src/cpu/x86/vm/stubGenerator_x86_64.cpp

Fri, 25 Jan 2013 10:04:08 -0500

author
zgu
date
Fri, 25 Jan 2013 10:04:08 -0500
changeset 4492
8b46b0196eb0
parent 4411
e2e6bf86682c
child 4873
e961c11b85fe
permissions
-rw-r--r--

8000692: Remove old KERNEL code
Summary: Removed depreciated kernel VM source code from hotspot VM
Reviewed-by: dholmes, acorn

duke@435 1 /*
coleenp@4037 2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
stefank@2314 28 #include "interpreter/interpreter.hpp"
stefank@2314 29 #include "nativeInst_x86.hpp"
stefank@2314 30 #include "oops/instanceOop.hpp"
coleenp@4037 31 #include "oops/method.hpp"
stefank@2314 32 #include "oops/objArrayKlass.hpp"
stefank@2314 33 #include "oops/oop.inline.hpp"
stefank@2314 34 #include "prims/methodHandles.hpp"
stefank@2314 35 #include "runtime/frame.inline.hpp"
stefank@2314 36 #include "runtime/handles.inline.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 39 #include "runtime/stubRoutines.hpp"
stefank@4299 40 #include "runtime/thread.inline.hpp"
stefank@2314 41 #include "utilities/top.hpp"
stefank@2314 42 #ifdef COMPILER2
stefank@2314 43 #include "opto/runtime.hpp"
stefank@2314 44 #endif
duke@435 45
duke@435 46 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 47 // For a more detailed description of the stub routine structure
duke@435 48 // see the comment in stubRoutines.hpp
duke@435 49
duke@435 50 #define __ _masm->
coleenp@548 51 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
never@739 52 #define a__ ((Assembler*)_masm)->
duke@435 53
duke@435 54 #ifdef PRODUCT
duke@435 55 #define BLOCK_COMMENT(str) /* nothing */
duke@435 56 #else
duke@435 57 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 58 #endif
duke@435 59
duke@435 60 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 61 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 62
duke@435 63 // Stub Code definitions
duke@435 64
duke@435 65 static address handle_unsafe_access() {
duke@435 66 JavaThread* thread = JavaThread::current();
duke@435 67 address pc = thread->saved_exception_pc();
duke@435 68 // pc is the instruction which we must emulate
duke@435 69 // doing a no-op is fine: return garbage from the load
duke@435 70 // therefore, compute npc
duke@435 71 address npc = Assembler::locate_next_instruction(pc);
duke@435 72
duke@435 73 // request an async exception
duke@435 74 thread->set_pending_unsafe_access_error();
duke@435 75
duke@435 76 // return address of next instruction to execute
duke@435 77 return npc;
duke@435 78 }
duke@435 79
duke@435 80 class StubGenerator: public StubCodeGenerator {
duke@435 81 private:
duke@435 82
duke@435 83 #ifdef PRODUCT
duke@435 84 #define inc_counter_np(counter) (0)
duke@435 85 #else
duke@435 86 void inc_counter_np_(int& counter) {
never@3314 87 // This can destroy rscratch1 if counter is far from the code cache
duke@435 88 __ incrementl(ExternalAddress((address)&counter));
duke@435 89 }
duke@435 90 #define inc_counter_np(counter) \
duke@435 91 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 92 inc_counter_np_(counter);
duke@435 93 #endif
duke@435 94
duke@435 95 // Call stubs are used to call Java from C
duke@435 96 //
duke@435 97 // Linux Arguments:
duke@435 98 // c_rarg0: call wrapper address address
duke@435 99 // c_rarg1: result address
duke@435 100 // c_rarg2: result type BasicType
coleenp@4037 101 // c_rarg3: method Method*
duke@435 102 // c_rarg4: (interpreter) entry point address
duke@435 103 // c_rarg5: parameters intptr_t*
duke@435 104 // 16(rbp): parameter size (in words) int
duke@435 105 // 24(rbp): thread Thread*
duke@435 106 //
duke@435 107 // [ return_from_Java ] <--- rsp
duke@435 108 // [ argument word n ]
duke@435 109 // ...
duke@435 110 // -12 [ argument word 1 ]
duke@435 111 // -11 [ saved r15 ] <--- rsp_after_call
duke@435 112 // -10 [ saved r14 ]
duke@435 113 // -9 [ saved r13 ]
duke@435 114 // -8 [ saved r12 ]
duke@435 115 // -7 [ saved rbx ]
duke@435 116 // -6 [ call wrapper ]
duke@435 117 // -5 [ result ]
duke@435 118 // -4 [ result type ]
duke@435 119 // -3 [ method ]
duke@435 120 // -2 [ entry point ]
duke@435 121 // -1 [ parameters ]
duke@435 122 // 0 [ saved rbp ] <--- rbp
duke@435 123 // 1 [ return address ]
duke@435 124 // 2 [ parameter size ]
duke@435 125 // 3 [ thread ]
duke@435 126 //
duke@435 127 // Windows Arguments:
duke@435 128 // c_rarg0: call wrapper address address
duke@435 129 // c_rarg1: result address
duke@435 130 // c_rarg2: result type BasicType
coleenp@4037 131 // c_rarg3: method Method*
duke@435 132 // 48(rbp): (interpreter) entry point address
duke@435 133 // 56(rbp): parameters intptr_t*
duke@435 134 // 64(rbp): parameter size (in words) int
duke@435 135 // 72(rbp): thread Thread*
duke@435 136 //
duke@435 137 // [ return_from_Java ] <--- rsp
duke@435 138 // [ argument word n ]
duke@435 139 // ...
iveresov@2689 140 // -28 [ argument word 1 ]
iveresov@2689 141 // -27 [ saved xmm15 ] <--- rsp_after_call
iveresov@2689 142 // [ saved xmm7-xmm14 ]
iveresov@2689 143 // -9 [ saved xmm6 ] (each xmm register takes 2 slots)
iveresov@2689 144 // -7 [ saved r15 ]
duke@435 145 // -6 [ saved r14 ]
duke@435 146 // -5 [ saved r13 ]
duke@435 147 // -4 [ saved r12 ]
duke@435 148 // -3 [ saved rdi ]
duke@435 149 // -2 [ saved rsi ]
duke@435 150 // -1 [ saved rbx ]
duke@435 151 // 0 [ saved rbp ] <--- rbp
duke@435 152 // 1 [ return address ]
duke@435 153 // 2 [ call wrapper ]
duke@435 154 // 3 [ result ]
duke@435 155 // 4 [ result type ]
duke@435 156 // 5 [ method ]
duke@435 157 // 6 [ entry point ]
duke@435 158 // 7 [ parameters ]
duke@435 159 // 8 [ parameter size ]
duke@435 160 // 9 [ thread ]
duke@435 161 //
duke@435 162 // Windows reserves the callers stack space for arguments 1-4.
duke@435 163 // We spill c_rarg0-c_rarg3 to this space.
duke@435 164
duke@435 165 // Call stub stack layout word offsets from rbp
duke@435 166 enum call_stub_layout {
duke@435 167 #ifdef _WIN64
iveresov@2689 168 xmm_save_first = 6, // save from xmm6
iveresov@2689 169 xmm_save_last = 15, // to xmm15
iveresov@2689 170 xmm_save_base = -9,
iveresov@2689 171 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
iveresov@2689 172 r15_off = -7,
duke@435 173 r14_off = -6,
duke@435 174 r13_off = -5,
duke@435 175 r12_off = -4,
duke@435 176 rdi_off = -3,
duke@435 177 rsi_off = -2,
duke@435 178 rbx_off = -1,
duke@435 179 rbp_off = 0,
duke@435 180 retaddr_off = 1,
duke@435 181 call_wrapper_off = 2,
duke@435 182 result_off = 3,
duke@435 183 result_type_off = 4,
duke@435 184 method_off = 5,
duke@435 185 entry_point_off = 6,
duke@435 186 parameters_off = 7,
duke@435 187 parameter_size_off = 8,
duke@435 188 thread_off = 9
duke@435 189 #else
duke@435 190 rsp_after_call_off = -12,
duke@435 191 mxcsr_off = rsp_after_call_off,
duke@435 192 r15_off = -11,
duke@435 193 r14_off = -10,
duke@435 194 r13_off = -9,
duke@435 195 r12_off = -8,
duke@435 196 rbx_off = -7,
duke@435 197 call_wrapper_off = -6,
duke@435 198 result_off = -5,
duke@435 199 result_type_off = -4,
duke@435 200 method_off = -3,
duke@435 201 entry_point_off = -2,
duke@435 202 parameters_off = -1,
duke@435 203 rbp_off = 0,
duke@435 204 retaddr_off = 1,
duke@435 205 parameter_size_off = 2,
duke@435 206 thread_off = 3
duke@435 207 #endif
duke@435 208 };
duke@435 209
iveresov@2689 210 #ifdef _WIN64
iveresov@2689 211 Address xmm_save(int reg) {
iveresov@2689 212 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
iveresov@2689 213 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
iveresov@2689 214 }
iveresov@2689 215 #endif
iveresov@2689 216
duke@435 217 address generate_call_stub(address& return_address) {
duke@435 218 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
duke@435 219 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
duke@435 220 "adjust this code");
duke@435 221 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 222 address start = __ pc();
duke@435 223
duke@435 224 // same as in generate_catch_exception()!
duke@435 225 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 226
duke@435 227 const Address call_wrapper (rbp, call_wrapper_off * wordSize);
duke@435 228 const Address result (rbp, result_off * wordSize);
duke@435 229 const Address result_type (rbp, result_type_off * wordSize);
duke@435 230 const Address method (rbp, method_off * wordSize);
duke@435 231 const Address entry_point (rbp, entry_point_off * wordSize);
duke@435 232 const Address parameters (rbp, parameters_off * wordSize);
duke@435 233 const Address parameter_size(rbp, parameter_size_off * wordSize);
duke@435 234
duke@435 235 // same as in generate_catch_exception()!
duke@435 236 const Address thread (rbp, thread_off * wordSize);
duke@435 237
duke@435 238 const Address r15_save(rbp, r15_off * wordSize);
duke@435 239 const Address r14_save(rbp, r14_off * wordSize);
duke@435 240 const Address r13_save(rbp, r13_off * wordSize);
duke@435 241 const Address r12_save(rbp, r12_off * wordSize);
duke@435 242 const Address rbx_save(rbp, rbx_off * wordSize);
duke@435 243
duke@435 244 // stub code
duke@435 245 __ enter();
never@739 246 __ subptr(rsp, -rsp_after_call_off * wordSize);
duke@435 247
duke@435 248 // save register parameters
duke@435 249 #ifndef _WIN64
never@739 250 __ movptr(parameters, c_rarg5); // parameters
never@739 251 __ movptr(entry_point, c_rarg4); // entry_point
duke@435 252 #endif
duke@435 253
never@739 254 __ movptr(method, c_rarg3); // method
never@739 255 __ movl(result_type, c_rarg2); // result type
never@739 256 __ movptr(result, c_rarg1); // result
never@739 257 __ movptr(call_wrapper, c_rarg0); // call wrapper
duke@435 258
duke@435 259 // save regs belonging to calling function
never@739 260 __ movptr(rbx_save, rbx);
never@739 261 __ movptr(r12_save, r12);
never@739 262 __ movptr(r13_save, r13);
never@739 263 __ movptr(r14_save, r14);
never@739 264 __ movptr(r15_save, r15);
duke@435 265 #ifdef _WIN64
iveresov@2689 266 for (int i = 6; i <= 15; i++) {
iveresov@2689 267 __ movdqu(xmm_save(i), as_XMMRegister(i));
iveresov@2689 268 }
iveresov@2689 269
duke@435 270 const Address rdi_save(rbp, rdi_off * wordSize);
duke@435 271 const Address rsi_save(rbp, rsi_off * wordSize);
duke@435 272
never@739 273 __ movptr(rsi_save, rsi);
never@739 274 __ movptr(rdi_save, rdi);
duke@435 275 #else
duke@435 276 const Address mxcsr_save(rbp, mxcsr_off * wordSize);
duke@435 277 {
duke@435 278 Label skip_ldmx;
duke@435 279 __ stmxcsr(mxcsr_save);
duke@435 280 __ movl(rax, mxcsr_save);
duke@435 281 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 282 ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
duke@435 283 __ cmp32(rax, mxcsr_std);
duke@435 284 __ jcc(Assembler::equal, skip_ldmx);
duke@435 285 __ ldmxcsr(mxcsr_std);
duke@435 286 __ bind(skip_ldmx);
duke@435 287 }
duke@435 288 #endif
duke@435 289
duke@435 290 // Load up thread register
never@739 291 __ movptr(r15_thread, thread);
coleenp@548 292 __ reinit_heapbase();
duke@435 293
duke@435 294 #ifdef ASSERT
duke@435 295 // make sure we have no pending exceptions
duke@435 296 {
duke@435 297 Label L;
never@739 298 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 299 __ jcc(Assembler::equal, L);
duke@435 300 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 301 __ bind(L);
duke@435 302 }
duke@435 303 #endif
duke@435 304
duke@435 305 // pass parameters if any
duke@435 306 BLOCK_COMMENT("pass parameters if any");
duke@435 307 Label parameters_done;
duke@435 308 __ movl(c_rarg3, parameter_size);
duke@435 309 __ testl(c_rarg3, c_rarg3);
duke@435 310 __ jcc(Assembler::zero, parameters_done);
duke@435 311
duke@435 312 Label loop;
never@739 313 __ movptr(c_rarg2, parameters); // parameter pointer
never@739 314 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
duke@435 315 __ BIND(loop);
never@739 316 __ movptr(rax, Address(c_rarg2, 0));// get parameter
never@739 317 __ addptr(c_rarg2, wordSize); // advance to next parameter
never@739 318 __ decrementl(c_rarg1); // decrement counter
never@739 319 __ push(rax); // pass parameter
duke@435 320 __ jcc(Assembler::notZero, loop);
duke@435 321
duke@435 322 // call Java function
duke@435 323 __ BIND(parameters_done);
coleenp@4037 324 __ movptr(rbx, method); // get Method*
never@739 325 __ movptr(c_rarg1, entry_point); // get entry_point
never@739 326 __ mov(r13, rsp); // set sender sp
duke@435 327 BLOCK_COMMENT("call Java function");
duke@435 328 __ call(c_rarg1);
duke@435 329
duke@435 330 BLOCK_COMMENT("call_stub_return_address:");
duke@435 331 return_address = __ pc();
duke@435 332
duke@435 333 // store result depending on type (everything that is not
duke@435 334 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
never@739 335 __ movptr(c_rarg0, result);
duke@435 336 Label is_long, is_float, is_double, exit;
duke@435 337 __ movl(c_rarg1, result_type);
duke@435 338 __ cmpl(c_rarg1, T_OBJECT);
duke@435 339 __ jcc(Assembler::equal, is_long);
duke@435 340 __ cmpl(c_rarg1, T_LONG);
duke@435 341 __ jcc(Assembler::equal, is_long);
duke@435 342 __ cmpl(c_rarg1, T_FLOAT);
duke@435 343 __ jcc(Assembler::equal, is_float);
duke@435 344 __ cmpl(c_rarg1, T_DOUBLE);
duke@435 345 __ jcc(Assembler::equal, is_double);
duke@435 346
duke@435 347 // handle T_INT case
duke@435 348 __ movl(Address(c_rarg0, 0), rax);
duke@435 349
duke@435 350 __ BIND(exit);
duke@435 351
duke@435 352 // pop parameters
never@739 353 __ lea(rsp, rsp_after_call);
duke@435 354
duke@435 355 #ifdef ASSERT
duke@435 356 // verify that threads correspond
duke@435 357 {
duke@435 358 Label L, S;
never@739 359 __ cmpptr(r15_thread, thread);
duke@435 360 __ jcc(Assembler::notEqual, S);
duke@435 361 __ get_thread(rbx);
never@739 362 __ cmpptr(r15_thread, rbx);
duke@435 363 __ jcc(Assembler::equal, L);
duke@435 364 __ bind(S);
duke@435 365 __ jcc(Assembler::equal, L);
duke@435 366 __ stop("StubRoutines::call_stub: threads must correspond");
duke@435 367 __ bind(L);
duke@435 368 }
duke@435 369 #endif
duke@435 370
duke@435 371 // restore regs belonging to calling function
iveresov@2689 372 #ifdef _WIN64
iveresov@2689 373 for (int i = 15; i >= 6; i--) {
iveresov@2689 374 __ movdqu(as_XMMRegister(i), xmm_save(i));
iveresov@2689 375 }
iveresov@2689 376 #endif
never@739 377 __ movptr(r15, r15_save);
never@739 378 __ movptr(r14, r14_save);
never@739 379 __ movptr(r13, r13_save);
never@739 380 __ movptr(r12, r12_save);
never@739 381 __ movptr(rbx, rbx_save);
duke@435 382
duke@435 383 #ifdef _WIN64
never@739 384 __ movptr(rdi, rdi_save);
never@739 385 __ movptr(rsi, rsi_save);
duke@435 386 #else
duke@435 387 __ ldmxcsr(mxcsr_save);
duke@435 388 #endif
duke@435 389
duke@435 390 // restore rsp
never@739 391 __ addptr(rsp, -rsp_after_call_off * wordSize);
duke@435 392
duke@435 393 // return
never@739 394 __ pop(rbp);
duke@435 395 __ ret(0);
duke@435 396
duke@435 397 // handle return types different from T_INT
duke@435 398 __ BIND(is_long);
duke@435 399 __ movq(Address(c_rarg0, 0), rax);
duke@435 400 __ jmp(exit);
duke@435 401
duke@435 402 __ BIND(is_float);
duke@435 403 __ movflt(Address(c_rarg0, 0), xmm0);
duke@435 404 __ jmp(exit);
duke@435 405
duke@435 406 __ BIND(is_double);
duke@435 407 __ movdbl(Address(c_rarg0, 0), xmm0);
duke@435 408 __ jmp(exit);
duke@435 409
duke@435 410 return start;
duke@435 411 }
duke@435 412
duke@435 413 // Return point for a Java call if there's an exception thrown in
duke@435 414 // Java code. The exception is caught and transformed into a
duke@435 415 // pending exception stored in JavaThread that can be tested from
duke@435 416 // within the VM.
duke@435 417 //
duke@435 418 // Note: Usually the parameters are removed by the callee. In case
duke@435 419 // of an exception crossing an activation frame boundary, that is
duke@435 420 // not the case if the callee is compiled code => need to setup the
duke@435 421 // rsp.
duke@435 422 //
duke@435 423 // rax: exception oop
duke@435 424
duke@435 425 address generate_catch_exception() {
duke@435 426 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 427 address start = __ pc();
duke@435 428
duke@435 429 // same as in generate_call_stub():
duke@435 430 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 431 const Address thread (rbp, thread_off * wordSize);
duke@435 432
duke@435 433 #ifdef ASSERT
duke@435 434 // verify that threads correspond
duke@435 435 {
duke@435 436 Label L, S;
never@739 437 __ cmpptr(r15_thread, thread);
duke@435 438 __ jcc(Assembler::notEqual, S);
duke@435 439 __ get_thread(rbx);
never@739 440 __ cmpptr(r15_thread, rbx);
duke@435 441 __ jcc(Assembler::equal, L);
duke@435 442 __ bind(S);
duke@435 443 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 444 __ bind(L);
duke@435 445 }
duke@435 446 #endif
duke@435 447
duke@435 448 // set pending exception
duke@435 449 __ verify_oop(rax);
duke@435 450
never@739 451 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
duke@435 452 __ lea(rscratch1, ExternalAddress((address)__FILE__));
never@739 453 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
duke@435 454 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
duke@435 455
duke@435 456 // complete return to VM
duke@435 457 assert(StubRoutines::_call_stub_return_address != NULL,
duke@435 458 "_call_stub_return_address must have been generated before");
duke@435 459 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 460
duke@435 461 return start;
duke@435 462 }
duke@435 463
duke@435 464 // Continuation point for runtime calls returning with a pending
duke@435 465 // exception. The pending exception check happened in the runtime
duke@435 466 // or native call stub. The pending exception in Thread is
duke@435 467 // converted into a Java-level exception.
duke@435 468 //
duke@435 469 // Contract with Java-level exception handlers:
duke@435 470 // rax: exception
duke@435 471 // rdx: throwing pc
duke@435 472 //
duke@435 473 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 474
duke@435 475 address generate_forward_exception() {
duke@435 476 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 477 address start = __ pc();
duke@435 478
duke@435 479 // Upon entry, the sp points to the return address returning into
duke@435 480 // Java (interpreted or compiled) code; i.e., the return address
duke@435 481 // becomes the throwing pc.
duke@435 482 //
duke@435 483 // Arguments pushed before the runtime call are still on the stack
duke@435 484 // but the exception handler will reset the stack pointer ->
duke@435 485 // ignore them. A potential result in registers can be ignored as
duke@435 486 // well.
