src/os/windows/vm/perfMemory_windows.cpp

Wed, 27 Aug 2014 08:19:12 -0400

author
zgu
date
Wed, 27 Aug 2014 08:19:12 -0400
changeset 7074
833b0f92429a
parent 5272
1f4355cee9a2
child 7535
7ae4e26cb1e0
child 9711
0f2fe7d37d8c
permissions
-rw-r--r--

8046598: Scalable Native memory tracking development
Summary: Enhance scalability of native memory tracking
Reviewed-by: coleenp, ctornqvi, gtriantafill

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/resourceArea.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "os_windows.inline.hpp"
    31 #include "runtime/handles.inline.hpp"
    32 #include "runtime/perfMemory.hpp"
    33 #include "services/memTracker.hpp"
    34 #include "utilities/exceptions.hpp"
    36 #include <windows.h>
    37 #include <sys/types.h>
    38 #include <sys/stat.h>
    39 #include <errno.h>
    40 #include <lmcons.h>
    42 typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
    43    IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
    44    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
    45    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
    47 // Standard Memory Implementation Details
    49 // create the PerfData memory region in standard memory.
    50 //
    51 static char* create_standard_memory(size_t size) {
    53   // allocate an aligned chuck of memory
    54   char* mapAddress = os::reserve_memory(size);
    56   if (mapAddress == NULL) {
    57     return NULL;
    58   }
    60   // commit memory
    61   if (!os::commit_memory(mapAddress, size, !ExecMem)) {
    62     if (PrintMiscellaneous && Verbose) {
    63       warning("Could not commit PerfData memory\n");
    64     }
    65     os::release_memory(mapAddress, size);
    66     return NULL;
    67   }
    69   return mapAddress;
    70 }
    72 // delete the PerfData memory region
    73 //
    74 static void delete_standard_memory(char* addr, size_t size) {
    76   // there are no persistent external resources to cleanup for standard
    77   // memory. since DestroyJavaVM does not support unloading of the JVM,
    78   // cleanup of the memory resource is not performed. The memory will be
    79   // reclaimed by the OS upon termination of the process.
    80   //
    81   return;
    83 }
    85 // save the specified memory region to the given file
    86 //
    87 static void save_memory_to_file(char* addr, size_t size) {
    89   const char* destfile = PerfMemory::get_perfdata_file_path();
    90   assert(destfile[0] != '\0', "invalid Perfdata file path");
    92   int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
    93                    _S_IREAD|_S_IWRITE);
    95   if (fd == OS_ERR) {
    96     if (PrintMiscellaneous && Verbose) {
    97       warning("Could not create Perfdata save file: %s: %s\n",
    98               destfile, strerror(errno));
    99     }
   100   } else {
   101     for (size_t remaining = size; remaining > 0;) {
   103       int nbytes = ::_write(fd, addr, (unsigned int)remaining);
   104       if (nbytes == OS_ERR) {
   105         if (PrintMiscellaneous && Verbose) {
   106           warning("Could not write Perfdata save file: %s: %s\n",
   107                   destfile, strerror(errno));
   108         }
   109         break;
   110       }
   112       remaining -= (size_t)nbytes;
   113       addr += nbytes;
   114     }
   116     int result = ::_close(fd);
   117     if (PrintMiscellaneous && Verbose) {
   118       if (result == OS_ERR) {
   119         warning("Could not close %s: %s\n", destfile, strerror(errno));
   120       }
   121     }
   122   }
   124   FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
   125 }
   127 // Shared Memory Implementation Details
   129 // Note: the win32 shared memory implementation uses two objects to represent
   130 // the shared memory: a windows kernel based file mapping object and a backing
   131 // store file. On windows, the name space for shared memory is a kernel
   132 // based name space that is disjoint from other win32 name spaces. Since Java
   133 // is unaware of this name space, a parallel file system based name space is
   134 // maintained, which provides a common file system based shared memory name
   135 // space across the supported platforms and one that Java apps can deal with
   136 // through simple file apis.
   137 //
   138 // For performance and resource cleanup reasons, it is recommended that the
   139 // user specific directory and the backing store file be stored in either a
   140 // RAM based file system or a local disk based file system. Network based
   141 // file systems are not recommended for performance reasons. In addition,
   142 // use of SMB network based file systems may result in unsuccesful cleanup
   143 // of the disk based resource on exit of the VM. The Windows TMP and TEMP
   144 // environement variables, as used by the GetTempPath() Win32 API (see
   145 // os::get_temp_directory() in os_win32.cpp), control the location of the
   146 // user specific directory and the shared memory backing store file.
   148 static HANDLE sharedmem_fileMapHandle = NULL;
   149 static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
   150 static char*  sharedmem_fileName = NULL;
   152 // return the user specific temporary directory name.
   153 //
   154 // the caller is expected to free the allocated memory.
   155 //
   156 static char* get_user_tmp_dir(const char* user) {
   158   const char* tmpdir = os::get_temp_directory();
   159   const char* perfdir = PERFDATA_NAME;
   160   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
   161   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
   163   // construct the path name to user specific tmp directory
   164   _snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user);
   166   return dirname;
   167 }
   169 // convert the given file name into a process id. if the file
   170 // does not meet the file naming constraints, return 0.
   171 //
   172 static int filename_to_pid(const char* filename) {
   174   // a filename that doesn't begin with a digit is not a
   175   // candidate for conversion.
   176   //
   177   if (!isdigit(*filename)) {
   178     return 0;
   179   }
   181   // check if file name can be converted to an integer without
   182   // any leftover characters.
   183   //
   184   char* remainder = NULL;
   185   errno = 0;
   186   int pid = (int)strtol(filename, &remainder, 10);
   188   if (errno != 0) {
   189     return 0;
   190   }
   192   // check for left over characters. If any, then the filename is
   193   // not a candidate for conversion.
   194   //
   195   if (remainder != NULL && *remainder != '\0') {
   196     return 0;
   197   }
   199   // successful conversion, return the pid
   200   return pid;
   201 }
   203 // check if the given path is considered a secure directory for
   204 // the backing store files. Returns true if the directory exists
   205 // and is considered a secure location. Returns false if the path
   206 // is a symbolic link or if an error occurred.
   207 //
   208 static bool is_directory_secure(const char* path) {
   210   DWORD fa;
   212   fa = GetFileAttributes(path);
   213   if (fa == 0xFFFFFFFF) {
   214     DWORD lasterror = GetLastError();
   215     if (lasterror == ERROR_FILE_NOT_FOUND) {
   216       return false;
   217     }
   218     else {
   219       // unexpected error, declare the path insecure
   220       if (PrintMiscellaneous && Verbose) {
   221         warning("could not get attributes for file %s: ",
   222                 " lasterror = %d\n", path, lasterror);
   223       }
   224       return false;
   225     }
   226   }
   228   if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
   229     // we don't accept any redirection for the user specific directory
   230     // so declare the path insecure. This may be too conservative,
   231     // as some types of reparse points might be acceptable, but it
   232     // is probably more secure to avoid these conditions.
   233     //
   234     if (PrintMiscellaneous && Verbose) {
   235       warning("%s is a reparse point\n", path);
   236     }
   237     return false;
   238   }
   240   if (fa & FILE_ATTRIBUTE_DIRECTORY) {
   241     // this is the expected case. Since windows supports symbolic
   242     // links to directories only, not to files, there is no need
   243     // to check for open write permissions on the directory. If the
   244     // directory has open write permissions, any files deposited that
   245     // are not expected will be removed by the cleanup code.
