src/os/windows/vm/perfMemory_windows.cpp

Wed, 27 Aug 2014 08:19:12 -0400

author
zgu
date
Wed, 27 Aug 2014 08:19:12 -0400
changeset 7074
833b0f92429a
parent 5272
1f4355cee9a2
child 7535
7ae4e26cb1e0
child 9711
0f2fe7d37d8c
permissions
-rw-r--r--

8046598: Scalable Native memory tracking development
Summary: Enhance scalability of native memory tracking
Reviewed-by: coleenp, ctornqvi, gtriantafill

duke@435 1 /*
zgu@7074 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/vmSymbols.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "memory/resourceArea.hpp"
stefank@2314 29 #include "oops/oop.inline.hpp"
stefank@2314 30 #include "os_windows.inline.hpp"
stefank@2314 31 #include "runtime/handles.inline.hpp"
stefank@2314 32 #include "runtime/perfMemory.hpp"
zgu@4193 33 #include "services/memTracker.hpp"
stefank@2314 34 #include "utilities/exceptions.hpp"
duke@435 35
duke@435 36 #include <windows.h>
duke@435 37 #include <sys/types.h>
duke@435 38 #include <sys/stat.h>
duke@435 39 #include <errno.h>
duke@435 40 #include <lmcons.h>
duke@435 41
duke@435 42 typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
duke@435 43 IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
duke@435 44 IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
duke@435 45 IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
duke@435 46
duke@435 47 // Standard Memory Implementation Details
duke@435 48
duke@435 49 // create the PerfData memory region in standard memory.
duke@435 50 //
duke@435 51 static char* create_standard_memory(size_t size) {
duke@435 52
duke@435 53 // allocate an aligned chuck of memory
duke@435 54 char* mapAddress = os::reserve_memory(size);
duke@435 55
duke@435 56 if (mapAddress == NULL) {
duke@435 57 return NULL;
duke@435 58 }
duke@435 59
duke@435 60 // commit memory
dcubed@5255 61 if (!os::commit_memory(mapAddress, size, !ExecMem)) {
duke@435 62 if (PrintMiscellaneous && Verbose) {
duke@435 63 warning("Could not commit PerfData memory\n");
duke@435 64 }
duke@435 65 os::release_memory(mapAddress, size);
duke@435 66 return NULL;
duke@435 67 }
duke@435 68
duke@435 69 return mapAddress;
duke@435 70 }
duke@435 71
duke@435 72 // delete the PerfData memory region
duke@435 73 //
duke@435 74 static void delete_standard_memory(char* addr, size_t size) {
duke@435 75
duke@435 76 // there are no persistent external resources to cleanup for standard
duke@435 77 // memory. since DestroyJavaVM does not support unloading of the JVM,
duke@435 78 // cleanup of the memory resource is not performed. The memory will be
duke@435 79 // reclaimed by the OS upon termination of the process.
duke@435 80 //
duke@435 81 return;
duke@435 82
duke@435 83 }
duke@435 84
duke@435 85 // save the specified memory region to the given file
duke@435 86 //
duke@435 87 static void save_memory_to_file(char* addr, size_t size) {
duke@435 88
duke@435 89 const char* destfile = PerfMemory::get_perfdata_file_path();
duke@435 90 assert(destfile[0] != '\0', "invalid Perfdata file path");
duke@435 91
duke@435 92 int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
duke@435 93 _S_IREAD|_S_IWRITE);
duke@435 94
duke@435 95 if (fd == OS_ERR) {
duke@435 96 if (PrintMiscellaneous && Verbose) {
duke@435 97 warning("Could not create Perfdata save file: %s: %s\n",
duke@435 98 destfile, strerror(errno));
duke@435 99 }
duke@435 100 } else {
duke@435 101 for (size_t remaining = size; remaining > 0;) {
duke@435 102
duke@435 103 int nbytes = ::_write(fd, addr, (unsigned int)remaining);
duke@435 104 if (nbytes == OS_ERR) {
duke@435 105 if (PrintMiscellaneous && Verbose) {
duke@435 106 warning("Could not write Perfdata save file: %s: %s\n",
duke@435 107 destfile, strerror(errno));
duke@435 108 }
duke@435 109 break;
duke@435 110 }
duke@435 111
duke@435 112 remaining -= (size_t)nbytes;
duke@435 113 addr += nbytes;
duke@435 114 }
duke@435 115
duke@435 116 int result = ::_close(fd);
duke@435 117 if (PrintMiscellaneous && Verbose) {
duke@435 118 if (result == OS_ERR) {
duke@435 119 warning("Could not close %s: %s\n", destfile, strerror(errno));
duke@435 120 }
duke@435 121 }
duke@435 122 }
duke@435 123
zgu@3900 124 FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
duke@435 125 }
duke@435 126
duke@435 127 // Shared Memory Implementation Details
duke@435 128
duke@435 129 // Note: the win32 shared memory implementation uses two objects to represent
duke@435 130 // the shared memory: a windows kernel based file mapping object and a backing
duke@435 131 // store file. On windows, the name space for shared memory is a kernel
duke@435 132 // based name space that is disjoint from other win32 name spaces. Since Java
duke@435 133 // is unaware of this name space, a parallel file system based name space is
duke@435 134 // maintained, which provides a common file system based shared memory name
duke@435 135 // space across the supported platforms and one that Java apps can deal with
duke@435 136 // through simple file apis.
duke@435 137 //
duke@435 138 // For performance and resource cleanup reasons, it is recommended that the
duke@435 139 // user specific directory and the backing store file be stored in either a
duke@435 140 // RAM based file system or a local disk based file system. Network based
duke@435 141 // file systems are not recommended for performance reasons. In addition,
duke@435 142 // use of SMB network based file systems may result in unsuccesful cleanup
duke@435 143 // of the disk based resource on exit of the VM. The Windows TMP and TEMP
duke@435 144 // environement variables, as used by the GetTempPath() Win32 API (see
duke@435 145 // os::get_temp_directory() in os_win32.cpp), control the location of the
duke@435 146 // user specific directory and the shared memory backing store file.
duke@435 147
duke@435 148 static HANDLE sharedmem_fileMapHandle = NULL;
duke@435 149 static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
duke@435 150 static char* sharedmem_fileName = NULL;
duke@435 151
duke@435 152 // return the user specific temporary directory name.
duke@435 153 //
duke@435 154 // the caller is expected to free the allocated memory.
duke@435 155 //
duke@435 156 static char* get_user_tmp_dir(const char* user) {
duke@435 157
duke@435 158 const char* tmpdir = os::get_temp_directory();
duke@435 159 const char* perfdir = PERFDATA_NAME;
coleenp@1788 160 size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
zgu@3900 161 char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
duke@435 162
duke@435 163 // construct the path name to user specific tmp directory
coleenp@1788 164 _snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user);
duke@435 165
duke@435 166 return dirname;
duke@435 167 }
duke@435 168
duke@435 169 // convert the given file name into a process id. if the file
duke@435 170 // does not meet the file naming constraints, return 0.
duke@435 171 //
duke@435 172 static int filename_to_pid(const char* filename) {
duke@435 173
duke@435 174 // a filename that doesn't begin with a digit is not a
duke@435 175 // candidate for conversion.
duke@435 176 //
duke@435 177 if (!isdigit(*filename)) {
duke@435 178 return 0;
duke@435 179 }
duke@435 180
duke@435 181 // check if file name can be converted to an integer without
duke@435 182 // any leftover characters.
duke@435 183 //
duke@435 184 char* remainder = NULL;
duke@435 185 errno = 0;
duke@435 186 int pid = (int)strtol(filename, &remainder, 10);
duke@435 187
duke@435 188 if (errno != 0) {
duke@435 189 return 0;
duke@435 190 }
duke@435 191
duke@435 192 // check for left over characters. If any, then the filename is
duke@435 193 // not a candidate for conversion.
duke@435 194 //
duke@435 195 if (remainder != NULL && *remainder != '\0') {
duke@435 196 return 0;
duke@435 197 }
duke@435 198
duke@435 199 // successful conversion, return the pid
duke@435 200 return pid;
duke@435 201 }
duke@435 202
duke@435 203 // check if the given path is considered a secure directory for
duke@435 204 // the backing store files. Returns true if the directory exists
duke@435 205 // and is considered a secure location. Returns false if the path
twisti@1040 206 // is a symbolic link or if an error occurred.
duke@435 207 //
duke@435 208 static bool is_directory_secure(const char* path) {
duke@435 209
duke@435 210 DWORD fa;
duke@435 211
duke@435 212 fa = GetFileAttributes(path);
duke@435 213 if (fa == 0xFFFFFFFF) {
duke@435 214 DWORD lasterror = GetLastError();
duke@435 215 if (lasterror == ERROR_FILE_NOT_FOUND) {
duke@435 216 return false;
duke@435 217 }
duke@435 218 else {
duke@435 219 // unexpected error, declare the path insecure
duke@435 220 if (PrintMiscellaneous && Verbose) {
duke@435 221 warning("could not get attributes for file %s: ",
duke@435 222 " lasterror = %d\n", path, lasterror);
duke@435 223 }
duke@435 224 return false;
duke@435 225 }
duke@435 226 }
duke@435 227
duke@435 228 if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
duke@435 229 // we don't accept any redirection for the user specific directory
duke@435 230 // so declare the path insecure. This may be too conservative,
duke@435 231 // as some types of reparse points might be acceptable, but it
duke@435 232 // is probably more secure to avoid these conditions.
duke@435 233 //
duke@435 234 if (PrintMiscellaneous && Verbose) {
duke@435 235 warning("%s is a reparse point\n", path);
duke@435 236 }
duke@435 237 return false;
duke@435 238 }
duke@435 239
duke@435 240 if (fa & FILE_ATTRIBUTE_DIRECTORY) {
duke@435 241 // this is the expected case. Since windows supports symbolic
duke@435 242 // links to directories only, not to files, there is no need
duke@435 243 // to check for open write permissions on the directory. If the
duke@435 244 // directory has open write permissions, any files deposited that
duke@435 245 // are not expected will be removed by the cleanup code.
