src/share/vm/memory/cardTableRS.cpp

Wed, 27 Aug 2014 08:19:12 -0400

author
zgu
date
Wed, 27 Aug 2014 08:19:12 -0400
changeset 7074
833b0f92429a
parent 7051
1f1d373cd044
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

8046598: Scalable Native memory tracking development
Summary: Enhance scalability of native memory tracking
Reviewed-by: coleenp, ctornqvi, gtriantafill

duke@435 1 /*
drchase@6680 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "memory/cardTableRS.hpp"
stefank@2314 28 #include "memory/genCollectedHeap.hpp"
stefank@2314 29 #include "memory/generation.hpp"
stefank@2314 30 #include "memory/space.hpp"
stefank@2314 31 #include "oops/oop.inline.hpp"
stefank@2314 32 #include "runtime/java.hpp"
stefank@2314 33 #include "runtime/os.hpp"
jprovino@4542 34 #include "utilities/macros.hpp"
jprovino@4542 35 #if INCLUDE_ALL_GCS
stefank@2314 36 #include "gc_implementation/g1/concurrentMark.hpp"
stefank@2314 37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
jprovino@4542 38 #endif // INCLUDE_ALL_GCS
duke@435 39
duke@435 40 CardTableRS::CardTableRS(MemRegion whole_heap,
duke@435 41 int max_covered_regions) :
ysr@777 42 GenRemSet(),
ysr@777 43 _cur_youngergen_card_val(youngergenP1_card),
ysr@777 44 _regions_to_iterate(max_covered_regions - 1)
duke@435 45 {
jprovino@4542 46 #if INCLUDE_ALL_GCS
ysr@777 47 if (UseG1GC) {
ysr@777 48 _ct_bs = new G1SATBCardTableLoggingModRefBS(whole_heap,
ysr@777 49 max_covered_regions);
ysr@777 50 } else {
ysr@777 51 _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
ysr@777 52 }
ysr@777 53 #else
ysr@777 54 _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
ysr@777 55 #endif
tschatzl@7051 56 _ct_bs->initialize();
ysr@777 57 set_bs(_ct_bs);
minqi@5103 58 _last_cur_val_in_gen = NEW_C_HEAP_ARRAY3(jbyte, GenCollectedHeap::max_gens + 1,
zgu@7074 59 mtGC, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
duke@435 60 if (_last_cur_val_in_gen == NULL) {
minqi@5103 61 vm_exit_during_initialization("Could not create last_cur_val_in_gen array.");
duke@435 62 }
duke@435 63 for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
duke@435 64 _last_cur_val_in_gen[i] = clean_card_val();
duke@435 65 }
ysr@777 66 _ct_bs->set_CTRS(this);
duke@435 67 }
duke@435 68
minqi@5103 69 CardTableRS::~CardTableRS() {
minqi@5103 70 if (_ct_bs) {
minqi@5103 71 delete _ct_bs;
minqi@5103 72 _ct_bs = NULL;
minqi@5103 73 }
minqi@5103 74 if (_last_cur_val_in_gen) {
minqi@5103 75 FREE_C_HEAP_ARRAY(jbyte, _last_cur_val_in_gen, mtInternal);
minqi@5103 76 }
minqi@5103 77 }
minqi@5103 78
duke@435 79 void CardTableRS::resize_covered_region(MemRegion new_region) {
ysr@777 80 _ct_bs->resize_covered_region(new_region);
duke@435 81 }
duke@435 82
duke@435 83 jbyte CardTableRS::find_unused_youngergenP_card_value() {
duke@435 84 for (jbyte v = youngergenP1_card;
duke@435 85 v < cur_youngergen_and_prev_nonclean_card;
duke@435 86 v++) {
duke@435 87 bool seen = false;
ysr@777 88 for (int g = 0; g < _regions_to_iterate; g++) {
duke@435 89 if (_last_cur_val_in_gen[g] == v) {
duke@435 90 seen = true;
duke@435 91 break;
duke@435 92 }
duke@435 93 }
duke@435 94 if (!seen) return v;
duke@435 95 }
duke@435 96 ShouldNotReachHere();
duke@435 97 return 0;
duke@435 98 }
duke@435 99
duke@435 100 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
duke@435 101 // Parallel or sequential, we must always set the prev to equal the
duke@435 102 // last one written.
