src/share/vm/memory/cardTableRS.cpp

Wed, 27 Aug 2014 08:19:12 -0400

author
zgu
date
Wed, 27 Aug 2014 08:19:12 -0400
changeset 7074
833b0f92429a
parent 7051
1f1d373cd044
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

8046598: Scalable Native memory tracking development
Summary: Enhance scalability of native memory tracking
Reviewed-by: coleenp, ctornqvi, gtriantafill

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "memory/cardTableRS.hpp"
    28 #include "memory/genCollectedHeap.hpp"
    29 #include "memory/generation.hpp"
    30 #include "memory/space.hpp"
    31 #include "oops/oop.inline.hpp"
    32 #include "runtime/java.hpp"
    33 #include "runtime/os.hpp"
    34 #include "utilities/macros.hpp"
    35 #if INCLUDE_ALL_GCS
    36 #include "gc_implementation/g1/concurrentMark.hpp"
    37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    38 #endif // INCLUDE_ALL_GCS
    40 CardTableRS::CardTableRS(MemRegion whole_heap,
    41                          int max_covered_regions) :
    42   GenRemSet(),
    43   _cur_youngergen_card_val(youngergenP1_card),
    44   _regions_to_iterate(max_covered_regions - 1)
    45 {
    46 #if INCLUDE_ALL_GCS
    47   if (UseG1GC) {
    48       _ct_bs = new G1SATBCardTableLoggingModRefBS(whole_heap,
    49                                                   max_covered_regions);
    50   } else {
    51     _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
    52   }
    53 #else
    54   _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
    55 #endif
    56   _ct_bs->initialize();
    57   set_bs(_ct_bs);
    58   _last_cur_val_in_gen = NEW_C_HEAP_ARRAY3(jbyte, GenCollectedHeap::max_gens + 1,
    59                          mtGC, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
    60   if (_last_cur_val_in_gen == NULL) {
    61     vm_exit_during_initialization("Could not create last_cur_val_in_gen array.");
    62   }
    63   for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
    64     _last_cur_val_in_gen[i] = clean_card_val();
    65   }
    66   _ct_bs->set_CTRS(this);
    67 }
    69 CardTableRS::~CardTableRS() {
    70   if (_ct_bs) {
    71     delete _ct_bs;
    72     _ct_bs = NULL;
    73   }
    74   if (_last_cur_val_in_gen) {
    75     FREE_C_HEAP_ARRAY(jbyte, _last_cur_val_in_gen, mtInternal);
    76   }
    77 }
    79 void CardTableRS::resize_covered_region(MemRegion new_region) {
    80   _ct_bs->resize_covered_region(new_region);
    81 }
    83 jbyte CardTableRS::find_unused_youngergenP_card_value() {
    84   for (jbyte v = youngergenP1_card;
    85        v < cur_youngergen_and_prev_nonclean_card;
    86        v++) {
    87     bool seen = false;
    88     for (int g = 0; g < _regions_to_iterate; g++) {
    89       if (_last_cur_val_in_gen[g] == v) {
    90         seen = true;
    91         break;
    92       }
    93     }
    94     if (!seen) return v;
    95   }
    96   ShouldNotReachHere();
    97   return 0;
    98 }
   100 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
   101   // Parallel or sequential, we must always set the prev to equal the
   102   // last one written.
   103   if (parallel) {
   104     // Find a parallel value to be used next.
   105     jbyte next_val = find_unused_youngergenP_card_value();
   106     set_cur_youngergen_card_val(next_val);
   108   } else {
   109     // In an sequential traversal we will always write youngergen, so that
   110     // the inline barrier is  correct.
   111     set_cur_youngergen_card_val(youngergen_card);
   112   }
   113 }
   115 void CardTableRS::younger_refs_iterate(Generation* g,
   116                                        OopsInGenClosure* blk) {
   117   _last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
   118   g->younger_refs_iterate(blk);
   119 }
   121 inline bool ClearNoncleanCardWrapper::clear_card(jbyte* entry) {
   122   if (_is_par) {
   123     return clear_card_parallel(entry);
   124   } else {
   125     return clear_card_serial(entry);
   126   }
   127 }
   129 inline bool ClearNoncleanCardWrapper::clear_card_parallel(jbyte* entry) {
   130   while (true) {
   131     // In the parallel case, we may have to do this several times.