duke@435 246 //
duke@435 247 return true;
duke@435 248 }
duke@435 249 else {
duke@435 250 // this is either a regular file or some other type of file,
duke@435 251 // any of which are unexpected and therefore insecure.
duke@435 252 //
duke@435 253 if (PrintMiscellaneous && Verbose) {
duke@435 254 warning("%s is not a directory, file attributes = "
duke@435 255 INTPTR_FORMAT "\n", path, fa);
duke@435 256 }
duke@435 257 return false;
duke@435 258 }
duke@435 259 }
duke@435 260
duke@435 261 // return the user name for the owner of this process
duke@435 262 //
duke@435 263 // the caller is expected to free the allocated memory.
duke@435 264 //
duke@435 265 static char* get_user_name() {
duke@435 266
duke@435 267 /* get the user name. This code is adapted from code found in
duke@435 268 * the jdk in src/windows/native/java/lang/java_props_md.c
duke@435 269 * java_props_md.c 1.29 02/02/06. According to the original
duke@435 270 * source, the call to GetUserName is avoided because of a resulting
duke@435 271 * increase in footprint of 100K.
duke@435 272 */
duke@435 273 char* user = getenv("USERNAME");
duke@435 274 char buf[UNLEN+1];
duke@435 275 DWORD buflen = sizeof(buf);
duke@435 276 if (user == NULL || strlen(user) == 0) {
duke@435 277 if (GetUserName(buf, &buflen)) {
duke@435 278 user = buf;
duke@435 279 }
duke@435 280 else {
duke@435 281 return NULL;
duke@435 282 }
duke@435 283 }
duke@435 284
zgu@3900 285 char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
duke@435 286 strcpy(user_name, user);
duke@435 287
duke@435 288 return user_name;
duke@435 289 }
duke@435 290
duke@435 291 // return the name of the user that owns the process identified by vmid.
duke@435 292 //
duke@435 293 // This method uses a slow directory search algorithm to find the backing
duke@435 294 // store file for the specified vmid and returns the user name, as determined
duke@435 295 // by the user name suffix of the hsperfdata_<username> directory name.
duke@435 296 //
duke@435 297 // the caller is expected to free the allocated memory.
duke@435 298 //
duke@435 299 static char* get_user_name_slow(int vmid) {
duke@435 300
duke@435 301 // directory search
dcubed@2543 302 char* latest_user = NULL;
dcubed@2543 303 time_t latest_ctime = 0;
duke@435 304
duke@435 305 const char* tmpdirname = os::get_temp_directory();
duke@435 306
duke@435 307 DIR* tmpdirp = os::opendir(tmpdirname);
duke@435 308
duke@435 309 if (tmpdirp == NULL) {
duke@435 310 return NULL;
duke@435 311 }
duke@435 312
duke@435 313 // for each entry in the directory that matches the pattern hsperfdata_*,
duke@435 314 // open the directory and check if the file for the given vmid exists.
duke@435 315 // The file with the expected name and the latest creation date is used
duke@435 316 // to determine the user name for the process id.
duke@435 317 //
duke@435 318 struct dirent* dentry;
zgu@3900 319 char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
duke@435 320 errno = 0;
duke@435 321 while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
duke@435 322
duke@435 323 // check if the directory entry is a hsperfdata file
duke@435 324 if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
duke@435 325 continue;
duke@435 326 }
duke@435 327
duke@435 328 char* usrdir_name = NEW_C_HEAP_ARRAY(char,
zgu@3900 329 strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
duke@435 330 strcpy(usrdir_name, tmpdirname);
coleenp@1788 331 strcat(usrdir_name, "\\");
duke@435 332 strcat(usrdir_name, dentry->d_name);
duke@435 333
duke@435 334 DIR* subdirp = os::opendir(usrdir_name);
duke@435 335
duke@435 336 if (subdirp == NULL) {
zgu@3900 337 FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
duke@435 338 continue;
duke@435 339 }
duke@435 340
duke@435 341 // Since we don't create the backing store files in directories
duke@435 342 // pointed to by symbolic links, we also don't follow them when
duke@435 343 // looking for the files. We check for a symbolic link after the
duke@435 344 // call to opendir in order to eliminate a small window where the
duke@435 345 // symlink can be exploited.
duke@435 346 //
duke@435 347 if (!is_directory_secure(usrdir_name)) {
zgu@3900 348 FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
duke@435 349 os::closedir(subdirp);
duke@435 350 continue;
duke@435 351 }
duke@435 352
duke@435 353 struct dirent* udentry;
zgu@3900 354 char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
duke@435 355 errno = 0;
duke@435 356 while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
duke@435 357
duke@435 358 if (filename_to_pid(udentry->d_name) == vmid) {
duke@435 359 struct stat statbuf;
duke@435 360
duke@435 361 char* filename = NEW_C_HEAP_ARRAY(char,
zgu@3900 362 strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
duke@435 363
duke@435 364 strcpy(filename, usrdir_name);
duke@435 365 strcat(filename, "\\");
duke@435 366 strcat(filename, udentry->d_name);
duke@435 367
duke@435 368 if (::stat(filename, &statbuf) == OS_ERR) {
zgu@3900 369 FREE_C_HEAP_ARRAY(char, filename, mtInternal);
duke@435 370 continue;
duke@435 371 }
duke@435 372
duke@435 373 // skip over files that are not regular files.
duke@435 374 if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
zgu@3900 375 FREE_C_HEAP_ARRAY(char, filename, mtInternal);
duke@435 376 continue;
duke@435 377 }
duke@435 378
dcubed@2543 379 // If we found a matching file with a newer creation time, then
dcubed@2543 380 // save the user name. The newer creation time indicates that
dcubed@2543 381 // we found a newer incarnation of the process associated with
dcubed@2543 382 // vmid. Due to the way that Windows recycles pids and the fact
dcubed@2543 383 // that we can't delete the file from the file system namespace
dcubed@2543 384 // until last close, it is possible for there to be more than
dcubed@2543 385 // one hsperfdata file with a name matching vmid (diff users).
dcubed@2543 386 //
dcubed@2543 387 // We no longer ignore hsperfdata files where (st_size == 0).
dcubed@2543 388 // In this function, all we're trying to do is determine the
dcubed@2543 389 // name of the user that owns the process associated with vmid
dcubed@2543 390 // so the size doesn't matter. Very rarely, we have observed
dcubed@2543 391 // hsperfdata files where (st_size == 0) and the st_size field
dcubed@2543 392 // later becomes the expected value.
dcubed@2543 393 //
dcubed@2543 394 if (statbuf.st_ctime > latest_ctime) {
dcubed@2543 395 char* user = strchr(dentry->d_name, '_') + 1;
duke@435 396
zgu@3900 397 if (latest_user != NULL) FREE_C_HEAP_ARRAY(char, latest_user, mtInternal);
zgu@3900 398 latest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
duke@435 399
dcubed@2543 400 strcpy(latest_user, user);
dcubed@2543 401 latest_ctime = statbuf.st_ctime;
duke@435 402 }
duke@435 403
zgu@3900 404 FREE_C_HEAP_ARRAY(char, filename, mtInternal);
duke@435 405 }
duke@435 406 }
duke@435 407 os::closedir(subdirp);
zgu@3900 408 FREE_C_HEAP_ARRAY(char, udbuf, mtInternal);
zgu@3900 409 FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
duke@435 410 }
duke@435 411 os::closedir(tmpdirp);
zgu@3900 412 FREE_C_HEAP_ARRAY(char, tdbuf, mtInternal);
duke@435 413
dcubed@2543 414 return(latest_user);
duke@435 415 }
duke@435 416
duke@435 417 // return the name of the user that owns the process identified by vmid.
duke@435 418 //
duke@435 419 // note: this method should only be used via the Perf native methods.
duke@435 420 // There are various costs to this method and limiting its use to the
duke@435 421 // Perf native methods limits the impact to monitoring applications only.
duke@435 422 //
duke@435 423 static char* get_user_name(int vmid) {
duke@435 424
duke@435 425 // A fast implementation is not provided at this time. It's possible
duke@435 426 // to provide a fast process id to user name mapping function using
duke@435 427 // the win32 apis, but the default ACL for the process object only
duke@435 428 // allows processes with the same owner SID to acquire the process
duke@435 429 // handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
duke@435 430 // to have the JVM change the ACL for the process object to allow arbitrary
duke@435 431 // users to access the process handle and the process security token.
duke@435 432 // The security ramifications need to be studied before providing this
duke@435 433 // mechanism.
duke@435 434 //
duke@435 435 return get_user_name_slow(vmid);
duke@435 436 }
duke@435 437
duke@435 438 // return the name of the shared memory file mapping object for the
duke@435 439 // named shared memory region for the given user name and vmid.
duke@435 440 //
duke@435 441 // The file mapping object's name is not the file name. It is a name
duke@435 442 // in a separate name space.
duke@435 443 //
duke@435 444 // the caller is expected to free the allocated memory.
duke@435 445 //
duke@435 446 static char *get_sharedmem_objectname(const char* user, int vmid) {
duke@435 447
duke@435 448 // construct file mapping object's name, add 3 for two '_' and a
duke@435 449 // null terminator.
duke@435 450 int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
duke@435 451
duke@435 452 // the id is converted to an unsigned value here because win32 allows
duke@435 453 // negative process ids. However, OpenFileMapping API complains
duke@435 454 // about a name containing a '-' characters.
duke@435 455 //
duke@435 456 nbytes += UINT_CHARS;
zgu@3900 457 char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
duke@435 458 _snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
duke@435 459
duke@435 460 return name;
duke@435 461 }
duke@435 462
duke@435 463 // return the file name of the backing store file for the named
duke@435 464 // shared memory region for the given user name and vmid.
duke@435 465 //
duke@435 466 // the caller is expected to free the allocated memory.
duke@435 467 //
duke@435 468 static char* get_sharedmem_filename(const char* dirname, int vmid) {
duke@435 469
duke@435 470 // add 2 for the file separator and a null terminator.
duke@435 471 size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
duke@435 472
zgu@3900 473 char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
duke@435 474 _snprintf(name, nbytes, "%s\\%d", dirname, vmid);
duke@435 475
duke@435 476 return name;
duke@435 477 }
duke@435 478
duke@435 479 // remove file
duke@435 480 //
duke@435 481 // this method removes the file with the given file name.