duke@435 487
duke@435 488 #ifdef ASSERT
duke@435 489 // make sure this code is only executed if there is a pending exception
duke@435 490 {
duke@435 491 Label L;
never@739 492 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
duke@435 493 __ jcc(Assembler::notEqual, L);
duke@435 494 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 495 __ bind(L);
duke@435 496 }
duke@435 497 #endif
duke@435 498
duke@435 499 // compute exception handler into rbx
never@739 500 __ movptr(c_rarg0, Address(rsp, 0));
duke@435 501 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 502 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
duke@435 503 SharedRuntime::exception_handler_for_return_address),
twisti@1730 504 r15_thread, c_rarg0);
never@739 505 __ mov(rbx, rax);
duke@435 506
duke@435 507 // setup rax & rdx, remove return address & clear pending exception
never@739 508 __ pop(rdx);
never@739 509 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
xlu@947 510 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 511
duke@435 512 #ifdef ASSERT
duke@435 513 // make sure exception is set
duke@435 514 {
duke@435 515 Label L;
never@739 516 __ testptr(rax, rax);
duke@435 517 __ jcc(Assembler::notEqual, L);
duke@435 518 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 519 __ bind(L);
duke@435 520 }
duke@435 521 #endif
duke@435 522
duke@435 523 // continue at exception handler (return address removed)
duke@435 524 // rax: exception
duke@435 525 // rbx: exception handler
duke@435 526 // rdx: throwing pc
duke@435 527 __ verify_oop(rax);
duke@435 528 __ jmp(rbx);
duke@435 529
duke@435 530 return start;
duke@435 531 }
duke@435 532
duke@435 533 // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 534 //
duke@435 535 // Arguments :
duke@435 536 // c_rarg0: exchange_value
duke@435 537 // c_rarg0: dest
duke@435 538 //
duke@435 539 // Result:
duke@435 540 // *dest <- ex, return (orig *dest)
duke@435 541 address generate_atomic_xchg() {
duke@435 542 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 543 address start = __ pc();
duke@435 544
duke@435 545 __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 546 __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 547 __ ret(0);
duke@435 548
duke@435 549 return start;
duke@435 550 }
duke@435 551
duke@435 552 // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
duke@435 553 //
duke@435 554 // Arguments :
duke@435 555 // c_rarg0: exchange_value
duke@435 556 // c_rarg1: dest
duke@435 557 //
duke@435 558 // Result:
duke@435 559 // *dest <- ex, return (orig *dest)
duke@435 560 address generate_atomic_xchg_ptr() {
duke@435 561 StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
duke@435 562 address start = __ pc();
duke@435 563
never@739 564 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
never@739 565 __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 566 __ ret(0);
duke@435 567
duke@435 568 return start;
duke@435 569 }
duke@435 570
duke@435 571 // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
duke@435 572 // jint compare_value)
duke@435 573 //
duke@435 574 // Arguments :
duke@435 575 // c_rarg0: exchange_value
duke@435 576 // c_rarg1: dest
duke@435 577 // c_rarg2: compare_value
duke@435 578 //
duke@435 579 // Result:
duke@435 580 // if ( compare_value == *dest ) {
duke@435 581 // *dest = exchange_value
duke@435 582 // return compare_value;
duke@435 583 // else
duke@435 584 // return *dest;
duke@435 585 address generate_atomic_cmpxchg() {
duke@435 586 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 587 address start = __ pc();
duke@435 588
duke@435 589 __ movl(rax, c_rarg2);
duke@435 590 if ( os::is_MP() ) __ lock();
duke@435 591 __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
duke@435 592 __ ret(0);
duke@435 593
duke@435 594 return start;
duke@435 595 }
duke@435 596
duke@435 597 // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
duke@435 598 // volatile jlong* dest,
duke@435 599 // jlong compare_value)
duke@435 600 // Arguments :
duke@435 601 // c_rarg0: exchange_value
duke@435 602 // c_rarg1: dest
duke@435 603 // c_rarg2: compare_value
duke@435 604 //
duke@435 605 // Result:
duke@435 606 // if ( compare_value == *dest ) {
duke@435 607 // *dest = exchange_value
duke@435 608 // return compare_value;
duke@435 609 // else
duke@435 610 // return *dest;
duke@435 611 address generate_atomic_cmpxchg_long() {
duke@435 612 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 613 address start = __ pc();
duke@435 614
duke@435 615 __ movq(rax, c_rarg2);
duke@435 616 if ( os::is_MP() ) __ lock();
duke@435 617 __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
duke@435 618 __ ret(0);
duke@435 619
duke@435 620 return start;
duke@435 621 }
duke@435 622
duke@435 623 // Support for jint atomic::add(jint add_value, volatile jint* dest)
duke@435 624 //
duke@435 625 // Arguments :
duke@435 626 // c_rarg0: add_value
duke@435 627 // c_rarg1: dest
duke@435 628 //
duke@435 629 // Result:
duke@435 630 // *dest += add_value
duke@435 631 // return *dest;
duke@435 632 address generate_atomic_add() {
duke@435 633 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 634 address start = __ pc();
duke@435 635
duke@435 636 __ movl(rax, c_rarg0);
duke@435 637 if ( os::is_MP() ) __ lock();
duke@435 638 __ xaddl(Address(c_rarg1, 0), c_rarg0);
duke@435 639 __ addl(rax, c_rarg0);
duke@435 640 __ ret(0);
duke@435 641
duke@435 642 return start;
duke@435 643 }
duke@435 644
duke@435 645 // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
duke@435 646 //
duke@435 647 // Arguments :
duke@435 648 // c_rarg0: add_value
duke@435 649 // c_rarg1: dest
duke@435 650 //
duke@435 651 // Result:
duke@435 652 // *dest += add_value
duke@435 653 // return *dest;
duke@435 654 address generate_atomic_add_ptr() {
duke@435 655 StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
duke@435 656 address start = __ pc();
duke@435 657
never@739 658 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 659 if ( os::is_MP() ) __ lock();
never@739 660 __ xaddptr(Address(c_rarg1, 0), c_rarg0);
never@739 661 __ addptr(rax, c_rarg0);
duke@435 662 __ ret(0);
duke@435 663
duke@435 664 return start;
duke@435 665 }
duke@435 666
duke@435 667 // Support for intptr_t OrderAccess::fence()
duke@435 668 //
duke@435 669 // Arguments :
duke@435 670 //
duke@435 671 // Result:
duke@435 672 address generate_orderaccess_fence() {
duke@435 673 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
duke@435 674 address start = __ pc();
never@1106 675 __ membar(Assembler::StoreLoad);
duke@435 676 __ ret(0);
duke@435 677
duke@435 678 return start;
duke@435 679 }
duke@435 680
duke@435 681 // Support for intptr_t get_previous_fp()
duke@435 682 //
duke@435 683 // This routine is used to find the previous frame pointer for the
duke@435 684 // caller (current_frame_guess). This is used as part of debugging
duke@435 685 // ps() is seemingly lost trying to find frames.
duke@435 686 // This code assumes that caller current_frame_guess) has a frame.
duke@435 687 address generate_get_previous_fp() {
duke@435 688 StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
duke@435 689 const Address old_fp(rbp, 0);
duke@435 690 const Address older_fp(rax, 0);
duke@435 691 address start = __ pc();
duke@435 692
duke@435 693 __ enter();
never@739 694 __ movptr(rax, old_fp); // callers fp
never@739 695 __ movptr(rax, older_fp); // the frame for ps()
never@739 696 __ pop(rbp);
duke@435 697 __ ret(0);
duke@435 698
duke@435 699 return start;
duke@435 700 }
duke@435 701
roland@3606 702 // Support for intptr_t get_previous_sp()
roland@3606 703 //
roland@3606 704 // This routine is used to find the previous stack pointer for the
roland@3606 705 // caller.
roland@3606 706 address generate_get_previous_sp() {
roland@3606 707 StubCodeMark mark(this, "StubRoutines", "get_previous_sp");
roland@3606 708 address start = __ pc();
roland@3606 709
roland@3606 710 __ movptr(rax, rsp);
roland@3606 711 __ addptr(rax, 8); // return address is at the top of the stack.
roland@3606 712 __ ret(0);
roland@3606 713
roland@3606 714 return start;
roland@3606 715 }
roland@3606 716
duke@435 717 //----------------------------------------------------------------------------------------------------
duke@435 718 // Support for void verify_mxcsr()
duke@435 719 //
duke@435 720 // This routine is used with -Xcheck:jni to verify that native
duke@435 721 // JNI code does not return to Java code without restoring the
duke@435 722 // MXCSR register to our expected state.
duke@435 723
duke@435 724 address generate_verify_mxcsr() {
duke@435 725 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 726 address start = __ pc();
duke@435 727
duke@435 728 const Address mxcsr_save(rsp, 0);
duke@435 729
duke@435 730 if (CheckJNICalls) {
duke@435 731 Label ok_ret;
never@739 732 __ push(rax);
never@739 733 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 734 __ stmxcsr(mxcsr_save);
duke@435 735 __ movl(rax, mxcsr_save);
duke@435 736 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 737 __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
duke@435 738 __ jcc(Assembler::equal, ok_ret);
duke@435 739
duke@435 740 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
duke@435 741
never@739 742 __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
duke@435 743
duke@435 744 __ bind(ok_ret);
never@739 745 __ addptr(rsp, wordSize);
never@739 746 __ pop(rax);
duke@435 747 }
duke@435 748
duke@435 749 __ ret(0);
duke@435 750
duke@435 751 return start;
duke@435 752 }
duke@435 753
duke@435 754 address generate_f2i_fixup() {
duke@435 755 StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
duke@435 756 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 757
duke@435 758 address start = __ pc();
duke@435 759
duke@435 760 Label L;
duke@435 761
never@739 762 __ push(rax);
never@739 763 __ push(c_rarg3);
never@739 764 __ push(c_rarg2);
never@739 765 __ push(c_rarg1);
duke@435 766
duke@435 767 __ movl(rax, 0x7f800000);
duke@435 768 __ xorl(c_rarg3, c_rarg3);
duke@435 769 __ movl(c_rarg2, inout);
duke@435 770 __ movl(c_rarg1, c_rarg2);
duke@435 771 __ andl(c_rarg1, 0x7fffffff);
duke@435 772 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 773 __ jcc(Assembler::negative, L);
duke@435 774 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
duke@435 775 __ movl(c_rarg3, 0x80000000);
duke@435 776 __ movl(rax, 0x7fffffff);
duke@435 777 __ cmovl(Assembler::positive, c_rarg3, rax);
duke@435 778
duke@435 779 __ bind(L);
never@739 780 __ movptr(inout, c_rarg3);
never@739 781
never@739 782 __ pop(c_rarg1);
never@739 783 __ pop(c_rarg2);
never@739 784 __ pop(c_rarg3);
never@739 785 __ pop(rax);
duke@435 786
duke@435 787 __ ret(0);
duke@435 788
duke@435 789 return start;
duke@435 790 }
duke@435 791
duke@435 792 address generate_f2l_fixup() {
duke@435 793 StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
duke@435 794 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 795 address start = __ pc();
duke@435 796
duke@435 797 Label L;
duke@435 798
never@739 799 __ push(rax);
never@739 800 __ push(c_rarg3);
never@739 801 __ push(c_rarg2);
never@739 802 __ push(c_rarg1);
duke@435 803
duke@435 804 __ movl(rax, 0x7f800000);
duke@435 805 __ xorl(c_rarg3, c_rarg3);
duke@435 806 __ movl(c_rarg2, inout);
duke@435 807 __ movl(c_rarg1, c_rarg2);
duke@435 808 __ andl(c_rarg1, 0x7fffffff);
duke@435 809 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 810 __ jcc(Assembler::negative, L);
duke@435 811 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
duke@435 812 __ mov64(c_rarg3, 0x8000000000000000);
duke@435 813 __ mov64(rax, 0x7fffffffffffffff);
never@739 814 __ cmov(Assembler::positive, c_rarg3, rax);
duke@435 815
duke@435 816 __ bind(L);
never@739 817 __ movptr(inout, c_rarg3);
never@739 818
never@739 819 __ pop(c_rarg1);
never@739 820 __ pop(c_rarg2);
never@739 821 __ pop(c_rarg3);
never@739 822 __ pop(rax);
duke@435 823
duke@435 824 __ ret(0);
duke@435 825
duke@435 826 return start;
duke@435 827 }
duke@435 828
duke@435 829 address generate_d2i_fixup() {
duke@435 830 StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
duke@435 831 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 832
duke@435 833 address start = __ pc();
duke@435 834
duke@435 835 Label L;
duke@435 836
never@739 837 __ push(rax);
never@739 838 __ push(c_rarg3);
never@739 839 __ push(c_rarg2);
never@739 840 __ push(c_rarg1);
never@739 841 __ push(c_rarg0);
duke@435 842
duke@435 843 __ movl(rax, 0x7ff00000);
duke@435 844 __ movq(c_rarg2, inout);
duke@435 845 __ movl(c_rarg3, c_rarg2);
never@739 846 __ mov(c_rarg1, c_rarg2);
never@739 847 __ mov(c_rarg0, c_rarg2);
duke@435 848 __ negl(c_rarg3);
never@739 849 __ shrptr(c_rarg1, 0x20);
duke@435 850 __ orl(c_rarg3, c_rarg2);
duke@435 851 __ andl(c_rarg1, 0x7fffffff);
duke@435 852 __ xorl(c_rarg2, c_rarg2);
duke@435 853 __ shrl(c_rarg3, 0x1f);
duke@435 854 __ orl(c_rarg1, c_rarg3);
duke@435 855 __ cmpl(rax, c_rarg1);
duke@435 856 __ jcc(Assembler::negative, L); // NaN -> 0
never@739 857 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
duke@435 858 __ movl(c_rarg2, 0x80000000);
duke@435 859 __ movl(rax, 0x7fffffff);
never@739 860 __ cmov(Assembler::positive, c_rarg2, rax);
duke@435 861
duke@435 862 __ bind(L);
never@739 863 __ movptr(inout, c_rarg2);
never@739 864
never@739 865 __ pop(c_rarg0);
never@739 866 __ pop(c_rarg1);
never@739 867 __ pop(c_rarg2);
never@739 868 __ pop(c_rarg3);
never@739 869 __ pop(rax);
duke@435 870
duke@435 871 __ ret(0);
duke@435 872
duke@435 873 return start;
duke@435 874 }
duke@435 875
duke@435 876 address generate_d2l_fixup() {
duke@435 877 StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
duke@435 878 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 879
duke@435 880 address start = __ pc();
duke@435 881
duke@435 882 Label L;
duke@435 883
never@739 884 __ push(rax);
never@739 885 __ push(c_rarg3);
never@739 886 __ push(c_rarg2);
never@739 887 __ push(c_rarg1);
never@739 888 __ push(c_rarg0);
duke@435 889
duke@435 890 __ movl(rax, 0x7ff00000);
duke@435 891 __ movq(c_rarg2, inout);
duke@435 892 __ movl(c_rarg3, c_rarg2);
never@739 893 __ mov(c_rarg1, c_rarg2);
never@739 894 __ mov(c_rarg0, c_rarg2);
duke@435 895 __ negl(c_rarg3);
never@739 896 __ shrptr(c_rarg1, 0x20);
duke@435 897 __ orl(c_rarg3, c_rarg2);
duke@435 898 __ andl(c_rarg1, 0x7fffffff);
duke@435 899 __ xorl(c_rarg2, c_rarg2);
duke@435 900 __ shrl(c_rarg3, 0x1f);
duke@435 901 __ orl(c_rarg1, c_rarg3);
duke@435 902 __ cmpl(rax, c_rarg1);
duke@435 903 __ jcc(Assembler::negative, L); // NaN -> 0
duke@435 904 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
duke@435 905 __ mov64(c_rarg2, 0x8000000000000000);
duke@435 906 __ mov64(rax, 0x7fffffffffffffff);
duke@435 907 __ cmovq(Assembler::positive, c_rarg2, rax);
duke@435 908
duke@435 909 __ bind(L);
duke@435 910 __ movq(inout, c_rarg2);
duke@435 911
never@739 912 __ pop(c_rarg0);
never@739 913 __ pop(c_rarg1);
never@739 914 __ pop(c_rarg2);
never@739 915 __ pop(c_rarg3);
never@739 916 __ pop(rax);
duke@435 917
duke@435 918 __ ret(0);
duke@435 919
duke@435 920 return start;
duke@435 921 }
duke@435 922
duke@435 923 address generate_fp_mask(const char *stub_name, int64_t mask) {
kvn@1800 924 __ align(CodeEntryAlignment);
duke@435 925 StubCodeMark mark(this, "StubRoutines", stub_name);
duke@435 926 address start = __ pc();
duke@435 927
duke@435 928 __ emit_data64( mask, relocInfo::none );
duke@435 929 __ emit_data64( mask, relocInfo::none );
duke@435 930
duke@435 931 return start;
duke@435 932 }
duke@435 933
duke@435 934 // The following routine generates a subroutine to throw an
duke@435 935 // asynchronous UnknownError when an unsafe access gets a fault that
duke@435 936 // could not be reasonably prevented by the programmer. (Example:
duke@435 937 // SIGBUS/OBJERR.)
duke@435 938 address generate_handler_for_unsafe_access() {
duke@435 939 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 940 address start = __ pc();
duke@435 941
never@739 942 __ push(0); // hole for return address-to-be
never@739 943 __ pusha(); // push registers
duke@435 944 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 945
never@3136 946 // FIXME: this probably needs alignment logic
never@3136 947
never@739 948 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 949 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 950 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
never@739 951 __ addptr(rsp, frame::arg_reg_save_area_bytes);
never@739 952
never@739 953 __ movptr(next_pc, rax); // stuff next address
never@739 954 __ popa();
duke@435 955 __ ret(0); // jump to next address
duke@435 956
duke@435 957 return start;
duke@435 958 }
duke@435 959
duke@435 960 // Non-destructive plausibility checks for oops
duke@435 961 //
duke@435 962 // Arguments:
duke@435 963 // all args on stack!
duke@435 964 //
duke@435 965 // Stack after saving c_rarg3:
duke@435 966 // [tos + 0]: saved c_rarg3
duke@435 967 // [tos + 1]: saved c_rarg2
kvn@559 968 // [tos + 2]: saved r12 (several TemplateTable methods use it)
kvn@559 969 // [tos + 3]: saved flags
kvn@559 970 // [tos + 4]: return address
kvn@559 971 // * [tos + 5]: error message (char*)
kvn@559 972 // * [tos + 6]: object to verify (oop)
kvn@559 973 // * [tos + 7]: saved rax - saved by caller and bashed
kvn@1938 974 // * [tos + 8]: saved r10 (rscratch1) - saved by caller
duke@435 975 // * = popped on exit
duke@435 976 address generate_verify_oop() {
duke@435 977 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 978 address start = __ pc();
duke@435 979
duke@435 980 Label exit, error;
duke@435 981
never@739 982 __ pushf();
duke@435 983 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
duke@435 984
never@739 985 __ push(r12);
kvn@559 986
duke@435 987 // save c_rarg2 and c_rarg3
never@739 988 __ push(c_rarg2);
never@739 989 __ push(c_rarg3);
duke@435 990
kvn@559 991 enum {
kvn@559 992 // After previous pushes.
kvn@559 993 oop_to_verify = 6 * wordSize,
kvn@559 994 saved_rax = 7 * wordSize,
kvn@1938 995 saved_r10 = 8 * wordSize,
kvn@559 996
kvn@559 997 // Before the call to MacroAssembler::debug(), see below.
kvn@559 998 return_addr = 16 * wordSize,
kvn@559 999 error_msg = 17 * wordSize
kvn@559 1000 };
kvn@559 1001
duke@435 1002 // get object
never@739 1003 __ movptr(rax, Address(rsp, oop_to_verify));
duke@435 1004
duke@435 1005 // make sure object is 'reasonable'
never@739 1006 __ testptr(rax, rax);
duke@435 1007 __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
duke@435 1008 // Check if the oop is in the right area of memory
never@739 1009 __ movptr(c_rarg2, rax);
xlu@947 1010 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
never@739 1011 __ andptr(c_rarg2, c_rarg3);
xlu@947 1012 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
never@739 1013 __ cmpptr(c_rarg2, c_rarg3);
duke@435 1014 __ jcc(Assembler::notZero, error);
duke@435 1015
kvn@559 1016 // set r12 to heapbase for load_klass()
kvn@559 1017 __ reinit_heapbase();
kvn@559 1018
coleenp@4037 1019 // make sure klass is 'reasonable', which is not zero.
