src/share/vm/opto/loopnode.hpp

Thu, 14 Feb 2019 14:31:32 +0100

author
neliasso
date
Thu, 14 Feb 2019 14:31:32 +0100
changeset 9741
7e0a4478e80f
parent 9739
bf9503046dd4
child 9756
2be326848943
child 9776
ce42ae95d4d6
permissions
-rw-r--r--

8087128: C2: Disallow definition split on MachCopySpill nodes
Reviewed-by: kvn

duke@435 1 /*
shshahma@8893 2 * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_LOOPNODE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_LOOPNODE_HPP
stefank@2314 27
stefank@2314 28 #include "opto/cfgnode.hpp"
stefank@2314 29 #include "opto/multnode.hpp"
stefank@2314 30 #include "opto/phaseX.hpp"
stefank@2314 31 #include "opto/subnode.hpp"
stefank@2314 32 #include "opto/type.hpp"
stefank@2314 33
duke@435 34 class CmpNode;
duke@435 35 class CountedLoopEndNode;
duke@435 36 class CountedLoopNode;
duke@435 37 class IdealLoopTree;
duke@435 38 class LoopNode;
duke@435 39 class Node;
duke@435 40 class PhaseIdealLoop;
duke@435 41 class VectorSet;
cfang@1607 42 class Invariance;
duke@435 43 struct small_cache;
duke@435 44
duke@435 45 //
duke@435 46 // I D E A L I Z E D L O O P S
duke@435 47 //
duke@435 48 // Idealized loops are the set of loops I perform more interesting
duke@435 49 // transformations on, beyond simple hoisting.
duke@435 50
duke@435 51 //------------------------------LoopNode---------------------------------------
duke@435 52 // Simple loop header. Fall in path on left, loop-back path on right.
duke@435 53 class LoopNode : public RegionNode {
duke@435 54 // Size is bigger to hold the flags. However, the flags do not change
duke@435 55 // the semantics so it does not appear in the hash & cmp functions.
duke@435 56 virtual uint size_of() const { return sizeof(*this); }
duke@435 57 protected:
duke@435 58 short _loop_flags;
duke@435 59 // Names for flag bitfields
kvn@2747 60 enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
kvn@2747 61 MainHasNoPreLoop=4,
kvn@2747 62 HasExactTripCount=8,
kvn@2747 63 InnerLoop=16,
kvn@2747 64 PartialPeelLoop=32,
kvn@2747 65 PartialPeelFailed=64 };
duke@435 66 char _unswitch_count;
duke@435 67 enum { _unswitch_max=3 };
duke@435 68
duke@435 69 public:
duke@435 70 // Names for edge indices
duke@435 71 enum { Self=0, EntryControl, LoopBackControl };
duke@435 72
kvn@2747 73 int is_inner_loop() const { return _loop_flags & InnerLoop; }
kvn@2747 74 void set_inner_loop() { _loop_flags |= InnerLoop; }
duke@435 75
kvn@2747 76 int is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
kvn@2747 77 void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
kvn@2747 78 int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
kvn@2747 79 void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
duke@435 80
duke@435 81 int unswitch_max() { return _unswitch_max; }
duke@435 82 int unswitch_count() { return _unswitch_count; }
duke@435 83 void set_unswitch_count(int val) {
duke@435 84 assert (val <= unswitch_max(), "too many unswitches");
duke@435 85 _unswitch_count = val;
duke@435 86 }
duke@435 87
duke@435 88 LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
duke@435 89 init_class_id(Class_Loop);
duke@435 90 init_req(EntryControl, entry);
duke@435 91 init_req(LoopBackControl, backedge);
duke@435 92 }
duke@435 93
duke@435 94 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 95 virtual int Opcode() const;
duke@435 96 bool can_be_counted_loop(PhaseTransform* phase) const {
duke@435 97 return req() == 3 && in(0) != NULL &&
duke@435 98 in(1) != NULL && phase->type(in(1)) != Type::TOP &&
duke@435 99 in(2) != NULL && phase->type(in(2)) != Type::TOP;
duke@435 100 }
kvn@2665 101 bool is_valid_counted_loop() const;
duke@435 102 #ifndef PRODUCT
duke@435 103 virtual void dump_spec(outputStream *st) const;
duke@435 104 #endif
duke@435 105 };
duke@435 106
duke@435 107 //------------------------------Counted Loops----------------------------------
duke@435 108 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
duke@435 109 // path (and maybe some other exit paths). The trip-counter exit is always
kvn@2665 110 // last in the loop. The trip-counter have to stride by a constant;
kvn@2665 111 // the exit value is also loop invariant.
duke@435 112
duke@435 113 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs. The
duke@435 114 // CountedLoopNode has the incoming loop control and the loop-back-control
duke@435 115 // which is always the IfTrue before the matching CountedLoopEndNode. The
duke@435 116 // CountedLoopEndNode has an incoming control (possibly not the
duke@435 117 // CountedLoopNode if there is control flow in the loop), the post-increment
duke@435 118 // trip-counter value, and the limit. The trip-counter value is always of
duke@435 119 // the form (Op old-trip-counter stride). The old-trip-counter is produced
kvn@2665 120 // by a Phi connected to the CountedLoopNode. The stride is constant.