   132     jbyte entry_val = *entry;
   133     assert(entry_val != CardTableRS::clean_card_val(),
   134            "We shouldn't be looking at clean cards, and this should "
   135            "be the only place they get cleaned.");
   136     if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
   137         || _ct->is_prev_youngergen_card_val(entry_val)) {
   138       jbyte res =
   139         Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
   140       if (res == entry_val) {
   141         break;
   142       } else {
   143         assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
   144                "The CAS above should only fail if another thread did "
   145                "a GC write barrier.");
   146       }
   147     } else if (entry_val ==
   148                CardTableRS::cur_youngergen_and_prev_nonclean_card) {
   149       // Parallelism shouldn't matter in this case.  Only the thread
   150       // assigned to scan the card should change this value.
   151       *entry = _ct->cur_youngergen_card_val();
   152       break;
   153     } else {
   154       assert(entry_val == _ct->cur_youngergen_card_val(),
   155              "Should be the only possibility.");
   156       // In this case, the card was clean before, and become
   157       // cur_youngergen only because of processing of a promoted object.
   158       // We don't have to look at the card.
   159       return false;
   160     }
   161   }
   162   return true;
   163 }
   166 inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
   167   jbyte entry_val = *entry;
   168   assert(entry_val != CardTableRS::clean_card_val(),
   169          "We shouldn't be looking at clean cards, and this should "
   170          "be the only place they get cleaned.");
   171   assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
   172          "This should be possible in the sequential case.");
   173   *entry = CardTableRS::clean_card_val();
   174   return true;
   175 }
   177 ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
   178   DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct) :
   179     _dirty_card_closure(dirty_card_closure), _ct(ct) {
   180     // Cannot yet substitute active_workers for n_par_threads
   181     // in the case where parallelism is being turned off by
   182     // setting n_par_threads to 0.
   183     _is_par = (SharedHeap::heap()->n_par_threads() > 0);
   184     assert(!_is_par ||
   185            (SharedHeap::heap()->n_par_threads() ==
   186             SharedHeap::heap()->workers()->active_workers()), "Mismatch");
   187 }
   189 bool ClearNoncleanCardWrapper::is_word_aligned(jbyte* entry) {
   190   return (((intptr_t)entry) & (BytesPerWord-1)) == 0;
   191 }
   193 void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
   194   assert(mr.word_size() > 0, "Error");
   195   assert(_ct->is_aligned(mr.start()), "mr.start() should be card aligned");
   196   // mr.end() may not necessarily be card aligned.
   197   jbyte* cur_entry = _ct->byte_for(mr.last());
   198   const jbyte* limit = _ct->byte_for(mr.start());
   199   HeapWord* end_of_non_clean = mr.end();
   200   HeapWord* start_of_non_clean = end_of_non_clean;
   201   while (cur_entry >= limit) {
   202     HeapWord* cur_hw = _ct->addr_for(cur_entry);
   203     if ((*cur_entry != CardTableRS::clean_card_val()) && clear_card(cur_entry)) {
   204       // Continue the dirty range by opening the
   205       // dirty window one card to the left.
   206       start_of_non_clean = cur_hw;
   207     } else {
   208       // We hit a "clean" card; process any non-empty
   209       // "dirty" range accumulated so far.
   210       if (start_of_non_clean < end_of_non_clean) {
   211         const MemRegion mrd(start_of_non_clean, end_of_non_clean);
   212         _dirty_card_closure->do_MemRegion(mrd);
   213       }
   215       // fast forward through potential continuous whole-word range of clean cards beginning at a word-boundary
   216       if (is_word_aligned(cur_entry)) {
   217         jbyte* cur_row = cur_entry - BytesPerWord;
   218         while (cur_row >= limit && *((intptr_t*)cur_row) ==  CardTableRS::clean_card_row()) {
   219           cur_row -= BytesPerWord;
   220         }
   221         cur_entry = cur_row + BytesPerWord;
   222         cur_hw = _ct->addr_for(cur_entry);
   223       }
   225       // Reset the dirty window, while continuing to look
   226       // for the next dirty card that will start a
   227       // new dirty window.
   228       end_of_non_clean = cur_hw;
   229       start_of_non_clean = cur_hw;
   230     }
   231     // Note that "cur_entry" leads "start_of_non_clean" in
   232     // its leftward excursion after this point
   233     // in the loop and, when we hit the left end of "mr",
   234     // will point off of the left end of the card-table
   235     // for "mr".
   236     cur_entry--;
   237   }
   238   // If the first card of "mr" was dirty, we will have
   239   // been left with a dirty window, co-initial with "mr",
   240   // which we now process.
