_off_set);
duke@435 960 }
duke@435 961 };
duke@435 962
duke@435 963 // MultiBranchData
duke@435 964 //
duke@435 965 // A MultiBranchData is used to access profiling information for
duke@435 966 // a multi-way branch (*switch bytecodes). It consists of a series
duke@435 967 // of (count, displacement) pairs, which count the number of times each
duke@435 968 // case was taken and specify the data displacment for each branch target.
duke@435 969 class MultiBranchData : public ArrayData {
duke@435 970 protected:
duke@435 971 enum {
duke@435 972 default_count_off_set,
duke@435 973 default_disaplacement_off_set,
duke@435 974 case_array_start
duke@435 975 };
duke@435 976 enum {
duke@435 977 relative_count_off_set,
duke@435 978 relative_displacement_off_set,
duke@435 979 per_case_cell_count
duke@435 980 };
duke@435 981
duke@435 982 void set_default_displacement(int displacement) {
duke@435 983 array_set_int_at(default_disaplacement_off_set, displacement);
duke@435 984 }
duke@435 985 void set_displacement_at(int index, int displacement) {
duke@435 986 array_set_int_at(case_array_start +
duke@435 987 index * per_case_cell_count +
duke@435 988 relative_displacement_off_set,
duke@435 989 displacement);
duke@435 990 }
duke@435 991
duke@435 992 public:
duke@435 993 MultiBranchData(DataLayout* layout) : ArrayData(layout) {
duke@435 994 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
duke@435 995 }
duke@435 996
duke@435 997 virtual bool is_MultiBranchData() { return true; }
duke@435 998
duke@435 999 static int compute_cell_count(BytecodeStream* stream);
duke@435 1000
duke@435 1001 int number_of_cases() {
duke@435 1002 int alen = array_len() - 2; // get rid of default case here.
duke@435 1003 assert(alen % per_case_cell_count == 0, "must be even");
duke@435 1004 return (alen / per_case_cell_count);
duke@435 1005 }
duke@435 1006
duke@435 1007 uint default_count() {
duke@435 1008 return array_uint_at(default_count_off_set);
duke@435 1009 }
duke@435 1010 int default_displacement() {
duke@435 1011 return array_int_at(default_disaplacement_off_set);
duke@435 1012 }
duke@435 1013
duke@435 1014 uint count_at(int index) {
duke@435 1015 return array_uint_at(case_array_start +
duke@435 1016 index * per_case_cell_count +
duke@435 1017 relative_count_off_set);
duke@435 1018 }
duke@435 1019 int displacement_at(int index) {
duke@435 1020 return array_int_at(case_array_start +
duke@435 1021 index * per_case_cell_count +
duke@435 1022 relative_displacement_off_set);
duke@435 1023 }
duke@435 1024
duke@435 1025 // Code generation support
duke@435 1026 static ByteSize default_count_offset() {
duke@435 1027 return array_element_offset(default_count_off_set);
duke@435 1028 }
duke@435 1029 static ByteSize default_displacement_offset() {
duke@435 1030 return array_element_offset(default_disaplacement_off_set);
duke@435 1031 }
duke@435 1032 static ByteSize case_count_offset(int index) {
duke@435 1033 return case_array_offset() +
duke@435 1034 (per_case_size() * index) +
duke@435 1035 relative_count_offset();
duke@435 1036 }
duke@435 1037 static ByteSize case_array_offset() {
duke@435 1038 return array_element_offset(case_array_start);
duke@435 1039 }
duke@435 1040 static ByteSize per_case_size() {
duke@435 1041 return in_ByteSize(per_case_cell_count) * cell_size;
duke@435 1042 }
duke@435 1043 static ByteSize relative_count_offset() {
duke@435 1044 return in_ByteSize(relative_count_off_set) * cell_size;
duke@435 1045 }
duke@435 1046 static ByteSize relative_displacement_offset() {
duke@435 1047 return in_ByteSize(relative_displacement_off_set) * cell_size;
duke@435 1048 }
duke@435 1049
duke@435 1050 // Specific initialization.