duke@435 103 if (parallel) {
duke@435 104 // Find a parallel value to be used next.
duke@435 105 jbyte next_val = find_unused_youngergenP_card_value();
duke@435 106 set_cur_youngergen_card_val(next_val);
duke@435 107
duke@435 108 } else {
duke@435 109 // In an sequential traversal we will always write youngergen, so that
duke@435 110 // the inline barrier is correct.
duke@435 111 set_cur_youngergen_card_val(youngergen_card);
duke@435 112 }
duke@435 113 }
duke@435 114
duke@435 115 void CardTableRS::younger_refs_iterate(Generation* g,
duke@435 116 OopsInGenClosure* blk) {
duke@435 117 _last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
duke@435 118 g->younger_refs_iterate(blk);
duke@435 119 }
duke@435 120
ysr@2819 121 inline bool ClearNoncleanCardWrapper::clear_card(jbyte* entry) {
ysr@2819 122 if (_is_par) {
ysr@2819 123 return clear_card_parallel(entry);
ysr@2819 124 } else {
ysr@2819 125 return clear_card_serial(entry);
ysr@2819 126 }
ysr@2819 127 }
ysr@2819 128
ysr@2819 129 inline bool ClearNoncleanCardWrapper::clear_card_parallel(jbyte* entry) {
ysr@2819 130 while (true) {
ysr@2819 131 // In the parallel case, we may have to do this several times.
ysr@2819 132 jbyte entry_val = *entry;
ysr@2819 133 assert(entry_val != CardTableRS::clean_card_val(),
ysr@2819 134 "We shouldn't be looking at clean cards, and this should "
ysr@2819 135 "be the only place they get cleaned.");
ysr@2819 136 if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
ysr@2819 137 || _ct->is_prev_youngergen_card_val(entry_val)) {
ysr@2819 138 jbyte res =
ysr@2819 139 Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
ysr@2819 140 if (res == entry_val) {
ysr@2819 141 break;
ysr@2819 142 } else {
ysr@2819 143 assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
ysr@2819 144 "The CAS above should only fail if another thread did "
ysr@2819 145 "a GC write barrier.");
duke@435 146 }
ysr@2819 147 } else if (entry_val ==
ysr@2819 148 CardTableRS::cur_youngergen_and_prev_nonclean_card) {
ysr@2819 149 // Parallelism shouldn't matter in this case. Only the thread
ysr@2819 150 // assigned to scan the card should change this value.
ysr@2819 151 *entry = _ct->cur_youngergen_card_val();
ysr@2819 152 break;
duke@435 153 } else {
ysr@2819 154 assert(entry_val == _ct->cur_youngergen_card_val(),
ysr@2819 155 "Should be the only possibility.");
ysr@2819 156 // In this case, the card was clean before, and become
ysr@2819 157 // cur_youngergen only because of processing of a promoted object.
ysr@2819 158 // We don't have to look at the card.
ysr@2819 159 return false;
duke@435 160 }
duke@435 161 }
ysr@2819 162 return true;
ysr@2819 163 }
duke@435 164
ysr@2819 165
ysr@2819 166 inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
ysr@2819 167 jbyte entry_val = *entry;
ysr@2819 168 assert(entry_val != CardTableRS::clean_card_val(),
ysr@2819 169 "We shouldn't be looking at clean cards, and this should "
ysr@2819 170 "be the only place they get cleaned.");
ysr@2819 171 assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
ysr@2819 172 "This should be possible in the sequential case.");
ysr@2819 173 *entry = CardTableRS::clean_card_val();
ysr@2819 174 return true;
ysr@2819 175 }
ysr@2819 176
ysr@2819 177 ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
ysr@2889 178 DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct) :
duke@435 179 _dirty_card_closure(dirty_card_closure), _ct(ct) {
jmasa@3294 180 // Cannot yet substitute active_workers for n_par_threads
jmasa@3294 181 // in the case where parallelism is being turned off by
jmasa@3294 182 // setting n_par_threads to 0.