duke@435 482 //
duke@435 483 // Note: if the indicated file is on an SMB network file system, this
duke@435 484 // method may be unsuccessful in removing the file.
duke@435 485 //
duke@435 486 static void remove_file(const char* dirname, const char* filename) {
duke@435 487
duke@435 488 size_t nbytes = strlen(dirname) + strlen(filename) + 2;
zgu@3900 489 char* path = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
duke@435 490
duke@435 491 strcpy(path, dirname);
duke@435 492 strcat(path, "\\");
duke@435 493 strcat(path, filename);
duke@435 494
duke@435 495 if (::unlink(path) == OS_ERR) {
duke@435 496 if (PrintMiscellaneous && Verbose) {
duke@435 497 if (errno != ENOENT) {
duke@435 498 warning("Could not unlink shared memory backing"
duke@435 499 " store file %s : %s\n", path, strerror(errno));
duke@435 500 }
duke@435 501 }
duke@435 502 }
duke@435 503
zgu@3900 504 FREE_C_HEAP_ARRAY(char, path, mtInternal);
duke@435 505 }
duke@435 506
duke@435 507 // returns true if the process represented by pid is alive, otherwise
duke@435 508 // returns false. the validity of the result is only accurate if the
duke@435 509 // target process is owned by the same principal that owns this process.
duke@435 510 // this method should not be used if to test the status of an otherwise
duke@435 511 // arbitrary process unless it is know that this process has the appropriate
duke@435 512 // privileges to guarantee a result valid.
duke@435 513 //
duke@435 514 static bool is_alive(int pid) {
duke@435 515
duke@435 516 HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
duke@435 517 if (ph == NULL) {
duke@435 518 // the process does not exist.
duke@435 519 if (PrintMiscellaneous && Verbose) {
duke@435 520 DWORD lastError = GetLastError();
duke@435 521 if (lastError != ERROR_INVALID_PARAMETER) {
duke@435 522 warning("OpenProcess failed: %d\n", GetLastError());
duke@435 523 }
duke@435 524 }
duke@435 525 return false;
duke@435 526 }
duke@435 527
duke@435 528 DWORD exit_status;
duke@435 529 if (!GetExitCodeProcess(ph, &exit_status)) {
duke@435 530 if (PrintMiscellaneous && Verbose) {
duke@435 531 warning("GetExitCodeProcess failed: %d\n", GetLastError());
duke@435 532 }
duke@435 533 CloseHandle(ph);
duke@435 534 return false;
duke@435 535 }
duke@435 536
duke@435 537 CloseHandle(ph);
duke@435 538 return (exit_status == STILL_ACTIVE) ? true : false;
duke@435 539 }
duke@435 540
duke@435 541 // check if the file system is considered secure for the backing store files
duke@435 542 //
duke@435 543 static bool is_filesystem_secure(const char* path) {
duke@435 544
duke@435 545 char root_path[MAX_PATH];
duke@435 546 char fs_type[MAX_PATH];
duke@435 547
duke@435 548 if (PerfBypassFileSystemCheck) {
duke@435 549 if (PrintMiscellaneous && Verbose) {
duke@435 550 warning("bypassing file system criteria checks for %s\n", path);
duke@435 551 }
duke@435 552 return true;
duke@435 553 }
duke@435 554
duke@435 555 char* first_colon = strchr((char *)path, ':');
duke@435 556 if (first_colon == NULL) {
duke@435 557 if (PrintMiscellaneous && Verbose) {
duke@435 558 warning("expected device specifier in path: %s\n", path);
duke@435 559 }
duke@435 560 return false;
duke@435 561 }
duke@435 562
duke@435 563 size_t len = (size_t)(first_colon - path);
duke@435 564 assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
duke@435 565 strncpy(root_path, path, len + 1);
duke@435 566 root_path[len + 1] = '\\';
duke@435 567 root_path[len + 2] = '\0';
duke@435 568
duke@435 569 // check that we have something like "C:\" or "AA:\"
duke@435 570 assert(strlen(root_path) >= 3, "device specifier too short");
duke@435 571 assert(strchr(root_path, ':') != NULL, "bad device specifier format");
duke@435 572 assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
duke@435 573
duke@435 574 DWORD maxpath;
duke@435 575 DWORD flags;
duke@435 576
duke@435 577 if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
duke@435 578 &flags, fs_type, MAX_PATH)) {
duke@435 579 // we can't get information about the volume, so assume unsafe.
duke@435 580 if (PrintMiscellaneous && Verbose) {
duke@435 581 warning("could not get device information for %s: "
duke@435 582 " path = %s: lasterror = %d\n",
duke@435 583 root_path, path, GetLastError());
duke@435 584 }
duke@435 585 return false;
duke@435 586 }
duke@435 587
duke@435 588 if ((flags & FS_PERSISTENT_ACLS) == 0) {
duke@435 589 // file system doesn't support ACLs, declare file system unsafe
duke@435 590 if (PrintMiscellaneous && Verbose) {
duke@435 591 warning("file system type %s on device %s does not support"
duke@435 592 " ACLs\n", fs_type, root_path);
duke@435 593 }
duke@435 594 return false;
duke@435 595 }
duke@435 596
duke@435 597 if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
duke@435 598 // file system is compressed, declare file system unsafe
duke@435 599 if (PrintMiscellaneous && Verbose) {
duke@435 600 warning("file system type %s on device %s is compressed\n",
duke@435 601 fs_type, root_path);
duke@435 602 }
duke@435 603 return false;
duke@435 604 }
duke@435 605
duke@435 606 return true;
duke@435 607 }
duke@435 608
duke@435 609 // cleanup stale shared memory resources
duke@435 610 //
duke@435 611 // This method attempts to remove all stale shared memory files in
duke@435 612 // the named user temporary directory. It scans the named directory
duke@435 613 // for files matching the pattern ^$[0-9]*$. For each file found, the
duke@435 614 // process id is extracted from the file name and a test is run to
duke@435 615 // determine if the process is alive. If the process is not alive,
duke@435 616 // any stale file resources are removed.
duke@435 617 //
duke@435 618 static void cleanup_sharedmem_resources(const char* dirname) {
duke@435 619
duke@435 620 // open the user temp directory
duke@435 621 DIR* dirp = os::opendir(dirname);
duke@435 622
duke@435 623 if (dirp == NULL) {
duke@435 624 // directory doesn't exist, so there is nothing to cleanup
duke@435 625 return;
duke@435 626 }
duke@435 627
duke@435 628 if (!is_directory_secure(dirname)) {
duke@435 629 // the directory is not secure, don't attempt any cleanup
duke@435 630 return;
duke@435 631 }
duke@435 632
duke@435 633 // for each entry in the directory that matches the expected file
duke@435 634 // name pattern, determine if the file resources are stale and if
duke@435 635 // so, remove the file resources. Note, instrumented HotSpot processes
duke@435 636 // for this user may start and/or terminate during this search and
duke@435 637 // remove or create new files in this directory. The behavior of this
duke@435 638 // loop under these conditions is dependent upon the implementation of
duke@435 639 // opendir/readdir.
duke@435 640 //
duke@435 641 struct dirent* entry;
zgu@3900 642 char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
duke@435 643 errno = 0;
duke@435 644 while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
duke@435 645
duke@435 646 int pid = filename_to_pid(entry->d_name);
duke@435 647
duke@435 648 if (pid == 0) {
duke@435 649
duke@435 650 if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
duke@435 651
duke@435 652 // attempt to remove all unexpected files, except "." and ".."
duke@435 653 remove_file(dirname, entry->d_name);
duke@435 654 }
duke@435 655
duke@435 656 errno = 0;
duke@435 657 continue;
duke@435 658 }
duke@435 659
duke@435 660 // we now have a file name that converts to a valid integer
duke@435 661 // that could represent a process id . if this process id
duke@435 662 // matches the current process id or the process is not running,
duke@435 663 // then remove the stale file resources.
duke@435 664 //
duke@435 665 // process liveness is detected by checking the exit status
duke@435 666 // of the process. if the process id is valid and the exit status
duke@435 667 // indicates that it is still running, the file file resources
duke@435 668 // are not removed. If the process id is invalid, or if we don't
duke@435 669 // have permissions to check the process status, or if the process
duke@435 670 // id is valid and the process has terminated, the the file resources
duke@435 671 // are assumed to be stale and are removed.
duke@435 672 //
duke@435 673 if (pid == os::current_process_id() || !is_alive(pid)) {
duke@435 674
duke@435 675 // we can only remove the file resources. Any mapped views
duke@435 676 // of the file can only be unmapped by the processes that
duke@435 677 // opened those views and the file mapping object will not
duke@435 678 // get removed until all views are unmapped.
duke@435 679 //
duke@435 680 remove_file(dirname, entry->d_name);
duke@435 681 }
duke@435 682 errno = 0;
duke@435 683 }
duke@435 684 os::closedir(dirp);
zgu@3900 685 FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
duke@435 686 }
duke@435 687
duke@435 688 // create a file mapping object with the requested name, and size
duke@435 689 // from the file represented by the given Handle object
duke@435 690 //
duke@435 691 static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
duke@435 692
duke@435 693 DWORD lowSize = (DWORD)size;
duke@435 694 DWORD highSize = 0;
duke@435 695 HANDLE fmh = NULL;
duke@435 696
duke@435 697 // Create a file mapping object with the given name. This function
duke@435 698 // will grow the file to the specified size.
duke@435 699 //
duke@435 700 fmh = CreateFileMapping(
duke@435 701 fh, /* HANDLE file handle for backing store */
duke@435 702 fsa, /* LPSECURITY_ATTRIBUTES Not inheritable */
duke@435 703 PAGE_READWRITE, /* DWORD protections */
duke@435 704 highSize, /* DWORD High word of max size */
duke@435 705 lowSize, /* DWORD Low word of max size */
duke@435 706 name); /* LPCTSTR name for object */
duke@435 707
duke@435 708 if (fmh == NULL) {
duke@435 709 if (PrintMiscellaneous && Verbose) {
duke@435 710 warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
duke@435 711 }
duke@435 712 return NULL;
duke@435 713 }
duke@435 714
duke@435 715 if (GetLastError() == ERROR_ALREADY_EXISTS) {
duke@435 716
duke@435 717 // a stale file mapping object was encountered. This object may be
duke@435 718 // owned by this or some other user and cannot be removed until
duke@435 719 // the other processes either exit or close their mapping objects
duke@435 720 // and/or mapped views of this mapping object.