   241   if (start_of_non_clean < end_of_non_clean) {
   242     const MemRegion mrd(start_of_non_clean, end_of_non_clean);
   243     _dirty_card_closure->do_MemRegion(mrd);
   244   }
   245 }
   247 // clean (by dirty->clean before) ==> cur_younger_gen
   248 // dirty                          ==> cur_youngergen_and_prev_nonclean_card
   249 // precleaned                     ==> cur_youngergen_and_prev_nonclean_card
   250 // prev-younger-gen               ==> cur_youngergen_and_prev_nonclean_card
   251 // cur-younger-gen                ==> cur_younger_gen
   252 // cur_youngergen_and_prev_nonclean_card ==> no change.
   253 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
   254   jbyte* entry = ct_bs()->byte_for(field);
   255   do {
   256     jbyte entry_val = *entry;
   257     // We put this first because it's probably the most common case.
   258     if (entry_val == clean_card_val()) {
   259       // No threat of contention with cleaning threads.
   260       *entry = cur_youngergen_card_val();
   261       return;
   262     } else if (card_is_dirty_wrt_gen_iter(entry_val)
   263                || is_prev_youngergen_card_val(entry_val)) {
   264       // Mark it as both cur and prev youngergen; card cleaning thread will
   265       // eventually remove the previous stuff.
   266       jbyte new_val = cur_youngergen_and_prev_nonclean_card;
   267       jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
   268       // Did the CAS succeed?
   269       if (res == entry_val) return;
   270       // Otherwise, retry, to see the new value.
   271       continue;
   272     } else {
   273       assert(entry_val == cur_youngergen_and_prev_nonclean_card
   274              || entry_val == cur_youngergen_card_val(),
   275              "should be only possibilities.");
   276       return;
   277     }
   278   } while (true);
   279 }
   281 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
   282                                                 OopsInGenClosure* cl) {
   283   const MemRegion urasm = sp->used_region_at_save_marks();
   284 #ifdef ASSERT
   285   // Convert the assertion check to a warning if we are running
   286   // CMS+ParNew until related bug is fixed.
   287   MemRegion ur    = sp->used_region();
   288   assert(ur.contains(urasm) || (UseConcMarkSweepGC && UseParNewGC),
   289          err_msg("Did you forget to call save_marks()? "
   290                  "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
   291                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
   292                  p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end())));
   293   // In the case of CMS+ParNew, issue a warning
   294   if (!ur.contains(urasm)) {
   295     assert(UseConcMarkSweepGC && UseParNewGC, "Tautology: see assert above");
   296     warning("CMS+ParNew: Did you forget to call save_marks()? "
   297             "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
   298             "[" PTR_FORMAT ", " PTR_FORMAT ")",
   299              p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end()));
   300     MemRegion ur2 = sp->used_region();
   301     MemRegion urasm2 = sp->used_region_at_save_marks();
   302     if (!ur.equals(ur2)) {
   303       warning("CMS+ParNew: Flickering used_region()!!");
   304     }
   305     if (!urasm.equals(urasm2)) {
   306       warning("CMS+ParNew: Flickering used_region_at_save_marks()!!");
   307     }
   308     ShouldNotReachHere();
   309   }
   310 #endif
   311   _ct_bs->non_clean_card_iterate_possibly_parallel(sp, urasm, cl, this);
   312 }
   314 void CardTableRS::clear_into_younger(Generation* old_gen) {
   315   assert(old_gen->level() == 1, "Should only be called for the old generation");
   316   // The card tables for the youngest gen need never be cleared.
   317   // There's a bit of subtlety in the clear() and invalidate()
   318   // methods that we exploit here and in invalidate_or_clear()
   319   // below to avoid missing cards at the fringes. If clear() or
   320   // invalidate() are changed in the future, this code should
   321   // be revisited. 20040107.ysr
   322   clear(old_gen->prev_used_region());
   323 }
   325 void CardTableRS::invalidate_or_clear(Generation* old_gen) {
   326   assert(old_gen->level() == 1, "Should only be called for the old generation");
   327   // Invalidate the cards for the currently occupied part of
   328   // the old generation and clear the cards for the
   329   // unoccupied part of the generation (if any, making use
   330   // of that generation's prev_used_region to determine that
   331   // region). No need to do anything for the youngest
   332   // generation. Also see note#20040107.ysr above.