coleenp@548 1020 __ load_klass(rax, rax); // get klass
never@739 1021 __ testptr(rax, rax);
duke@435 1022 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
coleenp@4037 1023 // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
duke@435 1024
duke@435 1025 // return if everything seems ok
duke@435 1026 __ bind(exit);
never@739 1027 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 1028 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 1029 __ pop(c_rarg3); // restore c_rarg3
never@739 1030 __ pop(c_rarg2); // restore c_rarg2
never@739 1031 __ pop(r12); // restore r12
never@739 1032 __ popf(); // restore flags
kvn@1938 1033 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1034
duke@435 1035 // handle errors
duke@435 1036 __ bind(error);
never@739 1037 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 1038 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 1039 __ pop(c_rarg3); // get saved c_rarg3 back
never@739 1040 __ pop(c_rarg2); // get saved c_rarg2 back
never@739 1041 __ pop(r12); // get saved r12 back
never@739 1042 __ popf(); // get saved flags off stack --
duke@435 1043 // will be ignored
duke@435 1044
never@739 1045 __ pusha(); // push registers
duke@435 1046 // (rip is already
duke@435 1047 // already pushed)
kvn@559 1048 // debug(char* msg, int64_t pc, int64_t regs[])
duke@435 1049 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
duke@435 1050 // pushed all the registers, so now the stack looks like:
duke@435 1051 // [tos + 0] 16 saved registers
duke@435 1052 // [tos + 16] return address
kvn@559 1053 // * [tos + 17] error message (char*)
kvn@559 1054 // * [tos + 18] object to verify (oop)
kvn@559 1055 // * [tos + 19] saved rax - saved by caller and bashed
kvn@1938 1056 // * [tos + 20] saved r10 (rscratch1) - saved by caller
kvn@559 1057 // * = popped on exit
kvn@559 1058
never@739 1059 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message
never@739 1060 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address
never@739 1061 __ movq(c_rarg2, rsp); // pass address of regs on stack
never@739 1062 __ mov(r12, rsp); // remember rsp
never@739 1063 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 1064 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 1065 BLOCK_COMMENT("call MacroAssembler::debug");
never@739 1066 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
never@739 1067 __ mov(rsp, r12); // restore rsp
never@739 1068 __ popa(); // pop registers (includes r12)
kvn@1938 1069 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1070
duke@435 1071 return start;
duke@435 1072 }
duke@435 1073
duke@435 1074 //
duke@435 1075 // Verify that a register contains clean 32-bits positive value
duke@435 1076 // (high 32-bits are 0) so it could be used in 64-bits shifts.
duke@435 1077 //
duke@435 1078 // Input:
duke@435 1079 // Rint - 32-bits value
duke@435 1080 // Rtmp - scratch
duke@435 1081 //
duke@435 1082 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 1083 #ifdef ASSERT
duke@435 1084 Label L;
duke@435 1085 assert_different_registers(Rtmp, Rint);
duke@435 1086 __ movslq(Rtmp, Rint);
duke@435 1087 __ cmpq(Rtmp, Rint);
kvn@559 1088 __ jcc(Assembler::equal, L);
duke@435 1089 __ stop("high 32-bits of int value are not 0");
duke@435 1090 __ bind(L);
duke@435 1091 #endif
duke@435 1092 }
duke@435 1093
duke@435 1094 // Generate overlap test for array copy stubs
duke@435 1095 //
duke@435 1096 // Input:
duke@435 1097 // c_rarg0 - from
duke@435 1098 // c_rarg1 - to
duke@435 1099 // c_rarg2 - element count
duke@435 1100 //
duke@435 1101 // Output:
duke@435 1102 // rax - &from[element count - 1]
duke@435 1103 //
duke@435 1104 void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
duke@435 1105 assert(no_overlap_target != NULL, "must be generated");
duke@435 1106 array_overlap_test(no_overlap_target, NULL, sf);
duke@435 1107 }
duke@435 1108 void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
duke@435 1109 array_overlap_test(NULL, &L_no_overlap, sf);
duke@435 1110 }
duke@435 1111 void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
duke@435 1112 const Register from = c_rarg0;
duke@435 1113 const Register to = c_rarg1;
duke@435 1114 const Register count = c_rarg2;
duke@435 1115 const Register end_from = rax;
duke@435 1116
never@739 1117 __ cmpptr(to, from);
never@739 1118 __ lea(end_from, Address(from, count, sf, 0));
duke@435 1119 if (NOLp == NULL) {
duke@435 1120 ExternalAddress no_overlap(no_overlap_target);
duke@435 1121 __ jump_cc(Assembler::belowEqual, no_overlap);
never@739 1122 __ cmpptr(to, end_from);
duke@435 1123 __ jump_cc(Assembler::aboveEqual, no_overlap);
duke@435 1124 } else {
duke@435 1125 __ jcc(Assembler::belowEqual, (*NOLp));
never@739 1126 __ cmpptr(to, end_from);
duke@435 1127 __ jcc(Assembler::aboveEqual, (*NOLp));
duke@435 1128 }
duke@435 1129 }
duke@435 1130
duke@435 1131 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
duke@435 1132 //
duke@435 1133 // Outputs:
duke@435 1134 // rdi - rcx
duke@435 1135 // rsi - rdx
duke@435 1136 // rdx - r8
duke@435 1137 // rcx - r9
duke@435 1138 //
duke@435 1139 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
duke@435 1140 // are non-volatile. r9 and r10 should not be used by the caller.
duke@435 1141 //
duke@435 1142 void setup_arg_regs(int nargs = 3) {
duke@435 1143 const Register saved_rdi = r9;
duke@435 1144 const Register saved_rsi = r10;
duke@435 1145 assert(nargs == 3 || nargs == 4, "else fix");
duke@435 1146 #ifdef _WIN64
duke@435 1147 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
duke@435 1148 "unexpected argument registers");
duke@435 1149 if (nargs >= 4)
never@739 1150 __ mov(rax, r9); // r9 is also saved_rdi
never@739 1151 __ movptr(saved_rdi, rdi);
never@739 1152 __ movptr(saved_rsi, rsi);
never@739 1153 __ mov(rdi, rcx); // c_rarg0
never@739 1154 __ mov(rsi, rdx); // c_rarg1
never@739 1155 __ mov(rdx, r8); // c_rarg2
duke@435 1156 if (nargs >= 4)
never@739 1157 __ mov(rcx, rax); // c_rarg3 (via rax)
duke@435 1158 #else
duke@435 1159 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
duke@435 1160 "unexpected argument registers");
duke@435 1161 #endif
duke@435 1162 }
duke@435 1163
duke@435 1164 void restore_arg_regs() {
duke@435 1165 const Register saved_rdi = r9;
duke@435 1166 const Register saved_rsi = r10;
duke@435 1167 #ifdef _WIN64
never@739 1168 __ movptr(rdi, saved_rdi);
never@739 1169 __ movptr(rsi, saved_rsi);
duke@435 1170 #endif
duke@435 1171 }
duke@435 1172
duke@435 1173 // Generate code for an array write pre barrier
duke@435 1174 //
duke@435 1175 // addr - starting address
iveresov@2606 1176 // count - element count
iveresov@2606 1177 // tmp - scratch register
duke@435 1178 //
duke@435 1179 // Destroy no registers!
duke@435 1180 //
iveresov@2606 1181 void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
duke@435 1182 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1183 switch (bs->kind()) {
duke@435 1184 case BarrierSet::G1SATBCT:
duke@435 1185 case BarrierSet::G1SATBCTLogging:
iveresov@2606 1186 // With G1, don't generate the call if we statically know that the target in uninitialized
iveresov@2606 1187 if (!dest_uninitialized) {
iveresov@2606 1188 __ pusha(); // push registers
iveresov@2606 1189 if (count == c_rarg0) {
iveresov@2606 1190 if (addr == c_rarg1) {
iveresov@2606 1191 // exactly backwards!!
iveresov@2606 1192 __ xchgptr(c_rarg1, c_rarg0);
iveresov@2606 1193 } else {
iveresov@2606 1194 __ movptr(c_rarg1, count);
iveresov@2606 1195 __ movptr(c_rarg0, addr);
iveresov@2606 1196 }
iveresov@2606 1197 } else {
iveresov@2606 1198 __ movptr(c_rarg0, addr);
iveresov@2606 1199 __ movptr(c_rarg1, count);
iveresov@2606 1200 }
iveresov@2606 1201 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
iveresov@2606 1202 __ popa();
duke@435 1203 }
iveresov@2606 1204 break;
duke@435 1205 case BarrierSet::CardTableModRef:
duke@435 1206 case BarrierSet::CardTableExtension:
duke@435 1207 case BarrierSet::ModRef:
duke@435 1208 break;
ysr@777 1209 default:
duke@435 1210 ShouldNotReachHere();
duke@435 1211
duke@435 1212 }
duke@435 1213 }
duke@435 1214
duke@435 1215 //
duke@435 1216 // Generate code for an array write post barrier
duke@435 1217 //
duke@435 1218 // Input:
duke@435 1219 // start - register containing starting address of destination array
duke@435 1220 // end - register containing ending address of destination array
duke@435 1221 // scratch - scratch register
duke@435 1222 //
duke@435 1223 // The input registers are overwritten.
duke@435 1224 // The ending address is inclusive.
duke@435 1225 void gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
duke@435 1226 assert_different_registers(start, end, scratch);
duke@435 1227 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1228 switch (bs->kind()) {
duke@435 1229 case BarrierSet::G1SATBCT:
duke@435 1230 case BarrierSet::G1SATBCTLogging:
duke@435 1231
duke@435 1232 {
never@739 1233 __ pusha(); // push registers (overkill)
duke@435 1234 // must compute element count unless barrier set interface is changed (other platforms supply count)
duke@435 1235 assert_different_registers(start, end, scratch);
ysr@1280 1236 __ lea(scratch, Address(end, BytesPerHeapOop));
ysr@1280 1237 __ subptr(scratch, start); // subtract start to get #bytes
ysr@1280 1238 __ shrptr(scratch, LogBytesPerHeapOop); // convert to element count
never@739 1239 __ mov(c_rarg0, start);
never@739 1240 __ mov(c_rarg1, scratch);
apetrusenko@1627 1241 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
never@739 1242 __ popa();
duke@435 1243 }
duke@435 1244 break;
duke@435 1245 case BarrierSet::CardTableModRef:
duke@435 1246 case BarrierSet::CardTableExtension:
duke@435 1247 {
duke@435 1248 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1249 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1250
duke@435 1251 Label L_loop;
duke@435 1252
never@739 1253 __ shrptr(start, CardTableModRefBS::card_shift);
ysr@1280 1254 __ addptr(end, BytesPerHeapOop);
never@739 1255 __ shrptr(end, CardTableModRefBS::card_shift);
never@739 1256 __ subptr(end, start); // number of bytes to copy
duke@435 1257
never@684 1258 intptr_t disp = (intptr_t) ct->byte_map_base;
twisti@3310 1259 if (Assembler::is_simm32(disp)) {
never@684 1260 Address cardtable(noreg, noreg, Address::no_scale, disp);
never@684 1261 __ lea(scratch, cardtable);
never@684 1262 } else {
never@684 1263 ExternalAddress cardtable((address)disp);
never@684 1264 __ lea(scratch, cardtable);
never@684 1265 }
never@684 1266
duke@435 1267 const Register count = end; // 'end' register contains bytes count now
never@739 1268 __ addptr(start, scratch);
duke@435 1269 __ BIND(L_loop);
duke@435 1270 __ movb(Address(start, count, Address::times_1), 0);
never@739 1271 __ decrement(count);
duke@435 1272 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 1273 }
ysr@777 1274 break;
ysr@777 1275 default:
ysr@777 1276 ShouldNotReachHere();
ysr@777 1277
ysr@777 1278 }
ysr@777 1279 }
duke@435 1280
kvn@840 1281
duke@435 1282 // Copy big chunks forward
duke@435 1283 //
duke@435 1284 // Inputs:
duke@435 1285 // end_from - source arrays end address
duke@435 1286 // end_to - destination array end address
duke@435 1287 // qword_count - 64-bits element count, negative
duke@435 1288 // to - scratch
kvn@4411 1289 // L_copy_bytes - entry label
duke@435 1290 // L_copy_8_bytes - exit label
duke@435 1291 //
kvn@4411 1292 void copy_bytes_forward(Register end_from, Register end_to,
duke@435 1293 Register qword_count, Register to,
kvn@4411 1294 Label& L_copy_bytes, Label& L_copy_8_bytes) {
duke@435 1295 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1296 Label L_loop;
kvn@1800 1297 __ align(OptoLoopAlignment);
kvn@4411 1298 if (UseUnalignedLoadStores) {
kvn@4411 1299 Label L_end;
kvn@4411 1300 // Copy 64-bytes per iteration
kvn@4411 1301 __ BIND(L_loop);
kvn@4411 1302 if (UseAVX >= 2) {
kvn@4411 1303 __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
kvn@4411 1304 __ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
kvn@4411 1305 __ vmovdqu(xmm1, Address(end_from, qword_count, Address::times_8, -24));
kvn@4411 1306 __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1);
kvn@4411 1307 } else {
kvn@4411 1308 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
kvn@4411 1309 __ movdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
kvn@4411 1310 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, -40));
kvn@4411 1311 __ movdqu(Address(end_to, qword_count, Address::times_8, -40), xmm1);
kvn@4411 1312 __ movdqu(xmm2, Address(end_from, qword_count, Address::times_8, -24));
kvn@4411 1313 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm2);
kvn@4411 1314 __ movdqu(xmm3, Address(end_from, qword_count, Address::times_8, - 8));
kvn@4411 1315 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm3);
kvn@4411 1316 }
kvn@4411 1317 __ BIND(L_copy_bytes);
kvn@4411 1318 __ addptr(qword_count, 8);
kvn@4411 1319 __ jcc(Assembler::lessEqual, L_loop);
kvn@4411 1320 __ subptr(qword_count, 4); // sub(8) and add(4)
kvn@4411 1321 __ jccb(Assembler::greater, L_end);
kvn@4411 1322 // Copy trailing 32 bytes
kvn@4411 1323 if (UseAVX >= 2) {
kvn@4411 1324 __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
kvn@4411 1325 __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
kvn@4411 1326 } else {
kvn@4411 1327 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
kvn@4411 1328 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
kvn@4411 1329 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
kvn@4411 1330 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
kvn@4411 1331 }
kvn@4411 1332 __ addptr(qword_count, 4);
kvn@4411 1333 __ BIND(L_end);
kvn@840 1334 } else {
kvn@4411 1335 // Copy 32-bytes per iteration
kvn@4411 1336 __ BIND(L_loop);
kvn@840 1337 __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1338 __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
kvn@840 1339 __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
kvn@840 1340 __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
kvn@840 1341 __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1342 __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
kvn@840 1343 __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
kvn@840 1344 __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
kvn@4411 1345
kvn@4411 1346 __ BIND(L_copy_bytes);
kvn@4411 1347 __ addptr(qword_count, 4);
kvn@4411 1348 __ jcc(Assembler::lessEqual, L_loop);
kvn@840 1349 }
never@739 1350 __ subptr(qword_count, 4);
duke@435 1351 __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
duke@435 1352 }
duke@435 1353
duke@435 1354 // Copy big chunks backward
duke@435 1355 //
duke@435 1356 // Inputs:
duke@435 1357 // from - source arrays address
duke@435 1358 // dest - destination array address
duke@435 1359 // qword_count - 64-bits element count
duke@435 1360 // to - scratch
kvn@4411 1361 // L_copy_bytes - entry label
duke@435 1362 // L_copy_8_bytes - exit label
duke@435 1363 //
kvn@4411 1364 void copy_bytes_backward(Register from, Register dest,
duke@435 1365 Register qword_count, Register to,
kvn@4411 1366 Label& L_copy_bytes, Label& L_copy_8_bytes) {
duke@435 1367 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1368 Label L_loop;
kvn@1800 1369 __ align(OptoLoopAlignment);
kvn@4411 1370 if (UseUnalignedLoadStores) {
kvn@4411 1371 Label L_end;
kvn@4411 1372 // Copy 64-bytes per iteration
kvn@4411 1373 __ BIND(L_loop);
kvn@4411 1374 if (UseAVX >= 2) {
kvn@4411 1375 __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32));
kvn@4411 1376 __ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0);
kvn@4411 1377 __ vmovdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
kvn@4411 1378 __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
kvn@4411 1379 } else {
kvn@4411 1380 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 48));
kvn@4411 1381 __ movdqu(Address(dest, qword_count, Address::times_8, 48), xmm0);
kvn@4411 1382 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 32));
kvn@4411 1383 __ movdqu(Address(dest, qword_count, Address::times_8, 32), xmm1);
kvn@4411 1384 __ movdqu(xmm2, Address(from, qword_count, Address::times_8, 16));
kvn@4411 1385 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm2);
kvn@4411 1386 __ movdqu(xmm3, Address(from, qword_count, Address::times_8, 0));
kvn@4411 1387 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm3);
kvn@4411 1388 }
kvn@4411 1389 __ BIND(L_copy_bytes);
kvn@4411 1390 __ subptr(qword_count, 8);
kvn@4411 1391 __ jcc(Assembler::greaterEqual, L_loop);
kvn@4411 1392
kvn@4411 1393 __ addptr(qword_count, 4); // add(8) and sub(4)
kvn@4411 1394 __ jccb(Assembler::less, L_end);
kvn@4411 1395 // Copy trailing 32 bytes
kvn@4411 1396 if (UseAVX >= 2) {
kvn@4411 1397 __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 0));
kvn@4411 1398 __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm0);
kvn@4411 1399 } else {
kvn@4411 1400 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
kvn@4411 1401 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
kvn@4411 1402 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
kvn@4411 1403 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
kvn@4411 1404 }
kvn@4411 1405 __ subptr(qword_count, 4);
kvn@4411 1406 __ BIND(L_end);
kvn@840 1407 } else {
kvn@4411 1408 // Copy 32-bytes per iteration
kvn@4411 1409 __ BIND(L_loop);
kvn@840 1410 __ movq(to, Address(from, qword_count, Address::times_8, 24));
kvn@840 1411 __ movq(Address(dest, qword_count, Address::times_8, 24), to);
kvn@840 1412 __ movq(to, Address(from, qword_count, Address::times_8, 16));
kvn@840 1413 __ movq(Address(dest, qword_count, Address::times_8, 16), to);
kvn@840 1414 __ movq(to, Address(from, qword_count, Address::times_8, 8));
kvn@840 1415 __ movq(Address(dest, qword_count, Address::times_8, 8), to);
kvn@840 1416 __ movq(to, Address(from, qword_count, Address::times_8, 0));
kvn@840 1417 __ movq(Address(dest, qword_count, Address::times_8, 0), to);
kvn@4411 1418
kvn@4411 1419 __ BIND(L_copy_bytes);
kvn@4411 1420 __ subptr(qword_count, 4);
kvn@4411 1421 __ jcc(Assembler::greaterEqual, L_loop);
kvn@840 1422 }
never@739 1423 __ addptr(qword_count, 4);
duke@435 1424 __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
duke@435 1425 }
duke@435 1426
duke@435 1427
duke@435 1428 // Arguments:
duke@435 1429 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1430 // ignored
duke@435 1431 // name - stub name string
duke@435 1432 //
duke@435 1433 // Inputs:
duke@435 1434 // c_rarg0 - source array address
duke@435 1435 // c_rarg1 - destination array address
duke@435 1436 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1437 //
duke@435 1438 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1439 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1440 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1441 // and stored atomically.
duke@435 1442 //
duke@435 1443 // Side Effects:
duke@435 1444 // disjoint_byte_copy_entry is set to the no-overlap entry point
duke@435 1445 // used by generate_conjoint_byte_copy().