duke@435 721 //
duke@435 722 if (PrintMiscellaneous && Verbose) {
duke@435 723 warning("file mapping already exists, lasterror = %d\n", GetLastError());
duke@435 724 }
duke@435 725
duke@435 726 CloseHandle(fmh);
duke@435 727 return NULL;
duke@435 728 }
duke@435 729
duke@435 730 return fmh;
duke@435 731 }
duke@435 732
duke@435 733
duke@435 734 // method to free the given security descriptor and the contained
duke@435 735 // access control list.
duke@435 736 //
duke@435 737 static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
duke@435 738
duke@435 739 BOOL success, exists, isdefault;
duke@435 740 PACL pACL;
duke@435 741
duke@435 742 if (pSD != NULL) {
duke@435 743
duke@435 744 // get the access control list from the security descriptor
duke@435 745 success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
duke@435 746
duke@435 747 // if an ACL existed and it was not a default acl, then it must
duke@435 748 // be an ACL we enlisted. free the resources.
duke@435 749 //
duke@435 750 if (success && exists && pACL != NULL && !isdefault) {
zgu@3900 751 FREE_C_HEAP_ARRAY(char, pACL, mtInternal);
duke@435 752 }
duke@435 753
duke@435 754 // free the security descriptor
zgu@3900 755 FREE_C_HEAP_ARRAY(char, pSD, mtInternal);
duke@435 756 }
duke@435 757 }
duke@435 758
duke@435 759 // method to free up a security attributes structure and any
duke@435 760 // contained security descriptors and ACL
duke@435 761 //
duke@435 762 static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
duke@435 763
duke@435 764 if (lpSA != NULL) {
duke@435 765 // free the contained security descriptor and the ACL
duke@435 766 free_security_desc(lpSA->lpSecurityDescriptor);
duke@435 767 lpSA->lpSecurityDescriptor = NULL;
duke@435 768
duke@435 769 // free the security attributes structure
zgu@3900 770 FREE_C_HEAP_ARRAY(char, lpSA, mtInternal);
duke@435 771 }
duke@435 772 }
duke@435 773
duke@435 774 // get the user SID for the process indicated by the process handle
duke@435 775 //
duke@435 776 static PSID get_user_sid(HANDLE hProcess) {
duke@435 777
duke@435 778 HANDLE hAccessToken;
duke@435 779 PTOKEN_USER token_buf = NULL;
duke@435 780 DWORD rsize = 0;
duke@435 781
duke@435 782 if (hProcess == NULL) {
duke@435 783 return NULL;
duke@435 784 }
duke@435 785
duke@435 786 // get the process token
duke@435 787 if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
duke@435 788 if (PrintMiscellaneous && Verbose) {
duke@435 789 warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
duke@435 790 }
duke@435 791 return NULL;
duke@435 792 }
duke@435 793
duke@435 794 // determine the size of the token structured needed to retrieve
duke@435 795 // the user token information from the access token.
duke@435 796 //
duke@435 797 if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
duke@435 798 DWORD lasterror = GetLastError();
duke@435 799 if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
duke@435 800 if (PrintMiscellaneous && Verbose) {
duke@435 801 warning("GetTokenInformation failure: lasterror = %d,"
duke@435 802 " rsize = %d\n", lasterror, rsize);
duke@435 803 }
duke@435 804 CloseHandle(hAccessToken);
duke@435 805 return NULL;
duke@435 806 }
duke@435 807 }
duke@435 808
zgu@3900 809 token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize, mtInternal);
duke@435 810
duke@435 811 // get the user token information
duke@435 812 if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
duke@435 813 if (PrintMiscellaneous && Verbose) {
duke@435 814 warning("GetTokenInformation failure: lasterror = %d,"
duke@435 815 " rsize = %d\n", GetLastError(), rsize);
duke@435 816 }
zgu@3900 817 FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
duke@435 818 CloseHandle(hAccessToken);
duke@435 819 return NULL;
duke@435 820 }
duke@435 821
duke@435 822 DWORD nbytes = GetLengthSid(token_buf->User.Sid);
zgu@3900 823 PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
duke@435 824
duke@435 825 if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
duke@435 826 if (PrintMiscellaneous && Verbose) {
duke@435 827 warning("GetTokenInformation failure: lasterror = %d,"
duke@435 828 " rsize = %d\n", GetLastError(), rsize);
duke@435 829 }
zgu@3900 830 FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
zgu@3900 831 FREE_C_HEAP_ARRAY(char, pSID, mtInternal);
duke@435 832 CloseHandle(hAccessToken);
duke@435 833 return NULL;
duke@435 834 }
duke@435 835
duke@435 836 // close the access token.
duke@435 837 CloseHandle(hAccessToken);
zgu@3900 838 FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
duke@435 839
duke@435 840 return pSID;
duke@435 841 }
duke@435 842
duke@435 843 // structure used to consolidate access control entry information
duke@435 844 //
duke@435 845 typedef struct ace_data {
duke@435 846 PSID pSid; // SID of the ACE
duke@435 847 DWORD mask; // mask for the ACE
duke@435 848 } ace_data_t;
duke@435 849
duke@435 850
duke@435 851 // method to add an allow access control entry with the access rights
duke@435 852 // indicated in mask for the principal indicated in SID to the given
duke@435 853 // security descriptor. Much of the DACL handling was adapted from
duke@435 854 // the example provided here:
duke@435 855 // http://support.microsoft.com/kb/102102/EN-US/
duke@435 856 //
duke@435 857
duke@435 858 static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
duke@435 859 ace_data_t aces[], int ace_count) {
duke@435 860 PACL newACL = NULL;
duke@435 861 PACL oldACL = NULL;
duke@435 862
duke@435 863 if (pSD == NULL) {
duke@435 864 return false;
duke@435 865 }
duke@435 866
duke@435 867 BOOL exists, isdefault;
duke@435 868
duke@435 869 // retrieve any existing access control list.
duke@435 870 if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
duke@435 871 if (PrintMiscellaneous && Verbose) {
duke@435 872 warning("GetSecurityDescriptor failure: lasterror = %d \n",
duke@435 873 GetLastError());
duke@435 874 }
duke@435 875 return false;
duke@435 876 }
duke@435 877
duke@435 878 // get the size of the DACL
duke@435 879 ACL_SIZE_INFORMATION aclinfo;
duke@435 880
duke@435 881 // GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
duke@435 882 // while oldACL is NULL for some case.
duke@435 883 if (oldACL == NULL) {
duke@435 884 exists = FALSE;
duke@435 885 }
duke@435 886
duke@435 887 if (exists) {
duke@435 888 if (!GetAclInformation(oldACL, &aclinfo,
duke@435 889 sizeof(ACL_SIZE_INFORMATION),
duke@435 890 AclSizeInformation)) {
duke@435 891 if (PrintMiscellaneous && Verbose) {
duke@435 892 warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
duke@435 893 return false;
duke@435 894 }
duke@435 895 }
duke@435 896 } else {
duke@435 897 aclinfo.AceCount = 0; // assume NULL DACL
duke@435 898 aclinfo.AclBytesFree = 0;
duke@435 899 aclinfo.AclBytesInUse = sizeof(ACL);
duke@435 900 }
duke@435 901
duke@435 902 // compute the size needed for the new ACL
duke@435 903 // initial size of ACL is sum of the following:
duke@435 904 // * size of ACL structure.
duke@435 905 // * size of each ACE structure that ACL is to contain minus the sid
duke@435 906 // sidStart member (DWORD) of the ACE.
duke@435 907 // * length of the SID that each ACE is to contain.
duke@435 908 DWORD newACLsize = aclinfo.AclBytesInUse +
duke@435 909 (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
duke@435 910 for (int i = 0; i < ace_count; i++) {
poonam@2310 911 assert(aces[i].pSid != 0, "pSid should not be 0");
duke@435 912 newACLsize += GetLengthSid(aces[i].pSid);
duke@435 913 }
duke@435 914
duke@435 915 // create the new ACL
zgu@3900 916 newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize, mtInternal);
duke@435 917
duke@435 918 if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
duke@435 919 if (PrintMiscellaneous && Verbose) {
duke@435 920 warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
duke@435 921 }
zgu@3900 922 FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
duke@435 923 return false;
duke@435 924 }
duke@435 925
duke@435 926 unsigned int ace_index = 0;
duke@435 927 // copy any existing ACEs from the old ACL (if any) to the new ACL.
duke@435 928 if (aclinfo.AceCount != 0) {
duke@435 929 while (ace_index < aclinfo.AceCount) {
duke@435 930 LPVOID ace;
duke@435 931 if (!GetAce(oldACL, ace_index, &ace)) {
duke@435 932 if (PrintMiscellaneous && Verbose) {
duke@435 933 warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
duke@435 934 }
zgu@3900 935 FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
duke@435 936 return false;
duke@435 937 }
duke@435 938 if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
duke@435 939 // this is an inherited, allowed ACE; break from loop so we can
duke@435 940 // add the new access allowed, non-inherited ACE in the correct
duke@435 941 // position, immediately following all non-inherited ACEs.
duke@435 942 break;
duke@435 943 }
duke@435 944
duke@435 945 // determine if the SID of this ACE matches any of the SIDs
duke@435 946 // for which we plan to set ACEs.