   246     //
   247     return true;
   248   }
   249   else {
   250     // this is either a regular file or some other type of file,
   251     // any of which are unexpected and therefore insecure.
   252     //
   253     if (PrintMiscellaneous && Verbose) {
   254       warning("%s is not a directory, file attributes = "
   255               INTPTR_FORMAT "\n", path, fa);
   256     }
   257     return false;
   258   }
   259 }
   261 // return the user name for the owner of this process
   262 //
   263 // the caller is expected to free the allocated memory.
   264 //
   265 static char* get_user_name() {
   267   /* get the user name. This code is adapted from code found in
   268    * the jdk in src/windows/native/java/lang/java_props_md.c
   269    * java_props_md.c  1.29 02/02/06. According to the original
   270    * source, the call to GetUserName is avoided because of a resulting
   271    * increase in footprint of 100K.
   272    */
   273   char* user = getenv("USERNAME");
   274   char buf[UNLEN+1];
   275   DWORD buflen = sizeof(buf);
   276   if (user == NULL || strlen(user) == 0) {
   277     if (GetUserName(buf, &buflen)) {
   278       user = buf;
   279     }
   280     else {
   281       return NULL;
   282     }
   283   }
   285   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
   286   strcpy(user_name, user);
   288   return user_name;
   289 }
   291 // return the name of the user that owns the process identified by vmid.
   292 //
   293 // This method uses a slow directory search algorithm to find the backing
   294 // store file for the specified vmid and returns the user name, as determined
   295 // by the user name suffix of the hsperfdata_<username> directory name.
   296 //
   297 // the caller is expected to free the allocated memory.
   298 //
   299 static char* get_user_name_slow(int vmid) {
   301   // directory search
   302   char* latest_user = NULL;
   303   time_t latest_ctime = 0;
   305   const char* tmpdirname = os::get_temp_directory();
   307   DIR* tmpdirp = os::opendir(tmpdirname);
   309   if (tmpdirp == NULL) {
   310     return NULL;
   311   }
   313   // for each entry in the directory that matches the pattern hsperfdata_*,
   314   // open the directory and check if the file for the given vmid exists.
   315   // The file with the expected name and the latest creation date is used
   316   // to determine the user name for the process id.
   317   //
   318   struct dirent* dentry;
   319   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
   320   errno = 0;
   321   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
   323     // check if the directory entry is a hsperfdata file
   324     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
   325       continue;
   326     }
   328     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
   329         strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
   330     strcpy(usrdir_name, tmpdirname);
   331     strcat(usrdir_name, "\\");
   332     strcat(usrdir_name, dentry->d_name);
   334     DIR* subdirp = os::opendir(usrdir_name);
   336     if (subdirp == NULL) {
   337       FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
   338       continue;
   339     }
   341     // Since we don't create the backing store files in directories
   342     // pointed to by symbolic links, we also don't follow them when
   343     // looking for the files. We check for a symbolic link after the
   344     // call to opendir in order to eliminate a small window where the
   345     // symlink can be exploited.
   346     //
   347     if (!is_directory_secure(usrdir_name)) {
   348       FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
   349       os::closedir(subdirp);
   350       continue;
   351     }
   353     struct dirent* udentry;
   354     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
   355     errno = 0;
   356     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
   358       if (filename_to_pid(udentry->d_name) == vmid) {
   359         struct stat statbuf;
   361         char* filename = NEW_C_HEAP_ARRAY(char,
   362            strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
   364         strcpy(filename, usrdir_name);
   365         strcat(filename, "\\");
   366         strcat(filename, udentry->d_name);
   368         if (::stat(filename, &statbuf) == OS_ERR) {
   369            FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   370            continue;
   371         }
   373         // skip over files that are not regular files.
   374         if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
   375           FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   376           continue;
   377         }
   379         // If we found a matching file with a newer creation time, then
   380         // save the user name. The newer creation time indicates that
   381         // we found a newer incarnation of the process associated with
   382         // vmid. Due to the way that Windows recycles pids and the fact
   383         // that we can't delete the file from the file system namespace
   384         // until last close, it is possible for there to be more than
   385         // one hsperfdata file with a name matching vmid (diff users).
   386         //
   387         // We no longer ignore hsperfdata files where (st_size == 0).
   388         // In this function, all we're trying to do is determine the
   389         // name of the user that owns the process associated with vmid
   390         // so the size doesn't matter. Very rarely, we have observed
   391         // hsperfdata files where (st_size == 0) and the st_size field
   392         // later becomes the expected value.
   393         //
   394         if (statbuf.st_ctime > latest_ctime) {
   395           char* user = strchr(dentry->d_name, '_') + 1;
   397           if (latest_user != NULL) FREE_C_HEAP_ARRAY(char, latest_user, mtInternal);
   398           latest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
   400           strcpy(latest_user, user);
   401           latest_ctime = statbuf.st_ctime;
   402         }
   404         FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   405       }
   406     }
   407     os::closedir(subdirp);
   408     FREE_C_HEAP_ARRAY(char, udbuf, mtInternal);
   409     FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
   410   }
   411   os::closedir(tmpdirp);
   412   FREE_C_HEAP_ARRAY(char, tdbuf, mtInternal);
   414   return(latest_user);
   415 }
   417 // return the name of the user that owns the process identified by vmid.
   418 //
   419 // note: this method should only be used via the Perf native methods.
   420 // There are various costs to this method and limiting its use to the
   421 // Perf native methods limits the impact to monitoring applications only.
   422 //
   423 static char* get_user_name(int vmid) {
   425   // A fast implementation is not provided at this time. It's possible
   426   // to provide a fast process id to user name mapping function using
   427   // the win32 apis, but the default ACL for the process object only
   428   // allows processes with the same owner SID to acquire the process
   429   // handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
   430   // to have the JVM change the ACL for the process object to allow arbitrary
   431   // users to access the process handle and the process security token.
   432   // The security ramifications need to be studied before providing this
   433   // mechanism.
   434   //
   435   return get_user_name_slow(vmid);
   436 }
   438 // return the name of the shared memory file mapping object for the
   439 // named shared memory region for the given user name and vmid.
   440 //
   441 // The file mapping object's name is not the file name. It is a name
   442 // in a separate name space.
   443 //
   444 // the caller is expected to free the allocated memory.
   445 //
   446 static char *get_sharedmem_objectname(const char* user, int vmid) {
   448   // construct file mapping object's name, add 3 for two '_' and a
   449   // null terminator.
   450   int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
   452   // the id is converted to an unsigned value here because win32 allows
   453   // negative process ids. However, OpenFileMapping API complains
   454   // about a name containing a '-' characters.
   455   //
   456   nbytes += UINT_CHARS;
   457   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
   458   _snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
   460   return name;
   461 }
   463 // return the file name of the backing store file for the named
   464 // shared memory region for the given user name and vmid.
   465 //
   466 // the caller is expected to free the allocated memory.
   467 //
   468 static char* get_sharedmem_filename(const char* dirname, int vmid) {
   470   // add 2 for the file separator and a null terminator.