   333   MemRegion used_mr = old_gen->used_region();
   334   MemRegion to_be_cleared_mr = old_gen->prev_used_region().minus(used_mr);
   335   if (!to_be_cleared_mr.is_empty()) {
   336     clear(to_be_cleared_mr);
   337   }
   338   invalidate(used_mr);
   339 }
   342 class VerifyCleanCardClosure: public OopClosure {
   343 private:
   344   HeapWord* _boundary;
   345   HeapWord* _begin;
   346   HeapWord* _end;
   347 protected:
   348   template <class T> void do_oop_work(T* p) {
   349     HeapWord* jp = (HeapWord*)p;
   350     assert(jp >= _begin && jp < _end,
   351            err_msg("Error: jp " PTR_FORMAT " should be within "
   352                    "[_begin, _end) = [" PTR_FORMAT "," PTR_FORMAT ")",
   353                    p2i(jp), p2i(_begin), p2i(_end)));
   354     oop obj = oopDesc::load_decode_heap_oop(p);
   355     guarantee(obj == NULL || (HeapWord*)obj >= _boundary,
   356               err_msg("pointer " PTR_FORMAT " at " PTR_FORMAT " on "
   357                       "clean card crosses boundary" PTR_FORMAT,
   358                       p2i((HeapWord*)obj), p2i(jp), p2i(_boundary)));
   359   }
   361 public:
   362   VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
   363     _boundary(b), _begin(begin), _end(end) {
   364     assert(b <= begin,
   365            err_msg("Error: boundary " PTR_FORMAT " should be at or below begin " PTR_FORMAT,
   366                    p2i(b), p2i(begin)));
   367     assert(begin <= end,
   368            err_msg("Error: begin " PTR_FORMAT " should be strictly below end " PTR_FORMAT,
   369                    p2i(begin), p2i(end)));
   370   }
   372   virtual void do_oop(oop* p)       { VerifyCleanCardClosure::do_oop_work(p); }
   373   virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
   374 };
   376 class VerifyCTSpaceClosure: public SpaceClosure {
   377 private:
   378   CardTableRS* _ct;
   379   HeapWord* _boundary;
   380 public:
   381   VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
   382     _ct(ct), _boundary(boundary) {}
   383   virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
   384 };
   386 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
   387   CardTableRS* _ct;
   388 public:
   389   VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
   390   void do_generation(Generation* gen) {
   391     // Skip the youngest generation.
   392     if (gen->level() == 0) return;
   393     // Normally, we're interested in pointers to younger generations.
   394     VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
   395     gen->space_iterate(&blk, true);
   396   }
   397 };
   399 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
   400   // We don't need to do young-gen spaces.
   401   if (s->end() <= gen_boundary) return;
   402   MemRegion used = s->used_region();
   404   jbyte* cur_entry = byte_for(used.start());
   405   jbyte* limit = byte_after(used.last());
   406   while (cur_entry < limit) {
   407     if (*cur_entry == CardTableModRefBS::clean_card) {
   408       jbyte* first_dirty = cur_entry+1;
   409       while (first_dirty < limit &&
   410              *first_dirty == CardTableModRefBS::clean_card) {
   411         first_dirty++;
   412       }
   413       // If the first object is a regular object, and it has a
   414       // young-to-old field, that would mark the previous card.
   415       HeapWord* boundary = addr_for(cur_entry);
   416       HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
   417       HeapWord* boundary_block = s->block_start(boundary);
   418       HeapWord* begin = boundary;             // Until proven otherwise.
   419       HeapWord* start_block = boundary_block; // Until proven otherwise.
   420       if (boundary_block < boundary) {
   421         if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
   422           oop boundary_obj = oop(boundary_block);
   423           if (!boundary_obj->is_objArray() &&
   424               !boundary_obj->is_typeArray()) {
   425             guarantee(cur_entry > byte_for(used.start()),
   426                       "else boundary would be boundary_block");
   427             if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
   428               begin = boundary_block + s->block_size(boundary_block);
   429               start_block = begin;
   430             }
   431           }
   432         }
   433       }
   434       // Now traverse objects until end.
   435       if (begin < end) {
   436         MemRegion mr(begin, end);
   437         VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
   438         for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) {
   439           if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
   440             oop(cur)->oop_iterate_no_header(&verify_blk, mr);
   441           }
   442         }
   443       }
   444       cur_entry = first_dirty;
   445     } else {
   446       // We'd normally expect that cur_youngergen_and_prev_nonclean_card
   447       // is a transient value, that cannot be in the card table
   448       // except during GC, and thus assert that:
   449       // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
   450       //        "Illegal CT value");
   451       // That however, need not hold, as will become clear in the
   452       // following...