duke@435 947 int matches = 0;
duke@435 948 for (int i = 0; i < ace_count; i++) {
duke@435 949 if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
duke@435 950 matches++;
duke@435 951 break;
duke@435 952 }
duke@435 953 }
duke@435 954
duke@435 955 // if there are no SID matches, then add this existing ACE to the new ACL
duke@435 956 if (matches == 0) {
duke@435 957 if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
duke@435 958 ((PACE_HEADER)ace)->AceSize)) {
duke@435 959 if (PrintMiscellaneous && Verbose) {
duke@435 960 warning("AddAce failure: lasterror = %d \n", GetLastError());
duke@435 961 }
zgu@3900 962 FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
duke@435 963 return false;
duke@435 964 }
duke@435 965 }
duke@435 966 ace_index++;
duke@435 967 }
duke@435 968 }
duke@435 969
duke@435 970 // add the passed-in access control entries to the new ACL
duke@435 971 for (int i = 0; i < ace_count; i++) {
duke@435 972 if (!AddAccessAllowedAce(newACL, ACL_REVISION,
duke@435 973 aces[i].mask, aces[i].pSid)) {
duke@435 974 if (PrintMiscellaneous && Verbose) {
duke@435 975 warning("AddAccessAllowedAce failure: lasterror = %d \n",
duke@435 976 GetLastError());
duke@435 977 }
zgu@3900 978 FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
duke@435 979 return false;
duke@435 980 }
duke@435 981 }
duke@435 982
duke@435 983 // now copy the rest of the inherited ACEs from the old ACL
duke@435 984 if (aclinfo.AceCount != 0) {
duke@435 985 // picking up at ace_index, where we left off in the
duke@435 986 // previous ace_index loop
duke@435 987 while (ace_index < aclinfo.AceCount) {
duke@435 988 LPVOID ace;
duke@435 989 if (!GetAce(oldACL, ace_index, &ace)) {
duke@435 990 if (PrintMiscellaneous && Verbose) {
duke@435 991 warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
duke@435 992 }
zgu@3900 993 FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
duke@435 994 return false;
duke@435 995 }
duke@435 996 if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
duke@435 997 ((PACE_HEADER)ace)->AceSize)) {
duke@435 998 if (PrintMiscellaneous && Verbose) {
duke@435 999 warning("AddAce failure: lasterror = %d \n", GetLastError());
duke@435 1000 }
zgu@3900 1001 FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
duke@435 1002 return false;
duke@435 1003 }
duke@435 1004 ace_index++;
duke@435 1005 }
duke@435 1006 }
duke@435 1007
duke@435 1008 // add the new ACL to the security descriptor.
duke@435 1009 if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
duke@435 1010 if (PrintMiscellaneous && Verbose) {
duke@435 1011 warning("SetSecurityDescriptorDacl failure:"
duke@435 1012 " lasterror = %d \n", GetLastError());
duke@435 1013 }
zgu@3900 1014 FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
duke@435 1015 return false;
duke@435 1016 }
duke@435 1017
twisti@1040 1018 // if running on windows 2000 or later, set the automatic inheritance
duke@435 1019 // control flags.
duke@435 1020 SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
duke@435 1021 _SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
duke@435 1022 GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
duke@435 1023 "SetSecurityDescriptorControl");
duke@435 1024
duke@435 1025 if (_SetSecurityDescriptorControl != NULL) {
twisti@1040 1026 // We do not want to further propagate inherited DACLs, so making them
duke@435 1027 // protected prevents that.
duke@435 1028 if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
duke@435 1029 SE_DACL_PROTECTED)) {
duke@435 1030 if (PrintMiscellaneous && Verbose) {
duke@435 1031 warning("SetSecurityDescriptorControl failure:"
duke@435 1032 " lasterror = %d \n", GetLastError());
duke@435 1033 }
zgu@3900 1034 FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
duke@435 1035 return false;
duke@435 1036 }
duke@435 1037 }
duke@435 1038 // Note, the security descriptor maintains a reference to the newACL, not
duke@435 1039 // a copy of it. Therefore, the newACL is not freed here. It is freed when
duke@435 1040 // the security descriptor containing its reference is freed.
duke@435 1041 //
duke@435 1042 return true;
duke@435 1043 }
duke@435 1044
duke@435 1045 // method to create a security attributes structure, which contains a
duke@435 1046 // security descriptor and an access control list comprised of 0 or more
duke@435 1047 // access control entries. The method take an array of ace_data structures
duke@435 1048 // that indicate the ACE to be added to the security descriptor.
duke@435 1049 //
duke@435 1050 // the caller must free the resources associated with the security
duke@435 1051 // attributes structure created by this method by calling the
duke@435 1052 // free_security_attr() method.
duke@435 1053 //
duke@435 1054 static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
duke@435 1055
duke@435 1056 // allocate space for a security descriptor
duke@435 1057 PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
zgu@3900 1058 NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH, mtInternal);
duke@435 1059
duke@435 1060 // initialize the security descriptor
duke@435 1061 if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
duke@435 1062 if (PrintMiscellaneous && Verbose) {
duke@435 1063 warning("InitializeSecurityDescriptor failure: "
duke@435 1064 "lasterror = %d \n", GetLastError());
duke@435 1065 }
duke@435 1066 free_security_desc(pSD);
duke@435 1067 return NULL;
duke@435 1068 }
duke@435 1069
duke@435 1070 // add the access control entries
duke@435 1071 if (!add_allow_aces(pSD, aces, count)) {
duke@435 1072 free_security_desc(pSD);
duke@435 1073 return NULL;
duke@435 1074 }
duke@435 1075
duke@435 1076 // allocate and initialize the security attributes structure and
duke@435 1077 // return it to the caller.
duke@435 1078 //
duke@435 1079 LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
zgu@3900 1080 NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES), mtInternal);
duke@435 1081 lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
duke@435 1082 lpSA->lpSecurityDescriptor = pSD;
duke@435 1083 lpSA->bInheritHandle = FALSE;
duke@435 1084
duke@435 1085 return(lpSA);
duke@435 1086 }
duke@435 1087
duke@435 1088 // method to create a security attributes structure with a restrictive
duke@435 1089 // access control list that creates a set access rights for the user/owner
duke@435 1090 // of the securable object and a separate set access rights for everyone else.
duke@435 1091 // also provides for full access rights for the administrator group.
duke@435 1092 //
duke@435 1093 // the caller must free the resources associated with the security
duke@435 1094 // attributes structure created by this method by calling the
duke@435 1095 // free_security_attr() method.
duke@435 1096 //
duke@435 1097
duke@435 1098 static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
duke@435 1099 DWORD umask, DWORD emask, DWORD amask) {
duke@435 1100
duke@435 1101 ace_data_t aces[3];
duke@435 1102
duke@435 1103 // initialize the user ace data
duke@435 1104 aces[0].pSid = get_user_sid(GetCurrentProcess());
duke@435 1105 aces[0].mask = umask;
duke@435 1106
poonam@2310 1107 if (aces[0].pSid == 0)
poonam@2310 1108 return NULL;
poonam@2310 1109
duke@435 1110 // get the well known SID for BUILTIN\Administrators
duke@435 1111 PSID administratorsSid = NULL;
duke@435 1112 SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
duke@435 1113
duke@435 1114 if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
duke@435 1115 SECURITY_BUILTIN_DOMAIN_RID,
duke@435 1116 DOMAIN_ALIAS_RID_ADMINS,
duke@435 1117 0, 0, 0, 0, 0, 0, &administratorsSid)) {
duke@435 1118
duke@435 1119 if (PrintMiscellaneous && Verbose) {
duke@435 1120 warning("AllocateAndInitializeSid failure: "
duke@435 1121 "lasterror = %d \n", GetLastError());
duke@435 1122 }
duke@435 1123 return NULL;
duke@435 1124 }
duke@435 1125
duke@435 1126 // initialize the ace data for administrator group
duke@435 1127 aces[1].pSid = administratorsSid;
duke@435 1128 aces[1].mask = amask;
duke@435 1129
duke@435 1130 // get the well known SID for the universal Everybody
duke@435 1131 PSID everybodySid = NULL;
duke@435 1132 SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
duke@435 1133
duke@435 1134 if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
duke@435 1135 0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
duke@435 1136
duke@435 1137 if (PrintMiscellaneous && Verbose) {
duke@435 1138 warning("AllocateAndInitializeSid failure: "
duke@435 1139 "lasterror = %d \n", GetLastError());
duke@435 1140 }
duke@435 1141 return NULL;
duke@435 1142 }
duke@435 1143
duke@435 1144 // initialize the ace data for everybody else.
duke@435 1145 aces[2].pSid = everybodySid;
duke@435 1146 aces[2].mask = emask;
duke@435 1147
duke@435 1148 // create a security attributes structure with access control
duke@435 1149 // entries as initialized above.
duke@435 1150 LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
zgu@3900 1151 FREE_C_HEAP_ARRAY(char, aces[0].pSid, mtInternal);
duke@435 1152 FreeSid(everybodySid);
duke@435 1153 FreeSid(administratorsSid);
duke@435 1154 return(lpSA);
duke@435 1155 }
duke@435 1156
duke@435 1157
duke@435 1158 // method to create the security attributes structure for restricting
duke@435 1159 // access to the user temporary directory.
duke@435 1160 //
duke@435 1161 // the caller must free the resources associated with the security
duke@435 1162 // attributes structure created by this method by calling the
duke@435 1163 // free_security_attr() method.
duke@435 1164 //
duke@435 1165 static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
duke@435 1166
duke@435 1167 // create full access rights for the user/owner of the directory
duke@435 1168 // and read-only access rights for everybody else. This is
duke@435 1169 // effectively equivalent to UNIX 755 permissions on a directory.
duke@435 1170 //
duke@435 1171 DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
duke@435 1172 DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
duke@435 1173 DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
duke@435 1174
duke@435 1175 return make_user_everybody_admin_security_attr(umask, emask, amask);
duke@435 1176 }
duke@435 1177
duke@435 1178 // method to create the security attributes structure for restricting
duke@435 1179 // access to the shared memory backing store file.
duke@435 1180 //
duke@435 1181 // the caller must free the resources associated with the security
duke@435 1182 // attributes structure created by this method by calling the
duke@435 1183 // free_security_attr() method.
duke@435 1184 //
duke@435 1185 static LPSECURITY_ATTRIBUTES make_file_security_attr() {
duke@435 1186
duke@435 1187 // create extensive access rights for the user/owner of the file
duke@435 1188 // and attribute read-only access rights for everybody else. This
duke@435 1189 // is effectively equivalent to UNIX 600 permissions on a file.