duke@435 1446 //
iveresov@2595 1447 address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
duke@435 1448 __ align(CodeEntryAlignment);
duke@435 1449 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1450 address start = __ pc();
duke@435 1451
kvn@4411 1452 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1453 Label L_copy_byte, L_exit;
duke@435 1454 const Register from = rdi; // source array address
duke@435 1455 const Register to = rsi; // destination array address
duke@435 1456 const Register count = rdx; // elements count
duke@435 1457 const Register byte_count = rcx;
duke@435 1458 const Register qword_count = count;
duke@435 1459 const Register end_from = from; // source array end address
duke@435 1460 const Register end_to = to; // destination array end address
duke@435 1461 // End pointers are inclusive, and if count is not zero they point
duke@435 1462 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1463
duke@435 1464 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1465 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1466
iveresov@2595 1467 if (entry != NULL) {
iveresov@2595 1468 *entry = __ pc();
iveresov@2595 1469 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1470 BLOCK_COMMENT("Entry:");
iveresov@2595 1471 }
duke@435 1472
duke@435 1473 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1474 // r9 and r10 may be used to save non-volatile registers
duke@435 1475
duke@435 1476 // 'from', 'to' and 'count' are now valid
never@739 1477 __ movptr(byte_count, count);
never@739 1478 __ shrptr(count, 3); // count => qword_count
duke@435 1479
duke@435 1480 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1481 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1482 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1483 __ negptr(qword_count); // make the count negative
kvn@4411 1484 __ jmp(L_copy_bytes);
duke@435 1485
duke@435 1486 // Copy trailing qwords
duke@435 1487 __ BIND(L_copy_8_bytes);
duke@435 1488 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1489 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1490 __ increment(qword_count);
duke@435 1491 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1492
duke@435 1493 // Check for and copy trailing dword
duke@435 1494 __ BIND(L_copy_4_bytes);
never@739 1495 __ testl(byte_count, 4);
duke@435 1496 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1497 __ movl(rax, Address(end_from, 8));
duke@435 1498 __ movl(Address(end_to, 8), rax);
duke@435 1499
never@739 1500 __ addptr(end_from, 4);
never@739 1501 __ addptr(end_to, 4);
duke@435 1502
duke@435 1503 // Check for and copy trailing word
duke@435 1504 __ BIND(L_copy_2_bytes);
never@739 1505 __ testl(byte_count, 2);
duke@435 1506 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1507 __ movw(rax, Address(end_from, 8));
duke@435 1508 __ movw(Address(end_to, 8), rax);
duke@435 1509
never@739 1510 __ addptr(end_from, 2);
never@739 1511 __ addptr(end_to, 2);
duke@435 1512
duke@435 1513 // Check for and copy trailing byte
duke@435 1514 __ BIND(L_copy_byte);
never@739 1515 __ testl(byte_count, 1);
duke@435 1516 __ jccb(Assembler::zero, L_exit);
duke@435 1517 __ movb(rax, Address(end_from, 8));
duke@435 1518 __ movb(Address(end_to, 8), rax);
duke@435 1519
duke@435 1520 __ BIND(L_exit);
duke@435 1521 restore_arg_regs();
never@3314 1522 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1523 __ xorptr(rax, rax); // return 0
duke@435 1524 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1525 __ ret(0);
duke@435 1526
kvn@4411 1527 // Copy in multi-bytes chunks
kvn@4411 1528 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
duke@435 1529 __ jmp(L_copy_4_bytes);
duke@435 1530
duke@435 1531 return start;
duke@435 1532 }
duke@435 1533
duke@435 1534 // Arguments:
duke@435 1535 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1536 // ignored
duke@435 1537 // name - stub name string
duke@435 1538 //
duke@435 1539 // Inputs:
duke@435 1540 // c_rarg0 - source array address
duke@435 1541 // c_rarg1 - destination array address
duke@435 1542 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1543 //
duke@435 1544 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1545 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1546 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1547 // and stored atomically.
duke@435 1548 //
iveresov@2595 1549 address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
iveresov@2595 1550 address* entry, const char *name) {
duke@435 1551 __ align(CodeEntryAlignment);
duke@435 1552 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1553 address start = __ pc();
duke@435 1554
kvn@4411 1555 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1556 const Register from = rdi; // source array address
duke@435 1557 const Register to = rsi; // destination array address
duke@435 1558 const Register count = rdx; // elements count
duke@435 1559 const Register byte_count = rcx;
duke@435 1560 const Register qword_count = count;
duke@435 1561
duke@435 1562 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1563 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1564
iveresov@2595 1565 if (entry != NULL) {
iveresov@2595 1566 *entry = __ pc();
iveresov@2595 1567 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1568 BLOCK_COMMENT("Entry:");
iveresov@2595 1569 }
iveresov@2595 1570
iveresov@2595 1571 array_overlap_test(nooverlap_target, Address::times_1);
duke@435 1572 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1573 // r9 and r10 may be used to save non-volatile registers
duke@435 1574
duke@435 1575 // 'from', 'to' and 'count' are now valid
never@739 1576 __ movptr(byte_count, count);
never@739 1577 __ shrptr(count, 3); // count => qword_count
duke@435 1578
duke@435 1579 // Copy from high to low addresses.
duke@435 1580
duke@435 1581 // Check for and copy trailing byte
never@739 1582 __ testl(byte_count, 1);
duke@435 1583 __ jcc(Assembler::zero, L_copy_2_bytes);
duke@435 1584 __ movb(rax, Address(from, byte_count, Address::times_1, -1));
duke@435 1585 __ movb(Address(to, byte_count, Address::times_1, -1), rax);
never@739 1586 __ decrement(byte_count); // Adjust for possible trailing word
duke@435 1587
duke@435 1588 // Check for and copy trailing word
duke@435 1589 __ BIND(L_copy_2_bytes);
never@739 1590 __ testl(byte_count, 2);
duke@435 1591 __ jcc(Assembler::zero, L_copy_4_bytes);
duke@435 1592 __ movw(rax, Address(from, byte_count, Address::times_1, -2));
duke@435 1593 __ movw(Address(to, byte_count, Address::times_1, -2), rax);
duke@435 1594
duke@435 1595 // Check for and copy trailing dword
duke@435 1596 __ BIND(L_copy_4_bytes);
never@739 1597 __ testl(byte_count, 4);
kvn@4411 1598 __ jcc(Assembler::zero, L_copy_bytes);
duke@435 1599 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1600 __ movl(Address(to, qword_count, Address::times_8), rax);
kvn@4411 1601 __ jmp(L_copy_bytes);
duke@435 1602
duke@435 1603 // Copy trailing qwords
duke@435 1604 __ BIND(L_copy_8_bytes);
duke@435 1605 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1606 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1607 __ decrement(qword_count);
duke@435 1608 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1609
duke@435 1610 restore_arg_regs();
never@3314 1611 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1612 __ xorptr(rax, rax); // return 0
duke@435 1613 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1614 __ ret(0);
duke@435 1615
kvn@4411 1616 // Copy in multi-bytes chunks
kvn@4411 1617 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
duke@435 1618
duke@435 1619 restore_arg_regs();
never@3314 1620 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1621 __ xorptr(rax, rax); // return 0
duke@435 1622 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1623 __ ret(0);
duke@435 1624
duke@435 1625 return start;
duke@435 1626 }
duke@435 1627
duke@435 1628 // Arguments:
duke@435 1629 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1630 // ignored
duke@435 1631 // name - stub name string
duke@435 1632 //
duke@435 1633 // Inputs:
duke@435 1634 // c_rarg0 - source array address
duke@435 1635 // c_rarg1 - destination array address
duke@435 1636 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1637 //
duke@435 1638 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1639 // let the hardware handle it. The two or four words within dwords
duke@435 1640 // or qwords that span cache line boundaries will still be loaded
duke@435 1641 // and stored atomically.
duke@435 1642 //
duke@435 1643 // Side Effects:
duke@435 1644 // disjoint_short_copy_entry is set to the no-overlap entry point
duke@435 1645 // used by generate_conjoint_short_copy().
duke@435 1646 //
iveresov@2595 1647 address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
duke@435 1648 __ align(CodeEntryAlignment);
duke@435 1649 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1650 address start = __ pc();
duke@435 1651
kvn@4411 1652 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
duke@435 1653 const Register from = rdi; // source array address
duke@435 1654 const Register to = rsi; // destination array address
duke@435 1655 const Register count = rdx; // elements count
duke@435 1656 const Register word_count = rcx;
duke@435 1657 const Register qword_count = count;
duke@435 1658 const Register end_from = from; // source array end address
duke@435 1659 const Register end_to = to; // destination array end address
duke@435 1660 // End pointers are inclusive, and if count is not zero they point
duke@435 1661 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1662
duke@435 1663 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1664 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1665
iveresov@2595 1666 if (entry != NULL) {
iveresov@2595 1667 *entry = __ pc();
iveresov@2595 1668 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1669 BLOCK_COMMENT("Entry:");
iveresov@2595 1670 }
duke@435 1671
duke@435 1672 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1673 // r9 and r10 may be used to save non-volatile registers
duke@435 1674
duke@435 1675 // 'from', 'to' and 'count' are now valid
never@739 1676 __ movptr(word_count, count);
never@739 1677 __ shrptr(count, 2); // count => qword_count
duke@435 1678
duke@435 1679 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1680 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1681 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1682 __ negptr(qword_count);
kvn@4411 1683 __ jmp(L_copy_bytes);
duke@435 1684
duke@435 1685 // Copy trailing qwords
duke@435 1686 __ BIND(L_copy_8_bytes);
duke@435 1687 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1688 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1689 __ increment(qword_count);
duke@435 1690 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1691
duke@435 1692 // Original 'dest' is trashed, so we can't use it as a
duke@435 1693 // base register for a possible trailing word copy
duke@435 1694
duke@435 1695 // Check for and copy trailing dword
duke@435 1696 __ BIND(L_copy_4_bytes);
never@739 1697 __ testl(word_count, 2);
duke@435 1698 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1699 __ movl(rax, Address(end_from, 8));
duke@435 1700 __ movl(Address(end_to, 8), rax);
duke@435 1701
never@739 1702 __ addptr(end_from, 4);
never@739 1703 __ addptr(end_to, 4);
duke@435 1704
duke@435 1705 // Check for and copy trailing word
duke@435 1706 __ BIND(L_copy_2_bytes);
never@739 1707 __ testl(word_count, 1);
duke@435 1708 __ jccb(Assembler::zero, L_exit);
duke@435 1709 __ movw(rax, Address(end_from, 8));
duke@435 1710 __ movw(Address(end_to, 8), rax);
duke@435 1711
duke@435 1712 __ BIND(L_exit);
duke@435 1713 restore_arg_regs();
never@3314 1714 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1715 __ xorptr(rax, rax); // return 0
duke@435 1716 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1717 __ ret(0);
duke@435 1718
kvn@4411 1719 // Copy in multi-bytes chunks
kvn@4411 1720 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
duke@435 1721 __ jmp(L_copy_4_bytes);
duke@435 1722
duke@435 1723 return start;
duke@435 1724 }
duke@435 1725
never@2118 1726 address generate_fill(BasicType t, bool aligned, const char *name) {
never@2118 1727 __ align(CodeEntryAlignment);
never@2118 1728 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1729 address start = __ pc();
never@2118 1730
never@2118 1731 BLOCK_COMMENT("Entry:");
never@2118 1732
never@2118 1733 const Register to = c_rarg0; // source array address
never@2118 1734 const Register value = c_rarg1; // value
never@2118 1735 const Register count = c_rarg2; // elements count
never@2118 1736
never@2118 1737 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@2118 1738
never@2118 1739 __ generate_fill(t, aligned, to, value, count, rax, xmm0);
never@2118 1740
never@2118 1741 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@2118 1742 __ ret(0);
never@2118 1743 return start;
never@2118 1744 }
never@2118 1745
duke@435 1746 // Arguments:
duke@435 1747 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1748 // ignored
duke@435 1749 // name - stub name string
duke@435 1750 //
duke@435 1751 // Inputs:
duke@435 1752 // c_rarg0 - source array address
duke@435 1753 // c_rarg1 - destination array address
duke@435 1754 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1755 //
duke@435 1756 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1757 // let the hardware handle it. The two or four words within dwords
duke@435 1758 // or qwords that span cache line boundaries will still be loaded
duke@435 1759 // and stored atomically.
duke@435 1760 //
iveresov@2595 1761 address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
iveresov@2595 1762 address *entry, const char *name) {
duke@435 1763 __ align(CodeEntryAlignment);
duke@435 1764 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1765 address start = __ pc();
duke@435 1766
kvn@4411 1767 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes;
duke@435 1768 const Register from = rdi; // source array address
duke@435 1769 const Register to = rsi; // destination array address
duke@435 1770 const Register count = rdx; // elements count
duke@435 1771 const Register word_count = rcx;
duke@435 1772 const Register qword_count = count;
duke@435 1773
duke@435 1774 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1775 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1776
iveresov@2595 1777 if (entry != NULL) {
iveresov@2595 1778 *entry = __ pc();
iveresov@2595 1779 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1780 BLOCK_COMMENT("Entry:");
iveresov@2595 1781 }
iveresov@2595 1782
iveresov@2595 1783 array_overlap_test(nooverlap_target, Address::times_2);
duke@435 1784 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1785 // r9 and r10 may be used to save non-volatile registers
duke@435 1786
duke@435 1787 // 'from', 'to' and 'count' are now valid
never@739 1788 __ movptr(word_count, count);
never@739 1789 __ shrptr(count, 2); // count => qword_count
duke@435 1790
duke@435 1791 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1792
duke@435 1793 // Check for and copy trailing word
never@739 1794 __ testl(word_count, 1);
duke@435 1795 __ jccb(Assembler::zero, L_copy_4_bytes);
duke@435 1796 __ movw(rax, Address(from, word_count, Address::times_2, -2));
duke@435 1797 __ movw(Address(to, word_count, Address::times_2, -2), rax);
duke@435 1798
duke@435 1799 // Check for and copy trailing dword
duke@435 1800 __ BIND(L_copy_4_bytes);
never@739 1801 __ testl(word_count, 2);
kvn@4411 1802 __ jcc(Assembler::zero, L_copy_bytes);
duke@435 1803 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1804 __ movl(Address(to, qword_count, Address::times_8), rax);
kvn@4411 1805 __ jmp(L_copy_bytes);
duke@435 1806
duke@435 1807 // Copy trailing qwords
duke@435 1808 __ BIND(L_copy_8_bytes);
duke@435 1809 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1810 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1811 __ decrement(qword_count);
duke@435 1812 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1813
duke@435 1814 restore_arg_regs();
never@3314 1815 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1816 __ xorptr(rax, rax); // return 0
duke@435 1817 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1818 __ ret(0);
duke@435 1819
kvn@4411 1820 // Copy in multi-bytes chunks
kvn@4411 1821 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
duke@435 1822
duke@435 1823 restore_arg_regs();
never@3314 1824 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1825 __ xorptr(rax, rax); // return 0
duke@435 1826 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1827 __ ret(0);
duke@435 1828
duke@435 1829 return start;
duke@435 1830 }
duke@435 1831
duke@435 1832 // Arguments:
duke@435 1833 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1834 // ignored
coleenp@548 1835 // is_oop - true => oop array, so generate store check code
duke@435 1836 // name - stub name string
duke@435 1837 //
duke@435 1838 // Inputs:
duke@435 1839 // c_rarg0 - source array address
duke@435 1840 // c_rarg1 - destination array address
duke@435 1841 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1842 //
duke@435 1843 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1844 // the hardware handle it. The two dwords within qwords that span
duke@435 1845 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1846 //
duke@435 1847 // Side Effects:
duke@435 1848 // disjoint_int_copy_entry is set to the no-overlap entry point
coleenp@548 1849 // used by generate_conjoint_int_oop_copy().
duke@435 1850 //
iveresov@2606 1851 address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
iveresov@2606 1852 const char *name, bool dest_uninitialized = false) {
duke@435 1853 __ align(CodeEntryAlignment);
duke@435 1854 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1855 address start = __ pc();
duke@435 1856
kvn@4411 1857 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
duke@435 1858 const Register from = rdi; // source array address
duke@435 1859 const Register to = rsi; // destination array address
duke@435 1860 const Register count = rdx; // elements count
duke@435 1861 const Register dword_count = rcx;
duke@435 1862 const Register qword_count = count;
duke@435 1863 const Register end_from = from; // source array end address
duke@435 1864 const Register end_to = to; // destination array end address
coleenp@548 1865 const Register saved_to = r11; // saved destination array address
duke@435 1866 // End pointers are inclusive, and if count is not zero they point
duke@435 1867 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1868
duke@435 1869 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1870 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1871
iveresov@2595 1872 if (entry != NULL) {
iveresov@2595 1873 *entry = __ pc();
iveresov@2595 1874 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1875 BLOCK_COMMENT("Entry:");
coleenp@548 1876 }
coleenp@548 1877
duke@435 1878 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1879 // r9 and r10 may be used to save non-volatile registers
coleenp@548 1880 if (is_oop) {
coleenp@548 1881 __ movq(saved_to, to);
iveresov@2606 1882 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
coleenp@548 1883 }
coleenp@548 1884
duke@435 1885 // 'from', 'to' and 'count' are now valid
never@739 1886 __ movptr(dword_count, count);
never@739 1887 __ shrptr(count, 1); // count => qword_count
duke@435 1888
duke@435 1889 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1890 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1891 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1892 __ negptr(qword_count);
kvn@4411 1893 __ jmp(L_copy_bytes);
duke@435 1894
duke@435 1895 // Copy trailing qwords
duke@435 1896 __ BIND(L_copy_8_bytes);
duke@435 1897 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1898 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1899 __ increment(qword_count);
duke@435 1900 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1901
duke@435 1902 // Check for and copy trailing dword
duke@435 1903 __ BIND(L_copy_4_bytes);
never@739 1904 __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
duke@435 1905 __ jccb(Assembler::zero, L_exit);
duke@435 1906 __ movl(rax, Address(end_from, 8));
duke@435 1907 __ movl(Address(end_to, 8), rax);
duke@435 1908
duke@435 1909 __ BIND(L_exit);
coleenp@548 1910 if (is_oop) {
coleenp@548 1911 __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
coleenp@548 1912 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
coleenp@548 1913 }
duke@435 1914 restore_arg_regs();
never@3314 1915 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1916 __ xorptr(rax, rax); // return 0
duke@435 1917 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1918 __ ret(0);
duke@435 1919
kvn@4411 1920 // Copy in multi-bytes chunks
kvn@4411 1921 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
duke@435 1922 __ jmp(L_copy_4_bytes);
duke@435 1923
duke@435 1924 return start;
duke@435 1925 }
duke@435 1926
duke@435 1927 // Arguments:
duke@435 1928 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1929 // ignored
coleenp@548 1930 // is_oop - true => oop array, so generate store check code
duke@435 1931 // name - stub name string
duke@435 1932 //
duke@435 1933 // Inputs:
duke@435 1934 // c_rarg0 - source array address
duke@435 1935 // c_rarg1 - destination array address
duke@435 1936 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1937 //
duke@435 1938 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1939 // the hardware handle it. The two dwords within qwords that span
duke@435 1940 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1941 //
iveresov@2595 1942 address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
iveresov@2606 1943 address *entry, const char *name,
iveresov@2606 1944 bool dest_uninitialized = false) {
duke@435 1945 __ align(CodeEntryAlignment);
duke@435 1946 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1947 address start = __ pc();
duke@435 1948
kvn@4411 1949 Label L_copy_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
duke@435 1950 const Register from = rdi; // source array address
duke@435 1951 const Register to = rsi; // destination array address
duke@435 1952 const Register count = rdx; // elements count
duke@435 1953 const Register dword_count = rcx;
duke@435 1954 const Register qword_count = count;
duke@435 1955
duke@435 1956 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1957 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1958
iveresov@2595 1959 if (entry != NULL) {
iveresov@2595 1960 *entry = __ pc();
iveresov@2595 1961 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1962 BLOCK_COMMENT("Entry:");
iveresov@2595 1963 }
iveresov@2595 1964
iveresov@2595 1965 array_overlap_test(nooverlap_target, Address::times_4);
iveresov@2595 1966 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
iveresov@2595 1967 // r9 and r10 may be used to save non-volatile registers
iveresov@2595 1968
coleenp@548 1969 if (is_oop) {
coleenp@548 1970 // no registers are destroyed by this call
iveresov@2606 1971 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
coleenp@548 1972 }
coleenp@548 1973
coleenp@548 1974 assert_clean_int(count, rax); // Make sure 'count' is clean int.
duke@435 1975 // 'from', 'to' and 'count' are now valid
never@739 1976 __ movptr(dword_count, count);
never@739 1977 __ shrptr(count, 1); // count => qword_count
duke@435 1978
duke@435 1979 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1980
duke@435 1981 // Check for and copy trailing dword
never@739 1982 __ testl(dword_count, 1);
kvn@4411 1983 __ jcc(Assembler::zero, L_copy_bytes);
duke@435 1984 __ movl(rax, Address(from, dword_count, Address::times_4, -4));
duke@435 1985 __ movl(Address(to, dword_count, Address::times_4, -4), rax);
kvn@4411 1986 __ jmp(L_copy_bytes);
duke@435 1987
duke@435 1988 // Copy trailing qwords
duke@435 1989 __ BIND(L_copy_8_bytes);
duke@435 1990 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1991 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1992 __ decrement(qword_count);
duke@435 1993 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1994
coleenp@548 1995 if (is_oop) {
coleenp@548 1996 __ jmp(L_exit);
coleenp@548 1997 }
duke@435 1998 restore_arg_regs();
never@3314 1999 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
never@739 2000 __ xorptr(rax, rax); // return 0
duke@435 2001 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2002 __ ret(0);
duke@435 2003
kvn@4411 2004 // Copy in multi-bytes chunks
kvn@4411 2005 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
duke@435 2006
coleenp@548 2007 __ bind(L_exit);
coleenp@548 2008 if (is_oop) {
coleenp@548 2009 Register end_to = rdx;
coleenp@548 2010 __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
coleenp@548 2011 gen_write_ref_array_post_barrier(to, end_to, rax);
coleenp@548 2012 }
duke@435 2013 restore_arg_regs();
never@3314 2014 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
never@739 2015 __ xorptr(rax, rax); // return 0
duke@435 2016 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2017 __ ret(0);
duke@435 2018
duke@435 2019 return start;
duke@435 2020 }
duke@435 2021
duke@435 2022 // Arguments:
duke@435 2023 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 2024 // ignored
duke@435 2025 // is_oop - true => oop array, so generate store check code
duke@435 2026 // name - stub name string
duke@435 2027 //
duke@435 2028 // Inputs:
duke@435 2029 // c_rarg0 - source array address
duke@435 2030 // c_rarg1 - destination array address
duke@435 2031 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2032 //
coleenp@548 2033 // Side Effects:
duke@435 2034 // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
duke@435 2035 // no-overlap entry point used by generate_conjoint_long_oop_copy().