   471   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
   473   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
   474   _snprintf(name, nbytes, "%s\\%d", dirname, vmid);
   476   return name;
   477 }
   479 // remove file
   480 //
   481 // this method removes the file with the given file name.
   482 //
   483 // Note: if the indicated file is on an SMB network file system, this
   484 // method may be unsuccessful in removing the file.
   485 //
   486 static void remove_file(const char* dirname, const char* filename) {
   488   size_t nbytes = strlen(dirname) + strlen(filename) + 2;
   489   char* path = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
   491   strcpy(path, dirname);
   492   strcat(path, "\\");
   493   strcat(path, filename);
   495   if (::unlink(path) == OS_ERR) {
   496     if (PrintMiscellaneous && Verbose) {
   497       if (errno != ENOENT) {
   498         warning("Could not unlink shared memory backing"
   499                 " store file %s : %s\n", path, strerror(errno));
   500       }
   501     }
   502   }
   504   FREE_C_HEAP_ARRAY(char, path, mtInternal);
   505 }
   507 // returns true if the process represented by pid is alive, otherwise
   508 // returns false. the validity of the result is only accurate if the
   509 // target process is owned by the same principal that owns this process.
   510 // this method should not be used if to test the status of an otherwise
   511 // arbitrary process unless it is know that this process has the appropriate
   512 // privileges to guarantee a result valid.
   513 //
   514 static bool is_alive(int pid) {
   516   HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
   517   if (ph == NULL) {
   518     // the process does not exist.
   519     if (PrintMiscellaneous && Verbose) {
   520       DWORD lastError = GetLastError();
   521       if (lastError != ERROR_INVALID_PARAMETER) {
   522         warning("OpenProcess failed: %d\n", GetLastError());
   523       }
   524     }
   525     return false;
   526   }
   528   DWORD exit_status;
   529   if (!GetExitCodeProcess(ph, &exit_status)) {
   530     if (PrintMiscellaneous && Verbose) {
   531       warning("GetExitCodeProcess failed: %d\n", GetLastError());
   532     }
   533     CloseHandle(ph);
   534     return false;
   535   }
   537   CloseHandle(ph);
   538   return (exit_status == STILL_ACTIVE) ? true : false;
   539 }
   541 // check if the file system is considered secure for the backing store files
   542 //
   543 static bool is_filesystem_secure(const char* path) {
   545   char root_path[MAX_PATH];
   546   char fs_type[MAX_PATH];
   548   if (PerfBypassFileSystemCheck) {
   549     if (PrintMiscellaneous && Verbose) {
   550       warning("bypassing file system criteria checks for %s\n", path);
   551     }
   552     return true;
   553   }
   555   char* first_colon = strchr((char *)path, ':');
   556   if (first_colon == NULL) {
   557     if (PrintMiscellaneous && Verbose) {
   558       warning("expected device specifier in path: %s\n", path);
   559     }
   560     return false;
   561   }
   563   size_t len = (size_t)(first_colon - path);
   564   assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
   565   strncpy(root_path, path, len + 1);
   566   root_path[len + 1] = '\\';
   567   root_path[len + 2] = '\0';
   569   // check that we have something like "C:\" or "AA:\"
   570   assert(strlen(root_path) >= 3, "device specifier too short");
   571   assert(strchr(root_path, ':') != NULL, "bad device specifier format");
   572   assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
   574   DWORD maxpath;
   575   DWORD flags;
   577   if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
   578                             &flags, fs_type, MAX_PATH)) {
   579     // we can't get information about the volume, so assume unsafe.
   580     if (PrintMiscellaneous && Verbose) {
   581       warning("could not get device information for %s: "
   582               " path = %s: lasterror = %d\n",
   583               root_path, path, GetLastError());
   584     }
   585     return false;
   586   }
   588   if ((flags & FS_PERSISTENT_ACLS) == 0) {
   589     // file system doesn't support ACLs, declare file system unsafe
   590     if (PrintMiscellaneous && Verbose) {
   591       warning("file system type %s on device %s does not support"
   592               " ACLs\n", fs_type, root_path);
   593     }
   594     return false;
   595   }
   597   if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
   598     // file system is compressed, declare file system unsafe
   599     if (PrintMiscellaneous && Verbose) {
   600       warning("file system type %s on device %s is compressed\n",
   601               fs_type, root_path);
   602     }
   603     return false;
   604   }
   606   return true;
   607 }
   609 // cleanup stale shared memory resources
   610 //
   611 // This method attempts to remove all stale shared memory files in
   612 // the named user temporary directory. It scans the named directory
   613 // for files matching the pattern ^$[0-9]*$. For each file found, the
   614 // process id is extracted from the file name and a test is run to
   615 // determine if the process is alive. If the process is not alive,
   616 // any stale file resources are removed.
   617 //
   618 static void cleanup_sharedmem_resources(const char* dirname) {
   620   // open the user temp directory
   621   DIR* dirp = os::opendir(dirname);
   623   if (dirp == NULL) {
   624     // directory doesn't exist, so there is nothing to cleanup
   625     return;
   626   }
   628   if (!is_directory_secure(dirname)) {
   629     // the directory is not secure, don't attempt any cleanup
   630     return;
   631   }
   633   // for each entry in the directory that matches the expected file
   634   // name pattern, determine if the file resources are stale and if
   635   // so, remove the file resources. Note, instrumented HotSpot processes
   636   // for this user may start and/or terminate during this search and
   637   // remove or create new files in this directory. The behavior of this
   638   // loop under these conditions is dependent upon the implementation of
   639   // opendir/readdir.
   640   //
   641   struct dirent* entry;
   642   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
   643   errno = 0;
   644   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
   646     int pid = filename_to_pid(entry->d_name);
   648     if (pid == 0) {
   650       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
   652         // attempt to remove all unexpected files, except "." and ".."
   653         remove_file(dirname, entry->d_name);
   654       }
   656       errno = 0;
   657       continue;
   658     }
   660     // we now have a file name that converts to a valid integer
   661     // that could represent a process id . if this process id
   662     // matches the current process id or the process is not running,
   663     // then remove the stale file resources.
   664     //
   665     // process liveness is detected by checking the exit status
   666     // of the process. if the process id is valid and the exit status
   667     // indicates that it is still running, the file file resources
   668     // are not removed. If the process id is invalid, or if we don't
   669     // have permissions to check the process status, or if the process
   670     // id is valid and the process has terminated, the the file resources
   671     // are assumed to be stale and are removed.
   672     //
   673     if (pid == os::current_process_id() || !is_alive(pid)) {
   675       // we can only remove the file resources. Any mapped views
   676       // of the file can only be unmapped by the processes that
   677       // opened those views and the file mapping object will not
   678       // get removed until all views are unmapped.
   679       //
   680       remove_file(dirname, entry->d_name);
   681     }
   682     errno = 0;
   683   }
   684   os::closedir(dirp);
   685   FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
   686 }
   688 // create a file mapping object with the requested name, and size
   689 // from the file represented by the given Handle object
   690 //
   691 static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
   693   DWORD lowSize = (DWORD)size;
   694   DWORD highSize = 0;
   695   HANDLE fmh = NULL;
   697   // Create a file mapping object with the given name. This function
   698   // will grow the file to the specified size.