duke@435 1190 //
duke@435 1191 DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
duke@435 1192 DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
duke@435 1193 FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
duke@435 1194 DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
duke@435 1195
duke@435 1196 return make_user_everybody_admin_security_attr(umask, emask, amask);
duke@435 1197 }
duke@435 1198
duke@435 1199 // method to create the security attributes structure for restricting
duke@435 1200 // access to the name shared memory file mapping object.
duke@435 1201 //
duke@435 1202 // the caller must free the resources associated with the security
duke@435 1203 // attributes structure created by this method by calling the
duke@435 1204 // free_security_attr() method.
duke@435 1205 //
duke@435 1206 static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
duke@435 1207
duke@435 1208 // create extensive access rights for the user/owner of the shared
duke@435 1209 // memory object and attribute read-only access rights for everybody
duke@435 1210 // else. This is effectively equivalent to UNIX 600 permissions on
duke@435 1211 // on the shared memory object.
duke@435 1212 //
duke@435 1213 DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
duke@435 1214 DWORD emask = STANDARD_RIGHTS_READ; // attributes only
duke@435 1215 DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
duke@435 1216
duke@435 1217 return make_user_everybody_admin_security_attr(umask, emask, amask);
duke@435 1218 }
duke@435 1219
duke@435 1220 // make the user specific temporary directory
duke@435 1221 //
duke@435 1222 static bool make_user_tmp_dir(const char* dirname) {
duke@435 1223
duke@435 1224
duke@435 1225 LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
duke@435 1226 if (pDirSA == NULL) {
duke@435 1227 return false;
duke@435 1228 }
duke@435 1229
duke@435 1230
duke@435 1231 // create the directory with the given security attributes
duke@435 1232 if (!CreateDirectory(dirname, pDirSA)) {
duke@435 1233 DWORD lasterror = GetLastError();
duke@435 1234 if (lasterror == ERROR_ALREADY_EXISTS) {
duke@435 1235 // The directory already exists and was probably created by another
duke@435 1236 // JVM instance. However, this could also be the result of a
duke@435 1237 // deliberate symlink. Verify that the existing directory is safe.
duke@435 1238 //
duke@435 1239 if (!is_directory_secure(dirname)) {
duke@435 1240 // directory is not secure
duke@435 1241 if (PrintMiscellaneous && Verbose) {
duke@435 1242 warning("%s directory is insecure\n", dirname);
duke@435 1243 }
duke@435 1244 return false;
duke@435 1245 }
duke@435 1246 // The administrator should be able to delete this directory.
duke@435 1247 // But the directory created by previous version of JVM may not
duke@435 1248 // have permission for administrators to delete this directory.
duke@435 1249 // So add full permission to the administrator. Also setting new
duke@435 1250 // DACLs might fix the corrupted the DACLs.
duke@435 1251 SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
duke@435 1252 if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
duke@435 1253 if (PrintMiscellaneous && Verbose) {
duke@435 1254 lasterror = GetLastError();
duke@435 1255 warning("SetFileSecurity failed for %s directory. lasterror %d \n",
duke@435 1256 dirname, lasterror);
duke@435 1257 }
duke@435 1258 }
duke@435 1259 }
duke@435 1260 else {
duke@435 1261 if (PrintMiscellaneous && Verbose) {
duke@435 1262 warning("CreateDirectory failed: %d\n", GetLastError());
duke@435 1263 }
duke@435 1264 return false;
duke@435 1265 }
duke@435 1266 }
duke@435 1267
duke@435 1268 // free the security attributes structure
duke@435 1269 free_security_attr(pDirSA);
duke@435 1270
duke@435 1271 return true;
duke@435 1272 }
duke@435 1273
duke@435 1274 // create the shared memory resources
duke@435 1275 //
duke@435 1276 // This function creates the shared memory resources. This includes
duke@435 1277 // the backing store file and the file mapping shared memory object.
duke@435 1278 //
duke@435 1279 static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
duke@435 1280
duke@435 1281 HANDLE fh = INVALID_HANDLE_VALUE;
duke@435 1282 HANDLE fmh = NULL;
duke@435 1283
duke@435 1284
duke@435 1285 // create the security attributes for the backing store file
duke@435 1286 LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
duke@435 1287 if (lpFileSA == NULL) {
duke@435 1288 return NULL;
duke@435 1289 }
duke@435 1290
duke@435 1291 // create the security attributes for the shared memory object
duke@435 1292 LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
duke@435 1293 if (lpSmoSA == NULL) {
duke@435 1294 free_security_attr(lpFileSA);
duke@435 1295 return NULL;
duke@435 1296 }
duke@435 1297
duke@435 1298 // create the user temporary directory
duke@435 1299 if (!make_user_tmp_dir(dirname)) {
duke@435 1300 // could not make/find the directory or the found directory
duke@435 1301 // was not secure
duke@435 1302 return NULL;
duke@435 1303 }
duke@435 1304
duke@435 1305 // Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
duke@435 1306 // file to be deleted by the last process that closes its handle to
duke@435 1307 // the file. This is important as the apis do not allow a terminating
duke@435 1308 // JVM being monitored by another process to remove the file name.
duke@435 1309 //
duke@435 1310 // the FILE_SHARE_DELETE share mode is valid only in winnt
duke@435 1311 //
duke@435 1312 fh = CreateFile(
duke@435 1313 filename, /* LPCTSTR file name */
duke@435 1314
duke@435 1315 GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */
duke@435 1316
duke@435 1317 (os::win32::is_nt() ? FILE_SHARE_DELETE : 0)|
duke@435 1318 FILE_SHARE_READ, /* DWORD share mode, future READONLY
duke@435 1319 * open operations allowed
duke@435 1320 */
duke@435 1321 lpFileSA, /* LPSECURITY security attributes */
duke@435 1322 CREATE_ALWAYS, /* DWORD creation disposition
duke@435 1323 * create file, if it already
duke@435 1324 * exists, overwrite it.
duke@435 1325 */
duke@435 1326 FILE_FLAG_DELETE_ON_CLOSE, /* DWORD flags and attributes */
duke@435 1327
duke@435 1328 NULL); /* HANDLE template file access */
duke@435 1329
duke@435 1330 free_security_attr(lpFileSA);
duke@435 1331
duke@435 1332 if (fh == INVALID_HANDLE_VALUE) {
duke@435 1333 DWORD lasterror = GetLastError();
duke@435 1334 if (PrintMiscellaneous && Verbose) {
duke@435 1335 warning("could not create file %s: %d\n", filename, lasterror);
duke@435 1336 }
duke@435 1337 return NULL;
duke@435 1338 }
duke@435 1339
duke@435 1340 // try to create the file mapping
duke@435 1341 fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
duke@435 1342
duke@435 1343 free_security_attr(lpSmoSA);
duke@435 1344
duke@435 1345 if (fmh == NULL) {
duke@435 1346 // closing the file handle here will decrement the reference count
duke@435 1347 // on the file. When all processes accessing the file close their
duke@435 1348 // handle to it, the reference count will decrement to 0 and the
duke@435 1349 // OS will delete the file. These semantics are requested by the
duke@435 1350 // FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
duke@435 1351 CloseHandle(fh);
duke@435 1352 fh = NULL;
duke@435 1353 return NULL;
dcubed@2543 1354 } else {
dcubed@2543 1355 // We created the file mapping, but rarely the size of the
dcubed@2543 1356 // backing store file is reported as zero (0) which can cause
dcubed@2543 1357 // failures when trying to use the hsperfdata file.
dcubed@2543 1358 struct stat statbuf;
dcubed@2543 1359 int ret_code = ::stat(filename, &statbuf);
dcubed@2543 1360 if (ret_code == OS_ERR) {
dcubed@2543 1361 if (PrintMiscellaneous && Verbose) {
dcubed@2543 1362 warning("Could not get status information from file %s: %s\n",
dcubed@2543 1363 filename, strerror(errno));
dcubed@2543 1364 }
dcubed@2543 1365 CloseHandle(fmh);
dcubed@2543 1366 CloseHandle(fh);
dcubed@2543 1367 fh = NULL;
dcubed@2543 1368 fmh = NULL;
dcubed@2543 1369 return NULL;
dcubed@2543 1370 }
dcubed@2543 1371
dcubed@2543 1372 // We could always call FlushFileBuffers() but the Microsoft
dcubed@2543 1373 // docs indicate that it is considered expensive so we only
dcubed@2543 1374 // call it when we observe the size as zero (0).
dcubed@2543 1375 if (statbuf.st_size == 0 && FlushFileBuffers(fh) != TRUE) {
dcubed@2543 1376 DWORD lasterror = GetLastError();
dcubed@2543 1377 if (PrintMiscellaneous && Verbose) {
dcubed@2543 1378 warning("could not flush file %s: %d\n", filename, lasterror);
dcubed@2543 1379 }
dcubed@2543 1380 CloseHandle(fmh);
dcubed@2543 1381 CloseHandle(fh);
dcubed@2543 1382 fh = NULL;
dcubed@2543 1383 fmh = NULL;
dcubed@2543 1384 return NULL;
dcubed@2543 1385 }
duke@435 1386 }
duke@435 1387
duke@435 1388 // the file has been successfully created and the file mapping
duke@435 1389 // object has been created.
duke@435 1390 sharedmem_fileHandle = fh;
duke@435 1391 sharedmem_fileName = strdup(filename);
duke@435 1392
duke@435 1393 return fmh;
duke@435 1394 }
duke@435 1395
duke@435 1396 // open the shared memory object for the given vmid.