duke@435 2036 //
iveresov@2606 2037 address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
iveresov@2606 2038 const char *name, bool dest_uninitialized = false) {
duke@435 2039 __ align(CodeEntryAlignment);
duke@435 2040 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2041 address start = __ pc();
duke@435 2042
kvn@4411 2043 Label L_copy_bytes, L_copy_8_bytes, L_exit;
duke@435 2044 const Register from = rdi; // source array address
duke@435 2045 const Register to = rsi; // destination array address
duke@435 2046 const Register qword_count = rdx; // elements count
duke@435 2047 const Register end_from = from; // source array end address
duke@435 2048 const Register end_to = rcx; // destination array end address
duke@435 2049 const Register saved_to = to;
duke@435 2050 // End pointers are inclusive, and if count is not zero they point
duke@435 2051 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2052
duke@435 2053 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2054 // Save no-overlap entry point for generate_conjoint_long_oop_copy()
duke@435 2055 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 2056
iveresov@2595 2057 if (entry != NULL) {
iveresov@2595 2058 *entry = __ pc();
iveresov@2595 2059 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2060 BLOCK_COMMENT("Entry:");
duke@435 2061 }
duke@435 2062
duke@435 2063 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2064 // r9 and r10 may be used to save non-volatile registers
duke@435 2065 // 'from', 'to' and 'qword_count' are now valid
iveresov@2595 2066 if (is_oop) {
iveresov@2595 2067 // no registers are destroyed by this call
iveresov@2606 2068 gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
iveresov@2595 2069 }
duke@435 2070
duke@435 2071 // Copy from low to high addresses. Use 'to' as scratch.
never@739 2072 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 2073 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 2074 __ negptr(qword_count);
kvn@4411 2075 __ jmp(L_copy_bytes);
duke@435 2076
duke@435 2077 // Copy trailing qwords
duke@435 2078 __ BIND(L_copy_8_bytes);
duke@435 2079 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 2080 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 2081 __ increment(qword_count);
duke@435 2082 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2083
duke@435 2084 if (is_oop) {
duke@435 2085 __ jmp(L_exit);
duke@435 2086 } else {
duke@435 2087 restore_arg_regs();
never@3314 2088 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
never@739 2089 __ xorptr(rax, rax); // return 0
duke@435 2090 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2091 __ ret(0);
duke@435 2092 }
duke@435 2093
kvn@4411 2094 // Copy in multi-bytes chunks
kvn@4411 2095 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
duke@435 2096
duke@435 2097 if (is_oop) {
duke@435 2098 __ BIND(L_exit);
duke@435 2099 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
duke@435 2100 }
duke@435 2101 restore_arg_regs();
never@3314 2102 if (is_oop) {
never@3314 2103 inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
never@3314 2104 } else {
never@3314 2105 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
never@3314 2106 }
never@739 2107 __ xorptr(rax, rax); // return 0
duke@435 2108 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2109 __ ret(0);
duke@435 2110
duke@435 2111 return start;
duke@435 2112 }
duke@435 2113
duke@435 2114 // Arguments:
duke@435 2115 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 2116 // ignored
duke@435 2117 // is_oop - true => oop array, so generate store check code
duke@435 2118 // name - stub name string
duke@435 2119 //
duke@435 2120 // Inputs:
duke@435 2121 // c_rarg0 - source array address
duke@435 2122 // c_rarg1 - destination array address
duke@435 2123 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2124 //
iveresov@2606 2125 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
iveresov@2606 2126 address nooverlap_target, address *entry,
iveresov@2606 2127 const char *name, bool dest_uninitialized = false) {
duke@435 2128 __ align(CodeEntryAlignment);
duke@435 2129 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2130 address start = __ pc();
duke@435 2131
kvn@4411 2132 Label L_copy_bytes, L_copy_8_bytes, L_exit;
duke@435 2133 const Register from = rdi; // source array address
duke@435 2134 const Register to = rsi; // destination array address
duke@435 2135 const Register qword_count = rdx; // elements count
duke@435 2136 const Register saved_count = rcx;
duke@435 2137
duke@435 2138 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2139 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 2140
iveresov@2595 2141 if (entry != NULL) {
iveresov@2595 2142 *entry = __ pc();
iveresov@2595 2143 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2144 BLOCK_COMMENT("Entry:");
duke@435 2145 }
iveresov@2595 2146
iveresov@2595 2147 array_overlap_test(nooverlap_target, Address::times_8);
duke@435 2148 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2149 // r9 and r10 may be used to save non-volatile registers
duke@435 2150 // 'from', 'to' and 'qword_count' are now valid
duke@435 2151 if (is_oop) {
duke@435 2152 // Save to and count for store barrier
never@739 2153 __ movptr(saved_count, qword_count);
duke@435 2154 // No registers are destroyed by this call
iveresov@2606 2155 gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
duke@435 2156 }
duke@435 2157
kvn@4411 2158 __ jmp(L_copy_bytes);
duke@435 2159
duke@435 2160 // Copy trailing qwords
duke@435 2161 __ BIND(L_copy_8_bytes);
duke@435 2162 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 2163 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 2164 __ decrement(qword_count);
duke@435 2165 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2166
duke@435 2167 if (is_oop) {
duke@435 2168 __ jmp(L_exit);
duke@435 2169 } else {
duke@435 2170 restore_arg_regs();
never@3314 2171 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
never@739 2172 __ xorptr(rax, rax); // return 0
duke@435 2173 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2174 __ ret(0);
duke@435 2175 }
duke@435 2176
kvn@4411 2177 // Copy in multi-bytes chunks
kvn@4411 2178 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
duke@435 2179
duke@435 2180 if (is_oop) {
duke@435 2181 __ BIND(L_exit);
never@739 2182 __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
duke@435 2183 gen_write_ref_array_post_barrier(to, rcx, rax);
duke@435 2184 }
duke@435 2185 restore_arg_regs();
never@3314 2186 if (is_oop) {
never@3314 2187 inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
never@3314 2188 } else {
never@3314 2189 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
never@3314 2190 }
never@739 2191 __ xorptr(rax, rax); // return 0
duke@435 2192 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2193 __ ret(0);
duke@435 2194
duke@435 2195 return start;
duke@435 2196 }
duke@435 2197
duke@435 2198
duke@435 2199 // Helper for generating a dynamic type check.
duke@435 2200 // Smashes no registers.
duke@435 2201 void generate_type_check(Register sub_klass,
duke@435 2202 Register super_check_offset,
duke@435 2203 Register super_klass,
duke@435 2204 Label& L_success) {
duke@435 2205 assert_different_registers(sub_klass, super_check_offset, super_klass);
duke@435 2206
duke@435 2207 BLOCK_COMMENT("type_check:");
duke@435 2208
duke@435 2209 Label L_miss;
duke@435 2210
jrose@1079 2211 __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL,
jrose@1079 2212 super_check_offset);
jrose@1079 2213 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
duke@435 2214
duke@435 2215 // Fall through on failure!
duke@435 2216 __ BIND(L_miss);
duke@435 2217 }
duke@435 2218
duke@435 2219 //
duke@435 2220 // Generate checkcasting array copy stub
duke@435 2221 //
duke@435 2222 // Input:
duke@435 2223 // c_rarg0 - source array address
duke@435 2224 // c_rarg1 - destination array address
duke@435 2225 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2226 // c_rarg3 - size_t ckoff (super_check_offset)
duke@435 2227 // not Win64
duke@435 2228 // c_rarg4 - oop ckval (super_klass)
duke@435 2229 // Win64
duke@435 2230 // rsp+40 - oop ckval (super_klass)
duke@435 2231 //
duke@435 2232 // Output:
duke@435 2233 // rax == 0 - success
duke@435 2234 // rax == -1^K - failure, where K is partial transfer count
duke@435 2235 //
iveresov@2606 2236 address generate_checkcast_copy(const char *name, address *entry,
iveresov@2606 2237 bool dest_uninitialized = false) {
duke@435 2238
duke@435 2239 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 2240
duke@435 2241 // Input registers (after setup_arg_regs)
duke@435 2242 const Register from = rdi; // source array address
duke@435 2243 const Register to = rsi; // destination array address
duke@435 2244 const Register length = rdx; // elements count
duke@435 2245 const Register ckoff = rcx; // super_check_offset
duke@435 2246 const Register ckval = r8; // super_klass
duke@435 2247
duke@435 2248 // Registers used as temps (r13, r14 are save-on-entry)
duke@435 2249 const Register end_from = from; // source array end address
duke@435 2250 const Register end_to = r13; // destination array end address
duke@435 2251 const Register count = rdx; // -(count_remaining)
duke@435 2252 const Register r14_length = r14; // saved copy of length
duke@435 2253 // End pointers are inclusive, and if length is not zero they point
duke@435 2254 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2255
duke@435 2256 const Register rax_oop = rax; // actual oop copied
duke@435 2257 const Register r11_klass = r11; // oop._klass
duke@435 2258
duke@435 2259 //---------------------------------------------------------------
duke@435 2260 // Assembler stub will be used for this call to arraycopy
duke@435 2261 // if the two arrays are subtypes of Object[] but the
duke@435 2262 // destination array type is not equal to or a supertype
duke@435 2263 // of the source type. Each element must be separately
duke@435 2264 // checked.
duke@435 2265
duke@435 2266 __ align(CodeEntryAlignment);
duke@435 2267 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2268 address start = __ pc();
duke@435 2269
duke@435 2270 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2271
duke@435 2272 #ifdef ASSERT
duke@435 2273 // caller guarantees that the arrays really are different
duke@435 2274 // otherwise, we would have to make conjoint checks
duke@435 2275 { Label L;
coleenp@548 2276 array_overlap_test(L, TIMES_OOP);
duke@435 2277 __ stop("checkcast_copy within a single array");
duke@435 2278 __ bind(L);
duke@435 2279 }
duke@435 2280 #endif //ASSERT
duke@435 2281
duke@435 2282 setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
duke@435 2283 // ckoff => rcx, ckval => r8
duke@435 2284 // r9 and r10 may be used to save non-volatile registers
duke@435 2285 #ifdef _WIN64
duke@435 2286 // last argument (#4) is on stack on Win64
twisti@2348 2287 __ movptr(ckval, Address(rsp, 6 * wordSize));
duke@435 2288 #endif
duke@435 2289
twisti@2348 2290 // Caller of this entry point must set up the argument registers.
iveresov@2595 2291 if (entry != NULL) {
iveresov@2595 2292 *entry = __ pc();
iveresov@2595 2293 BLOCK_COMMENT("Entry:");
iveresov@2595 2294 }
twisti@2348 2295
twisti@2348 2296 // allocate spill slots for r13, r14
twisti@2348 2297 enum {
twisti@2348 2298 saved_r13_offset,
twisti@2348 2299 saved_r14_offset,
twisti@2348 2300 saved_rbp_offset
twisti@2348 2301 };
twisti@2348 2302 __ subptr(rsp, saved_rbp_offset * wordSize);
twisti@2348 2303 __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
twisti@2348 2304 __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
twisti@2348 2305
duke@435 2306 // check that int operands are properly extended to size_t
duke@435 2307 assert_clean_int(length, rax);
duke@435 2308 assert_clean_int(ckoff, rax);
duke@435 2309
duke@435 2310 #ifdef ASSERT
duke@435 2311 BLOCK_COMMENT("assert consistent ckoff/ckval");
duke@435 2312 // The ckoff and ckval must be mutually consistent,
duke@435 2313 // even though caller generates both.
duke@435 2314 { Label L;
stefank@3391 2315 int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 2316 __ cmpl(ckoff, Address(ckval, sco_offset));
duke@435 2317 __ jcc(Assembler::equal, L);
duke@435 2318 __ stop("super_check_offset inconsistent");
duke@435 2319 __ bind(L);
duke@435 2320 }
duke@435 2321 #endif //ASSERT
duke@435 2322
duke@435 2323 // Loop-invariant addresses. They are exclusive end pointers.
coleenp@548 2324 Address end_from_addr(from, length, TIMES_OOP, 0);
coleenp@548 2325 Address end_to_addr(to, length, TIMES_OOP, 0);
duke@435 2326 // Loop-variant addresses. They assume post-incremented count < 0.
coleenp@548 2327 Address from_element_addr(end_from, count, TIMES_OOP, 0);
coleenp@548 2328 Address to_element_addr(end_to, count, TIMES_OOP, 0);
duke@435 2329
iveresov@2606 2330 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
duke@435 2331
duke@435 2332 // Copy from low to high addresses, indexed from the end of each array.
never@739 2333 __ lea(end_from, end_from_addr);
never@739 2334 __ lea(end_to, end_to_addr);
never@739 2335 __ movptr(r14_length, length); // save a copy of the length
never@739 2336 assert(length == count, ""); // else fix next line:
never@739 2337 __ negptr(count); // negate and test the length
duke@435 2338 __ jcc(Assembler::notZero, L_load_element);
duke@435 2339
duke@435 2340 // Empty array: Nothing to do.
never@739 2341 __ xorptr(rax, rax); // return 0 on (trivial) success
duke@435 2342 __ jmp(L_done);
duke@435 2343
duke@435 2344 // ======== begin loop ========
duke@435 2345 // (Loop is rotated; its entry is L_load_element.)
duke@435 2346 // Loop control:
duke@435 2347 // for (count = -count; count != 0; count++)
duke@435 2348 // Base pointers src, dst are biased by 8*(count-1),to last element.
kvn@1800 2349 __ align(OptoLoopAlignment);
duke@435 2350
duke@435 2351 __ BIND(L_store_element);
coleenp@548 2352 __ store_heap_oop(to_element_addr, rax_oop); // store the oop
never@739 2353 __ increment(count); // increment the count toward zero
duke@435 2354 __ jcc(Assembler::zero, L_do_card_marks);
duke@435 2355
duke@435 2356 // ======== loop entry is here ========
duke@435 2357 __ BIND(L_load_element);
coleenp@548 2358 __ load_heap_oop(rax_oop, from_element_addr); // load the oop
never@739 2359 __ testptr(rax_oop, rax_oop);
duke@435 2360 __ jcc(Assembler::zero, L_store_element);
duke@435 2361
coleenp@548 2362 __ load_klass(r11_klass, rax_oop);// query the object klass
duke@435 2363 generate_type_check(r11_klass, ckoff, ckval, L_store_element);
duke@435 2364 // ======== end loop ========
duke@435 2365
duke@435 2366 // It was a real error; we must depend on the caller to finish the job.
duke@435 2367 // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
duke@435 2368 // Emit GC store barriers for the oops we have copied (r14 + rdx),
duke@435 2369 // and report their number to the caller.
duke@435 2370 assert_different_registers(rax, r14_length, count, to, end_to, rcx);
never@739 2371 __ lea(end_to, to_element_addr);
ysr@1280 2372 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2373 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2374 __ movptr(rax, r14_length); // original oops
never@739 2375 __ addptr(rax, count); // K = (original - remaining) oops
never@739 2376 __ notptr(rax); // report (-1^K) to caller
duke@435 2377 __ jmp(L_done);
duke@435 2378
duke@435 2379 // Come here on success only.
duke@435 2380 __ BIND(L_do_card_marks);
ysr@1280 2381 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2382 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2383 __ xorptr(rax, rax); // return 0 on success
duke@435 2384
duke@435 2385 // Common exit point (success or failure).
duke@435 2386 __ BIND(L_done);
never@739 2387 __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
never@739 2388 __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
duke@435 2389 restore_arg_regs();
never@3314 2390 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free
duke@435 2391 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2392 __ ret(0);
duke@435 2393
duke@435 2394 return start;
duke@435 2395 }
duke@435 2396
duke@435 2397 //
duke@435 2398 // Generate 'unsafe' array copy stub
duke@435 2399 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2400 // size_t argument instead of an element count.
duke@435 2401 //
duke@435 2402 // Input:
duke@435 2403 // c_rarg0 - source array address
duke@435 2404 // c_rarg1 - destination array address
duke@435 2405 // c_rarg2 - byte count, treated as ssize_t, can be zero
duke@435 2406 //
duke@435 2407 // Examines the alignment of the operands and dispatches
duke@435 2408 // to a long, int, short, or byte copy loop.
duke@435 2409 //
iveresov@2595 2410 address generate_unsafe_copy(const char *name,
iveresov@2595 2411 address byte_copy_entry, address short_copy_entry,
iveresov@2595 2412 address int_copy_entry, address long_copy_entry) {
duke@435 2413
duke@435 2414 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 2415
duke@435 2416 // Input registers (before setup_arg_regs)
duke@435 2417 const Register from = c_rarg0; // source array address
duke@435 2418 const Register to = c_rarg1; // destination array address
duke@435 2419 const Register size = c_rarg2; // byte count (size_t)
duke@435 2420
duke@435 2421 // Register used as a temp
duke@435 2422 const Register bits = rax; // test copy of low bits
duke@435 2423
duke@435 2424 __ align(CodeEntryAlignment);
duke@435 2425 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2426 address start = __ pc();
duke@435 2427
duke@435 2428 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2429
duke@435 2430 // bump this on entry, not on exit:
duke@435 2431 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 2432
never@739 2433 __ mov(bits, from);
never@739 2434 __ orptr(bits, to);
never@739 2435 __ orptr(bits, size);
duke@435 2436
duke@435 2437 __ testb(bits, BytesPerLong-1);
duke@435 2438 __ jccb(Assembler::zero, L_long_aligned);
duke@435 2439
duke@435 2440 __ testb(bits, BytesPerInt-1);
duke@435 2441 __ jccb(Assembler::zero, L_int_aligned);
duke@435 2442
duke@435 2443 __ testb(bits, BytesPerShort-1);
duke@435 2444 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 2445
duke@435 2446 __ BIND(L_short_aligned);
never@739 2447 __ shrptr(size, LogBytesPerShort); // size => short_count
duke@435 2448 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2449
duke@435 2450 __ BIND(L_int_aligned);
never@739 2451 __ shrptr(size, LogBytesPerInt); // size => int_count
duke@435 2452 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2453
duke@435 2454 __ BIND(L_long_aligned);
never@739 2455 __ shrptr(size, LogBytesPerLong); // size => qword_count
duke@435 2456 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2457
duke@435 2458 return start;
duke@435 2459 }
duke@435 2460
duke@435 2461 // Perform range checks on the proposed arraycopy.
duke@435 2462 // Kills temp, but nothing else.
duke@435 2463 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2464 void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
duke@435 2465 Register src_pos, // source position (c_rarg1)
duke@435 2466 Register dst, // destination array oo (c_rarg2)
duke@435 2467 Register dst_pos, // destination position (c_rarg3)
duke@435 2468 Register length,
duke@435 2469 Register temp,
duke@435 2470 Label& L_failed) {
duke@435 2471 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2472
duke@435 2473 // if (src_pos + length > arrayOop(src)->length()) FAIL;
duke@435 2474 __ movl(temp, length);
duke@435 2475 __ addl(temp, src_pos); // src_pos + length
duke@435 2476 __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 2477 __ jcc(Assembler::above, L_failed);
duke@435 2478
duke@435 2479 // if (dst_pos + length > arrayOop(dst)->length()) FAIL;
duke@435 2480 __ movl(temp, length);
duke@435 2481 __ addl(temp, dst_pos); // dst_pos + length
duke@435 2482 __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 2483 __ jcc(Assembler::above, L_failed);
duke@435 2484
duke@435 2485 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2486 // Move with sign extension can be used since they are positive.