   454       // We'd normally expect that if we are in the parallel case,
   455       // we can't have left a prev value (which would be different
   456       // from the current value) in the card table, and so we'd like to
   457       // assert that:
   458       // guarantee(cur_youngergen_card_val() == youngergen_card
   459       //           || !is_prev_youngergen_card_val(*cur_entry),
   460       //           "Illegal CT value");
   461       // That, however, may not hold occasionally, because of
   462       // CMS or MSC in the old gen. To wit, consider the
   463       // following two simple illustrative scenarios:
   464       // (a) CMS: Consider the case where a large object L
   465       //     spanning several cards is allocated in the old
   466       //     gen, and has a young gen reference stored in it, dirtying
   467       //     some interior cards. A young collection scans the card,
   468       //     finds a young ref and installs a youngergenP_n value.
   469       //     L then goes dead. Now a CMS collection starts,
   470       //     finds L dead and sweeps it up. Assume that L is
   471       //     abutting _unallocated_blk, so _unallocated_blk is
   472       //     adjusted down to (below) L. Assume further that
   473       //     no young collection intervenes during this CMS cycle.
   474       //     The next young gen cycle will not get to look at this
   475       //     youngergenP_n card since it lies in the unoccupied
   476       //     part of the space.
   477       //     Some young collections later the blocks on this
   478       //     card can be re-allocated either due to direct allocation
   479       //     or due to absorbing promotions. At this time, the
   480       //     before-gc verification will fail the above assert.
   481       // (b) MSC: In this case, an object L with a young reference
   482       //     is on a card that (therefore) holds a youngergen_n value.
   483       //     Suppose also that L lies towards the end of the used
   484       //     the used space before GC. An MSC collection
   485       //     occurs that compacts to such an extent that this
   486       //     card is no longer in the occupied part of the space.
   487       //     Since current code in MSC does not always clear cards
   488       //     in the unused part of old gen, this stale youngergen_n
   489       //     value is left behind and can later be covered by
   490       //     an object when promotion or direct allocation
   491       //     re-allocates that part of the heap.
   492       //
   493       // Fortunately, the presence of such stale card values is
   494       // "only" a minor annoyance in that subsequent young collections
   495       // might needlessly scan such cards, but would still never corrupt
   496       // the heap as a result. However, it's likely not to be a significant
   497       // performance inhibitor in practice. For instance,
   498       // some recent measurements with unoccupied cards eagerly cleared
   499       // out to maintain this invariant, showed next to no
   500       // change in young collection times; of course one can construct
   501       // degenerate examples where the cost can be significant.)
   502       // Note, in particular, that if the "stale" card is modified
   503       // after re-allocation, it would be dirty, not "stale". Thus,
   504       // we can never have a younger ref in such a card and it is
   505       // safe not to scan that card in any collection. [As we see
   506       // below, we do some unnecessary scanning
   507       // in some cases in the current parallel scanning algorithm.]
   508       //
   509       // The main point below is that the parallel card scanning code
   510       // deals correctly with these stale card values. There are two main
   511       // cases to consider where we have a stale "younger gen" value and a
   512       // "derivative" case to consider, where we have a stale
   513       // "cur_younger_gen_and_prev_non_clean" value, as will become
   514       // apparent in the case analysis below.
   515       // o Case 1. If the stale value corresponds to a younger_gen_n
   516       //   value other than the cur_younger_gen value then the code
   517       //   treats this as being tantamount to a prev_younger_gen
   518       //   card. This means that the card may be unnecessarily scanned.
   519       //   There are two sub-cases to consider:
   520       //   o Case 1a. Let us say that the card is in the occupied part
   521       //     of the generation at the time the collection begins. In
   522       //     that case the card will be either cleared when it is scanned
   523       //     for young pointers, or will be set to cur_younger_gen as a
   524       //     result of promotion. (We have elided the normal case where
   525       //     the scanning thread and the promoting thread interleave
   526       //     possibly resulting in a transient
   527       //     cur_younger_gen_and_prev_non_clean value before settling
   528       //     to cur_younger_gen. [End Case 1a.]