duke@435 121 // The Op is any commutable opcode, including Add, Mul, Xor. The
duke@435 122 // CountedLoopEndNode also takes in the loop-invariant limit value.
duke@435 123
duke@435 124 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
duke@435 125 // loop-back control. From CountedLoopEndNodes I can reach CountedLoopNodes
duke@435 126 // via the old-trip-counter from the Op node.
duke@435 127
duke@435 128 //------------------------------CountedLoopNode--------------------------------
duke@435 129 // CountedLoopNodes head simple counted loops. CountedLoopNodes have as
duke@435 130 // inputs the incoming loop-start control and the loop-back control, so they
duke@435 131 // act like RegionNodes. They also take in the initial trip counter, the
duke@435 132 // loop-invariant stride and the loop-invariant limit value. CountedLoopNodes
duke@435 133 // produce a loop-body control and the trip counter value. Since
duke@435 134 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
duke@435 135
duke@435 136 class CountedLoopNode : public LoopNode {
duke@435 137 // Size is bigger to hold _main_idx. However, _main_idx does not change
duke@435 138 // the semantics so it does not appear in the hash & cmp functions.
duke@435 139 virtual uint size_of() const { return sizeof(*this); }
duke@435 140
duke@435 141 // For Pre- and Post-loops during debugging ONLY, this holds the index of
duke@435 142 // the Main CountedLoop. Used to assert that we understand the graph shape.
duke@435 143 node_idx_t _main_idx;
duke@435 144
kvn@2747 145 // Known trip count calculated by compute_exact_trip_count()
kvn@2747 146 uint _trip_count;
duke@435 147
duke@435 148 // Expected trip count from profile data
duke@435 149 float _profile_trip_cnt;
duke@435 150
duke@435 151 // Log2 of original loop bodies in unrolled loop
duke@435 152 int _unrolled_count_log2;
duke@435 153
duke@435 154 // Node count prior to last unrolling - used to decide if
duke@435 155 // unroll,optimize,unroll,optimize,... is making progress
duke@435 156 int _node_count_before_unroll;
duke@435 157
duke@435 158 public:
duke@435 159 CountedLoopNode( Node *entry, Node *backedge )
kvn@2747 160 : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
duke@435 161 _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
duke@435 162 _node_count_before_unroll(0) {
duke@435 163 init_class_id(Class_CountedLoop);
duke@435 164 // Initialize _trip_count to the largest possible value.
duke@435 165 // Will be reset (lower) if the loop's trip count is known.
duke@435 166 }
duke@435 167
duke@435 168 virtual int Opcode() const;
duke@435 169 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 170
duke@435 171 Node *init_control() const { return in(EntryControl); }
duke@435 172 Node *back_control() const { return in(LoopBackControl); }
duke@435 173 CountedLoopEndNode *loopexit() const;
duke@435 174 Node *init_trip() const;
duke@435 175 Node *stride() const;
duke@435 176 int stride_con() const;
duke@435 177 bool stride_is_con() const;
duke@435 178 Node *limit() const;
duke@435 179 Node *incr() const;
duke@435 180 Node *phi() const;
duke@435 181
duke@435 182 // Match increment with optional truncation
duke@435 183 static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
duke@435 184
duke@435 185 // A 'main' loop has a pre-loop and a post-loop. The 'main' loop
duke@435 186 // can run short a few iterations and may start a few iterations in.
duke@435 187 // It will be RCE'd and unrolled and aligned.
duke@435 188
duke@435 189 // A following 'post' loop will run any remaining iterations. Used
duke@435 190 // during Range Check Elimination, the 'post' loop will do any final
duke@435 191 // iterations with full checks. Also used by Loop Unrolling, where
duke@435 192 // the 'post' loop will do any epilog iterations needed. Basically,
duke@435 193 // a 'post' loop can not profitably be further unrolled or RCE'd.
duke@435 194
duke@435 195 // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
duke@435 196 // it may do under-flow checks for RCE and may do alignment iterations
duke@435 197 // so the following main loop 'knows' that it is striding down cache
duke@435 198 // lines.
duke@435 199
duke@435 200 // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
duke@435 201 // Aligned, may be missing it's pre-loop.