duke@435 183 _is_par = (SharedHeap::heap()->n_par_threads() > 0);
jmasa@3294 184 assert(!_is_par ||
jmasa@3294 185 (SharedHeap::heap()->n_par_threads() ==
jmasa@3294 186 SharedHeap::heap()->workers()->active_workers()), "Mismatch");
ysr@2819 187 }
ysr@2819 188
brutisso@3642 189 bool ClearNoncleanCardWrapper::is_word_aligned(jbyte* entry) {
brutisso@3642 190 return (((intptr_t)entry) & (BytesPerWord-1)) == 0;
brutisso@3642 191 }
brutisso@3642 192
ysr@2819 193 void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
ysr@2819 194 assert(mr.word_size() > 0, "Error");
ysr@2819 195 assert(_ct->is_aligned(mr.start()), "mr.start() should be card aligned");
ysr@2819 196 // mr.end() may not necessarily be card aligned.
ysr@2819 197 jbyte* cur_entry = _ct->byte_for(mr.last());
ysr@2819 198 const jbyte* limit = _ct->byte_for(mr.start());
ysr@2819 199 HeapWord* end_of_non_clean = mr.end();
ysr@2819 200 HeapWord* start_of_non_clean = end_of_non_clean;
ysr@2819 201 while (cur_entry >= limit) {
ysr@2819 202 HeapWord* cur_hw = _ct->addr_for(cur_entry);
ysr@2819 203 if ((*cur_entry != CardTableRS::clean_card_val()) && clear_card(cur_entry)) {
ysr@2819 204 // Continue the dirty range by opening the
ysr@2819 205 // dirty window one card to the left.
ysr@2819 206 start_of_non_clean = cur_hw;
ysr@2819 207 } else {
ysr@2819 208 // We hit a "clean" card; process any non-empty
ysr@2819 209 // "dirty" range accumulated so far.
ysr@2819 210 if (start_of_non_clean < end_of_non_clean) {
ysr@2819 211 const MemRegion mrd(start_of_non_clean, end_of_non_clean);
ysr@2819 212 _dirty_card_closure->do_MemRegion(mrd);
ysr@2819 213 }
brutisso@3642 214
brutisso@3642 215 // fast forward through potential continuous whole-word range of clean cards beginning at a word-boundary
brutisso@3642 216 if (is_word_aligned(cur_entry)) {
brutisso@3642 217 jbyte* cur_row = cur_entry - BytesPerWord;
brutisso@3642 218 while (cur_row >= limit && *((intptr_t*)cur_row) == CardTableRS::clean_card_row()) {
brutisso@3642 219 cur_row -= BytesPerWord;
brutisso@3642 220 }
brutisso@3642 221 cur_entry = cur_row + BytesPerWord;
brutisso@3642 222 cur_hw = _ct->addr_for(cur_entry);
brutisso@3642 223 }
brutisso@3642 224
ysr@2819 225 // Reset the dirty window, while continuing to look
ysr@2819 226 // for the next dirty card that will start a
ysr@2819 227 // new dirty window.
ysr@2819 228 end_of_non_clean = cur_hw;
ysr@2819 229 start_of_non_clean = cur_hw;
ysr@2819 230 }
ysr@2819 231 // Note that "cur_entry" leads "start_of_non_clean" in
ysr@2819 232 // its leftward excursion after this point
ysr@2819 233 // in the loop and, when we hit the left end of "mr",
ysr@2819 234 // will point off of the left end of the card-table
ysr@2819 235 // for "mr".
ysr@2819 236 cur_entry--;
duke@435 237 }
ysr@2819 238 // If the first card of "mr" was dirty, we will have
ysr@2819 239 // been left with a dirty window, co-initial with "mr",
ysr@2819 240 // which we now process.
ysr@2819 241 if (start_of_non_clean < end_of_non_clean) {
ysr@2819 242 const MemRegion mrd(start_of_non_clean, end_of_non_clean);
ysr@2819 243 _dirty_card_closure->do_MemRegion(mrd);
duke@435 244 }
ysr@2819 245 }
ysr@2819 246
duke@435 247 // clean (by dirty->clean before) ==> cur_younger_gen
duke@435 248 // dirty ==> cur_youngergen_and_prev_nonclean_card
duke@435 249 // precleaned ==> cur_youngergen_and_prev_nonclean_card
duke@435 250 // prev-younger-gen ==> cur_youngergen_and_prev_nonclean_card
duke@435 251 // cur-younger-gen ==> cur_younger_gen
duke@435 252 // cur_youngergen_and_prev_nonclean_card ==> no change.