   699   //
   700   fmh = CreateFileMapping(
   701                fh,                 /* HANDLE file handle for backing store */
   702                fsa,                /* LPSECURITY_ATTRIBUTES Not inheritable */
   703                PAGE_READWRITE,     /* DWORD protections */
   704                highSize,           /* DWORD High word of max size */
   705                lowSize,            /* DWORD Low word of max size */
   706                name);              /* LPCTSTR name for object */
   708   if (fmh == NULL) {
   709     if (PrintMiscellaneous && Verbose) {
   710       warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
   711     }
   712     return NULL;
   713   }
   715   if (GetLastError() == ERROR_ALREADY_EXISTS) {
   717     // a stale file mapping object was encountered. This object may be
   718     // owned by this or some other user and cannot be removed until
   719     // the other processes either exit or close their mapping objects
   720     // and/or mapped views of this mapping object.
   721     //
   722     if (PrintMiscellaneous && Verbose) {
   723       warning("file mapping already exists, lasterror = %d\n", GetLastError());
   724     }
   726     CloseHandle(fmh);
   727     return NULL;
   728   }
   730   return fmh;
   731 }
   734 // method to free the given security descriptor and the contained
   735 // access control list.
   736 //
   737 static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
   739   BOOL success, exists, isdefault;
   740   PACL pACL;
   742   if (pSD != NULL) {
   744     // get the access control list from the security descriptor
   745     success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
   747     // if an ACL existed and it was not a default acl, then it must
   748     // be an ACL we enlisted. free the resources.
   749     //
   750     if (success && exists && pACL != NULL && !isdefault) {
   751       FREE_C_HEAP_ARRAY(char, pACL, mtInternal);
   752     }
   754     // free the security descriptor
   755     FREE_C_HEAP_ARRAY(char, pSD, mtInternal);
   756   }
   757 }
   759 // method to free up a security attributes structure and any
   760 // contained security descriptors and ACL
   761 //
   762 static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
   764   if (lpSA != NULL) {
   765     // free the contained security descriptor and the ACL
   766     free_security_desc(lpSA->lpSecurityDescriptor);
   767     lpSA->lpSecurityDescriptor = NULL;
   769     // free the security attributes structure
   770     FREE_C_HEAP_ARRAY(char, lpSA, mtInternal);
   771   }
   772 }
   774 // get the user SID for the process indicated by the process handle
   775 //
   776 static PSID get_user_sid(HANDLE hProcess) {
   778   HANDLE hAccessToken;
   779   PTOKEN_USER token_buf = NULL;
   780   DWORD rsize = 0;
   782   if (hProcess == NULL) {
   783     return NULL;
   784   }
   786   // get the process token
   787   if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
   788     if (PrintMiscellaneous && Verbose) {
   789       warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
   790     }
   791     return NULL;
   792   }
   794   // determine the size of the token structured needed to retrieve
   795   // the user token information from the access token.
   796   //
   797   if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
   798     DWORD lasterror = GetLastError();
   799     if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
   800       if (PrintMiscellaneous && Verbose) {
   801         warning("GetTokenInformation failure: lasterror = %d,"
   802                 " rsize = %d\n", lasterror, rsize);
   803       }
   804       CloseHandle(hAccessToken);
   805       return NULL;
   806     }
   807   }
   809   token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize, mtInternal);
   811   // get the user token information
   812   if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
   813     if (PrintMiscellaneous && Verbose) {
   814       warning("GetTokenInformation failure: lasterror = %d,"
   815               " rsize = %d\n", GetLastError(), rsize);
   816     }
   817     FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
   818     CloseHandle(hAccessToken);
   819     return NULL;
   820   }
   822   DWORD nbytes = GetLengthSid(token_buf->User.Sid);
   823   PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
   825   if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
   826     if (PrintMiscellaneous && Verbose) {
   827       warning("GetTokenInformation failure: lasterror = %d,"
   828               " rsize = %d\n", GetLastError(), rsize);
   829     }
   830     FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
   831     FREE_C_HEAP_ARRAY(char, pSID, mtInternal);
   832     CloseHandle(hAccessToken);
   833     return NULL;
   834   }
   836   // close the access token.
   837   CloseHandle(hAccessToken);
   838   FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
   840   return pSID;
   841 }
   843 // structure used to consolidate access control entry information
   844 //
   845 typedef struct ace_data {
   846   PSID pSid;      // SID of the ACE
   847   DWORD mask;     // mask for the ACE
   848 } ace_data_t;
   851 // method to add an allow access control entry with the access rights
   852 // indicated in mask for the principal indicated in SID to the given
   853 // security descriptor. Much of the DACL handling was adapted from
   854 // the example provided here:
   855 //      http://support.microsoft.com/kb/102102/EN-US/
   856 //
   858 static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
   859                            ace_data_t aces[], int ace_count) {
   860   PACL newACL = NULL;
   861   PACL oldACL = NULL;
   863   if (pSD == NULL) {
   864     return false;
   865   }
   867   BOOL exists, isdefault;
   869   // retrieve any existing access control list.
   870   if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
   871     if (PrintMiscellaneous && Verbose) {
   872       warning("GetSecurityDescriptor failure: lasterror = %d \n",
   873               GetLastError());
   874     }
   875     return false;
   876   }
   878   // get the size of the DACL
   879   ACL_SIZE_INFORMATION aclinfo;
   881   // GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
   882   // while oldACL is NULL for some case.
   883   if (oldACL == NULL) {
   884     exists = FALSE;
   885   }
   887   if (exists) {
   888     if (!GetAclInformation(oldACL, &aclinfo,
   889                            sizeof(ACL_SIZE_INFORMATION),
   890                            AclSizeInformation)) {
   891       if (PrintMiscellaneous && Verbose) {
   892         warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
   893         return false;
   894       }
   895     }
   896   } else {
   897     aclinfo.AceCount = 0; // assume NULL DACL
   898     aclinfo.AclBytesFree = 0;
   899     aclinfo.AclBytesInUse = sizeof(ACL);
   900   }
   902   // compute the size needed for the new ACL
   903   // initial size of ACL is sum of the following:
   904   //   * size of ACL structure.
   905   //   * size of each ACE structure that ACL is to contain minus the sid
   906   //     sidStart member (DWORD) of the ACE.
   907   //   * length of the SID that each ACE is to contain.
   908   DWORD newACLsize = aclinfo.AclBytesInUse +
   909                         (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
   910   for (int i = 0; i < ace_count; i++) {
   911      assert(aces[i].pSid != 0, "pSid should not be 0");
   912      newACLsize += GetLengthSid(aces[i].pSid);
   913   }
   915   // create the new ACL
   916   newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize, mtInternal);
   918   if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
   919     if (PrintMiscellaneous && Verbose) {
   920       warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
   921     }
   922     FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
   923     return false;
   924   }
   926   unsigned int ace_index = 0;
   927   // copy any existing ACEs from the old ACL (if any) to the new ACL.
   928   if (aclinfo.AceCount != 0) {
   929     while (ace_index < aclinfo.AceCount) {
   930       LPVOID ace;
   931       if (!GetAce(oldACL, ace_index, &ace)) {
   932         if (PrintMiscellaneous && Verbose) {
   933           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
   934         }
   935         FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
   936         return false;
   937       }
   938       if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
   939         // this is an inherited, allowed ACE; break from loop so we can
   940         // add the new access allowed, non-inherited ACE in the correct
   941         // position, immediately following all non-inherited ACEs.