kvn@2747 202 int is_normal_loop() const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
kvn@2747 203 int is_pre_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Pre; }
kvn@2747 204 int is_main_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Main; }
kvn@2747 205 int is_post_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Post; }
kvn@2747 206 int is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
kvn@2747 207 void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
duke@435 208
never@802 209 int main_idx() const { return _main_idx; }
never@802 210
duke@435 211
duke@435 212 void set_pre_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
duke@435 213 void set_main_loop ( ) { assert(is_normal_loop(),""); _loop_flags |= Main; }
duke@435 214 void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
kvn@2747 215 void set_normal_loop( ) { _loop_flags &= ~PreMainPostFlagsMask; }
duke@435 216
kvn@2747 217 void set_trip_count(uint tc) { _trip_count = tc; }
kvn@2747 218 uint trip_count() { return _trip_count; }
kvn@2747 219
kvn@2747 220 bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
kvn@2747 221 void set_exact_trip_count(uint tc) {
kvn@2747 222 _trip_count = tc;
kvn@2747 223 _loop_flags |= HasExactTripCount;
kvn@2747 224 }
kvn@2747 225 void set_nonexact_trip_count() {
kvn@2747 226 _loop_flags &= ~HasExactTripCount;
kvn@2747 227 }
duke@435 228
duke@435 229 void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
duke@435 230 float profile_trip_cnt() { return _profile_trip_cnt; }
duke@435 231
duke@435 232 void double_unrolled_count() { _unrolled_count_log2++; }
duke@435 233 int unrolled_count() { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
duke@435 234
duke@435 235 void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; }
duke@435 236 int node_count_before_unroll() { return _node_count_before_unroll; }
duke@435 237
duke@435 238 #ifndef PRODUCT
duke@435 239 virtual void dump_spec(outputStream *st) const;
duke@435 240 #endif
duke@435 241 };
duke@435 242
duke@435 243 //------------------------------CountedLoopEndNode-----------------------------
duke@435 244 // CountedLoopEndNodes end simple trip counted loops. They act much like
duke@435 245 // IfNodes.
duke@435 246 class CountedLoopEndNode : public IfNode {
duke@435 247 public:
duke@435 248 enum { TestControl, TestValue };
duke@435 249
duke@435 250 CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
duke@435 251 : IfNode( control, test, prob, cnt) {
duke@435 252 init_class_id(Class_CountedLoopEnd);
duke@435 253 }
duke@435 254 virtual int Opcode() const;
duke@435 255
duke@435 256 Node *cmp_node() const { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
duke@435 257 Node *incr() const { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
duke@435 258 Node *limit() const { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
duke@435 259 Node *stride() const { Node *tmp = incr (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
duke@435 260 Node *init_trip() const { Node *tmp = phi (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
duke@435 261 int stride_con() const;
duke@435 262 bool stride_is_con() const { Node *tmp = stride (); return (tmp != NULL && tmp->is_Con()); }
duke@435 263 BoolTest::mask test_trip() const { return in(TestValue)->as_Bool()->_test._test; }
shshahma@8893 264 PhiNode *phi() const {
shshahma@8893 265 Node *tmp = incr();
shshahma@8893 266 if (tmp && tmp->req() == 3) {
shshahma@8893 267 Node* phi = tmp->in(1);
shshahma@8893 268 if (phi->is_Phi()) {
shshahma@8893 269 return phi->as_Phi();
shshahma@8893 270 }
shshahma@8893 271 }
shshahma@8893 272 return NULL;
shshahma@8893 273 }
duke@435 274 CountedLoopNode *loopnode() const {
roland@4589 275 // The CountedLoopNode that goes with this CountedLoopEndNode may
roland@4589 276 // have been optimized out by the IGVN so be cautious with the
roland@4589 277 // pattern matching on the graph
shshahma@8893 278 PhiNode* iv_phi = phi();
shshahma@8893 279 if (iv_phi == NULL) {
roland@4589 280 return NULL;
roland@4589 281 }
shshahma@8893 282 Node *ln = iv_phi->in(0);
roland@4589 283 if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit() == this) {
roland@4589 284 return (CountedLoopNode*)ln;
roland@4589 285 }
roland@4589 286 return NULL;
roland@4589 287 }
duke@435 288
duke@435 289 #ifndef PRODUCT
duke@435 290 virtual void dump_spec(outputStream *st) const;
duke@435 291 #endif
duke@435 292 };
duke@435 293
duke@435 294
duke@435 295 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
duke@435 296 Node *bc = back_control();
duke@435 297 if( bc == NULL ) return NULL;
duke@435 298 Node *le = bc->in(0);
duke@435 299 if( le->Opcode() != Op_CountedLoopEnd )
duke@435 300 return NULL;
duke@435 301 return (CountedLoopEndNode*)le;
duke@435 302 }
duke@435 303 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
duke@435 304 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
duke@435 305 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
duke@435 306 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
duke@435 307 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
duke@435 308 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
duke@435 309 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
duke@435 310
kvn@2877 311 //------------------------------LoopLimitNode-----------------------------
kvn@2877 312 // Counted Loop limit node which represents exact final iterator value:
kvn@2877 313 // trip_count = (limit - init_trip + stride - 1)/stride
kvn@2877 314 // final_value= trip_count * stride + init_trip.
kvn@2877 315 // Use HW instructions to calculate it when it can overflow in integer.
kvn@2877 316 // Note, final_value should fit into integer since counted loop has
kvn@2877 317 // limit check: limit <= max_int-stride.
kvn@2877 318 class LoopLimitNode : public Node {
kvn@2877 319 enum { Init=1, Limit=2, Stride=3 };
kvn@2877 320 public:
kvn@2877 321 LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
kvn@2877 322 // Put it on the Macro nodes list to optimize during macro nodes expansion.