duke@435 1397 //
duke@435 1398 static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
duke@435 1399
duke@435 1400 HANDLE fmh;
duke@435 1401
duke@435 1402 // open the file mapping with the requested mode
duke@435 1403 fmh = OpenFileMapping(
duke@435 1404 ofm_access, /* DWORD access mode */
duke@435 1405 FALSE, /* BOOL inherit flag - Do not allow inherit */
duke@435 1406 objectname); /* name for object */
duke@435 1407
duke@435 1408 if (fmh == NULL) {
duke@435 1409 if (PrintMiscellaneous && Verbose) {
duke@435 1410 warning("OpenFileMapping failed for shared memory object %s:"
duke@435 1411 " lasterror = %d\n", objectname, GetLastError());
duke@435 1412 }
duke@435 1413 THROW_MSG_(vmSymbols::java_lang_Exception(),
duke@435 1414 "Could not open PerfMemory", INVALID_HANDLE_VALUE);
duke@435 1415 }
duke@435 1416
duke@435 1417 return fmh;;
duke@435 1418 }
duke@435 1419
duke@435 1420 // create a named shared memory region
duke@435 1421 //
duke@435 1422 // On Win32, a named shared memory object has a name space that
duke@435 1423 // is independent of the file system name space. Shared memory object,
duke@435 1424 // or more precisely, file mapping objects, provide no mechanism to
duke@435 1425 // inquire the size of the memory region. There is also no api to
duke@435 1426 // enumerate the memory regions for various processes.
duke@435 1427 //
duke@435 1428 // This implementation utilizes the shared memory name space in parallel
duke@435 1429 // with the file system name space. This allows us to determine the
duke@435 1430 // size of the shared memory region from the size of the file and it
duke@435 1431 // allows us to provide a common, file system based name space for
duke@435 1432 // shared memory across platforms.
duke@435 1433 //
duke@435 1434 static char* mapping_create_shared(size_t size) {
duke@435 1435
duke@435 1436 void *mapAddress;
duke@435 1437 int vmid = os::current_process_id();
duke@435 1438
duke@435 1439 // get the name of the user associated with this process
duke@435 1440 char* user = get_user_name();
duke@435 1441
duke@435 1442 if (user == NULL) {
duke@435 1443 return NULL;
duke@435 1444 }
duke@435 1445
duke@435 1446 // construct the name of the user specific temporary directory
duke@435 1447 char* dirname = get_user_tmp_dir(user);
duke@435 1448
duke@435 1449 // check that the file system is secure - i.e. it supports ACLs.
duke@435 1450 if (!is_filesystem_secure(dirname)) {
duke@435 1451 return NULL;
duke@435 1452 }
duke@435 1453
duke@435 1454 // create the names of the backing store files and for the
duke@435 1455 // share memory object.
duke@435 1456 //
duke@435 1457 char* filename = get_sharedmem_filename(dirname, vmid);
duke@435 1458 char* objectname = get_sharedmem_objectname(user, vmid);
duke@435 1459
duke@435 1460 // cleanup any stale shared memory resources
duke@435 1461 cleanup_sharedmem_resources(dirname);
duke@435 1462
duke@435 1463 assert(((size != 0) && (size % os::vm_page_size() == 0)),
duke@435 1464 "unexpected PerfMemry region size");
duke@435 1465
zgu@3900 1466 FREE_C_HEAP_ARRAY(char, user, mtInternal);
duke@435 1467
duke@435 1468 // create the shared memory resources
duke@435 1469 sharedmem_fileMapHandle =
duke@435 1470 create_sharedmem_resources(dirname, filename, objectname, size);
duke@435 1471
zgu@3900 1472 FREE_C_HEAP_ARRAY(char, filename, mtInternal);
zgu@3900 1473 FREE_C_HEAP_ARRAY(char, objectname, mtInternal);
zgu@3900 1474 FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
duke@435 1475
duke@435 1476 if (sharedmem_fileMapHandle == NULL) {
duke@435 1477 return NULL;
duke@435 1478 }
duke@435 1479
duke@435 1480 // map the file into the address space
duke@435 1481 mapAddress = MapViewOfFile(
duke@435 1482 sharedmem_fileMapHandle, /* HANDLE = file mapping object */
duke@435 1483 FILE_MAP_ALL_ACCESS, /* DWORD access flags */
duke@435 1484 0, /* DWORD High word of offset */
duke@435 1485 0, /* DWORD Low word of offset */
duke@435 1486 (DWORD)size); /* DWORD Number of bytes to map */
duke@435 1487
duke@435 1488 if (mapAddress == NULL) {
duke@435 1489 if (PrintMiscellaneous && Verbose) {
duke@435 1490 warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
duke@435 1491 }
duke@435 1492 CloseHandle(sharedmem_fileMapHandle);
duke@435 1493 sharedmem_fileMapHandle = NULL;
duke@435 1494 return NULL;
duke@435 1495 }
duke@435 1496
duke@435 1497 // clear the shared memory region
duke@435 1498 (void)memset(mapAddress, '\0', size);
duke@435 1499
zgu@4193 1500 // it does not go through os api, the operation has to record from here
zgu@7074 1501 MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
zgu@7074 1502 size, CURRENT_PC, mtInternal);
zgu@4193 1503
duke@435 1504 return (char*) mapAddress;
duke@435 1505 }
duke@435 1506
duke@435 1507 // this method deletes the file mapping object.
duke@435 1508 //
duke@435 1509 static void delete_file_mapping(char* addr, size_t size) {
duke@435 1510
duke@435 1511 // cleanup the persistent shared memory resources. since DestroyJavaVM does
duke@435 1512 // not support unloading of the JVM, unmapping of the memory resource is not
duke@435 1513 // performed. The memory will be reclaimed by the OS upon termination of all
duke@435 1514 // processes mapping the resource. The file mapping handle and the file
duke@435 1515 // handle are closed here to expedite the remove of the file by the OS. The
duke@435 1516 // file is not removed directly because it was created with
duke@435 1517 // FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
duke@435 1518 // be unsuccessful.
duke@435 1519
duke@435 1520 // close the fileMapHandle. the file mapping will still be retained
duke@435 1521 // by the OS as long as any other JVM processes has an open file mapping
duke@435 1522 // handle or a mapped view of the file.
duke@435 1523 //
duke@435 1524 if (sharedmem_fileMapHandle != NULL) {
duke@435 1525 CloseHandle(sharedmem_fileMapHandle);
duke@435 1526 sharedmem_fileMapHandle = NULL;
duke@435 1527 }
duke@435 1528
duke@435 1529 // close the file handle. This will decrement the reference count on the
duke@435 1530 // backing store file. When the reference count decrements to 0, the OS
duke@435 1531 // will delete the file. These semantics apply because the file was
duke@435 1532 // created with the FILE_FLAG_DELETE_ON_CLOSE flag.
duke@435 1533 //
duke@435 1534 if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
duke@435 1535 CloseHandle(sharedmem_fileHandle);
duke@435 1536 sharedmem_fileHandle = INVALID_HANDLE_VALUE;
duke@435 1537 }
duke@435 1538 }
duke@435 1539
duke@435 1540 // this method determines the size of the shared memory file
duke@435 1541 //
duke@435 1542 static size_t sharedmem_filesize(const char* filename, TRAPS) {
duke@435 1543
duke@435 1544 struct stat statbuf;
duke@435 1545
duke@435 1546 // get the file size
duke@435 1547 //
duke@435 1548 // on win95/98/me, _stat returns a file size of 0 bytes, but on
duke@435 1549 // winnt/2k the appropriate file size is returned. support for
duke@435 1550 // the sharable aspects of performance counters was abandonded
duke@435 1551 // on the non-nt win32 platforms due to this and other api
duke@435 1552 // inconsistencies
duke@435 1553 //
duke@435 1554 if (::stat(filename, &statbuf) == OS_ERR) {
duke@435 1555 if (PrintMiscellaneous && Verbose) {
duke@435 1556 warning("stat %s failed: %s\n", filename, strerror(errno));
duke@435 1557 }
duke@435 1558 THROW_MSG_0(vmSymbols::java_io_IOException(),
duke@435 1559 "Could not determine PerfMemory size");
duke@435 1560 }
duke@435 1561
duke@435 1562 if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
duke@435 1563 if (PrintMiscellaneous && Verbose) {
duke@435 1564 warning("unexpected file size: size = " SIZE_FORMAT "\n",
duke@435 1565 statbuf.st_size);
duke@435 1566 }
duke@435 1567 THROW_MSG_0(vmSymbols::java_lang_Exception(),
duke@435 1568 "Invalid PerfMemory size");
duke@435 1569 }
duke@435 1570
duke@435 1571 return statbuf.st_size;
duke@435 1572 }
duke@435 1573
duke@435 1574 // this method opens a file mapping object and maps the object
duke@435 1575 // into the address space of the process
duke@435 1576 //
duke@435 1577 static void open_file_mapping(const char* user, int vmid,
duke@435 1578 PerfMemory::PerfMemoryMode mode,
duke@435 1579 char** addrp, size_t* sizep, TRAPS) {
duke@435 1580
duke@435 1581 ResourceMark rm;
duke@435 1582
duke@435 1583 void *mapAddress = 0;
ccheung@4893 1584 size_t size = 0;
duke@435 1585 HANDLE fmh;
duke@435 1586 DWORD ofm_access;
duke@435 1587 DWORD mv_access;
duke@435 1588 const char* luser = NULL;
duke@435 1589
duke@435 1590 if (mode == PerfMemory::PERF_MODE_RO) {
duke@435 1591 ofm_access = FILE_MAP_READ;
duke@435 1592 mv_access = FILE_MAP_READ;
duke@435 1593 }
duke@435 1594 else if (mode == PerfMemory::PERF_MODE_RW) {
duke@435 1595 #ifdef LATER
duke@435 1596 ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
duke@435 1597 mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
duke@435 1598 #else
duke@435 1599 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
duke@435 1600 "Unsupported access mode");
duke@435 1601 #endif
duke@435 1602 }
duke@435 1603 else {
duke@435 1604 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
duke@435 1605 "Illegal access mode");
duke@435 1606 }
duke@435 1607
duke@435 1608 // if a user name wasn't specified, then find the user name for
duke@435 1609 // the owner of the target vm.