   942         break;
   943       }
   945       // determine if the SID of this ACE matches any of the SIDs
   946       // for which we plan to set ACEs.
   947       int matches = 0;
   948       for (int i = 0; i < ace_count; i++) {
   949         if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
   950           matches++;
   951           break;
   952         }
   953       }
   955       // if there are no SID matches, then add this existing ACE to the new ACL
   956       if (matches == 0) {
   957         if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
   958                     ((PACE_HEADER)ace)->AceSize)) {
   959           if (PrintMiscellaneous && Verbose) {
   960             warning("AddAce failure: lasterror = %d \n", GetLastError());
   961           }
   962           FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
   963           return false;
   964         }
   965       }
   966       ace_index++;
   967     }
   968   }
   970   // add the passed-in access control entries to the new ACL
   971   for (int i = 0; i < ace_count; i++) {
   972     if (!AddAccessAllowedAce(newACL, ACL_REVISION,
   973                              aces[i].mask, aces[i].pSid)) {
   974       if (PrintMiscellaneous && Verbose) {
   975         warning("AddAccessAllowedAce failure: lasterror = %d \n",
   976                 GetLastError());
   977       }
   978       FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
   979       return false;
   980     }
   981   }
   983   // now copy the rest of the inherited ACEs from the old ACL
   984   if (aclinfo.AceCount != 0) {
   985     // picking up at ace_index, where we left off in the
   986     // previous ace_index loop
   987     while (ace_index < aclinfo.AceCount) {
   988       LPVOID ace;
   989       if (!GetAce(oldACL, ace_index, &ace)) {
   990         if (PrintMiscellaneous && Verbose) {
   991           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
   992         }
   993         FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
   994         return false;
   995       }
   996       if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
   997                   ((PACE_HEADER)ace)->AceSize)) {
   998         if (PrintMiscellaneous && Verbose) {
   999           warning("AddAce failure: lasterror = %d \n", GetLastError());
  1001         FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
  1002         return false;
  1004       ace_index++;
  1008   // add the new ACL to the security descriptor.
  1009   if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
  1010     if (PrintMiscellaneous && Verbose) {
  1011       warning("SetSecurityDescriptorDacl failure:"
  1012               " lasterror = %d \n", GetLastError());
  1014     FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
  1015     return false;
  1018   // if running on windows 2000 or later, set the automatic inheritance
  1019   // control flags.
  1020   SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
  1021   _SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
  1022        GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
  1023                       "SetSecurityDescriptorControl");
  1025   if (_SetSecurityDescriptorControl != NULL) {
  1026     // We do not want to further propagate inherited DACLs, so making them
  1027     // protected prevents that.
  1028     if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
  1029                                             SE_DACL_PROTECTED)) {
  1030       if (PrintMiscellaneous && Verbose) {
  1031         warning("SetSecurityDescriptorControl failure:"
  1032                 " lasterror = %d \n", GetLastError());
  1034       FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
  1035       return false;
  1038    // Note, the security descriptor maintains a reference to the newACL, not
  1039    // a copy of it. Therefore, the newACL is not freed here. It is freed when
  1040    // the security descriptor containing its reference is freed.
  1041    //
  1042    return true;
  1045 // method to create a security attributes structure, which contains a
  1046 // security descriptor and an access control list comprised of 0 or more
  1047 // access control entries. The method take an array of ace_data structures
  1048 // that indicate the ACE to be added to the security descriptor.
  1049 //
  1050 // the caller must free the resources associated with the security
  1051 // attributes structure created by this method by calling the
  1052 // free_security_attr() method.
  1053 //
  1054 static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
  1056   // allocate space for a security descriptor
  1057   PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
  1058      NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH, mtInternal);
  1060   // initialize the security descriptor
  1061   if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
  1062     if (PrintMiscellaneous && Verbose) {
  1063       warning("InitializeSecurityDescriptor failure: "
  1064               "lasterror = %d \n", GetLastError());
  1066     free_security_desc(pSD);
  1067     return NULL;
  1070   // add the access control entries
  1071   if (!add_allow_aces(pSD, aces, count)) {
  1072     free_security_desc(pSD);
  1073     return NULL;
  1076   // allocate and initialize the security attributes structure and
  1077   // return it to the caller.
  1078   //
  1079   LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
  1080     NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES), mtInternal);
  1081   lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
  1082   lpSA->lpSecurityDescriptor = pSD;
  1083   lpSA->bInheritHandle = FALSE;
  1085   return(lpSA);
  1088 // method to create a security attributes structure with a restrictive
  1089 // access control list that creates a set access rights for the user/owner
  1090 // of the securable object and a separate set access rights for everyone else.
  1091 // also provides for full access rights for the administrator group.
  1092 //
  1093 // the caller must free the resources associated with the security
  1094 // attributes structure created by this method by calling the
  1095 // free_security_attr() method.
  1096 //
  1098 static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
  1099                                 DWORD umask, DWORD emask, DWORD amask) {
  1101   ace_data_t aces[3];
  1103   // initialize the user ace data
  1104   aces[0].pSid = get_user_sid(GetCurrentProcess());
  1105   aces[0].mask = umask;
  1107   if (aces[0].pSid == 0)
  1108     return NULL;
  1110   // get the well known SID for BUILTIN\Administrators
  1111   PSID administratorsSid = NULL;
  1112   SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
  1114   if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
  1115            SECURITY_BUILTIN_DOMAIN_RID,
  1116            DOMAIN_ALIAS_RID_ADMINS,
  1117            0, 0, 0, 0, 0, 0, &administratorsSid)) {
  1119     if (PrintMiscellaneous && Verbose) {
  1120       warning("AllocateAndInitializeSid failure: "
  1121               "lasterror = %d \n", GetLastError());
  1123     return NULL;
  1126   // initialize the ace data for administrator group
  1127   aces[1].pSid = administratorsSid;
  1128   aces[1].mask = amask;
  1130   // get the well known SID for the universal Everybody
  1131   PSID everybodySid = NULL;
  1132   SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
  1134   if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
  1135            0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
  1137     if (PrintMiscellaneous && Verbose) {
  1138       warning("AllocateAndInitializeSid failure: "
  1139               "lasterror = %d \n", GetLastError());
  1141     return NULL;
  1144   // initialize the ace data for everybody else.
  1145   aces[2].pSid = everybodySid;
  1146   aces[2].mask = emask;
  1148   // create a security attributes structure with access control
  1149   // entries as initialized above.
  1150   LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
  1151   FREE_C_HEAP_ARRAY(char, aces[0].pSid, mtInternal);
  1152   FreeSid(everybodySid);
  1153   FreeSid(administratorsSid);
  1154   return(lpSA);
  1158 // method to create the security attributes structure for restricting
  1159 // access to the user temporary directory.
  1160 //
  1161 // the caller must free the resources associated with the security
  1162 // attributes structure created by this method by calling the
  1163 // free_security_attr() method.
  1164 //
  1165 static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
  1167   // create full access rights for the user/owner of the directory
  1168   // and read-only access rights for everybody else. This is
  1169   // effectively equivalent to UNIX 755 permissions on a directory.
  1170   //
  1171   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
  1172   DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
  1173   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
  1175   return make_user_everybody_admin_security_attr(umask, emask, amask);
  1178 // method to create the security attributes structure for restricting
  1179 // access to the shared memory backing store file.