kvn@2877 323 init_flags(Flag_is_macro);
kvn@2877 324 C->add_macro_node(this);
kvn@2877 325 }
kvn@2877 326 virtual int Opcode() const;
kvn@2877 327 virtual const Type *bottom_type() const { return TypeInt::INT; }
kvn@2877 328 virtual uint ideal_reg() const { return Op_RegI; }
kvn@2877 329 virtual const Type *Value( PhaseTransform *phase ) const;
kvn@2877 330 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@2877 331 virtual Node *Identity( PhaseTransform *phase );
kvn@2877 332 };
duke@435 333
duke@435 334 // -----------------------------IdealLoopTree----------------------------------
duke@435 335 class IdealLoopTree : public ResourceObj {
duke@435 336 public:
duke@435 337 IdealLoopTree *_parent; // Parent in loop tree
duke@435 338 IdealLoopTree *_next; // Next sibling in loop tree
duke@435 339 IdealLoopTree *_child; // First child in loop tree
duke@435 340
duke@435 341 // The head-tail backedge defines the loop.
duke@435 342 // If tail is NULL then this loop has multiple backedges as part of the
duke@435 343 // same loop. During cleanup I'll peel off the multiple backedges; merge
duke@435 344 // them at the loop bottom and flow 1 real backedge into the loop.
duke@435 345 Node *_head; // Head of loop
duke@435 346 Node *_tail; // Tail of loop
duke@435 347 inline Node *tail(); // Handle lazy update of _tail field
duke@435 348 PhaseIdealLoop* _phase;
duke@435 349
duke@435 350 Node_List _body; // Loop body for inner loops
duke@435 351
duke@435 352 uint8 _nest; // Nesting depth
duke@435 353 uint8 _irreducible:1, // True if irreducible
duke@435 354 _has_call:1, // True if has call safepoint
duke@435 355 _has_sfpt:1, // True if has non-call safepoint
duke@435 356 _rce_candidate:1; // True if candidate for range check elimination
duke@435 357
kvn@4023 358 Node_List* _safepts; // List of safepoints in this loop
kvn@474 359 Node_List* _required_safept; // A inner loop cannot delete these safepts;
kvn@474 360 bool _allow_optimizations; // Allow loop optimizations
duke@435 361
duke@435 362 IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
duke@435 363 : _parent(0), _next(0), _child(0),
duke@435 364 _head(head), _tail(tail),
duke@435 365 _phase(phase),
kvn@4023 366 _safepts(NULL),
duke@435 367 _required_safept(NULL),
kvn@474 368 _allow_optimizations(true),
duke@435 369 _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0)
duke@435 370 { }
duke@435 371
duke@435 372 // Is 'l' a member of 'this'?
duke@435 373 int is_member( const IdealLoopTree *l ) const; // Test for nested membership
duke@435 374
duke@435 375 // Set loop nesting depth. Accumulate has_call bits.
duke@435 376 int set_nest( uint depth );
duke@435 377
duke@435 378 // Split out multiple fall-in edges from the loop header. Move them to a
duke@435 379 // private RegionNode before the loop. This becomes the loop landing pad.
duke@435 380 void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
duke@435 381
duke@435 382 // Split out the outermost loop from this shared header.
duke@435 383 void split_outer_loop( PhaseIdealLoop *phase );
duke@435 384
duke@435 385 // Merge all the backedges from the shared header into a private Region.
duke@435 386 // Feed that region as the one backedge to this loop.
duke@435 387 void merge_many_backedges( PhaseIdealLoop *phase );
duke@435 388
duke@435 389 // Split shared headers and insert loop landing pads.
duke@435 390 // Insert a LoopNode to replace the RegionNode.
duke@435 391 // Returns TRUE if loop tree is structurally changed.
duke@435 392 bool beautify_loops( PhaseIdealLoop *phase );
duke@435 393
cfang@1607 394 // Perform optimization to use the loop predicates for null checks and range checks.
cfang@1607 395 // Applies to any loop level (not just the innermost one)
cfang@1607 396 bool loop_predication( PhaseIdealLoop *phase);
cfang@1607 397
never@836 398 // Perform iteration-splitting on inner loops. Split iterations to
never@836 399 // avoid range checks or one-shot null checks. Returns false if the
never@836 400 // current round of loop opts should stop.
never@836 401 bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
duke@435 402
never@836 403 // Driver for various flavors of iteration splitting. Returns false
never@836 404 // if the current round of loop opts should stop.
never@836 405 bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
duke@435 406
duke@435 407 // Given dominators, try to find loops with calls that must always be
duke@435 408 // executed (call dominates loop tail). These loops do not need non-call
duke@435 409 // safepoints (ncsfpt).
duke@435 410 void check_safepts(VectorSet &visited, Node_List &stack);
duke@435 411
duke@435 412 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
duke@435 413 // encountered.
duke@435 414 void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
duke@435 415
aeriksso@8195 416 // Remove safepoints from loop. Optionally keeping one.