duke@435 2487 __ movslq(src_pos, src_pos);
duke@435 2488 __ movslq(dst_pos, dst_pos);
duke@435 2489
duke@435 2490 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2491 }
duke@435 2492
duke@435 2493 //
duke@435 2494 // Generate generic array copy stubs
duke@435 2495 //
duke@435 2496 // Input:
duke@435 2497 // c_rarg0 - src oop
duke@435 2498 // c_rarg1 - src_pos (32-bits)
duke@435 2499 // c_rarg2 - dst oop
duke@435 2500 // c_rarg3 - dst_pos (32-bits)
duke@435 2501 // not Win64
duke@435 2502 // c_rarg4 - element count (32-bits)
duke@435 2503 // Win64
duke@435 2504 // rsp+40 - element count (32-bits)
duke@435 2505 //
duke@435 2506 // Output:
duke@435 2507 // rax == 0 - success
duke@435 2508 // rax == -1^K - failure, where K is partial transfer count
duke@435 2509 //
iveresov@2595 2510 address generate_generic_copy(const char *name,
iveresov@2595 2511 address byte_copy_entry, address short_copy_entry,
iveresov@2691 2512 address int_copy_entry, address oop_copy_entry,
iveresov@2691 2513 address long_copy_entry, address checkcast_copy_entry) {
duke@435 2514
duke@435 2515 Label L_failed, L_failed_0, L_objArray;
duke@435 2516 Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
duke@435 2517
duke@435 2518 // Input registers
duke@435 2519 const Register src = c_rarg0; // source array oop
duke@435 2520 const Register src_pos = c_rarg1; // source position
duke@435 2521 const Register dst = c_rarg2; // destination array oop
duke@435 2522 const Register dst_pos = c_rarg3; // destination position
twisti@2348 2523 #ifndef _WIN64
twisti@2348 2524 const Register length = c_rarg4;
duke@435 2525 #else
twisti@2348 2526 const Address length(rsp, 6 * wordSize); // elements count is on stack on Win64
duke@435 2527 #endif
duke@435 2528
duke@435 2529 { int modulus = CodeEntryAlignment;
duke@435 2530 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 2531 int advance = target - (__ offset() % modulus);
duke@435 2532 if (advance < 0) advance += modulus;
duke@435 2533 if (advance > 0) __ nop(advance);
duke@435 2534 }
duke@435 2535 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2536
duke@435 2537 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 2538 __ BIND(L_failed_0);
duke@435 2539 __ jmp(L_failed);
duke@435 2540 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 2541
duke@435 2542 __ align(CodeEntryAlignment);
duke@435 2543 address start = __ pc();
duke@435 2544
duke@435 2545 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2546
duke@435 2547 // bump this on entry, not on exit:
duke@435 2548 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 2549
duke@435 2550 //-----------------------------------------------------------------------
duke@435 2551 // Assembler stub will be used for this call to arraycopy
duke@435 2552 // if the following conditions are met:
duke@435 2553 //
duke@435 2554 // (1) src and dst must not be null.
duke@435 2555 // (2) src_pos must not be negative.
duke@435 2556 // (3) dst_pos must not be negative.
duke@435 2557 // (4) length must not be negative.
duke@435 2558 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2559 // (6) src and dst should be arrays.
duke@435 2560 // (7) src_pos + length must not exceed length of src.
duke@435 2561 // (8) dst_pos + length must not exceed length of dst.
duke@435 2562 //
duke@435 2563
duke@435 2564 // if (src == NULL) return -1;
never@739 2565 __ testptr(src, src); // src oop
duke@435 2566 size_t j1off = __ offset();
duke@435 2567 __ jccb(Assembler::zero, L_failed_0);
duke@435 2568
duke@435 2569 // if (src_pos < 0) return -1;
duke@435 2570 __ testl(src_pos, src_pos); // src_pos (32-bits)
duke@435 2571 __ jccb(Assembler::negative, L_failed_0);
duke@435 2572
duke@435 2573 // if (dst == NULL) return -1;
never@739 2574 __ testptr(dst, dst); // dst oop
duke@435 2575 __ jccb(Assembler::zero, L_failed_0);
duke@435 2576
duke@435 2577 // if (dst_pos < 0) return -1;
duke@435 2578 __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
duke@435 2579 size_t j4off = __ offset();
duke@435 2580 __ jccb(Assembler::negative, L_failed_0);
duke@435 2581
duke@435 2582 // The first four tests are very dense code,
duke@435 2583 // but not quite dense enough to put four
duke@435 2584 // jumps in a 16-byte instruction fetch buffer.
duke@435 2585 // That's good, because some branch predicters
duke@435 2586 // do not like jumps so close together.
duke@435 2587 // Make sure of this.
duke@435 2588 guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
duke@435 2589
duke@435 2590 // registers used as temp
duke@435 2591 const Register r11_length = r11; // elements count to copy
duke@435 2592 const Register r10_src_klass = r10; // array klass
duke@435 2593
duke@435 2594 // if (length < 0) return -1;
twisti@2348 2595 __ movl(r11_length, length); // length (elements count, 32-bits value)
duke@435 2596 __ testl(r11_length, r11_length);
duke@435 2597 __ jccb(Assembler::negative, L_failed_0);
duke@435 2598
coleenp@548 2599 __ load_klass(r10_src_klass, src);
duke@435 2600 #ifdef ASSERT
duke@435 2601 // assert(src->klass() != NULL);
twisti@2348 2602 {
twisti@2348 2603 BLOCK_COMMENT("assert klasses not null {");
twisti@2348 2604 Label L1, L2;
never@739 2605 __ testptr(r10_src_klass, r10_src_klass);
duke@435 2606 __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 2607 __ bind(L1);
duke@435 2608 __ stop("broken null klass");
duke@435 2609 __ bind(L2);
twisti@2348 2610 __ load_klass(rax, dst);
twisti@2348 2611 __ cmpq(rax, 0);
duke@435 2612 __ jcc(Assembler::equal, L1); // this would be broken also
twisti@2348 2613 BLOCK_COMMENT("} assert klasses not null done");
duke@435 2614 }
duke@435 2615 #endif
duke@435 2616
duke@435 2617 // Load layout helper (32-bits)
duke@435 2618 //
duke@435 2619 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2620 // 32 30 24 16 8 2 0
duke@435 2621 //
duke@435 2622 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2623 //
duke@435 2624
stefank@3391 2625 const int lh_offset = in_bytes(Klass::layout_helper_offset());
twisti@2348 2626
twisti@2348 2627 // Handle objArrays completely differently...
twisti@2348 2628 const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
twisti@2348 2629 __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
twisti@2348 2630 __ jcc(Assembler::equal, L_objArray);
twisti@2348 2631
twisti@2348 2632 // if (src->klass() != dst->klass()) return -1;
twisti@2348 2633 __ load_klass(rax, dst);
twisti@2348 2634 __ cmpq(r10_src_klass, rax);
twisti@2348 2635 __ jcc(Assembler::notEqual, L_failed);
duke@435 2636
duke@435 2637 const Register rax_lh = rax; // layout helper
duke@435 2638 __ movl(rax_lh, Address(r10_src_klass, lh_offset));
duke@435 2639
duke@435 2640 // if (!src->is_Array()) return -1;
duke@435 2641 __ cmpl(rax_lh, Klass::_lh_neutral_value);
duke@435 2642 __ jcc(Assembler::greaterEqual, L_failed);
duke@435 2643
duke@435 2644 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2645 #ifdef ASSERT
twisti@2348 2646 {
twisti@2348 2647 BLOCK_COMMENT("assert primitive array {");
twisti@2348 2648 Label L;
duke@435 2649 __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 2650 __ jcc(Assembler::greaterEqual, L);
duke@435 2651 __ stop("must be a primitive array");
duke@435 2652 __ bind(L);
twisti@2348 2653 BLOCK_COMMENT("} assert primitive array done");
duke@435 2654 }
duke@435 2655 #endif
duke@435 2656
duke@435 2657 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2658 r10, L_failed);
duke@435 2659
coleenp@4142 2660 // TypeArrayKlass
duke@435 2661 //
duke@435 2662 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2663 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2664 //
duke@435 2665
duke@435 2666 const Register r10_offset = r10; // array offset
duke@435 2667 const Register rax_elsize = rax_lh; // element size
duke@435 2668
duke@435 2669 __ movl(r10_offset, rax_lh);
duke@435 2670 __ shrl(r10_offset, Klass::_lh_header_size_shift);
never@739 2671 __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset
never@739 2672 __ addptr(src, r10_offset); // src array offset
never@739 2673 __ addptr(dst, r10_offset); // dst array offset
duke@435 2674 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2675 __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
duke@435 2676
duke@435 2677 // next registers should be set before the jump to corresponding stub
duke@435 2678 const Register from = c_rarg0; // source array address
duke@435 2679 const Register to = c_rarg1; // destination array address
duke@435 2680 const Register count = c_rarg2; // elements count
duke@435 2681
duke@435 2682 // 'from', 'to', 'count' registers should be set in such order
duke@435 2683 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2684
duke@435 2685 __ BIND(L_copy_bytes);
duke@435 2686 __ cmpl(rax_elsize, 0);
duke@435 2687 __ jccb(Assembler::notEqual, L_copy_shorts);
never@739 2688 __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
never@739 2689 __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
never@739 2690 __ movl2ptr(count, r11_length); // length
duke@435 2691 __ jump(RuntimeAddress(byte_copy_entry));
duke@435 2692
duke@435 2693 __ BIND(L_copy_shorts);
duke@435 2694 __ cmpl(rax_elsize, LogBytesPerShort);
duke@435 2695 __ jccb(Assembler::notEqual, L_copy_ints);
never@739 2696 __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
never@739 2697 __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
never@739 2698 __ movl2ptr(count, r11_length); // length
duke@435 2699 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2700
duke@435 2701 __ BIND(L_copy_ints);
duke@435 2702 __ cmpl(rax_elsize, LogBytesPerInt);
duke@435 2703 __ jccb(Assembler::notEqual, L_copy_longs);
never@739 2704 __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
never@739 2705 __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
never@739 2706 __ movl2ptr(count, r11_length); // length
duke@435 2707 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2708
duke@435 2709 __ BIND(L_copy_longs);
duke@435 2710 #ifdef ASSERT
twisti@2348 2711 {
twisti@2348 2712 BLOCK_COMMENT("assert long copy {");
twisti@2348 2713 Label L;
duke@435 2714 __ cmpl(rax_elsize, LogBytesPerLong);
duke@435 2715 __ jcc(Assembler::equal, L);
duke@435 2716 __ stop("must be long copy, but elsize is wrong");
duke@435 2717 __ bind(L);
twisti@2348 2718 BLOCK_COMMENT("} assert long copy done");
duke@435 2719 }
duke@435 2720 #endif
never@739 2721 __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
never@739 2722 __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
never@739 2723 __ movl2ptr(count, r11_length); // length
duke@435 2724 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2725
coleenp@4142 2726 // ObjArrayKlass
duke@435 2727 __ BIND(L_objArray);
twisti@2348 2728 // live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos]
duke@435 2729
duke@435 2730 Label L_plain_copy, L_checkcast_copy;
duke@435 2731 // test array classes for subtyping
twisti@2348 2732 __ load_klass(rax, dst);
twisti@2348 2733 __ cmpq(r10_src_klass, rax); // usual case is exact equality
duke@435 2734 __ jcc(Assembler::notEqual, L_checkcast_copy);
duke@435 2735
duke@435 2736 // Identically typed arrays can be copied without element-wise checks.
duke@435 2737 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2738 r10, L_failed);
duke@435 2739
never@739 2740 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2741 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
never@739 2742 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
never@739 2743 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
never@739 2744 __ movl2ptr(count, r11_length); // length
duke@435 2745 __ BIND(L_plain_copy);
duke@435 2746 __ jump(RuntimeAddress(oop_copy_entry));
duke@435 2747
duke@435 2748 __ BIND(L_checkcast_copy);
twisti@2348 2749 // live at this point: r10_src_klass, r11_length, rax (dst_klass)
duke@435 2750 {
duke@435 2751 // Before looking at dst.length, make sure dst is also an objArray.
twisti@2348 2752 __ cmpl(Address(rax, lh_offset), objArray_lh);
duke@435 2753 __ jcc(Assembler::notEqual, L_failed);
duke@435 2754
duke@435 2755 // It is safe to examine both src.length and dst.length.
duke@435 2756 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2757 rax, L_failed);
twisti@2348 2758
twisti@2348 2759 const Register r11_dst_klass = r11;
coleenp@548 2760 __ load_klass(r11_dst_klass, dst); // reload
duke@435 2761
duke@435 2762 // Marshal the base address arguments now, freeing registers.
never@739 2763 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2764 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 2765 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
duke@435 2766 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
twisti@2348 2767 __ movl(count, length); // length (reloaded)
duke@435 2768 Register sco_temp = c_rarg3; // this register is free now
duke@435 2769 assert_different_registers(from, to, count, sco_temp,
duke@435 2770 r11_dst_klass, r10_src_klass);
duke@435 2771 assert_clean_int(count, sco_temp);
duke@435 2772
duke@435 2773 // Generate the type check.
stefank@3391 2774 const int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 2775 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2776 assert_clean_int(sco_temp, rax);
duke@435 2777 generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
duke@435 2778
coleenp@4142 2779 // Fetch destination element klass from the ObjArrayKlass header.
coleenp@4142 2780 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
never@739 2781 __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
twisti@2348 2782 __ movl( sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2783 assert_clean_int(sco_temp, rax);
duke@435 2784
duke@435 2785 // the checkcast_copy loop needs two extra arguments:
duke@435 2786 assert(c_rarg3 == sco_temp, "#3 already in place");
twisti@2348 2787 // Set up arguments for checkcast_copy_entry.
twisti@2348 2788 setup_arg_regs(4);
twisti@2348 2789 __ movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
duke@435 2790 __ jump(RuntimeAddress(checkcast_copy_entry));
duke@435 2791 }
duke@435 2792
duke@435 2793 __ BIND(L_failed);
never@739 2794 __ xorptr(rax, rax);
never@739 2795 __ notptr(rax); // return -1
duke@435 2796 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2797 __ ret(0);
duke@435 2798
duke@435 2799 return start;
duke@435 2800 }
duke@435 2801
duke@435 2802 void generate_arraycopy_stubs() {
iveresov@2595 2803 address entry;
iveresov@2595 2804 address entry_jbyte_arraycopy;
iveresov@2595 2805 address entry_jshort_arraycopy;
iveresov@2595 2806 address entry_jint_arraycopy;
iveresov@2595 2807 address entry_oop_arraycopy;
iveresov@2595 2808 address entry_jlong_arraycopy;
iveresov@2595 2809 address entry_checkcast_arraycopy;
iveresov@2595 2810
iveresov@2595 2811 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
iveresov@2595 2812 "jbyte_disjoint_arraycopy");
iveresov@2595 2813 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
iveresov@2595 2814 "jbyte_arraycopy");
iveresov@2595 2815
iveresov@2595 2816 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
iveresov@2595 2817 "jshort_disjoint_arraycopy");
iveresov@2595 2818 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
iveresov@2595 2819 "jshort_arraycopy");
iveresov@2595 2820
iveresov@2595 2821 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, &entry,
iveresov@2595 2822 "jint_disjoint_arraycopy");
iveresov@2595 2823 StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, entry,
iveresov@2595 2824 &entry_jint_arraycopy, "jint_arraycopy");
iveresov@2595 2825
iveresov@2595 2826 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, &entry,
iveresov@2595 2827 "jlong_disjoint_arraycopy");
iveresov@2595 2828 StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, entry,
iveresov@2595 2829 &entry_jlong_arraycopy, "jlong_arraycopy");
duke@435 2830
coleenp@548 2831
coleenp@548 2832 if (UseCompressedOops) {
iveresov@2595 2833 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, &entry,
iveresov@2595 2834 "oop_disjoint_arraycopy");
iveresov@2595 2835 StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, entry,
iveresov@2595 2836 &entry_oop_arraycopy, "oop_arraycopy");
iveresov@2606 2837 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_int_oop_copy(false, true, &entry,
iveresov@2606 2838 "oop_disjoint_arraycopy_uninit",
iveresov@2606 2839 /*dest_uninitialized*/true);
iveresov@2606 2840 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_int_oop_copy(false, true, entry,
iveresov@2606 2841 NULL, "oop_arraycopy_uninit",
iveresov@2606 2842 /*dest_uninitialized*/true);
coleenp@548 2843 } else {
iveresov@2595 2844 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, &entry,
iveresov@2595 2845 "oop_disjoint_arraycopy");
iveresov@2595 2846 StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, entry,
iveresov@2595 2847 &entry_oop_arraycopy, "oop_arraycopy");
iveresov@2606 2848 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_long_oop_copy(false, true, &entry,
iveresov@2606 2849 "oop_disjoint_arraycopy_uninit",
iveresov@2606 2850 /*dest_uninitialized*/true);
iveresov@2606 2851 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_long_oop_copy(false, true, entry,
iveresov@2606 2852 NULL, "oop_arraycopy_uninit",
iveresov@2606 2853 /*dest_uninitialized*/true);
coleenp@548 2854 }
duke@435 2855
iveresov@2606 2856 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
iveresov@2606 2857 StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
iveresov@2606 2858 /*dest_uninitialized*/true);
iveresov@2606 2859
iveresov@2595 2860 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
iveresov@2595 2861 entry_jbyte_arraycopy,
iveresov@2595 2862 entry_jshort_arraycopy,
iveresov@2595 2863 entry_jint_arraycopy,
iveresov@2595 2864 entry_jlong_arraycopy);
iveresov@2595 2865 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
iveresov@2595 2866 entry_jbyte_arraycopy,
iveresov@2595 2867 entry_jshort_arraycopy,
iveresov@2595 2868 entry_jint_arraycopy,
iveresov@2595 2869 entry_oop_arraycopy,
iveresov@2595 2870 entry_jlong_arraycopy,
iveresov@2595 2871 entry_checkcast_arraycopy);
duke@435 2872
never@2118 2873 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 2874 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 2875 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 2876 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 2877 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 2878 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
never@2118 2879
duke@435 2880 // We don't generate specialized code for HeapWord-aligned source
duke@435 2881 // arrays, so just use the code we've already generated
duke@435 2882 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy;
duke@435 2883 StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy;
duke@435 2884
duke@435 2885 StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
duke@435 2886 StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy;
duke@435 2887
duke@435 2888 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
duke@435 2889 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2890
duke@435 2891 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
duke@435 2892 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2893
duke@435 2894 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
duke@435 2895 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
iveresov@2606 2896
iveresov@2606 2897 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
iveresov@2606 2898 StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
duke@435 2899 }
duke@435 2900
never@1609 2901 void generate_math_stubs() {
never@1609 2902 {
never@1609 2903 StubCodeMark mark(this, "StubRoutines", "log");
never@1609 2904 StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
never@1609 2905
never@1609 2906 __ subq(rsp, 8);
never@1609 2907 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2908 __ fld_d(Address(rsp, 0));
never@1609 2909 __ flog();
never@1609 2910 __ fstp_d(Address(rsp, 0));
never@1609 2911 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2912 __ addq(rsp, 8);
never@1609 2913 __ ret(0);
never@1609 2914 }
never@1609 2915 {
never@1609 2916 StubCodeMark mark(this, "StubRoutines", "log10");
never@1609 2917 StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
never@1609 2918
never@1609 2919 __ subq(rsp, 8);
never@1609 2920 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2921 __ fld_d(Address(rsp, 0));
never@1609 2922 __ flog10();
never@1609 2923 __ fstp_d(Address(rsp, 0));
never@1609 2924 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2925 __ addq(rsp, 8);
never@1609 2926 __ ret(0);
never@1609 2927 }
never@1609 2928 {
never@1609 2929 StubCodeMark mark(this, "StubRoutines", "sin");
never@1609 2930 StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
never@1609 2931
never@1609 2932 __ subq(rsp, 8);
never@1609 2933 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2934 __ fld_d(Address(rsp, 0));
never@1609 2935 __ trigfunc('s');
never@1609 2936 __ fstp_d(Address(rsp, 0));
never@1609 2937 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2938 __ addq(rsp, 8);
never@1609 2939 __ ret(0);
never@1609 2940 }
never@1609 2941 {
never@1609 2942 StubCodeMark mark(this, "StubRoutines", "cos");
never@1609 2943 StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
never@1609 2944
never@1609 2945 __ subq(rsp, 8);
never@1609 2946 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2947 __ fld_d(Address(rsp, 0));
never@1609 2948 __ trigfunc('c');
never@1609 2949 __ fstp_d(Address(rsp, 0));
never@1609 2950 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2951 __ addq(rsp, 8);
never@1609 2952 __ ret(0);
never@1609 2953 }
never@1609 2954 {
never@1609 2955 StubCodeMark mark(this, "StubRoutines", "tan");
never@1609 2956 StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
never@1609 2957
never@1609 2958 __ subq(rsp, 8);
never@1609 2959 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2960 __ fld_d(Address(rsp, 0));
never@1609 2961 __ trigfunc('t');
never@1609 2962 __ fstp_d(Address(rsp, 0));
never@1609 2963 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2964 __ addq(rsp, 8);
never@1609 2965 __ ret(0);
never@1609 2966 }
roland@3787 2967 {
roland@3787 2968 StubCodeMark mark(this, "StubRoutines", "exp");
roland@3787 2969 StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
roland@3787 2970
roland@3787 2971 __ subq(rsp, 8);
roland@3787 2972 __ movdbl(Address(rsp, 0), xmm0);
roland@3787 2973 __ fld_d(Address(rsp, 0));
roland@3787 2974 __ exp_with_fallback(0);
roland@3787 2975 __ fstp_d(Address(rsp, 0));
roland@3787 2976 __ movdbl(xmm0, Address(rsp, 0));
roland@3787 2977 __ addq(rsp, 8);
roland@3787 2978 __ ret(0);
roland@3787 2979 }
roland@3787 2980 {
roland@3787 2981 StubCodeMark mark(this, "StubRoutines", "pow");
roland@3787 2982 StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
roland@3787 2983
roland@3787 2984 __ subq(rsp, 8);
roland@3787 2985 __ movdbl(Address(rsp, 0), xmm1);
roland@3787 2986 __ fld_d(Address(rsp, 0));
roland@3787 2987 __ movdbl(Address(rsp, 0), xmm0);
roland@3787 2988 __ fld_d(Address(rsp, 0));
roland@3787 2989 __ pow_with_fallback(0);
roland@3787 2990 __ fstp_d(Address(rsp, 0));
roland@3787 2991 __ movdbl(xmm0, Address(rsp, 0));
roland@3787 2992 __ addq(rsp, 8);
roland@3787 2993 __ ret(0);
roland@3787 2994 }
never@1609 2995 }
never@1609 2996
kvn@4205 2997 // AES intrinsic stubs
kvn@4205 2998 enum {AESBlockSize = 16};
kvn@4205 2999
kvn@4205 3000 address generate_key_shuffle_mask() {
kvn@4205 3001 __ align(16);
kvn@4205 3002 StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
kvn@4205 3003 address start = __ pc();
kvn@4205 3004 __ emit_data64( 0x0405060700010203, relocInfo::none );
kvn@4205 3005 __ emit_data64( 0x0c0d0e0f08090a0b, relocInfo::none );
kvn@4205 3006 return start;
kvn@4205 3007 }
kvn@4205 3008
kvn@4205 3009 // Utility routine for loading a 128-bit key word in little endian format
kvn@4205 3010 // can optionally specify that the shuffle mask is already in an xmmregister
kvn@4205 3011 void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
kvn@4205 3012 __ movdqu(xmmdst, Address(key, offset));
kvn@4205 3013 if (xmm_shuf_mask != NULL) {
kvn@4205 3014 __ pshufb(xmmdst, xmm_shuf_mask);
kvn@4205 3015 } else {
kvn@4205 3016 __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 3017 }
kvn@4205 3018 }
kvn@4205 3019
kvn@4205 3020 // Arguments:
kvn@4205 3021 //
kvn@4205 3022 // Inputs:
kvn@4205 3023 // c_rarg0 - source byte array address
kvn@4205 3024 // c_rarg1 - destination byte array address
kvn@4205 3025 // c_rarg2 - K (key) in little endian int array
kvn@4205 3026 //
kvn@4205 3027 address generate_aescrypt_encryptBlock() {
kvn@4363 3028 assert(UseAES, "need AES instructions and misaligned SSE support");
kvn@4205 3029 __ align(CodeEntryAlignment);
kvn@4205 3030 StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
kvn@4205 3031 Label L_doLast;
kvn@4205 3032 address start = __ pc();
kvn@4205 3033
kvn@4205 3034 const Register from = c_rarg0; // source array address
kvn@4205 3035 const Register to = c_rarg1; // destination array address
kvn@4205 3036 const Register key = c_rarg2; // key array address
kvn@4205 3037 const Register keylen = rax;
kvn@4205 3038
kvn@4205 3039 const XMMRegister xmm_result = xmm0;
kvn@4363 3040 const XMMRegister xmm_key_shuf_mask = xmm1;
kvn@4363 3041 // On win64 xmm6-xmm15 must be preserved so don't use them.