coleenp@548 253 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
duke@435 254 jbyte* entry = ct_bs()->byte_for(field);
duke@435 255 do {
duke@435 256 jbyte entry_val = *entry;
duke@435 257 // We put this first because it's probably the most common case.
duke@435 258 if (entry_val == clean_card_val()) {
duke@435 259 // No threat of contention with cleaning threads.
duke@435 260 *entry = cur_youngergen_card_val();
duke@435 261 return;
duke@435 262 } else if (card_is_dirty_wrt_gen_iter(entry_val)
duke@435 263 || is_prev_youngergen_card_val(entry_val)) {
duke@435 264 // Mark it as both cur and prev youngergen; card cleaning thread will
duke@435 265 // eventually remove the previous stuff.
duke@435 266 jbyte new_val = cur_youngergen_and_prev_nonclean_card;
duke@435 267 jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
duke@435 268 // Did the CAS succeed?
duke@435 269 if (res == entry_val) return;
duke@435 270 // Otherwise, retry, to see the new value.
duke@435 271 continue;
duke@435 272 } else {
duke@435 273 assert(entry_val == cur_youngergen_and_prev_nonclean_card
duke@435 274 || entry_val == cur_youngergen_card_val(),
duke@435 275 "should be only possibilities.");
duke@435 276 return;
duke@435 277 }
duke@435 278 } while (true);
duke@435 279 }
duke@435 280
duke@435 281 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
duke@435 282 OopsInGenClosure* cl) {
ysr@2825 283 const MemRegion urasm = sp->used_region_at_save_marks();
ysr@2825 284 #ifdef ASSERT
ysr@2825 285 // Convert the assertion check to a warning if we are running
ysr@2825 286 // CMS+ParNew until related bug is fixed.
ysr@2825 287 MemRegion ur = sp->used_region();
ysr@2825 288 assert(ur.contains(urasm) || (UseConcMarkSweepGC && UseParNewGC),
ysr@2825 289 err_msg("Did you forget to call save_marks()? "
ysr@2825 290 "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
ysr@2825 291 "[" PTR_FORMAT ", " PTR_FORMAT ")",
drchase@6680 292 p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end())));
ysr@2825 293 // In the case of CMS+ParNew, issue a warning
ysr@2825 294 if (!ur.contains(urasm)) {
ysr@2825 295 assert(UseConcMarkSweepGC && UseParNewGC, "Tautology: see assert above");
ysr@2825 296 warning("CMS+ParNew: Did you forget to call save_marks()? "
ysr@2825 297 "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
ysr@2825 298 "[" PTR_FORMAT ", " PTR_FORMAT ")",
drchase@6680 299 p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end()));
ysr@2825 300 MemRegion ur2 = sp->used_region();
ysr@2825 301 MemRegion urasm2 = sp->used_region_at_save_marks();
ysr@2825 302 if (!ur.equals(ur2)) {
ysr@2825 303 warning("CMS+ParNew: Flickering used_region()!!");
ysr@2825 304 }
ysr@2825 305 if (!urasm.equals(urasm2)) {
ysr@2825 306 warning("CMS+ParNew: Flickering used_region_at_save_marks()!!");
ysr@2825 307 }
ysr@2889 308 ShouldNotReachHere();
ysr@2825 309 }
ysr@2825 310 #endif
ysr@2889 311 _ct_bs->non_clean_card_iterate_possibly_parallel(sp, urasm, cl, this);
duke@435 312 }
duke@435 313
brutisso@5519 314 void CardTableRS::clear_into_younger(Generation* old_gen) {
brutisso@5519 315 assert(old_gen->level() == 1, "Should only be called for the old generation");
brutisso@5519 316 // The card tables for the youngest gen need never be cleared.
duke@435 317 // There's a bit of subtlety in the clear() and invalidate()
duke@435 318 // methods that we exploit here and in invalidate_or_clear()
duke@435 319 // below to avoid missing cards at the fringes. If clear() or
duke@435 320 // invalidate() are changed in the future, this code should
duke@435 321 // be revisited. 20040107.ysr
brutisso@5516 322 clear(old_gen->prev_used_region());
duke@435 323 }
duke@435 324
brutisso@5519 325 void CardTableRS::invalidate_or_clear(Generation* old_gen) {
brutisso@5519 326 assert(old_gen->level() == 1, "Should only be called for the old generation");
brutisso@5519 327 // Invalidate the cards for the currently occupied part of
brutisso@5519 328 // the old generation and clear the cards for the
duke@435 329 // unoccupied part of the generation (if any, making use
duke@435 330 // of that generation's prev_used_region to determine that
duke@435 331 // region). No need to do anything for the youngest
duke@435 332 // generation. Also see note#20040107.ysr above.