aeriksso@8195 417 void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
aeriksso@8195 418
duke@435 419 // Convert to counted loops where possible
duke@435 420 void counted_loop( PhaseIdealLoop *phase );
duke@435 421
duke@435 422 // Check for Node being a loop-breaking test
duke@435 423 Node *is_loop_exit(Node *iff) const;
duke@435 424
duke@435 425 // Returns true if ctrl is executed on every complete iteration
duke@435 426 bool dominates_backedge(Node* ctrl);
duke@435 427
duke@435 428 // Remove simplistic dead code from loop body
duke@435 429 void DCE_loop_body();
duke@435 430
duke@435 431 // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
duke@435 432 // Replace with a 1-in-10 exit guess.
duke@435 433 void adjust_loop_exit_prob( PhaseIdealLoop *phase );
duke@435 434
duke@435 435 // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
duke@435 436 // Useful for unrolling loops with NO array accesses.
duke@435 437 bool policy_peel_only( PhaseIdealLoop *phase ) const;
duke@435 438
duke@435 439 // Return TRUE or FALSE if the loop should be unswitched -- clone
duke@435 440 // loop with an invariant test
duke@435 441 bool policy_unswitching( PhaseIdealLoop *phase ) const;
duke@435 442
duke@435 443 // Micro-benchmark spamming. Remove empty loops.
duke@435 444 bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
duke@435 445
kvn@2747 446 // Convert one iteration loop into normal code.
kvn@2747 447 bool policy_do_one_iteration_loop( PhaseIdealLoop *phase );
kvn@2747 448
duke@435 449 // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
duke@435 450 // make some loop-invariant test (usually a null-check) happen before the
duke@435 451 // loop.
duke@435 452 bool policy_peeling( PhaseIdealLoop *phase ) const;
duke@435 453
duke@435 454 // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
duke@435 455 // known trip count in the counted loop node.
duke@435 456 bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
duke@435 457
duke@435 458 // Return TRUE or FALSE if the loop should be unrolled or not. Unroll if
duke@435 459 // the loop is a CountedLoop and the body is small enough.
duke@435 460 bool policy_unroll( PhaseIdealLoop *phase ) const;
duke@435 461
duke@435 462 // Return TRUE or FALSE if the loop should be range-check-eliminated.
duke@435 463 // Gather a list of IF tests that are dominated by iteration splitting;
duke@435 464 // also gather the end of the first split and the start of the 2nd split.
duke@435 465 bool policy_range_check( PhaseIdealLoop *phase ) const;
duke@435 466
duke@435 467 // Return TRUE or FALSE if the loop should be cache-line aligned.
duke@435 468 // Gather the expression that does the alignment. Note that only
twisti@1040 469 // one array base can be aligned in a loop (unless the VM guarantees
duke@435 470 // mutual alignment). Note that if we vectorize short memory ops
duke@435 471 // into longer memory ops, we may want to increase alignment.
duke@435 472 bool policy_align( PhaseIdealLoop *phase ) const;
duke@435 473
cfang@1607 474 // Return TRUE if "iff" is a range check.
cfang@1607 475 bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
cfang@1607 476
kvn@2747 477 // Compute loop exact trip count if possible
kvn@2747 478 void compute_exact_trip_count( PhaseIdealLoop *phase );
kvn@2747 479
duke@435 480 // Compute loop trip count from profile data
duke@435 481 void compute_profile_trip_cnt( PhaseIdealLoop *phase );
duke@435 482
duke@435 483 // Reassociate invariant expressions.
duke@435 484 void reassociate_invariants(PhaseIdealLoop *phase);
duke@435 485 // Reassociate invariant add and subtract expressions.
duke@435 486 Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
duke@435 487 // Return nonzero index of invariant operand if invariant and variant
twisti@1040 488 // are combined with an Add or Sub. Helper for reassociate_invariants.
duke@435 489 int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
duke@435 490
duke@435 491 // Return true if n is invariant
duke@435 492 bool is_invariant(Node* n) const;
duke@435 493
duke@435 494 // Put loop body on igvn work list
duke@435 495 void record_for_igvn();
duke@435 496
duke@435 497 bool is_loop() { return !_irreducible && _tail && !_tail->is_top(); }
duke@435 498 bool is_inner() { return is_loop() && _child == NULL; }
duke@435 499 bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
duke@435 500
duke@435 501 #ifndef PRODUCT
duke@435 502 void dump_head( ) const; // Dump loop head only
duke@435 503 void dump() const; // Dump this loop recursively
duke@435 504 void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
duke@435 505 #endif
duke@435 506
duke@435 507 };
duke@435 508
duke@435 509 // -----------------------------PhaseIdealLoop---------------------------------
duke@435 510 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees into a
duke@435 511 // loop tree. Drives the loop-based transformations on the ideal graph.
duke@435 512 class PhaseIdealLoop : public PhaseTransform {
duke@435 513 friend class IdealLoopTree;
duke@435 514 friend class SuperWord;
duke@435 515 // Pre-computed def-use info
duke@435 516 PhaseIterGVN &_igvn;
duke@435 517
duke@435 518 // Head of loop tree
duke@435 519 IdealLoopTree *_ltree_root;
duke@435 520
duke@435 521 // Array of pre-order numbers, plus post-visited bit.
duke@435 522 // ZERO for not pre-visited. EVEN for pre-visited but not post-visited.