kvn@4363 3042 const XMMRegister xmm_temp1 = xmm2;
kvn@4363 3043 const XMMRegister xmm_temp2 = xmm3;
kvn@4363 3044 const XMMRegister xmm_temp3 = xmm4;
kvn@4363 3045 const XMMRegister xmm_temp4 = xmm5;
kvn@4205 3046
kvn@4205 3047 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 3048
kvn@4363 3049 // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
kvn@4205 3050 __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
kvn@4205 3051
kvn@4205 3052 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 3053 __ movdqu(xmm_result, Address(from, 0)); // get 16 bytes of input
kvn@4205 3054
kvn@4205 3055 // For encryption, the java expanded key ordering is just what we need
kvn@4205 3056 // we don't know if the key is aligned, hence not using load-execute form
kvn@4205 3057
kvn@4363 3058 load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
kvn@4363 3059 __ pxor(xmm_result, xmm_temp1);
kvn@4363 3060
kvn@4363 3061 load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
kvn@4363 3062 load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
kvn@4363 3063 load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
kvn@4363 3064 load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
kvn@4363 3065
kvn@4363 3066 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 3067 __ aesenc(xmm_result, xmm_temp2);
kvn@4363 3068 __ aesenc(xmm_result, xmm_temp3);
kvn@4363 3069 __ aesenc(xmm_result, xmm_temp4);
kvn@4363 3070
kvn@4363 3071 load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
kvn@4363 3072 load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
kvn@4363 3073 load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
kvn@4363 3074 load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
kvn@4363 3075
kvn@4363 3076 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 3077 __ aesenc(xmm_result, xmm_temp2);
kvn@4363 3078 __ aesenc(xmm_result, xmm_temp3);
kvn@4363 3079 __ aesenc(xmm_result, xmm_temp4);
kvn@4363 3080
kvn@4363 3081 load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
kvn@4363 3082 load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
kvn@4363 3083
kvn@4363 3084 __ cmpl(keylen, 44);
kvn@4363 3085 __ jccb(Assembler::equal, L_doLast);
kvn@4363 3086
kvn@4363 3087 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 3088 __ aesenc(xmm_result, xmm_temp2);
kvn@4363 3089
kvn@4363 3090 load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
kvn@4363 3091 load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
kvn@4363 3092
kvn@4363 3093 __ cmpl(keylen, 52);
kvn@4363 3094 __ jccb(Assembler::equal, L_doLast);
kvn@4363 3095
kvn@4363 3096 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 3097 __ aesenc(xmm_result, xmm_temp2);
kvn@4363 3098
kvn@4363 3099 load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
kvn@4363 3100 load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
kvn@4205 3101
kvn@4205 3102 __ BIND(L_doLast);
kvn@4363 3103 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 3104 __ aesenclast(xmm_result, xmm_temp2);
kvn@4205 3105 __ movdqu(Address(to, 0), xmm_result); // store the result
kvn@4205 3106 __ xorptr(rax, rax); // return 0
kvn@4205 3107 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 3108 __ ret(0);
kvn@4205 3109
kvn@4205 3110 return start;
kvn@4205 3111 }
kvn@4205 3112
kvn@4205 3113
kvn@4205 3114 // Arguments:
kvn@4205 3115 //
kvn@4205 3116 // Inputs:
kvn@4205 3117 // c_rarg0 - source byte array address
kvn@4205 3118 // c_rarg1 - destination byte array address
kvn@4205 3119 // c_rarg2 - K (key) in little endian int array
kvn@4205 3120 //
kvn@4205 3121 address generate_aescrypt_decryptBlock() {
kvn@4363 3122 assert(UseAES, "need AES instructions and misaligned SSE support");
kvn@4205 3123 __ align(CodeEntryAlignment);
kvn@4205 3124 StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
kvn@4205 3125 Label L_doLast;
kvn@4205 3126 address start = __ pc();
kvn@4205 3127
kvn@4205 3128 const Register from = c_rarg0; // source array address
kvn@4205 3129 const Register to = c_rarg1; // destination array address
kvn@4205 3130 const Register key = c_rarg2; // key array address
kvn@4205 3131 const Register keylen = rax;
kvn@4205 3132
kvn@4205 3133 const XMMRegister xmm_result = xmm0;
kvn@4363 3134 const XMMRegister xmm_key_shuf_mask = xmm1;
kvn@4363 3135 // On win64 xmm6-xmm15 must be preserved so don't use them.
kvn@4363 3136 const XMMRegister xmm_temp1 = xmm2;
kvn@4363 3137 const XMMRegister xmm_temp2 = xmm3;
kvn@4363 3138 const XMMRegister xmm_temp3 = xmm4;
kvn@4363 3139 const XMMRegister xmm_temp4 = xmm5;
kvn@4205 3140
kvn@4205 3141 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 3142
kvn@4363 3143 // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
kvn@4205 3144 __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
kvn@4205 3145
kvn@4205 3146 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 3147 __ movdqu(xmm_result, Address(from, 0));
kvn@4205 3148
kvn@4205 3149 // for decryption java expanded key ordering is rotated one position from what we want
kvn@4205 3150 // so we start from 0x10 here and hit 0x00 last
kvn@4205 3151 // we don't know if the key is aligned, hence not using load-execute form
kvn@4363 3152 load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
kvn@4363 3153 load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
kvn@4363 3154 load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
kvn@4363 3155 load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
kvn@4363 3156
kvn@4363 3157 __ pxor (xmm_result, xmm_temp1);
kvn@4363 3158 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 3159 __ aesdec(xmm_result, xmm_temp3);
kvn@4363 3160 __ aesdec(xmm_result, xmm_temp4);
kvn@4363 3161
kvn@4363 3162 load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
kvn@4363 3163 load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
kvn@4363 3164 load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
kvn@4363 3165 load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
kvn@4363 3166
kvn@4363 3167 __ aesdec(xmm_result, xmm_temp1);
kvn@4363 3168 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 3169 __ aesdec(xmm_result, xmm_temp3);
kvn@4363 3170 __ aesdec(xmm_result, xmm_temp4);
kvn@4363 3171
kvn@4363 3172 load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
kvn@4363 3173 load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
kvn@4363 3174 load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
kvn@4363 3175
kvn@4363 3176 __ cmpl(keylen, 44);
kvn@4363 3177 __ jccb(Assembler::equal, L_doLast);
kvn@4363 3178
kvn@4363 3179 __ aesdec(xmm_result, xmm_temp1);
kvn@4363 3180 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 3181
kvn@4363 3182 load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
kvn@4363 3183 load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
kvn@4363 3184
kvn@4363 3185 __ cmpl(keylen, 52);
kvn@4363 3186 __ jccb(Assembler::equal, L_doLast);
kvn@4363 3187
kvn@4363 3188 __ aesdec(xmm_result, xmm_temp1);
kvn@4363 3189 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 3190
kvn@4363 3191 load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
kvn@4363 3192 load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
kvn@4205 3193
kvn@4205 3194 __ BIND(L_doLast);
kvn@4363 3195 __ aesdec(xmm_result, xmm_temp1);
kvn@4363 3196 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 3197
kvn@4205 3198 // for decryption the aesdeclast operation is always on key+0x00
kvn@4363 3199 __ aesdeclast(xmm_result, xmm_temp3);
kvn@4205 3200 __ movdqu(Address(to, 0), xmm_result); // store the result
kvn@4205 3201 __ xorptr(rax, rax); // return 0
kvn@4205 3202 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 3203 __ ret(0);
kvn@4205 3204
kvn@4205 3205 return start;
kvn@4205 3206 }
kvn@4205 3207
kvn@4205 3208
kvn@4205 3209 // Arguments:
kvn@4205 3210 //
kvn@4205 3211 // Inputs:
kvn@4205 3212 // c_rarg0 - source byte array address
kvn@4205 3213 // c_rarg1 - destination byte array address
kvn@4205 3214 // c_rarg2 - K (key) in little endian int array
kvn@4205 3215 // c_rarg3 - r vector byte array address
kvn@4205 3216 // c_rarg4 - input length
kvn@4205 3217 //
kvn@4205 3218 address generate_cipherBlockChaining_encryptAESCrypt() {
kvn@4363 3219 assert(UseAES, "need AES instructions and misaligned SSE support");
kvn@4205 3220 __ align(CodeEntryAlignment);
kvn@4205 3221 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
kvn@4205 3222 address start = __ pc();
kvn@4205 3223
kvn@4205 3224 Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
kvn@4205 3225 const Register from = c_rarg0; // source array address
kvn@4205 3226 const Register to = c_rarg1; // destination array address
kvn@4205 3227 const Register key = c_rarg2; // key array address
kvn@4205 3228 const Register rvec = c_rarg3; // r byte array initialized from initvector array address
kvn@4205 3229 // and left with the results of the last encryption block
kvn@4205 3230 #ifndef _WIN64
kvn@4205 3231 const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16)
kvn@4205 3232 #else
kvn@4205 3233 const Address len_mem(rsp, 6 * wordSize); // length is on stack on Win64
kvn@4205 3234 const Register len_reg = r10; // pick the first volatile windows register
kvn@4205 3235 #endif
kvn@4205 3236 const Register pos = rax;
kvn@4205 3237
kvn@4205 3238 // xmm register assignments for the loops below
kvn@4205 3239 const XMMRegister xmm_result = xmm0;
kvn@4205 3240 const XMMRegister xmm_temp = xmm1;
kvn@4205 3241 // keys 0-10 preloaded into xmm2-xmm12
kvn@4205 3242 const int XMM_REG_NUM_KEY_FIRST = 2;
kvn@4363 3243 const int XMM_REG_NUM_KEY_LAST = 15;
kvn@4205 3244 const XMMRegister xmm_key0 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
kvn@4363 3245 const XMMRegister xmm_key10 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+10);
kvn@4363 3246 const XMMRegister xmm_key11 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+11);
kvn@4363 3247 const XMMRegister xmm_key12 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+12);
kvn@4363 3248 const XMMRegister xmm_key13 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+13);
kvn@4205 3249
kvn@4205 3250 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 3251
kvn@4205 3252 #ifdef _WIN64
kvn@4205 3253 // on win64, fill len_reg from stack position
kvn@4205 3254 __ movl(len_reg, len_mem);
kvn@4363 3255 // save the xmm registers which must be preserved 6-15
kvn@4205 3256 __ subptr(rsp, -rsp_after_call_off * wordSize);
kvn@4205 3257 for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
kvn@4205 3258 __ movdqu(xmm_save(i), as_XMMRegister(i));
kvn@4205 3259 }
kvn@4205 3260 #endif
kvn@4205 3261
kvn@4205 3262 const XMMRegister xmm_key_shuf_mask = xmm_temp; // used temporarily to swap key bytes up front
kvn@4205 3263 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4363 3264 // load up xmm regs xmm2 thru xmm12 with key 0x00 - 0xa0
kvn@4363 3265 for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_FIRST+10; rnum++) {
kvn@4205 3266 load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
kvn@4205 3267 offset += 0x10;
kvn@4205 3268 }
kvn@4205 3269 __ movdqu(xmm_result, Address(rvec, 0x00)); // initialize xmm_result with r vec
kvn@4205 3270
kvn@4205 3271 // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
kvn@4205 3272 __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
kvn@4205 3273 __ cmpl(rax, 44);
kvn@4205 3274 __ jcc(Assembler::notEqual, L_key_192_256);
kvn@4205 3275
kvn@4205 3276 // 128 bit code follows here
kvn@4205 3277 __ movptr(pos, 0);
kvn@4205 3278 __ align(OptoLoopAlignment);
kvn@4363 3279
kvn@4205 3280 __ BIND(L_loopTop_128);
kvn@4205 3281 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
kvn@4205 3282 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 3283 __ pxor (xmm_result, xmm_key0); // do the aes rounds
kvn@4363 3284 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 9; rnum++) {
kvn@4205 3285 __ aesenc(xmm_result, as_XMMRegister(rnum));
kvn@4205 3286 }
kvn@4205 3287 __ aesenclast(xmm_result, xmm_key10);
kvn@4205 3288 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 3289 // no need to store r to memory until we exit
kvn@4205 3290 __ addptr(pos, AESBlockSize);
kvn@4205 3291 __ subptr(len_reg, AESBlockSize);
kvn@4205 3292 __ jcc(Assembler::notEqual, L_loopTop_128);
kvn@4205 3293
kvn@4205 3294 __ BIND(L_exit);
kvn@4205 3295 __ movdqu(Address(rvec, 0), xmm_result); // final value of r stored in rvec of CipherBlockChaining object
kvn@4205 3296
kvn@4205 3297 #ifdef _WIN64
kvn@4205 3298 // restore xmm regs belonging to calling function
kvn@4205 3299 for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
kvn@4205 3300 __ movdqu(as_XMMRegister(i), xmm_save(i));
kvn@4205 3301 }
kvn@4205 3302 #endif
kvn@4205 3303 __ movl(rax, 0); // return 0 (why?)