brutisso@5519 333 MemRegion used_mr = old_gen->used_region();
brutisso@5519 334 MemRegion to_be_cleared_mr = old_gen->prev_used_region().minus(used_mr);
brutisso@5516 335 if (!to_be_cleared_mr.is_empty()) {
brutisso@5516 336 clear(to_be_cleared_mr);
duke@435 337 }
brutisso@5516 338 invalidate(used_mr);
duke@435 339 }
duke@435 340
duke@435 341
duke@435 342 class VerifyCleanCardClosure: public OopClosure {
coleenp@548 343 private:
coleenp@548 344 HeapWord* _boundary;
coleenp@548 345 HeapWord* _begin;
coleenp@548 346 HeapWord* _end;
coleenp@548 347 protected:
coleenp@548 348 template <class T> void do_oop_work(T* p) {
duke@435 349 HeapWord* jp = (HeapWord*)p;
ysr@2710 350 assert(jp >= _begin && jp < _end,
ysr@2710 351 err_msg("Error: jp " PTR_FORMAT " should be within "
ysr@2710 352 "[_begin, _end) = [" PTR_FORMAT "," PTR_FORMAT ")",
drchase@6680 353 p2i(jp), p2i(_begin), p2i(_end)));
ysr@2710 354 oop obj = oopDesc::load_decode_heap_oop(p);
ysr@2710 355 guarantee(obj == NULL || (HeapWord*)obj >= _boundary,
ysr@2710 356 err_msg("pointer " PTR_FORMAT " at " PTR_FORMAT " on "
ysr@2710 357 "clean card crosses boundary" PTR_FORMAT,
drchase@6680 358 p2i((HeapWord*)obj), p2i(jp), p2i(_boundary)));
duke@435 359 }
ysr@2710 360
coleenp@548 361 public:
coleenp@548 362 VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
ysr@2710 363 _boundary(b), _begin(begin), _end(end) {
ysr@2710 364 assert(b <= begin,
ysr@2710 365 err_msg("Error: boundary " PTR_FORMAT " should be at or below begin " PTR_FORMAT,
drchase@6680 366 p2i(b), p2i(begin)));
ysr@2710 367 assert(begin <= end,
ysr@2710 368 err_msg("Error: begin " PTR_FORMAT " should be strictly below end " PTR_FORMAT,
drchase@6680 369 p2i(begin), p2i(end)));
ysr@2710 370 }
ysr@2710 371
coleenp@548 372 virtual void do_oop(oop* p) { VerifyCleanCardClosure::do_oop_work(p); }
coleenp@548 373 virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
duke@435 374 };
duke@435 375
duke@435 376 class VerifyCTSpaceClosure: public SpaceClosure {
coleenp@548 377 private:
duke@435 378 CardTableRS* _ct;
duke@435 379 HeapWord* _boundary;
duke@435 380 public:
duke@435 381 VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
duke@435 382 _ct(ct), _boundary(boundary) {}
coleenp@548 383 virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
duke@435 384 };
duke@435 385
duke@435 386 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
duke@435 387 CardTableRS* _ct;
duke@435 388 public:
duke@435 389 VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
duke@435 390 void do_generation(Generation* gen) {
duke@435 391 // Skip the youngest generation.
duke@435 392 if (gen->level() == 0) return;
duke@435 393 // Normally, we're interested in pointers to younger generations.
duke@435 394 VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
duke@435 395 gen->space_iterate(&blk, true);
duke@435 396 }
duke@435 397 };
duke@435 398
duke@435 399 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
duke@435 400 // We don't need to do young-gen spaces.