duke@435 523 // ODD for post-visited. Other bits are the pre-order number.
duke@435 524 uint *_preorders;
duke@435 525 uint _max_preorder;
duke@435 526
never@1356 527 const PhaseIdealLoop* _verify_me;
never@1356 528 bool _verify_only;
never@1356 529
duke@435 530 // Allocate _preorders[] array
duke@435 531 void allocate_preorders() {
duke@435 532 _max_preorder = C->unique()+8;
duke@435 533 _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
duke@435 534 memset(_preorders, 0, sizeof(uint) * _max_preorder);
duke@435 535 }
duke@435 536
duke@435 537 // Allocate _preorders[] array
duke@435 538 void reallocate_preorders() {
duke@435 539 if ( _max_preorder < C->unique() ) {
duke@435 540 _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
duke@435 541 _max_preorder = C->unique();
duke@435 542 }
duke@435 543 memset(_preorders, 0, sizeof(uint) * _max_preorder);
duke@435 544 }
duke@435 545
duke@435 546 // Check to grow _preorders[] array for the case when build_loop_tree_impl()
duke@435 547 // adds new nodes.
duke@435 548 void check_grow_preorders( ) {
duke@435 549 if ( _max_preorder < C->unique() ) {
duke@435 550 uint newsize = _max_preorder<<1; // double size of array
duke@435 551 _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
duke@435 552 memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
duke@435 553 _max_preorder = newsize;
duke@435 554 }
duke@435 555 }
duke@435 556 // Check for pre-visited. Zero for NOT visited; non-zero for visited.
duke@435 557 int is_visited( Node *n ) const { return _preorders[n->_idx]; }
duke@435 558 // Pre-order numbers are written to the Nodes array as low-bit-set values.
duke@435 559 void set_preorder_visited( Node *n, int pre_order ) {
duke@435 560 assert( !is_visited( n ), "already set" );
duke@435 561 _preorders[n->_idx] = (pre_order<<1);
duke@435 562 };
duke@435 563 // Return pre-order number.
duke@435 564 int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
duke@435 565
duke@435 566 // Check for being post-visited.
duke@435 567 // Should be previsited already (checked with assert(is_visited(n))).
duke@435 568 int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
duke@435 569
duke@435 570 // Mark as post visited
duke@435 571 void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
duke@435 572
duke@435 573 // Set/get control node out. Set lower bit to distinguish from IdealLoopTree
duke@435 574 // Returns true if "n" is a data node, false if it's a control node.
duke@435 575 bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
duke@435 576
duke@435 577 // clear out dead code after build_loop_late
duke@435 578 Node_List _deadlist;
duke@435 579
duke@435 580 // Support for faster execution of get_late_ctrl()/dom_lca()
duke@435 581 // when a node has many uses and dominator depth is deep.
duke@435 582 Node_Array _dom_lca_tags;
duke@435 583 void init_dom_lca_tags();
duke@435 584 void clear_dom_lca_tags();
never@1356 585
never@1356 586 // Helper for debugging bad dominance relationships
never@1356 587 bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
never@1356 588
never@1356 589 Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
never@1356 590
duke@435 591 // Inline wrapper for frequent cases:
duke@435 592 // 1) only one use
duke@435 593 // 2) a use is the same as the current LCA passed as 'n1'
duke@435 594 Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
duke@435 595 assert( n->is_CFG(), "" );
duke@435 596 // Fast-path NULL lca
duke@435 597 if( lca != NULL && lca != n ) {
duke@435 598 assert( lca->is_CFG(), "" );
duke@435 599 // find LCA of all uses
duke@435 600 n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
duke@435 601 }
duke@435 602 return find_non_split_ctrl(n);
duke@435 603 }
duke@435 604 Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
never@1356 605
duke@435 606 // Helper function for directing control inputs away from CFG split
duke@435 607 // points.
duke@435 608 Node *find_non_split_ctrl( Node *ctrl ) const {
duke@435 609 if (ctrl != NULL) {
duke@435 610 if (ctrl->is_MultiBranch()) {
duke@435 611 ctrl = ctrl->in(0);
duke@435 612 }
duke@435 613 assert(ctrl->is_CFG(), "CFG");
duke@435 614 }
duke@435 615 return ctrl;
duke@435 616 }
duke@435 617
roland@7394 618 bool cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
roland@7394 619
duke@435 620 public:
morris@4774 621 bool has_node( Node* n ) const {
morris@4774 622 guarantee(n != NULL, "No Node.");
morris@4774 623 return _nodes[n->_idx] != NULL;
morris@4774 624 }
duke@435 625 // check if transform created new nodes that need _ctrl recorded
duke@435 626 Node *get_late_ctrl( Node *n, Node *early );
duke@435 627 Node *get_early_ctrl( Node *n );
roland@4589 628 Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
duke@435 629 void set_early_ctrl( Node *n );
duke@435 630 void set_subtree_ctrl( Node *root );
duke@435 631 void set_ctrl( Node *n, Node *ctrl ) {
duke@435 632 assert( !has_node(n) || has_ctrl(n), "" );
duke@435 633 assert( ctrl->in(0), "cannot set dead control node" );
duke@435 634 assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
duke@435 635 _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
duke@435 636 }
duke@435 637 // Set control and update loop membership
duke@435 638 void set_ctrl_and_loop(Node* n, Node* ctrl) {
duke@435 639 IdealLoopTree* old_loop = get_loop(get_ctrl(n));
duke@435 640 IdealLoopTree* new_loop = get_loop(ctrl);
duke@435 641 if (old_loop != new_loop) {
duke@435 642 if (old_loop->_child == NULL) old_loop->_body.yank(n);
duke@435 643 if (new_loop->_child == NULL) new_loop->_body.push(n);
duke@435 644 }
duke@435 645 set_ctrl(n, ctrl);
duke@435 646 }
duke@435 647 // Control nodes can be replaced or subsumed. During this pass they
duke@435 648 // get their replacement Node in slot 1. Instead of updating the block
duke@435 649 // location of all Nodes in the subsumed block, we lazily do it. As we
duke@435 650 // pull such a subsumed block out of the array, we write back the final
duke@435 651 // correct block.