duke@435 1051 void post_initialize(BytecodeStream* stream, methodDataOop mdo);
duke@435 1052
duke@435 1053 #ifndef PRODUCT
duke@435 1054 void print_data_on(outputStream* st);
duke@435 1055 #endif
duke@435 1056 };
duke@435 1057
kvn@480 1058 class ArgInfoData : public ArrayData {
kvn@480 1059
kvn@480 1060 public:
kvn@480 1061 ArgInfoData(DataLayout* layout) : ArrayData(layout) {
kvn@480 1062 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
kvn@480 1063 }
kvn@480 1064
kvn@480 1065 virtual bool is_ArgInfoData() { return true; }
kvn@480 1066
kvn@480 1067
kvn@480 1068 int number_of_args() {
kvn@480 1069 return array_len();
kvn@480 1070 }
kvn@480 1071
kvn@480 1072 uint arg_modified(int arg) {
kvn@480 1073 return array_uint_at(arg);
kvn@480 1074 }
kvn@480 1075
kvn@480 1076 void set_arg_modified(int arg, uint val) {
kvn@480 1077 array_set_int_at(arg, val);
kvn@480 1078 }
kvn@480 1079
kvn@480 1080 #ifndef PRODUCT
kvn@480 1081 void print_data_on(outputStream* st);
kvn@480 1082 #endif
kvn@480 1083 };
kvn@480 1084
duke@435 1085 // methodDataOop
duke@435 1086 //
duke@435 1087 // A methodDataOop holds information which has been collected about
duke@435 1088 // a method. Its layout looks like this:
duke@435 1089 //
duke@435 1090 // -----------------------------
duke@435 1091 // | header |
duke@435 1092 // | klass |
duke@435 1093 // -----------------------------
duke@435 1094 // | method |
duke@435 1095 // | size of the methodDataOop |
duke@435 1096 // -----------------------------
duke@435 1097 // | Data entries... |
duke@435 1098 // | (variable size) |
duke@435 1099 // | |
duke@435 1100 // . .
duke@435 1101 // . .
duke@435 1102 // . .
duke@435 1103 // | |
duke@435 1104 // -----------------------------
duke@435 1105 //
duke@435 1106 // The data entry area is a heterogeneous array of DataLayouts. Each
duke@435 1107 // DataLayout in the array corresponds to a specific bytecode in the
duke@435 1108 // method. The entries in the array are sorted by the corresponding
duke@435 1109 // bytecode. Access to the data is via resource-allocated ProfileData,
duke@435 1110 // which point to the underlying blocks of DataLayout structures.
duke@435 1111 //
duke@435 1112 // During interpretation, if profiling in enabled, the interpreter
duke@435 1113 // maintains a method data pointer (mdp), which points at the entry
duke@435 1114 // in the array corresponding to the current bci. In the course of
duke@435 1115 // intepretation, when a bytecode is encountered that has profile data
duke@435 1116 // associated with it, the entry pointed to by mdp is updated, then the
duke@435 1117 // mdp is adjusted to point to the next appropriate DataLayout. If mdp
duke@435 1118 // is NULL to begin with, the interpreter assumes that the current method
duke@435 1119 // is not (yet) being profiled.
duke@435 1120 //
duke@435 1121 // In methodDataOop parlance, "dp" is a "data pointer", the actual address
duke@435 1122 // of a DataLayout element. A "di" is a "data index", the offset in bytes
duke@435 1123 // from the base of the data entry array. A "displacement" is the byte offset
duke@435 1124 // in certain ProfileData objects that indicate the amount the mdp must be
duke@435 1125 // adjusted in the event of a change in control flow.