  1180 //
  1181 // the caller must free the resources associated with the security
  1182 // attributes structure created by this method by calling the
  1183 // free_security_attr() method.
  1184 //
  1185 static LPSECURITY_ATTRIBUTES make_file_security_attr() {
  1187   // create extensive access rights for the user/owner of the file
  1188   // and attribute read-only access rights for everybody else. This
  1189   // is effectively equivalent to UNIX 600 permissions on a file.
  1190   //
  1191   DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
  1192   DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
  1193                  FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
  1194   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
  1196   return make_user_everybody_admin_security_attr(umask, emask, amask);
  1199 // method to create the security attributes structure for restricting
  1200 // access to the name shared memory file mapping object.
  1201 //
  1202 // the caller must free the resources associated with the security
  1203 // attributes structure created by this method by calling the
  1204 // free_security_attr() method.
  1205 //
  1206 static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
  1208   // create extensive access rights for the user/owner of the shared
  1209   // memory object and attribute read-only access rights for everybody
  1210   // else. This is effectively equivalent to UNIX 600 permissions on
  1211   // on the shared memory object.
  1212   //
  1213   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
  1214   DWORD emask = STANDARD_RIGHTS_READ; // attributes only
  1215   DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
  1217   return make_user_everybody_admin_security_attr(umask, emask, amask);
  1220 // make the user specific temporary directory
  1221 //
  1222 static bool make_user_tmp_dir(const char* dirname) {
  1225   LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
  1226   if (pDirSA == NULL) {
  1227     return false;
  1231   // create the directory with the given security attributes
  1232   if (!CreateDirectory(dirname, pDirSA)) {
  1233     DWORD lasterror = GetLastError();
  1234     if (lasterror == ERROR_ALREADY_EXISTS) {
  1235       // The directory already exists and was probably created by another
  1236       // JVM instance. However, this could also be the result of a
  1237       // deliberate symlink. Verify that the existing directory is safe.
  1238       //
  1239       if (!is_directory_secure(dirname)) {
  1240         // directory is not secure
  1241         if (PrintMiscellaneous && Verbose) {
  1242           warning("%s directory is insecure\n", dirname);
  1244         return false;
  1246       // The administrator should be able to delete this directory.
  1247       // But the directory created by previous version of JVM may not
  1248       // have permission for administrators to delete this directory.
  1249       // So add full permission to the administrator. Also setting new
  1250       // DACLs might fix the corrupted the DACLs.
  1251       SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
  1252       if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
  1253         if (PrintMiscellaneous && Verbose) {
  1254           lasterror = GetLastError();
  1255           warning("SetFileSecurity failed for %s directory.  lasterror %d \n",
  1256                                                         dirname, lasterror);
  1260     else {
  1261       if (PrintMiscellaneous && Verbose) {
  1262         warning("CreateDirectory failed: %d\n", GetLastError());
  1264       return false;
  1268   // free the security attributes structure
  1269   free_security_attr(pDirSA);
  1271   return true;
  1274 // create the shared memory resources
  1275 //
  1276 // This function creates the shared memory resources. This includes
  1277 // the backing store file and the file mapping shared memory object.
  1278 //
  1279 static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
  1281   HANDLE fh = INVALID_HANDLE_VALUE;
  1282   HANDLE fmh = NULL;
  1285   // create the security attributes for the backing store file
  1286   LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
  1287   if (lpFileSA == NULL) {
  1288     return NULL;
  1291   // create the security attributes for the shared memory object
  1292   LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
  1293   if (lpSmoSA == NULL) {
  1294     free_security_attr(lpFileSA);
  1295     return NULL;
  1298   // create the user temporary directory
  1299   if (!make_user_tmp_dir(dirname)) {
  1300     // could not make/find the directory or the found directory
  1301     // was not secure
  1302     return NULL;
  1305   // Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
  1306   // file to be deleted by the last process that closes its handle to
  1307   // the file. This is important as the apis do not allow a terminating
  1308   // JVM being monitored by another process to remove the file name.
  1309   //
  1310   // the FILE_SHARE_DELETE share mode is valid only in winnt
  1311   //
  1312   fh = CreateFile(
  1313              filename,                   /* LPCTSTR file name */
  1315              GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */
  1317              (os::win32::is_nt() ? FILE_SHARE_DELETE : 0)|
  1318              FILE_SHARE_READ,            /* DWORD share mode, future READONLY
  1319                                           * open operations allowed
  1320                                           */
  1321              lpFileSA,                   /* LPSECURITY security attributes */
  1322              CREATE_ALWAYS,              /* DWORD creation disposition
  1323                                           * create file, if it already
  1324                                           * exists, overwrite it.
  1325                                           */
  1326              FILE_FLAG_DELETE_ON_CLOSE,  /* DWORD flags and attributes */
  1328              NULL);                      /* HANDLE template file access */
  1330   free_security_attr(lpFileSA);
  1332   if (fh == INVALID_HANDLE_VALUE) {
  1333     DWORD lasterror = GetLastError();
  1334     if (PrintMiscellaneous && Verbose) {
  1335       warning("could not create file %s: %d\n", filename, lasterror);
  1337     return NULL;
  1340   // try to create the file mapping
  1341   fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
  1343   free_security_attr(lpSmoSA);
  1345   if (fmh == NULL) {
  1346     // closing the file handle here will decrement the reference count
  1347     // on the file. When all processes accessing the file close their
  1348     // handle to it, the reference count will decrement to 0 and the
  1349     // OS will delete the file. These semantics are requested by the
  1350     // FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
  1351     CloseHandle(fh);
  1352     fh = NULL;
  1353     return NULL;
  1354   } else {
  1355     // We created the file mapping, but rarely the size of the
  1356     // backing store file is reported as zero (0) which can cause
  1357     // failures when trying to use the hsperfdata file.
  1358     struct stat statbuf;
  1359     int ret_code = ::stat(filename, &statbuf);
  1360     if (ret_code == OS_ERR) {
  1361       if (PrintMiscellaneous && Verbose) {
  1362         warning("Could not get status information from file %s: %s\n",
  1363             filename, strerror(errno));
  1365       CloseHandle(fmh);
  1366       CloseHandle(fh);
  1367       fh = NULL;
  1368       fmh = NULL;
  1369       return NULL;
  1372     // We could always call FlushFileBuffers() but the Microsoft
  1373     // docs indicate that it is considered expensive so we only
  1374     // call it when we observe the size as zero (0).
  1375     if (statbuf.st_size == 0 && FlushFileBuffers(fh) != TRUE) {
  1376       DWORD lasterror = GetLastError();
  1377       if (PrintMiscellaneous && Verbose) {
  1378         warning("could not flush file %s: %d\n", filename, lasterror);
  1380       CloseHandle(fmh);
  1381       CloseHandle(fh);
  1382       fh = NULL;
  1383       fmh = NULL;
  1384       return NULL;
  1388   // the file has been successfully created and the file mapping
  1389   // object has been created.
  1390   sharedmem_fileHandle = fh;
  1391   sharedmem_fileName = strdup(filename);
  1393   return fmh;
  1396 // open the shared memory object for the given vmid.