duke@435 652 Node *get_ctrl( Node *i ) {
duke@435 653 assert(has_node(i), "");
duke@435 654 Node *n = get_ctrl_no_update(i);
duke@435 655 _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
duke@435 656 assert(has_node(i) && has_ctrl(i), "");
duke@435 657 assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
duke@435 658 return n;
duke@435 659 }
cfang@1607 660 // true if CFG node d dominates CFG node n
cfang@1607 661 bool is_dominator(Node *d, Node *n);
cfang@1607 662 // return get_ctrl for a data node and self(n) for a CFG node
cfang@1607 663 Node* ctrl_or_self(Node* n) {
cfang@1607 664 if (has_ctrl(n))
cfang@1607 665 return get_ctrl(n);
cfang@1607 666 else {
cfang@1607 667 assert (n->is_CFG(), "must be a CFG node");
cfang@1607 668 return n;
cfang@1607 669 }
cfang@1607 670 }
duke@435 671
duke@435 672 private:
roland@8311 673 Node *get_ctrl_no_update_helper(Node *i) const {
roland@8311 674 assert(has_ctrl(i), "should be control, not loop");
roland@8311 675 return (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
roland@8311 676 }
roland@8311 677
roland@8311 678 Node *get_ctrl_no_update(Node *i) const {
duke@435 679 assert( has_ctrl(i), "" );
roland@8311 680 Node *n = get_ctrl_no_update_helper(i);
duke@435 681 if (!n->in(0)) {
duke@435 682 // Skip dead CFG nodes
duke@435 683 do {
roland@8311 684 n = get_ctrl_no_update_helper(n);
duke@435 685 } while (!n->in(0));
duke@435 686 n = find_non_split_ctrl(n);
duke@435 687 }
duke@435 688 return n;
duke@435 689 }
duke@435 690
duke@435 691 // Check for loop being set
duke@435 692 // "n" must be a control node. Returns true if "n" is known to be in a loop.
duke@435 693 bool has_loop( Node *n ) const {
duke@435 694 assert(!has_node(n) || !has_ctrl(n), "");
duke@435 695 return has_node(n);
duke@435 696 }
duke@435 697 // Set loop
duke@435 698 void set_loop( Node *n, IdealLoopTree *loop ) {
duke@435 699 _nodes.map(n->_idx, (Node*)loop);
duke@435 700 }
duke@435 701 // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms. Replace
duke@435 702 // the 'old_node' with 'new_node'. Kill old-node. Add a reference
duke@435 703 // from old_node to new_node to support the lazy update. Reference
cfang@1607 704 // replaces loop reference, since that is not needed for dead node.
duke@435 705 public:
roland@8311 706 void lazy_update(Node *old_node, Node *new_node) {
roland@8311 707 assert(old_node != new_node, "no cycles please");
roland@8311 708 // Re-use the side array slot for this node to provide the
roland@8311 709 // forwarding pointer.
roland@8311 710 _nodes.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
duke@435 711 }
roland@8311 712 void lazy_replace(Node *old_node, Node *new_node) {
roland@8311 713 _igvn.replace_node(old_node, new_node);
roland@8311 714 lazy_update(old_node, new_node);
duke@435 715 }
duke@435 716
duke@435 717 private:
duke@435 718
duke@435 719 // Place 'n' in some loop nest, where 'n' is a CFG node
duke@435 720 void build_loop_tree();
duke@435 721 int build_loop_tree_impl( Node *n, int pre_order );
duke@435 722 // Insert loop into the existing loop tree. 'innermost' is a leaf of the
duke@435 723 // loop tree, not the root.