duke@435 1126 //
duke@435 1127
duke@435 1128 class methodDataOopDesc : public oopDesc {
duke@435 1129 friend class VMStructs;
duke@435 1130 private:
duke@435 1131 friend class ProfileData;
duke@435 1132
duke@435 1133 // Back pointer to the methodOop
duke@435 1134 methodOop _method;
duke@435 1135
duke@435 1136 // Size of this oop in bytes
duke@435 1137 int _size;
duke@435 1138
duke@435 1139 // Cached hint for bci_to_dp and bci_to_data
duke@435 1140 int _hint_di;
duke@435 1141
duke@435 1142 // Whole-method sticky bits and flags
duke@435 1143 public:
duke@435 1144 enum {
duke@435 1145 _trap_hist_limit = 16, // decoupled from Deoptimization::Reason_LIMIT
duke@435 1146 _trap_hist_mask = max_jubyte,
duke@435 1147 _extra_data_count = 4 // extra DataLayout headers, for trap history
duke@435 1148 }; // Public flag values
duke@435 1149 private:
duke@435 1150 uint _nof_decompiles; // count of all nmethod removals
duke@435 1151 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits
duke@435 1152 uint _nof_overflow_traps; // trap count, excluding _trap_hist
duke@435 1153 union {
duke@435 1154 intptr_t _align;
duke@435 1155 u1 _array[_trap_hist_limit];
duke@435 1156 } _trap_hist;
duke@435 1157
duke@435 1158 // Support for interprocedural escape analysis, from Thomas Kotzmann.
duke@435 1159 intx _eflags; // flags on escape information
duke@435 1160 intx _arg_local; // bit set of non-escaping arguments
duke@435 1161 intx _arg_stack; // bit set of stack-allocatable arguments
duke@435 1162 intx _arg_returned; // bit set of returned arguments
duke@435 1163
duke@435 1164 int _creation_mileage; // method mileage at MDO creation
duke@435 1165
duke@435 1166 // Size of _data array in bytes. (Excludes header and extra_data fields.)
duke@435 1167 int _data_size;
duke@435 1168
duke@435 1169 // Beginning of the data entries
duke@435 1170 intptr_t _data[1];
duke@435 1171
duke@435 1172 // Helper for size computation
duke@435 1173 static int compute_data_size(BytecodeStream* stream);
duke@435 1174 static int bytecode_cell_count(Bytecodes::Code code);
duke@435 1175 enum { no_profile_data = -1, variable_cell_count = -2 };
duke@435 1176
duke@435 1177 // Helper for initialization
duke@435 1178 DataLayout* data_layout_at(int data_index) {
duke@435 1179 assert(data_index % sizeof(intptr_t) == 0, "unaligned");
duke@435 1180 return (DataLayout*) (((address)_data) + data_index);
duke@435 1181 }
duke@435 1182
duke@435 1183 // Initialize an individual data segment. Returns the size of
duke@435 1184 // the segment in bytes.
duke@435 1185 int initialize_data(BytecodeStream* stream, int data_index);
duke@435 1186
duke@435 1187 // Helper for data_at
duke@435 1188 DataLayout* limit_data_position() {
duke@435 1189 return (DataLayout*)((address)data_base() + _data_size);
duke@435 1190 }
duke@435 1191 bool out_of_bounds(int data_index) {
duke@435 1192 return data_index >= data_size();
duke@435 1193 }
duke@435 1194
duke@435 1195 // Give each of the data entries a chance to perform specific
duke@435 1196 // data initialization.
duke@435 1197 void post_initialize(BytecodeStream* stream);
duke@435 1198
duke@435 1199 // hint accessors
duke@435 1200 int hint_di() const { return _hint_di; }
duke@435 1201 void set_hint_di(int di) {
duke@435 1202 assert(!out_of_bounds(di), "hint_di out of bounds");
duke@435 1203 _hint_di = di;
duke@435 1204 }
duke@435 1205 ProfileData* data_before(int bci) {
duke@435 1206 // avoid SEGV on this edge case
duke@435 1207 if (data_size() == 0)
duke@435 1208 return NULL;
duke@435 1209 int hint = hint_di();
duke@435 1210 if (data_layout_at(hint)->bci() <= bci)
duke@435 1211 return data_at(hint);
duke@435 1212 return first_data();
duke@435 1213 }
duke@435 1214
duke@435 1215 // What is the index of the first data entry?