duke@435 401 if (s->end() <= gen_boundary) return;
duke@435 402 MemRegion used = s->used_region();
duke@435 403
duke@435 404 jbyte* cur_entry = byte_for(used.start());
duke@435 405 jbyte* limit = byte_after(used.last());
duke@435 406 while (cur_entry < limit) {
duke@435 407 if (*cur_entry == CardTableModRefBS::clean_card) {
duke@435 408 jbyte* first_dirty = cur_entry+1;
duke@435 409 while (first_dirty < limit &&
duke@435 410 *first_dirty == CardTableModRefBS::clean_card) {
duke@435 411 first_dirty++;
duke@435 412 }
duke@435 413 // If the first object is a regular object, and it has a
duke@435 414 // young-to-old field, that would mark the previous card.
duke@435 415 HeapWord* boundary = addr_for(cur_entry);
duke@435 416 HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
duke@435 417 HeapWord* boundary_block = s->block_start(boundary);
duke@435 418 HeapWord* begin = boundary; // Until proven otherwise.
duke@435 419 HeapWord* start_block = boundary_block; // Until proven otherwise.
duke@435 420 if (boundary_block < boundary) {
duke@435 421 if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
duke@435 422 oop boundary_obj = oop(boundary_block);
duke@435 423 if (!boundary_obj->is_objArray() &&
duke@435 424 !boundary_obj->is_typeArray()) {
duke@435 425 guarantee(cur_entry > byte_for(used.start()),
duke@435 426 "else boundary would be boundary_block");
duke@435 427 if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
duke@435 428 begin = boundary_block + s->block_size(boundary_block);
duke@435 429 start_block = begin;
duke@435 430 }
duke@435 431 }
duke@435 432 }
duke@435 433 }
duke@435 434 // Now traverse objects until end.
ysr@2710 435 if (begin < end) {
ysr@2710 436 MemRegion mr(begin, end);
ysr@2710 437 VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
ysr@2710 438 for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) {
ysr@2710 439 if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
coleenp@4037 440 oop(cur)->oop_iterate_no_header(&verify_blk, mr);
ysr@2710 441 }
duke@435 442 }
duke@435 443 }
duke@435 444 cur_entry = first_dirty;
duke@435 445 } else {
duke@435 446 // We'd normally expect that cur_youngergen_and_prev_nonclean_card
duke@435 447 // is a transient value, that cannot be in the card table
duke@435 448 // except during GC, and thus assert that:
duke@435 449 // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
duke@435 450 // "Illegal CT value");
duke@435 451 // That however, need not hold, as will become clear in the
duke@435 452 // following...
duke@435 453
duke@435 454 // We'd normally expect that if we are in the parallel case,
duke@435 455 // we can't have left a prev value (which would be different
duke@435 456 // from the current value) in the card table, and so we'd like to
duke@435 457 // assert that:
duke@435 458 // guarantee(cur_youngergen_card_val() == youngergen_card
duke@435 459 // || !is_prev_youngergen_card_val(*cur_entry),
duke@435 460 // "Illegal CT value");
duke@435 461 // That, however, may not hold occasionally, because of
duke@435 462 // CMS or MSC in the old gen. To wit, consider the
duke@435 463 // following two simple illustrative scenarios:
duke@435 464 // (a) CMS: Consider the case where a large object L
duke@435 465 // spanning several cards is allocated in the old
duke@435 466 // gen, and has a young gen reference stored in it, dirtying
duke@435 467 // some interior cards. A young collection scans the card,
duke@435 468 // finds a young ref and installs a youngergenP_n value.
duke@435 469 // L then goes dead. Now a CMS collection starts,
duke@435 470 // finds L dead and sweeps it up. Assume that L is
duke@435 471 // abutting _unallocated_blk, so _unallocated_blk is
duke@435 472 // adjusted down to (below) L. Assume further that
duke@435 473 // no young collection intervenes during this CMS cycle.
duke@435 474 // The next young gen cycle will not get to look at this
duke@435 475 // youngergenP_n card since it lies in the unoccupied
duke@435 476 // part of the space.
duke@435 477 // Some young collections later the blocks on this
duke@435 478 // card can be re-allocated either due to direct allocation
duke@435 479 // or due to absorbing promotions. At this time, the
duke@435 480 // before-gc verification will fail the above assert.
duke@435 481 // (b) MSC: In this case, an object L with a young reference
duke@435 482 // is on a card that (therefore) holds a youngergen_n value.
duke@435 483 // Suppose also that L lies towards the end of the used
duke@435 484 // the used space before GC. An MSC collection
duke@435 485 // occurs that compacts to such an extent that this
duke@435 486 // card is no longer in the occupied part of the space.