  1397 //
  1398 static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
  1400   HANDLE fmh;
  1402   // open the file mapping with the requested mode
  1403   fmh = OpenFileMapping(
  1404                ofm_access,       /* DWORD access mode */
  1405                FALSE,            /* BOOL inherit flag - Do not allow inherit */
  1406                objectname);      /* name for object */
  1408   if (fmh == NULL) {
  1409     if (PrintMiscellaneous && Verbose) {
  1410       warning("OpenFileMapping failed for shared memory object %s:"
  1411               " lasterror = %d\n", objectname, GetLastError());
  1413     THROW_MSG_(vmSymbols::java_lang_Exception(),
  1414                "Could not open PerfMemory", INVALID_HANDLE_VALUE);
  1417   return fmh;;
  1420 // create a named shared memory region
  1421 //
  1422 // On Win32, a named shared memory object has a name space that
  1423 // is independent of the file system name space. Shared memory object,
  1424 // or more precisely, file mapping objects, provide no mechanism to
  1425 // inquire the size of the memory region. There is also no api to
  1426 // enumerate the memory regions for various processes.
  1427 //
  1428 // This implementation utilizes the shared memory name space in parallel
  1429 // with the file system name space. This allows us to determine the
  1430 // size of the shared memory region from the size of the file and it
  1431 // allows us to provide a common, file system based name space for
  1432 // shared memory across platforms.
  1433 //
  1434 static char* mapping_create_shared(size_t size) {
  1436   void *mapAddress;
  1437   int vmid = os::current_process_id();
  1439   // get the name of the user associated with this process
  1440   char* user = get_user_name();
  1442   if (user == NULL) {
  1443     return NULL;
  1446   // construct the name of the user specific temporary directory
  1447   char* dirname = get_user_tmp_dir(user);
  1449   // check that the file system is secure - i.e. it supports ACLs.
  1450   if (!is_filesystem_secure(dirname)) {
  1451     return NULL;
  1454   // create the names of the backing store files and for the
  1455   // share memory object.
  1456   //
  1457   char* filename = get_sharedmem_filename(dirname, vmid);
  1458   char* objectname = get_sharedmem_objectname(user, vmid);
  1460   // cleanup any stale shared memory resources
  1461   cleanup_sharedmem_resources(dirname);
  1463   assert(((size != 0) && (size % os::vm_page_size() == 0)),
  1464          "unexpected PerfMemry region size");
  1466   FREE_C_HEAP_ARRAY(char, user, mtInternal);
  1468   // create the shared memory resources
  1469   sharedmem_fileMapHandle =
  1470                create_sharedmem_resources(dirname, filename, objectname, size);
  1472   FREE_C_HEAP_ARRAY(char, filename, mtInternal);
  1473   FREE_C_HEAP_ARRAY(char, objectname, mtInternal);
  1474   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
  1476   if (sharedmem_fileMapHandle == NULL) {
  1477     return NULL;
  1480   // map the file into the address space
  1481   mapAddress = MapViewOfFile(
  1482                    sharedmem_fileMapHandle, /* HANDLE = file mapping object */
  1483                    FILE_MAP_ALL_ACCESS,     /* DWORD access flags */
  1484                    0,                       /* DWORD High word of offset */
  1485                    0,                       /* DWORD Low word of offset */
  1486                    (DWORD)size);            /* DWORD Number of bytes to map */
  1488   if (mapAddress == NULL) {
  1489     if (PrintMiscellaneous && Verbose) {
  1490       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
  1492     CloseHandle(sharedmem_fileMapHandle);
  1493     sharedmem_fileMapHandle = NULL;
  1494     return NULL;
  1497   // clear the shared memory region
  1498   (void)memset(mapAddress, '\0', size);
  1500   // it does not go through os api, the operation has to record from here
  1501   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
  1502     size, CURRENT_PC, mtInternal);
  1504   return (char*) mapAddress;
  1507 // this method deletes the file mapping object.
  1508 //
  1509 static void delete_file_mapping(char* addr, size_t size) {
  1511   // cleanup the persistent shared memory resources. since DestroyJavaVM does
  1512   // not support unloading of the JVM, unmapping of the memory resource is not
  1513   // performed. The memory will be reclaimed by the OS upon termination of all
  1514   // processes mapping the resource. The file mapping handle and the file
  1515   // handle are closed here to expedite the remove of the file by the OS. The
  1516   // file is not removed directly because it was created with
  1517   // FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
  1518   // be unsuccessful.
  1520   // close the fileMapHandle. the file mapping will still be retained
  1521   // by the OS as long as any other JVM processes has an open file mapping
  1522   // handle or a mapped view of the file.
  1523   //
  1524   if (sharedmem_fileMapHandle != NULL) {
  1525     CloseHandle(sharedmem_fileMapHandle);
  1526     sharedmem_fileMapHandle = NULL;
  1529   // close the file handle. This will decrement the reference count on the
  1530   // backing store file. When the reference count decrements to 0, the OS
  1531   // will delete the file. These semantics apply because the file was
  1532   // created with the FILE_FLAG_DELETE_ON_CLOSE flag.
  1533   //
  1534   if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
  1535     CloseHandle(sharedmem_fileHandle);
  1536     sharedmem_fileHandle = INVALID_HANDLE_VALUE;
  1540 // this method determines the size of the shared memory file
  1541 //
  1542 static size_t sharedmem_filesize(const char* filename, TRAPS) {
  1544   struct stat statbuf;
  1546   // get the file size
  1547   //
  1548   // on win95/98/me, _stat returns a file size of 0 bytes, but on
  1549   // winnt/2k the appropriate file size is returned. support for
  1550   // the sharable aspects of performance counters was abandonded
  1551   // on the non-nt win32 platforms due to this and other api
  1552   // inconsistencies
  1553   //
  1554   if (::stat(filename, &statbuf) == OS_ERR) {
  1555     if (PrintMiscellaneous && Verbose) {
  1556       warning("stat %s failed: %s\n", filename, strerror(errno));
  1558     THROW_MSG_0(vmSymbols::java_io_IOException(),
  1559                 "Could not determine PerfMemory size");
  1562   if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
  1563     if (PrintMiscellaneous && Verbose) {
  1564       warning("unexpected file size: size = " SIZE_FORMAT "\n",
  1565               statbuf.st_size);
  1567     THROW_MSG_0(vmSymbols::java_lang_Exception(),
  1568                 "Invalid PerfMemory size");
  1571   return statbuf.st_size;
  1574 // this method opens a file mapping object and maps the object
  1575 // into the address space of the process
  1576 //
  1577 static void open_file_mapping(const char* user, int vmid,
  1578                               PerfMemory::PerfMemoryMode mode,
  1579                               char** addrp, size_t* sizep, TRAPS) {
  1581   ResourceMark rm;
  1583   void *mapAddress = 0;
  1584   size_t size = 0;
  1585   HANDLE fmh;
  1586   DWORD ofm_access;
  1587   DWORD mv_access;
  1588   const char* luser = NULL;
  1590   if (mode == PerfMemory::PERF_MODE_RO) {
  1591     ofm_access = FILE_MAP_READ;
  1592     mv_access = FILE_MAP_READ;
  1594   else if (mode == PerfMemory::PERF_MODE_RW) {
  1595 #ifdef LATER
  1596     ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
  1597     mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
  1598 #else
  1599     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1600               "Unsupported access mode");
  1601 #endif
  1603   else {
  1604     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1605               "Illegal access mode");
  1608   // if a user name wasn't specified, then find the user name for
  1609   // the owner of the target vm.