   529       //   o Case 1b. Consider now the case when the card is in the unoccupied
   530       //     part of the space which becomes occupied because of promotions
   531       //     into it during the current young GC. In this case the card
   532       //     will never be scanned for young references. The current
   533       //     code will set the card value to either
   534       //     cur_younger_gen_and_prev_non_clean or leave
   535       //     it with its stale value -- because the promotions didn't
   536       //     result in any younger refs on that card. Of these two
   537       //     cases, the latter will be covered in Case 1a during
   538       //     a subsequent scan. To deal with the former case, we need
   539       //     to further consider how we deal with a stale value of
   540       //     cur_younger_gen_and_prev_non_clean in our case analysis
   541       //     below. This we do in Case 3 below. [End Case 1b]
   542       //   [End Case 1]
   543       // o Case 2. If the stale value corresponds to cur_younger_gen being
   544       //   a value not necessarily written by a current promotion, the
   545       //   card will not be scanned by the younger refs scanning code.
   546       //   (This is OK since as we argued above such cards cannot contain
   547       //   any younger refs.) The result is that this value will be
   548       //   treated as a prev_younger_gen value in a subsequent collection,
   549       //   which is addressed in Case 1 above. [End Case 2]
   550       // o Case 3. We here consider the "derivative" case from Case 1b. above
   551       //   because of which we may find a stale
   552       //   cur_younger_gen_and_prev_non_clean card value in the table.
   553       //   Once again, as in Case 1, we consider two subcases, depending
   554       //   on whether the card lies in the occupied or unoccupied part
   555       //   of the space at the start of the young collection.
   556       //   o Case 3a. Let us say the card is in the occupied part of
   557       //     the old gen at the start of the young collection. In that
   558       //     case, the card will be scanned by the younger refs scanning
   559       //     code which will set it to cur_younger_gen. In a subsequent
   560       //     scan, the card will be considered again and get its final
   561       //     correct value. [End Case 3a]
   562       //   o Case 3b. Now consider the case where the card is in the
   563       //     unoccupied part of the old gen, and is occupied as a result
   564       //     of promotions during thus young gc. In that case,
   565       //     the card will not be scanned for younger refs. The presence
   566       //     of newly promoted objects on the card will then result in
   567       //     its keeping the value cur_younger_gen_and_prev_non_clean
   568       //     value, which we have dealt with in Case 3 here. [End Case 3b]
   569       //   [End Case 3]
   570       //
   571       // (Please refer to the code in the helper class
   572       // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
   573       //
   574       // The informal arguments above can be tightened into a formal
   575       // correctness proof and it behooves us to write up such a proof,
   576       // or to use model checking to prove that there are no lingering
   577       // concerns.
   578       //
   579       // Clearly because of Case 3b one cannot bound the time for
   580       // which a card will retain what we have called a "stale" value.
   581       // However, one can obtain a Loose upper bound on the redundant
   582       // work as a result of such stale values. Note first that any
   583       // time a stale card lies in the occupied part of the space at
   584       // the start of the collection, it is scanned by younger refs
   585       // code and we can define a rank function on card values that
   586       // declines when this is so. Note also that when a card does not
   587       // lie in the occupied part of the space at the beginning of a
   588       // young collection, its rank can either decline or stay unchanged.
   589       // In this case, no extra work is done in terms of redundant
   590       // younger refs scanning of that card.
   591       // Then, the case analysis above reveals that, in the worst case,
   592       // any such stale card will be scanned unnecessarily at most twice.
   593       //
   594       // It is nonethelss advisable to try and get rid of some of this
   595       // redundant work in a subsequent (low priority) re-design of
   596       // the card-scanning code, if only to simplify the underlying
   597       // state machine analysis/proof. ysr 1/28/2002. XXX
   598       cur_entry++;
   599     }
   600   }
   601 }
   603 void CardTableRS::verify() {
   604   // At present, we only know how to verify the card table RS for
   605   // generational heaps.
   606   VerifyCTGenClosure blk(this);
   607   CollectedHeap* ch = Universe::heap();
   609   if (ch->kind() == CollectedHeap::GenCollectedHeap) {
   610     GenCollectedHeap::heap()->generation_iterate(&blk, false);
   611     _ct_bs->verify();
   612     }
   613   }
   616 void CardTableRS::verify_aligned_region_empty(MemRegion mr) {
   617   if (!mr.is_empty()) {
   618     jbyte* cur_entry = byte_for(mr.start());
   619     jbyte* limit = byte_after(mr.last());
   620     // The region mr may not start on a card boundary so
   621     // the first card may reflect a write to the space
   622     // just prior to mr.
   623     if (!is_aligned(mr.start())) {
   624       cur_entry++;
   625     }
   626     for (;cur_entry < limit; cur_entry++) {
   627       guarantee(*cur_entry == CardTableModRefBS::clean_card,
   628                 "Unexpected dirty card found");
   629     }
   630   }
   631 }

mercurial