duke@435 487 // Since current code in MSC does not always clear cards
duke@435 488 // in the unused part of old gen, this stale youngergen_n
duke@435 489 // value is left behind and can later be covered by
duke@435 490 // an object when promotion or direct allocation
duke@435 491 // re-allocates that part of the heap.
duke@435 492 //
duke@435 493 // Fortunately, the presence of such stale card values is
duke@435 494 // "only" a minor annoyance in that subsequent young collections
duke@435 495 // might needlessly scan such cards, but would still never corrupt
duke@435 496 // the heap as a result. However, it's likely not to be a significant
duke@435 497 // performance inhibitor in practice. For instance,
duke@435 498 // some recent measurements with unoccupied cards eagerly cleared
duke@435 499 // out to maintain this invariant, showed next to no
duke@435 500 // change in young collection times; of course one can construct
duke@435 501 // degenerate examples where the cost can be significant.)
duke@435 502 // Note, in particular, that if the "stale" card is modified
duke@435 503 // after re-allocation, it would be dirty, not "stale". Thus,
duke@435 504 // we can never have a younger ref in such a card and it is
duke@435 505 // safe not to scan that card in any collection. [As we see
duke@435 506 // below, we do some unnecessary scanning
duke@435 507 // in some cases in the current parallel scanning algorithm.]
duke@435 508 //
duke@435 509 // The main point below is that the parallel card scanning code
duke@435 510 // deals correctly with these stale card values. There are two main
duke@435 511 // cases to consider where we have a stale "younger gen" value and a
duke@435 512 // "derivative" case to consider, where we have a stale
duke@435 513 // "cur_younger_gen_and_prev_non_clean" value, as will become
duke@435 514 // apparent in the case analysis below.
duke@435 515 // o Case 1. If the stale value corresponds to a younger_gen_n
duke@435 516 // value other than the cur_younger_gen value then the code
duke@435 517 // treats this as being tantamount to a prev_younger_gen
duke@435 518 // card. This means that the card may be unnecessarily scanned.
duke@435 519 // There are two sub-cases to consider:
duke@435 520 // o Case 1a. Let us say that the card is in the occupied part
duke@435 521 // of the generation at the time the collection begins. In
duke@435 522 // that case the card will be either cleared when it is scanned
duke@435 523 // for young pointers, or will be set to cur_younger_gen as a
duke@435 524 // result of promotion. (We have elided the normal case where
duke@435 525 // the scanning thread and the promoting thread interleave
duke@435 526 // possibly resulting in a transient
duke@435 527 // cur_younger_gen_and_prev_non_clean value before settling
duke@435 528 // to cur_younger_gen. [End Case 1a.]
duke@435 529 // o Case 1b. Consider now the case when the card is in the unoccupied
duke@435 530 // part of the space which becomes occupied because of promotions
duke@435 531 // into it during the current young GC. In this case the card
duke@435 532 // will never be scanned for young references. The current
duke@435 533 // code will set the card value to either
duke@435 534 // cur_younger_gen_and_prev_non_clean or leave
duke@435 535 // it with its stale value -- because the promotions didn't
duke@435 536 // result in any younger refs on that card. Of these two
duke@435 537 // cases, the latter will be covered in Case 1a during
duke@435 538 // a subsequent scan. To deal with the former case, we need
duke@435 539 // to further consider how we deal with a stale value of
duke@435 540 // cur_younger_gen_and_prev_non_clean in our case analysis
duke@435 541 // below. This we do in Case 3 below. [End Case 1b]
duke@435 542 // [End Case 1]
duke@435 543 // o Case 2. If the stale value corresponds to cur_younger_gen being
duke@435 544 // a value not necessarily written by a current promotion, the
duke@435 545 // card will not be scanned by the younger refs scanning code.
duke@435 546 // (This is OK since as we argued above such cards cannot contain
duke@435 547 // any younger refs.) The result is that this value will be
duke@435 548 // treated as a prev_younger_gen value in a subsequent collection,
duke@435 549 // which is addressed in Case 1 above. [End Case 2]
duke@435 550 // o Case 3. We here consider the "derivative" case from Case 1b. above
duke@435 551 // because of which we may find a stale
duke@435 552 // cur_younger_gen_and_prev_non_clean card value in the table.