duke@435 1216 int first_di() { return 0; }
duke@435 1217
duke@435 1218 // Find or create an extra ProfileData:
duke@435 1219 ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
duke@435 1220
kvn@480 1221 // return the argument info cell
kvn@480 1222 ArgInfoData *arg_info();
kvn@480 1223
duke@435 1224 public:
duke@435 1225 static int header_size() {
duke@435 1226 return sizeof(methodDataOopDesc)/wordSize;
duke@435 1227 }
duke@435 1228
duke@435 1229 // Compute the size of a methodDataOop before it is created.
duke@435 1230 static int compute_allocation_size_in_bytes(methodHandle method);
duke@435 1231 static int compute_allocation_size_in_words(methodHandle method);
duke@435 1232 static int compute_extra_data_count(int data_size, int empty_bc_count);
duke@435 1233
duke@435 1234 // Determine if a given bytecode can have profile information.
duke@435 1235 static bool bytecode_has_profile(Bytecodes::Code code) {
duke@435 1236 return bytecode_cell_count(code) != no_profile_data;
duke@435 1237 }
duke@435 1238
duke@435 1239 // Perform initialization of a new methodDataOop
duke@435 1240 void initialize(methodHandle method);
duke@435 1241
duke@435 1242 // My size
duke@435 1243 int object_size_in_bytes() { return _size; }
duke@435 1244 int object_size() {
duke@435 1245 return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord);
duke@435 1246 }
duke@435 1247
duke@435 1248 int creation_mileage() const { return _creation_mileage; }
duke@435 1249 void set_creation_mileage(int x) { _creation_mileage = x; }
duke@435 1250 bool is_mature() const; // consult mileage and ProfileMaturityPercentage
duke@435 1251 static int mileage_of(methodOop m);
duke@435 1252
duke@435 1253 // Support for interprocedural escape analysis, from Thomas Kotzmann.
duke@435 1254 enum EscapeFlag {
duke@435 1255 estimated = 1 << 0,
duke@435 1256 return_local = 1 << 1
duke@435 1257 };
duke@435 1258
duke@435 1259 intx eflags() { return _eflags; }
duke@435 1260 intx arg_local() { return _arg_local; }
duke@435 1261 intx arg_stack() { return _arg_stack; }
duke@435 1262 intx arg_returned() { return _arg_returned; }
kvn@480 1263 uint arg_modified(int a) { ArgInfoData *aid = arg_info();
kvn@480 1264 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
kvn@480 1265 return aid->arg_modified(a); }
duke@435 1266
duke@435 1267 void set_eflags(intx v) { _eflags = v; }
duke@435 1268 void set_arg_local(intx v) { _arg_local = v; }
duke@435 1269 void set_arg_stack(intx v) { _arg_stack = v; }
duke@435 1270 void set_arg_returned(intx v) { _arg_returned = v; }
kvn@480 1271 void set_arg_modified(int a, uint v) { ArgInfoData *aid = arg_info();
kvn@480 1272 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
kvn@480 1273
kvn@480 1274 aid->set_arg_modified(a, v); }
duke@435 1275
duke@435 1276 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
duke@435 1277
duke@435 1278 // Location and size of data area
duke@435 1279 address data_base() const {
duke@435 1280 return (address) _data;
duke@435 1281 }
duke@435 1282 int data_size() {
duke@435 1283 return _data_size;
duke@435 1284 }
duke@435 1285
duke@435 1286 // Accessors
duke@435 1287 methodOop method() { return _method; }
duke@435 1288
duke@435 1289 // Get the data at an arbitrary (sort of) data index.
duke@435 1290 ProfileData* data_at(int data_index);
duke@435 1291
duke@435 1292 // Walk through the data in order.
duke@435 1293 ProfileData* first_data() { return data_at(first_di()); }
duke@435 1294 ProfileData* next_data(ProfileData* current);
duke@435 1295 bool is_valid(ProfileData* current) { return current != NULL; }
duke@435 1296
duke@435 1297 // Convert a dp (data pointer) to a di (data index).
duke@435 1298 int dp_to_di(address dp) {
duke@435 1299 return dp - ((address)_data);
duke@435 1300 }
duke@435 1301
duke@435 1302 address di_to_dp(int di) {
duke@435 1303 return (address)data_layout_at(di);
duke@435 1304 }
duke@435 1305
duke@435 1306 // bci to di/dp conversion.