duke@435 1610 if (user == NULL || strlen(user) == 0) {
duke@435 1611 luser = get_user_name(vmid);
duke@435 1612 }
duke@435 1613 else {
duke@435 1614 luser = user;
duke@435 1615 }
duke@435 1616
duke@435 1617 if (luser == NULL) {
duke@435 1618 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
duke@435 1619 "Could not map vmid to user name");
duke@435 1620 }
duke@435 1621
duke@435 1622 // get the names for the resources for the target vm
duke@435 1623 char* dirname = get_user_tmp_dir(luser);
duke@435 1624
duke@435 1625 // since we don't follow symbolic links when creating the backing
duke@435 1626 // store file, we also don't following them when attaching
duke@435 1627 //
duke@435 1628 if (!is_directory_secure(dirname)) {
zgu@3900 1629 FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
duke@435 1630 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
duke@435 1631 "Process not found");
duke@435 1632 }
duke@435 1633
duke@435 1634 char* filename = get_sharedmem_filename(dirname, vmid);
duke@435 1635 char* objectname = get_sharedmem_objectname(luser, vmid);
duke@435 1636
duke@435 1637 // copy heap memory to resource memory. the objectname and
duke@435 1638 // filename are passed to methods that may throw exceptions.
duke@435 1639 // using resource arrays for these names prevents the leaks
duke@435 1640 // that would otherwise occur.
duke@435 1641 //
duke@435 1642 char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
duke@435 1643 char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
duke@435 1644 strcpy(rfilename, filename);
duke@435 1645 strcpy(robjectname, objectname);
duke@435 1646
duke@435 1647 // free the c heap resources that are no longer needed
zgu@3900 1648 if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
zgu@3900 1649 FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
zgu@3900 1650 FREE_C_HEAP_ARRAY(char, filename, mtInternal);
zgu@3900 1651 FREE_C_HEAP_ARRAY(char, objectname, mtInternal);
duke@435 1652
duke@435 1653 if (*sizep == 0) {
duke@435 1654 size = sharedmem_filesize(rfilename, CHECK);
ccheung@4893 1655 } else {
ccheung@4893 1656 size = *sizep;
duke@435 1657 }
duke@435 1658
ccheung@4893 1659 assert(size > 0, "unexpected size <= 0");
ccheung@4893 1660
duke@435 1661 // Open the file mapping object with the given name
duke@435 1662 fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
duke@435 1663
duke@435 1664 assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
duke@435 1665
duke@435 1666 // map the entire file into the address space
duke@435 1667 mapAddress = MapViewOfFile(
duke@435 1668 fmh, /* HANDLE Handle of file mapping object */
duke@435 1669 mv_access, /* DWORD access flags */
duke@435 1670 0, /* DWORD High word of offset */
duke@435 1671 0, /* DWORD Low word of offset */
duke@435 1672 size); /* DWORD Number of bytes to map */
duke@435 1673
duke@435 1674 if (mapAddress == NULL) {
duke@435 1675 if (PrintMiscellaneous && Verbose) {
duke@435 1676 warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
duke@435 1677 }
duke@435 1678 CloseHandle(fmh);
duke@435 1679 THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
duke@435 1680 "Could not map PerfMemory");
duke@435 1681 }
duke@435 1682
zgu@4193 1683 // it does not go through os api, the operation has to record from here
zgu@7074 1684 MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size,
zgu@7074 1685 CURRENT_PC, mtInternal);
zgu@4193 1686
zgu@4193 1687
duke@435 1688 *addrp = (char*)mapAddress;
duke@435 1689 *sizep = size;
duke@435 1690
duke@435 1691 // File mapping object can be closed at this time without
duke@435 1692 // invalidating the mapped view of the file
duke@435 1693 CloseHandle(fmh);
duke@435 1694
duke@435 1695 if (PerfTraceMemOps) {
duke@435 1696 tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
duke@435 1697 INTPTR_FORMAT "\n", size, vmid, mapAddress);
duke@435 1698 }
duke@435 1699 }
duke@435 1700
duke@435 1701 // this method unmaps the the mapped view of the the
duke@435 1702 // file mapping object.
duke@435 1703 //
duke@435 1704 static void remove_file_mapping(char* addr) {
duke@435 1705
duke@435 1706 // the file mapping object was closed in open_file_mapping()
duke@435 1707 // after the file map view was created. We only need to
duke@435 1708 // unmap the file view here.
duke@435 1709 UnmapViewOfFile(addr);
duke@435 1710 }
duke@435 1711
duke@435 1712 // create the PerfData memory region in shared memory.
duke@435 1713 static char* create_shared_memory(size_t size) {
duke@435 1714
duke@435 1715 return mapping_create_shared(size);
duke@435 1716 }
duke@435 1717
duke@435 1718 // release a named, shared memory region
duke@435 1719 //
duke@435 1720 void delete_shared_memory(char* addr, size_t size) {
duke@435 1721
duke@435 1722 delete_file_mapping(addr, size);
duke@435 1723 }
duke@435 1724
duke@435 1725
duke@435 1726
duke@435 1727
duke@435 1728 // create the PerfData memory region
duke@435 1729 //
duke@435 1730 // This method creates the memory region used to store performance
duke@435 1731 // data for the JVM. The memory may be created in standard or
duke@435 1732 // shared memory.
duke@435 1733 //
duke@435 1734 void PerfMemory::create_memory_region(size_t size) {
duke@435 1735
duke@435 1736 if (PerfDisableSharedMem || !os::win32::is_nt()) {
duke@435 1737 // do not share the memory for the performance data.
duke@435 1738 PerfDisableSharedMem = true;
duke@435 1739 _start = create_standard_memory(size);
duke@435 1740 }
duke@435 1741 else {
duke@435 1742 _start = create_shared_memory(size);
duke@435 1743 if (_start == NULL) {
duke@435 1744
duke@435 1745 // creation of the shared memory region failed, attempt
duke@435 1746 // to create a contiguous, non-shared memory region instead.
duke@435 1747 //
duke@435 1748 if (PrintMiscellaneous && Verbose) {
duke@435 1749 warning("Reverting to non-shared PerfMemory region.\n");
duke@435 1750 }
duke@435 1751 PerfDisableSharedMem = true;
duke@435 1752 _start = create_standard_memory(size);
duke@435 1753 }
duke@435 1754 }
duke@435 1755
duke@435 1756 if (_start != NULL) _capacity = size;
duke@435 1757
duke@435 1758 }
duke@435 1759
duke@435 1760 // delete the PerfData memory region
duke@435 1761 //
duke@435 1762 // This method deletes the memory region used to store performance
duke@435 1763 // data for the JVM. The memory region indicated by the <address, size>
duke@435 1764 // tuple will be inaccessible after a call to this method.
duke@435 1765 //
duke@435 1766 void PerfMemory::delete_memory_region() {
duke@435 1767
duke@435 1768 assert((start() != NULL && capacity() > 0), "verify proper state");
duke@435 1769
duke@435 1770 // If user specifies PerfDataSaveFile, it will save the performance data
duke@435 1771 // to the specified file name no matter whether PerfDataSaveToFile is specified
duke@435 1772 // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
duke@435 1773 // -XX:+PerfDataSaveToFile.
duke@435 1774 if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
duke@435 1775 save_memory_to_file(start(), capacity());
duke@435 1776 }
duke@435 1777
duke@435 1778 if (PerfDisableSharedMem) {
duke@435 1779 delete_standard_memory(start(), capacity());
duke@435 1780 }
duke@435 1781 else {
duke@435 1782 delete_shared_memory(start(), capacity());
duke@435 1783 }
duke@435 1784 }
duke@435 1785
duke@435 1786 // attach to the PerfData memory region for another JVM
duke@435 1787 //
duke@435 1788 // This method returns an <address, size> tuple that points to
duke@435 1789 // a memory buffer that is kept reasonably synchronized with
duke@435 1790 // the PerfData memory region for the indicated JVM. This
duke@435 1791 // buffer may be kept in synchronization via shared memory
duke@435 1792 // or some other mechanism that keeps the buffer updated.
duke@435 1793 //
duke@435 1794 // If the JVM chooses not to support the attachability feature,
duke@435 1795 // this method should throw an UnsupportedOperation exception.
duke@435 1796 //
duke@435 1797 // This implementation utilizes named shared memory to map
duke@435 1798 // the indicated process's PerfData memory region into this JVMs
duke@435 1799 // address space.
duke@435 1800 //
duke@435 1801 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
duke@435 1802 char** addrp, size_t* sizep, TRAPS) {
duke@435 1803
duke@435 1804 if (vmid == 0 || vmid == os::current_process_id()) {
duke@435 1805 *addrp = start();
duke@435 1806 *sizep = capacity();
duke@435 1807 return;
duke@435 1808 }
duke@435 1809
duke@435 1810 open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
duke@435 1811 }
duke@435 1812
duke@435 1813 // detach from the PerfData memory region of another JVM
duke@435 1814 //
duke@435 1815 // This method detaches the PerfData memory region of another
duke@435 1816 // JVM, specified as an <address, size> tuple of a buffer
duke@435 1817 // in this process's address space. This method may perform
duke@435 1818 // arbitrary actions to accomplish the detachment. The memory
duke@435 1819 // region specified by <address, size> will be inaccessible after
duke@435 1820 // a call to this method.
duke@435 1821 //
duke@435 1822 // If the JVM chooses not to support the attachability feature,
duke@435 1823 // this method should throw an UnsupportedOperation exception.
duke@435 1824 //
duke@435 1825 // This implementation utilizes named shared memory to detach
duke@435 1826 // the indicated process's PerfData memory region from this
duke@435 1827 // process's address space.
duke@435 1828 //
duke@435 1829 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
duke@435 1830
duke@435 1831 assert(addr != 0, "address sanity check");
duke@435 1832 assert(bytes > 0, "capacity sanity check");
duke@435 1833
duke@435 1834 if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
duke@435 1835 // prevent accidental detachment of this process's PerfMemory region
duke@435 1836 return;
duke@435 1837 }
duke@435 1838
zgu@7074 1839 if (MemTracker::tracking_level() > NMT_minimal) {
zgu@7074 1840 // it does not go through os api, the operation has to record from here
zgu@7074 1841 Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
zgu@7074 1842 remove_file_mapping(addr);
zgu@7074 1843 tkr.record((address)addr, bytes);
zgu@7074 1844 } else {
zgu@7074 1845 remove_file_mapping(addr);
zgu@7074 1846 }
duke@435 1847 }
duke@435 1848
duke@435 1849 char* PerfMemory::backing_store_filename() {
duke@435 1850 return sharedmem_fileName;
duke@435 1851 }

mercurial