kvn@4205 3304 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 3305 __ ret(0);
kvn@4205 3306
kvn@4205 3307 __ BIND(L_key_192_256);
kvn@4205 3308 // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
kvn@4363 3309 load_key(xmm_key11, key, 0xb0, xmm_key_shuf_mask);
kvn@4363 3310 load_key(xmm_key12, key, 0xc0, xmm_key_shuf_mask);
kvn@4205 3311 __ cmpl(rax, 52);
kvn@4205 3312 __ jcc(Assembler::notEqual, L_key_256);
kvn@4205 3313
kvn@4205 3314 // 192-bit code follows here (could be changed to use more xmm registers)
kvn@4205 3315 __ movptr(pos, 0);
kvn@4205 3316 __ align(OptoLoopAlignment);
kvn@4363 3317
kvn@4205 3318 __ BIND(L_loopTop_192);
kvn@4205 3319 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
kvn@4205 3320 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 3321 __ pxor (xmm_result, xmm_key0); // do the aes rounds
kvn@4363 3322 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 11; rnum++) {
kvn@4205 3323 __ aesenc(xmm_result, as_XMMRegister(rnum));
kvn@4205 3324 }
kvn@4363 3325 __ aesenclast(xmm_result, xmm_key12);
kvn@4205 3326 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 3327 // no need to store r to memory until we exit
kvn@4205 3328 __ addptr(pos, AESBlockSize);
kvn@4205 3329 __ subptr(len_reg, AESBlockSize);
kvn@4205 3330 __ jcc(Assembler::notEqual, L_loopTop_192);
kvn@4205 3331 __ jmp(L_exit);
kvn@4205 3332
kvn@4205 3333 __ BIND(L_key_256);
kvn@4205 3334 // 256-bit code follows here (could be changed to use more xmm registers)
kvn@4363 3335 load_key(xmm_key13, key, 0xd0, xmm_key_shuf_mask);
kvn@4205 3336 __ movptr(pos, 0);
kvn@4205 3337 __ align(OptoLoopAlignment);
kvn@4363 3338
kvn@4205 3339 __ BIND(L_loopTop_256);
kvn@4205 3340 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
kvn@4205 3341 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 3342 __ pxor (xmm_result, xmm_key0); // do the aes rounds
kvn@4363 3343 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 13; rnum++) {
kvn@4205 3344 __ aesenc(xmm_result, as_XMMRegister(rnum));
kvn@4205 3345 }
kvn@4205 3346 load_key(xmm_temp, key, 0xe0);
kvn@4205 3347 __ aesenclast(xmm_result, xmm_temp);
kvn@4205 3348 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 3349 // no need to store r to memory until we exit
kvn@4205 3350 __ addptr(pos, AESBlockSize);
kvn@4205 3351 __ subptr(len_reg, AESBlockSize);
kvn@4205 3352 __ jcc(Assembler::notEqual, L_loopTop_256);
kvn@4205 3353 __ jmp(L_exit);
kvn@4205 3354
kvn@4205 3355 return start;
kvn@4205 3356 }
kvn@4205 3357
kvn@4205 3358
kvn@4205 3359
kvn@4205 3360 // This is a version of CBC/AES Decrypt which does 4 blocks in a loop at a time
kvn@4205 3361 // to hide instruction latency
kvn@4205 3362 //
kvn@4205 3363 // Arguments:
kvn@4205 3364 //
kvn@4205 3365 // Inputs:
kvn@4205 3366 // c_rarg0 - source byte array address
kvn@4205 3367 // c_rarg1 - destination byte array address
kvn@4205 3368 // c_rarg2 - K (key) in little endian int array
kvn@4205 3369 // c_rarg3 - r vector byte array address
kvn@4205 3370 // c_rarg4 - input length
kvn@4205 3371 //
kvn@4205 3372
kvn@4205 3373 address generate_cipherBlockChaining_decryptAESCrypt_Parallel() {
kvn@4363 3374 assert(UseAES, "need AES instructions and misaligned SSE support");
kvn@4205 3375 __ align(CodeEntryAlignment);
kvn@4205 3376 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
kvn@4205 3377 address start = __ pc();
kvn@4205 3378
kvn@4205 3379 Label L_exit, L_key_192_256, L_key_256;
kvn@4205 3380 Label L_singleBlock_loopTop_128, L_multiBlock_loopTop_128;
kvn@4205 3381 Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
kvn@4205 3382 const Register from = c_rarg0; // source array address
kvn@4205 3383 const Register to = c_rarg1; // destination array address
kvn@4205 3384 const Register key = c_rarg2; // key array address
kvn@4205 3385 const Register rvec = c_rarg3; // r byte array initialized from initvector array address
kvn@4205 3386 // and left with the results of the last encryption block
kvn@4205 3387 #ifndef _WIN64
kvn@4205 3388 const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16)
kvn@4205 3389 #else
kvn@4205 3390 const Address len_mem(rsp, 6 * wordSize); // length is on stack on Win64
kvn@4205 3391 const Register len_reg = r10; // pick the first volatile windows register
kvn@4205 3392 #endif
kvn@4205 3393 const Register pos = rax;
kvn@4205 3394
kvn@4205 3395 // keys 0-10 preloaded into xmm2-xmm12
kvn@4205 3396 const int XMM_REG_NUM_KEY_FIRST = 5;
kvn@4205 3397 const int XMM_REG_NUM_KEY_LAST = 15;
kvn@4363 3398 const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
kvn@4205 3399 const XMMRegister xmm_key_last = as_XMMRegister(XMM_REG_NUM_KEY_LAST);
kvn@4205 3400
kvn@4205 3401 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 3402
kvn@4205 3403 #ifdef _WIN64
kvn@4205 3404 // on win64, fill len_reg from stack position
kvn@4205 3405 __ movl(len_reg, len_mem);
kvn@4205 3406 // save the xmm registers which must be preserved 6-15
kvn@4205 3407 __ subptr(rsp, -rsp_after_call_off * wordSize);
kvn@4205 3408 for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
kvn@4205 3409 __ movdqu(xmm_save(i), as_XMMRegister(i));
kvn@4205 3410 }
kvn@4205 3411 #endif
kvn@4205 3412 // the java expanded key ordering is rotated one position from what we want
kvn@4205 3413 // so we start from 0x10 here and hit 0x00 last
kvn@4205 3414 const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front
kvn@4205 3415 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 3416 // load up xmm regs 5 thru 15 with key 0x10 - 0xa0 - 0x00
kvn@4363 3417 for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum < XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 3418 load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
kvn@4205 3419 offset += 0x10;
kvn@4205 3420 }
kvn@4363 3421 load_key(xmm_key_last, key, 0x00, xmm_key_shuf_mask);
kvn@4205 3422
kvn@4205 3423 const XMMRegister xmm_prev_block_cipher = xmm1; // holds cipher of previous block
kvn@4363 3424
kvn@4205 3425 // registers holding the four results in the parallelized loop
kvn@4205 3426 const XMMRegister xmm_result0 = xmm0;
kvn@4205 3427 const XMMRegister xmm_result1 = xmm2;
kvn@4205 3428 const XMMRegister xmm_result2 = xmm3;
kvn@4205 3429 const XMMRegister xmm_result3 = xmm4;
kvn@4205 3430
kvn@4205 3431 __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // initialize with initial rvec
kvn@4205 3432
kvn@4205 3433 // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
kvn@4205 3434 __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
kvn@4205 3435 __ cmpl(rax, 44);
kvn@4205 3436 __ jcc(Assembler::notEqual, L_key_192_256);
kvn@4205 3437
kvn@4205 3438
kvn@4205 3439 // 128-bit code follows here, parallelized
kvn@4205 3440 __ movptr(pos, 0);
kvn@4205 3441 __ align(OptoLoopAlignment);
kvn@4205 3442 __ BIND(L_multiBlock_loopTop_128);
kvn@4205 3443 __ cmpptr(len_reg, 4*AESBlockSize); // see if at least 4 blocks left
kvn@4205 3444 __ jcc(Assembler::less, L_singleBlock_loopTop_128);
kvn@4205 3445
kvn@4205 3446 __ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0*AESBlockSize)); // get next 4 blocks into xmmresult registers
kvn@4205 3447 __ movdqu(xmm_result1, Address(from, pos, Address::times_1, 1*AESBlockSize));
kvn@4205 3448 __ movdqu(xmm_result2, Address(from, pos, Address::times_1, 2*AESBlockSize));
kvn@4205 3449 __ movdqu(xmm_result3, Address(from, pos, Address::times_1, 3*AESBlockSize));
kvn@4205 3450
kvn@4205 3451 #define DoFour(opc, src_reg) \
kvn@4205 3452 __ opc(xmm_result0, src_reg); \
kvn@4205 3453 __ opc(xmm_result1, src_reg); \
kvn@4205 3454 __ opc(xmm_result2, src_reg); \
kvn@4205 3455 __ opc(xmm_result3, src_reg);
kvn@4205 3456
kvn@4205 3457 DoFour(pxor, xmm_key_first);
kvn@4205 3458 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
kvn@4205 3459 DoFour(aesdec, as_XMMRegister(rnum));
kvn@4205 3460 }
kvn@4205 3461 DoFour(aesdeclast, xmm_key_last);
kvn@4205 3462 // for each result, xor with the r vector of previous cipher block
kvn@4205 3463 __ pxor(xmm_result0, xmm_prev_block_cipher);
kvn@4205 3464 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0*AESBlockSize));
kvn@4205 3465 __ pxor(xmm_result1, xmm_prev_block_cipher);
kvn@4205 3466 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1*AESBlockSize));
kvn@4205 3467 __ pxor(xmm_result2, xmm_prev_block_cipher);
kvn@4205 3468 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2*AESBlockSize));
kvn@4205 3469 __ pxor(xmm_result3, xmm_prev_block_cipher);
kvn@4205 3470 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3*AESBlockSize)); // this will carry over to next set of blocks
kvn@4205 3471
kvn@4205 3472 __ movdqu(Address(to, pos, Address::times_1, 0*AESBlockSize), xmm_result0); // store 4 results into the next 64 bytes of output
kvn@4205 3473 __ movdqu(Address(to, pos, Address::times_1, 1*AESBlockSize), xmm_result1);
kvn@4205 3474 __ movdqu(Address(to, pos, Address::times_1, 2*AESBlockSize), xmm_result2);
kvn@4205 3475 __ movdqu(Address(to, pos, Address::times_1, 3*AESBlockSize), xmm_result3);
kvn@4205 3476
kvn@4205 3477 __ addptr(pos, 4*AESBlockSize);
kvn@4205 3478 __ subptr(len_reg, 4*AESBlockSize);
kvn@4205 3479 __ jmp(L_multiBlock_loopTop_128);
kvn@4205 3480
kvn@4205 3481 // registers used in the non-parallelized loops
kvn@4363 3482 // xmm register assignments for the loops below
kvn@4363 3483 const XMMRegister xmm_result = xmm0;
kvn@4205 3484 const XMMRegister xmm_prev_block_cipher_save = xmm2;
kvn@4363 3485 const XMMRegister xmm_key11 = xmm3;
kvn@4363 3486 const XMMRegister xmm_key12 = xmm4;
kvn@4363 3487 const XMMRegister xmm_temp = xmm4;
kvn@4205 3488
kvn@4205 3489 __ align(OptoLoopAlignment);
kvn@4205 3490 __ BIND(L_singleBlock_loopTop_128);
kvn@4205 3491 __ cmpptr(len_reg, 0); // any blocks left??
kvn@4205 3492 __ jcc(Assembler::equal, L_exit);
kvn@4205 3493 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
kvn@4205 3494 __ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector
kvn@4205 3495 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
kvn@4205 3496 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
kvn@4205 3497 __ aesdec(xmm_result, as_XMMRegister(rnum));
kvn@4205 3498 }
kvn@4205 3499 __ aesdeclast(xmm_result, xmm_key_last);
kvn@4205 3500 __ pxor (xmm_result, xmm_prev_block_cipher); // xor with the current r vector
kvn@4205 3501 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 3502 // no need to store r to memory until we exit
kvn@4205 3503 __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block
kvn@4205 3504
kvn@4205 3505 __ addptr(pos, AESBlockSize);
kvn@4205 3506 __ subptr(len_reg, AESBlockSize);
kvn@4205 3507 __ jmp(L_singleBlock_loopTop_128);
kvn@4205 3508
kvn@4205 3509
kvn@4205 3510 __ BIND(L_exit);
kvn@4205 3511 __ movdqu(Address(rvec, 0), xmm_prev_block_cipher); // final value of r stored in rvec of CipherBlockChaining object
kvn@4205 3512 #ifdef _WIN64
kvn@4205 3513 // restore regs belonging to calling function
kvn@4205 3514 for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
kvn@4205 3515 __ movdqu(as_XMMRegister(i), xmm_save(i));
kvn@4205 3516 }
kvn@4205 3517 #endif
kvn@4205 3518 __ movl(rax, 0); // return 0 (why?)
kvn@4205 3519 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 3520 __ ret(0);
kvn@4205 3521
kvn@4205 3522
kvn@4205 3523 __ BIND(L_key_192_256);
kvn@4205 3524 // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
kvn@4363 3525 load_key(xmm_key11, key, 0xb0);
kvn@4205 3526 __ cmpl(rax, 52);
kvn@4205 3527 __ jcc(Assembler::notEqual, L_key_256);
kvn@4205 3528
kvn@4205 3529 // 192-bit code follows here (could be optimized to use parallelism)
kvn@4363 3530 load_key(xmm_key12, key, 0xc0); // 192-bit key goes up to c0
kvn@4205 3531 __ movptr(pos, 0);
kvn@4205 3532 __ align(OptoLoopAlignment);
kvn@4363 3533
kvn@4205 3534 __ BIND(L_singleBlock_loopTop_192);
kvn@4205 3535 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
kvn@4205 3536 __ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector
kvn@4205 3537 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
kvn@4205 3538 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
kvn@4205 3539 __ aesdec(xmm_result, as_XMMRegister(rnum));
kvn@4205 3540 }
kvn@4363 3541 __ aesdec(xmm_result, xmm_key11);
kvn@4363 3542 __ aesdec(xmm_result, xmm_key12);
kvn@4205 3543 __ aesdeclast(xmm_result, xmm_key_last); // xmm15 always came from key+0
kvn@4205 3544 __ pxor (xmm_result, xmm_prev_block_cipher); // xor with the current r vector
kvn@4363 3545 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 3546 // no need to store r to memory until we exit
kvn@4363 3547 __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block
kvn@4205 3548 __ addptr(pos, AESBlockSize);
kvn@4205 3549 __ subptr(len_reg, AESBlockSize);
kvn@4205 3550 __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
kvn@4205 3551 __ jmp(L_exit);
kvn@4205 3552
kvn@4205 3553 __ BIND(L_key_256);
kvn@4205 3554 // 256-bit code follows here (could be optimized to use parallelism)
kvn@4205 3555 __ movptr(pos, 0);
kvn@4205 3556 __ align(OptoLoopAlignment);
kvn@4363 3557
kvn@4205 3558 __ BIND(L_singleBlock_loopTop_256);
kvn@4363 3559 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
kvn@4205 3560 __ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector
kvn@4205 3561 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
kvn@4205 3562 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
kvn@4205 3563 __ aesdec(xmm_result, as_XMMRegister(rnum));
kvn@4205 3564 }
kvn@4363 3565 __ aesdec(xmm_result, xmm_key11);
kvn@4363 3566 load_key(xmm_temp, key, 0xc0);
kvn@4363 3567 __ aesdec(xmm_result, xmm_temp);
kvn@4363 3568 load_key(xmm_temp, key, 0xd0);
kvn@4363 3569 __ aesdec(xmm_result, xmm_temp);
kvn@4363 3570 load_key(xmm_temp, key, 0xe0); // 256-bit key goes up to e0
kvn@4363 3571 __ aesdec(xmm_result, xmm_temp);
kvn@4363 3572 __ aesdeclast(xmm_result, xmm_key_last); // xmm15 came from key+0
kvn@4205 3573 __ pxor (xmm_result, xmm_prev_block_cipher); // xor with the current r vector
kvn@4363 3574 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 3575 // no need to store r to memory until we exit
kvn@4363 3576 __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block
kvn@4205 3577 __ addptr(pos, AESBlockSize);
kvn@4205 3578 __ subptr(len_reg, AESBlockSize);
kvn@4205 3579 __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
kvn@4205 3580 __ jmp(L_exit);
kvn@4205 3581
kvn@4205 3582 return start;
kvn@4205 3583 }
kvn@4205 3584
kvn@4205 3585
kvn@4205 3586
duke@435 3587 #undef __
duke@435 3588 #define __ masm->
duke@435 3589
duke@435 3590 // Continuation point for throwing of implicit exceptions that are
duke@435 3591 // not handled in the current activation. Fabricates an exception
duke@435 3592 // oop and initiates normal exception dispatching in this
duke@435 3593 // frame. Since we need to preserve callee-saved values (currently
duke@435 3594 // only for C2, but done for C1 as well) we need a callee-saved oop
duke@435 3595 // map and therefore have to make these stubs into RuntimeStubs
duke@435 3596 // rather than BufferBlobs. If the compiler needs all registers to
duke@435 3597 // be preserved between the fault point and the exception handler
duke@435 3598 // then it must assume responsibility for that in
duke@435 3599 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 3600 // continuation_for_implicit_division_by_zero_exception. All other
duke@435 3601 // implicit exceptions (e.g., NullPointerException or
duke@435 3602 // AbstractMethodError on entry) are either at call sites or
duke@435 3603 // otherwise assume that stack unwinding will be initiated, so
duke@435 3604 // caller saved registers were assumed volatile in the compiler.
duke@435 3605 address generate_throw_exception(const char* name,
duke@435 3606 address runtime_entry,
never@2978 3607 Register arg1 = noreg,
never@2978 3608 Register arg2 = noreg) {
duke@435 3609 // Information about frame layout at time of blocking runtime call.
duke@435 3610 // Note that we only have to preserve callee-saved registers since
duke@435 3611 // the compilers are responsible for supplying a continuation point
duke@435 3612 // if they expect all registers to be preserved.
duke@435 3613 enum layout {
duke@435 3614 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
duke@435 3615 rbp_off2,
duke@435 3616 return_off,
duke@435 3617 return_off2,
duke@435 3618 framesize // inclusive of return address
duke@435 3619 };
duke@435 3620
duke@435 3621 int insts_size = 512;
duke@435 3622 int locs_size = 64;
duke@435 3623
duke@435 3624 CodeBuffer code(name, insts_size, locs_size);
duke@435 3625 OopMapSet* oop_maps = new OopMapSet();
duke@435 3626 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 3627
duke@435 3628 address start = __ pc();
duke@435 3629
duke@435 3630 // This is an inlined and slightly modified version of call_VM
duke@435 3631 // which has the ability to fetch the return PC out of
duke@435 3632 // thread-local storage and also sets up last_Java_sp slightly
duke@435 3633 // differently than the real call_VM
duke@435 3634
duke@435 3635 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 3636
duke@435 3637 assert(is_even(framesize/2), "sp not 16-byte aligned");
duke@435 3638
duke@435 3639 // return address and rbp are already in place
never@739 3640 __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
duke@435 3641
duke@435 3642 int frame_complete = __ pc() - start;
duke@435 3643
duke@435 3644 // Set up last_Java_sp and last_Java_fp
roland@3522 3645 address the_pc = __ pc();
roland@3522 3646 __ set_last_Java_frame(rsp, rbp, the_pc);
roland@3522 3647 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
duke@435 3648
duke@435 3649 // Call runtime
never@2978 3650 if (arg1 != noreg) {
never@2978 3651 assert(arg2 != c_rarg1, "clobbered");
never@2978 3652 __ movptr(c_rarg1, arg1);
never@2978 3653 }
never@2978 3654 if (arg2 != noreg) {
never@2978 3655 __ movptr(c_rarg2, arg2);
never@2978 3656 }
never@739 3657 __ movptr(c_rarg0, r15_thread);
duke@435 3658 BLOCK_COMMENT("call runtime_entry");
duke@435 3659 __ call(RuntimeAddress(runtime_entry));
duke@435 3660
duke@435 3661 // Generate oop map
duke@435 3662 OopMap* map = new OopMap(framesize, 0);
duke@435 3663
roland@3568 3664 oop_maps->add_gc_map(the_pc - start, map);
duke@435 3665
roland@3522 3666 __ reset_last_Java_frame(true, true);
duke@435 3667
duke@435 3668 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 3669
duke@435 3670 // check for pending exceptions
duke@435 3671 #ifdef ASSERT
duke@435 3672 Label L;
never@739 3673 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
never@739 3674 (int32_t) NULL_WORD);
duke@435 3675 __ jcc(Assembler::notEqual, L);
duke@435 3676 __ should_not_reach_here();
duke@435 3677 __ bind(L);
duke@435 3678 #endif // ASSERT
duke@435 3679 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3680
duke@435 3681
duke@435 3682 // codeBlob framesize is in words (not VMRegImpl::slot_size)
duke@435 3683 RuntimeStub* stub =
duke@435 3684 RuntimeStub::new_runtime_stub(name,
duke@435 3685 &code,
duke@435 3686 frame_complete,
duke@435 3687 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
duke@435 3688 oop_maps, false);
duke@435 3689 return stub->entry_point();
duke@435 3690 }
duke@435 3691
duke@435 3692 // Initialization
duke@435 3693 void generate_initial() {
duke@435 3694 // Generates all stubs and initializes the entry points
duke@435 3695
duke@435 3696 // This platform-specific stub is needed by generate_call_stub()
never@739 3697 StubRoutines::x86::_mxcsr_std = generate_fp_mask("mxcsr_std", 0x0000000000001F80);
duke@435 3698
duke@435 3699 // entry points that exist in all platforms Note: This is code
duke@435 3700 // that could be shared among different platforms - however the
duke@435 3701 // benefit seems to be smaller than the disadvantage of having a
duke@435 3702 // much more complicated generator structure. See also comment in
duke@435 3703 // stubRoutines.hpp.
duke@435 3704
duke@435 3705 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 3706
duke@435 3707 StubRoutines::_call_stub_entry =
duke@435 3708 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 3709
duke@435 3710 // is referenced by megamorphic call
duke@435 3711 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 3712
duke@435 3713 // atomic calls
duke@435 3714 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 3715 StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr();
duke@435 3716 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 3717 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 3718 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 3719 StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr();
duke@435 3720 StubRoutines::_fence_entry = generate_orderaccess_fence();
duke@435 3721
duke@435 3722 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 3723 generate_handler_for_unsafe_access();
duke@435 3724
duke@435 3725 // platform dependent
never@739 3726 StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
roland@3606 3727 StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
never@739 3728
never@739 3729 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
never@2978 3730
bdelsart@3372 3731 // Build this early so it's available for the interpreter.
bdelsart@3372 3732 StubRoutines::_throw_StackOverflowError_entry =
bdelsart@3372 3733 generate_throw_exception("StackOverflowError throw_exception",
bdelsart@3372 3734 CAST_FROM_FN_PTR(address,
bdelsart@3372 3735 SharedRuntime::
bdelsart@3372 3736 throw_StackOverflowError));
duke@435 3737 }
duke@435 3738
duke@435 3739 void generate_all() {
duke@435 3740 // Generates all stubs and initializes the entry points
duke@435 3741
duke@435 3742 // These entry points require SharedInfo::stack0 to be set up in
duke@435 3743 // non-core builds and need to be relocatable, so they each
duke@435 3744 // fabricate a RuntimeStub internally.
duke@435 3745 StubRoutines::_throw_AbstractMethodError_entry =
duke@435 3746 generate_throw_exception("AbstractMethodError throw_exception",
duke@435 3747 CAST_FROM_FN_PTR(address,
duke@435 3748 SharedRuntime::
never@3136 3749 throw_AbstractMethodError));
duke@435 3750
dcubed@451 3751 StubRoutines::_throw_IncompatibleClassChangeError_entry =
dcubed@451 3752 generate_throw_exception("IncompatibleClassChangeError throw_exception",
dcubed@451 3753 CAST_FROM_FN_PTR(address,
dcubed@451 3754 SharedRuntime::
never@3136 3755 throw_IncompatibleClassChangeError));
duke@435 3756
duke@435 3757 StubRoutines::_throw_NullPointerException_at_call_entry =
duke@435 3758 generate_throw_exception("NullPointerException at call throw_exception",
duke@435 3759 CAST_FROM_FN_PTR(address,
duke@435 3760 SharedRuntime::
never@3136 3761 throw_NullPointerException_at_call));
duke@435 3762
duke@435 3763 // entry points that are platform specific
never@739 3764 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
never@739 3765 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
never@739 3766 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
never@739 3767 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
never@739 3768
never@739 3769 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF);
never@739 3770 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000);
never@739 3771 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
never@739 3772 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
duke@435 3773
duke@435 3774 // support for verify_oop (must happen after universe_init)
duke@435 3775 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 3776
duke@435 3777 // arraycopy stubs used by compilers
duke@435 3778 generate_arraycopy_stubs();
twisti@1543 3779
never@1609 3780 generate_math_stubs();
kvn@4205 3781
kvn@4205 3782 // don't bother generating these AES intrinsic stubs unless global flag is set
kvn@4205 3783 if (UseAESIntrinsics) {
kvn@4205 3784 StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask(); // needed by the others
kvn@4205 3785
kvn@4205 3786 StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
kvn@4205 3787 StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
kvn@4205 3788 StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
kvn@4205 3789 StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
kvn@4205 3790 }
duke@435 3791 }
duke@435 3792
duke@435 3793 public:
duke@435 3794 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3795 if (all) {
duke@435 3796 generate_all();
duke@435 3797 } else {
duke@435 3798 generate_initial();
duke@435 3799 }
duke@435 3800 }
duke@435 3801 }; // end class declaration
duke@435 3802
duke@435 3803 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3804 StubGenerator g(code, all);
duke@435 3805 }

mercurial