duke@435 1307 address bci_to_dp(int bci);
duke@435 1308 int bci_to_di(int bci) {
duke@435 1309 return dp_to_di(bci_to_dp(bci));
duke@435 1310 }
duke@435 1311
duke@435 1312 // Get the data at an arbitrary bci, or NULL if there is none.
duke@435 1313 ProfileData* bci_to_data(int bci);
duke@435 1314
duke@435 1315 // Same, but try to create an extra_data record if one is needed:
duke@435 1316 ProfileData* allocate_bci_to_data(int bci) {
duke@435 1317 ProfileData* data = bci_to_data(bci);
duke@435 1318 return (data != NULL) ? data : bci_to_extra_data(bci, true);
duke@435 1319 }
duke@435 1320
duke@435 1321 // Add a handful of extra data records, for trap tracking.
duke@435 1322 DataLayout* extra_data_base() { return limit_data_position(); }
duke@435 1323 DataLayout* extra_data_limit() { return (DataLayout*)((address)this + object_size_in_bytes()); }
duke@435 1324 int extra_data_size() { return (address)extra_data_limit()
duke@435 1325 - (address)extra_data_base(); }
duke@435 1326 static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
duke@435 1327
duke@435 1328 // Return (uint)-1 for overflow.
duke@435 1329 uint trap_count(int reason) const {
duke@435 1330 assert((uint)reason < _trap_hist_limit, "oob");
duke@435 1331 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
duke@435 1332 }
duke@435 1333 // For loops:
duke@435 1334 static uint trap_reason_limit() { return _trap_hist_limit; }
duke@435 1335 static uint trap_count_limit() { return _trap_hist_mask; }
duke@435 1336 uint inc_trap_count(int reason) {
duke@435 1337 // Count another trap, anywhere in this method.
duke@435 1338 assert(reason >= 0, "must be single trap");
duke@435 1339 if ((uint)reason < _trap_hist_limit) {
duke@435 1340 uint cnt1 = 1 + _trap_hist._array[reason];
duke@435 1341 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow...
duke@435 1342 _trap_hist._array[reason] = cnt1;
duke@435 1343 return cnt1;
duke@435 1344 } else {
duke@435 1345 return _trap_hist_mask + (++_nof_overflow_traps);
duke@435 1346 }
duke@435 1347 } else {
duke@435 1348 // Could not represent the count in the histogram.
duke@435 1349 return (++_nof_overflow_traps);
duke@435 1350 }
duke@435 1351 }
duke@435 1352
duke@435 1353 uint overflow_trap_count() const {
duke@435 1354 return _nof_overflow_traps;
duke@435 1355 }
duke@435 1356 uint overflow_recompile_count() const {
duke@435 1357 return _nof_overflow_recompiles;
duke@435 1358 }
duke@435 1359 void inc_overflow_recompile_count() {
duke@435 1360 _nof_overflow_recompiles += 1;
duke@435 1361 }
duke@435 1362 uint decompile_count() const {
duke@435 1363 return _nof_decompiles;
duke@435 1364 }
duke@435 1365 void inc_decompile_count() {
duke@435 1366 _nof_decompiles += 1;
duke@435 1367 }
duke@435 1368
duke@435 1369 // Support for code generation
duke@435 1370 static ByteSize data_offset() {
duke@435 1371 return byte_offset_of(methodDataOopDesc, _data[0]);
duke@435 1372 }
duke@435 1373
duke@435 1374 // GC support
duke@435 1375 oop* adr_method() const { return (oop*)&_method; }
duke@435 1376 bool object_is_parsable() const { return _size != 0; }
duke@435 1377 void set_object_is_parsable(int object_size_in_bytes) { _size = object_size_in_bytes; }
duke@435 1378
duke@435 1379 #ifndef PRODUCT
duke@435 1380 // printing support for method data
duke@435 1381 void print_data_on(outputStream* st);
duke@435 1382 #endif
duke@435 1383
duke@435 1384 // verification
duke@435 1385 void verify_data_on(outputStream* st);
duke@435 1386 };

mercurial