  1610   if (user == NULL || strlen(user) == 0) {
  1611     luser = get_user_name(vmid);
  1613   else {
  1614     luser = user;
  1617   if (luser == NULL) {
  1618     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1619               "Could not map vmid to user name");
  1622   // get the names for the resources for the target vm
  1623   char* dirname = get_user_tmp_dir(luser);
  1625   // since we don't follow symbolic links when creating the backing
  1626   // store file, we also don't following them when attaching
  1627   //
  1628   if (!is_directory_secure(dirname)) {
  1629     FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
  1630     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1631               "Process not found");
  1634   char* filename = get_sharedmem_filename(dirname, vmid);
  1635   char* objectname = get_sharedmem_objectname(luser, vmid);
  1637   // copy heap memory to resource memory. the objectname and
  1638   // filename are passed to methods that may throw exceptions.
  1639   // using resource arrays for these names prevents the leaks
  1640   // that would otherwise occur.
  1641   //
  1642   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
  1643   char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
  1644   strcpy(rfilename, filename);
  1645   strcpy(robjectname, objectname);
  1647   // free the c heap resources that are no longer needed
  1648   if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
  1649   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
  1650   FREE_C_HEAP_ARRAY(char, filename, mtInternal);
  1651   FREE_C_HEAP_ARRAY(char, objectname, mtInternal);
  1653   if (*sizep == 0) {
  1654     size = sharedmem_filesize(rfilename, CHECK);
  1655   } else {
  1656     size = *sizep;
  1659   assert(size > 0, "unexpected size <= 0");
  1661   // Open the file mapping object with the given name
  1662   fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
  1664   assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
  1666   // map the entire file into the address space
  1667   mapAddress = MapViewOfFile(
  1668                  fmh,             /* HANDLE Handle of file mapping object */
  1669                  mv_access,       /* DWORD access flags */
  1670                  0,               /* DWORD High word of offset */
  1671                  0,               /* DWORD Low word of offset */
  1672                  size);           /* DWORD Number of bytes to map */
  1674   if (mapAddress == NULL) {
  1675     if (PrintMiscellaneous && Verbose) {
  1676       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
  1678     CloseHandle(fmh);
  1679     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
  1680               "Could not map PerfMemory");
  1683   // it does not go through os api, the operation has to record from here
  1684   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size,
  1685     CURRENT_PC, mtInternal);
  1688   *addrp = (char*)mapAddress;
  1689   *sizep = size;
  1691   // File mapping object can be closed at this time without
  1692   // invalidating the mapped view of the file
  1693   CloseHandle(fmh);
  1695   if (PerfTraceMemOps) {
  1696     tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
  1697                INTPTR_FORMAT "\n", size, vmid, mapAddress);
  1701 // this method unmaps the the mapped view of the the
  1702 // file mapping object.
  1703 //
  1704 static void remove_file_mapping(char* addr) {
  1706   // the file mapping object was closed in open_file_mapping()
  1707   // after the file map view was created. We only need to
  1708   // unmap the file view here.
  1709   UnmapViewOfFile(addr);
  1712 // create the PerfData memory region in shared memory.
  1713 static char* create_shared_memory(size_t size) {
  1715   return mapping_create_shared(size);
  1718 // release a named, shared memory region
  1719 //
  1720 void delete_shared_memory(char* addr, size_t size) {
  1722   delete_file_mapping(addr, size);
  1728 // create the PerfData memory region
  1729 //
  1730 // This method creates the memory region used to store performance
  1731 // data for the JVM. The memory may be created in standard or
  1732 // shared memory.
  1733 //
  1734 void PerfMemory::create_memory_region(size_t size) {
  1736   if (PerfDisableSharedMem || !os::win32::is_nt()) {
  1737     // do not share the memory for the performance data.
  1738     PerfDisableSharedMem = true;
  1739     _start = create_standard_memory(size);
  1741   else {
  1742     _start = create_shared_memory(size);
  1743     if (_start == NULL) {
  1745       // creation of the shared memory region failed, attempt
  1746       // to create a contiguous, non-shared memory region instead.
  1747       //
  1748       if (PrintMiscellaneous && Verbose) {
  1749         warning("Reverting to non-shared PerfMemory region.\n");
  1751       PerfDisableSharedMem = true;
  1752       _start = create_standard_memory(size);
  1756   if (_start != NULL) _capacity = size;
  1760 // delete the PerfData memory region
  1761 //
  1762 // This method deletes the memory region used to store performance
  1763 // data for the JVM. The memory region indicated by the <address, size>
  1764 // tuple will be inaccessible after a call to this method.
  1765 //
  1766 void PerfMemory::delete_memory_region() {
  1768   assert((start() != NULL && capacity() > 0), "verify proper state");
  1770   // If user specifies PerfDataSaveFile, it will save the performance data
  1771   // to the specified file name no matter whether PerfDataSaveToFile is specified
  1772   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
  1773   // -XX:+PerfDataSaveToFile.
  1774   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
  1775     save_memory_to_file(start(), capacity());
  1778   if (PerfDisableSharedMem) {
  1779     delete_standard_memory(start(), capacity());
  1781   else {
  1782     delete_shared_memory(start(), capacity());
  1786 // attach to the PerfData memory region for another JVM
  1787 //
  1788 // This method returns an <address, size> tuple that points to
  1789 // a memory buffer that is kept reasonably synchronized with
  1790 // the PerfData memory region for the indicated JVM. This
  1791 // buffer may be kept in synchronization via shared memory
  1792 // or some other mechanism that keeps the buffer updated.
  1793 //
  1794 // If the JVM chooses not to support the attachability feature,
  1795 // this method should throw an UnsupportedOperation exception.
  1796 //
  1797 // This implementation utilizes named shared memory to map
  1798 // the indicated process's PerfData memory region into this JVMs
  1799 // address space.
  1800 //
  1801 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
  1802                         char** addrp, size_t* sizep, TRAPS) {
  1804   if (vmid == 0 || vmid == os::current_process_id()) {
  1805      *addrp = start();
  1806      *sizep = capacity();
  1807      return;
  1810   open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
  1813 // detach from the PerfData memory region of another JVM
  1814 //
  1815 // This method detaches the PerfData memory region of another
  1816 // JVM, specified as an <address, size> tuple of a buffer
  1817 // in this process's address space. This method may perform
  1818 // arbitrary actions to accomplish the detachment. The memory
  1819 // region specified by <address, size> will be inaccessible after
  1820 // a call to this method.
  1821 //
  1822 // If the JVM chooses not to support the attachability feature,
  1823 // this method should throw an UnsupportedOperation exception.
  1824 //
  1825 // This implementation utilizes named shared memory to detach
  1826 // the indicated process's PerfData memory region from this
  1827 // process's address space.
  1828 //
  1829 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
  1831   assert(addr != 0, "address sanity check");
  1832   assert(bytes > 0, "capacity sanity check");
  1834   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
  1835     // prevent accidental detachment of this process's PerfMemory region
  1836     return;
  1839   if (MemTracker::tracking_level() > NMT_minimal) {
  1840     // it does not go through os api, the operation has to record from here
  1841     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  1842     remove_file_mapping(addr);
  1843     tkr.record((address)addr, bytes);
  1844   } else {
  1845     remove_file_mapping(addr);
  1849 char* PerfMemory::backing_store_filename() {
  1850   return sharedmem_fileName;

mercurial