duke@435 553 // Once again, as in Case 1, we consider two subcases, depending
duke@435 554 // on whether the card lies in the occupied or unoccupied part
duke@435 555 // of the space at the start of the young collection.
duke@435 556 // o Case 3a. Let us say the card is in the occupied part of
duke@435 557 // the old gen at the start of the young collection. In that
duke@435 558 // case, the card will be scanned by the younger refs scanning
duke@435 559 // code which will set it to cur_younger_gen. In a subsequent
duke@435 560 // scan, the card will be considered again and get its final
duke@435 561 // correct value. [End Case 3a]
duke@435 562 // o Case 3b. Now consider the case where the card is in the
duke@435 563 // unoccupied part of the old gen, and is occupied as a result
duke@435 564 // of promotions during thus young gc. In that case,
duke@435 565 // the card will not be scanned for younger refs. The presence
duke@435 566 // of newly promoted objects on the card will then result in
duke@435 567 // its keeping the value cur_younger_gen_and_prev_non_clean
duke@435 568 // value, which we have dealt with in Case 3 here. [End Case 3b]
duke@435 569 // [End Case 3]
duke@435 570 //
duke@435 571 // (Please refer to the code in the helper class
duke@435 572 // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
duke@435 573 //
duke@435 574 // The informal arguments above can be tightened into a formal
duke@435 575 // correctness proof and it behooves us to write up such a proof,
duke@435 576 // or to use model checking to prove that there are no lingering
duke@435 577 // concerns.
duke@435 578 //
duke@435 579 // Clearly because of Case 3b one cannot bound the time for
duke@435 580 // which a card will retain what we have called a "stale" value.
duke@435 581 // However, one can obtain a Loose upper bound on the redundant
duke@435 582 // work as a result of such stale values. Note first that any
duke@435 583 // time a stale card lies in the occupied part of the space at
duke@435 584 // the start of the collection, it is scanned by younger refs
duke@435 585 // code and we can define a rank function on card values that
duke@435 586 // declines when this is so. Note also that when a card does not
duke@435 587 // lie in the occupied part of the space at the beginning of a
duke@435 588 // young collection, its rank can either decline or stay unchanged.
duke@435 589 // In this case, no extra work is done in terms of redundant
duke@435 590 // younger refs scanning of that card.
duke@435 591 // Then, the case analysis above reveals that, in the worst case,
duke@435 592 // any such stale card will be scanned unnecessarily at most twice.
duke@435 593 //
duke@435 594 // It is nonethelss advisable to try and get rid of some of this
duke@435 595 // redundant work in a subsequent (low priority) re-design of
duke@435 596 // the card-scanning code, if only to simplify the underlying
duke@435 597 // state machine analysis/proof. ysr 1/28/2002. XXX
duke@435 598 cur_entry++;
duke@435 599 }
duke@435 600 }
duke@435 601 }
duke@435 602
duke@435 603 void CardTableRS::verify() {
duke@435 604 // At present, we only know how to verify the card table RS for
duke@435 605 // generational heaps.
duke@435 606 VerifyCTGenClosure blk(this);
duke@435 607 CollectedHeap* ch = Universe::heap();
duke@435 608
duke@435 609 if (ch->kind() == CollectedHeap::GenCollectedHeap) {
duke@435 610 GenCollectedHeap::heap()->generation_iterate(&blk, false);
ysr@777 611 _ct_bs->verify();
duke@435 612 }
duke@435 613 }
duke@435 614
duke@435 615
jmasa@441 616 void CardTableRS::verify_aligned_region_empty(MemRegion mr) {
duke@435 617 if (!mr.is_empty()) {
duke@435 618 jbyte* cur_entry = byte_for(mr.start());
duke@435 619 jbyte* limit = byte_after(mr.last());
jmasa@441 620 // The region mr may not start on a card boundary so
jmasa@441 621 // the first card may reflect a write to the space
jmasa@441 622 // just prior to mr.
jmasa@441 623 if (!is_aligned(mr.start())) {
jmasa@441 624 cur_entry++;
jmasa@441 625 }
duke@435 626 for (;cur_entry < limit; cur_entry++) {
duke@435 627 guarantee(*cur_entry == CardTableModRefBS::clean_card,
duke@435 628 "Unexpected dirty card found");
duke@435 629 }
duke@435 630 }
duke@435 631 }

mercurial