duke@435 724 IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
duke@435 725
duke@435 726 // Place Data nodes in some loop nest
never@1356 727 void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
never@1356 728 void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
never@1356 729 void build_loop_late_post ( Node* n );
duke@435 730
duke@435 731 // Array of immediate dominance info for each CFG node indexed by node idx
duke@435 732 private:
duke@435 733 uint _idom_size;
duke@435 734 Node **_idom; // Array of immediate dominators
duke@435 735 uint *_dom_depth; // Used for fast LCA test
duke@435 736 GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
duke@435 737
duke@435 738 Node* idom_no_update(Node* d) const {
duke@435 739 assert(d->_idx < _idom_size, "oob");
duke@435 740 Node* n = _idom[d->_idx];
duke@435 741 assert(n != NULL,"Bad immediate dominator info.");
duke@435 742 while (n->in(0) == NULL) { // Skip dead CFG nodes
duke@435 743 //n = n->in(1);
duke@435 744 n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
duke@435 745 assert(n != NULL,"Bad immediate dominator info.");
duke@435 746 }
duke@435 747 return n;
duke@435 748 }
duke@435 749 Node *idom(Node* d) const {
duke@435 750 uint didx = d->_idx;
duke@435 751 Node *n = idom_no_update(d);
duke@435 752 _idom[didx] = n; // Lazily remove dead CFG nodes from table.
duke@435 753 return n;
duke@435 754 }
duke@435 755 uint dom_depth(Node* d) const {
morris@4774 756 guarantee(d != NULL, "Null dominator info.");
morris@4774 757 guarantee(d->_idx < _idom_size, "");
duke@435 758 return _dom_depth[d->_idx];
duke@435 759 }
duke@435 760 void set_idom(Node* d, Node* n, uint dom_depth);
duke@435 761 // Locally compute IDOM using dom_lca call
duke@435 762 Node *compute_idom( Node *region ) const;
duke@435 763 // Recompute dom_depth
duke@435 764 void recompute_dom_depth();
duke@435 765
duke@435 766 // Is safept not required by an outer loop?
duke@435 767 bool is_deleteable_safept(Node* sfpt);
duke@435 768
kvn@2665 769 // Replace parallel induction variable (parallel to trip counter)
kvn@2665 770 void replace_parallel_iv(IdealLoopTree *loop);
kvn@2665 771
never@1356 772 // Perform verification that the graph is valid.
never@1356 773 PhaseIdealLoop( PhaseIterGVN &igvn) :
never@1356 774 PhaseTransform(Ideal_Loop),
never@1356 775 _igvn(igvn),
kvn@2555 776 _dom_lca_tags(arena()), // Thread::resource_area
never@1356 777 _verify_me(NULL),
never@1356 778 _verify_only(true) {
kvn@3260 779 build_and_optimize(false, false);
never@1356 780 }
never@1356 781
never@1356 782 // build the loop tree and perform any requested optimizations
kvn@3260 783 void build_and_optimize(bool do_split_if, bool skip_loop_opts);
never@1356 784
duke@435 785 public:
duke@435 786 // Dominators for the sea of nodes
duke@435 787 void Dominators();
duke@435 788 Node *dom_lca( Node *n1, Node *n2 ) const {
duke@435 789 return find_non_split_ctrl(dom_lca_internal(n1, n2));
duke@435 790 }
duke@435 791 Node *dom_lca_internal( Node *n1, Node *n2 ) const;
duke@435 792
duke@435 793 // Compute the Ideal Node to Loop mapping
kvn@3260 794 PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool skip_loop_opts = false) :
never@1356 795 PhaseTransform(Ideal_Loop),
never@1356 796 _igvn(igvn),
kvn@2555 797 _dom_lca_tags(arena()), // Thread::resource_area
never@1356 798 _verify_me(NULL),
never@1356 799 _verify_only(false) {
kvn@3260 800 build_and_optimize(do_split_ifs, skip_loop_opts);
never@1356 801 }
never@1356 802
never@1356 803 // Verify that verify_me made the same decisions as a fresh run.
never@1356 804 PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
never@1356 805 PhaseTransform(Ideal_Loop),
never@1356 806 _igvn(igvn),
kvn@2555 807 _dom_lca_tags(arena()), // Thread::resource_area
never@1356 808 _verify_me(verify_me),
never@1356 809 _verify_only(false) {
kvn@3260 810 build_and_optimize(false, false);
never@1356 811 }
never@1356 812
never@1356 813 // Build and verify the loop tree without modifying the graph. This
never@1356 814 // is useful to verify that all inputs properly dominate their uses.
never@1356 815 static void verify(PhaseIterGVN& igvn) {
never@1356 816 #ifdef ASSERT
never@1356 817 PhaseIdealLoop v(igvn);
never@1356 818 #endif
never@1356 819 }
duke@435 820
duke@435 821 // True if the method has at least 1 irreducible loop
duke@435 822 bool _has_irreducible_loops;
duke@435 823
duke@435 824 // Per-Node transform
duke@435 825 virtual Node *transform( Node *a_node ) { return 0; }
duke@435 826
kvn@2665 827 bool is_counted_loop( Node *x, IdealLoopTree *loop );
duke@435 828
kvn@2877 829 Node* exact_limit( IdealLoopTree *loop );
kvn@2877 830
duke@435 831 // Return a post-walked LoopNode
duke@435 832 IdealLoopTree *get_loop( Node *n ) const {
duke@435 833 // Dead nodes have no loop, so return the top level loop instead
duke@435 834 if (!has_node(n)) return _ltree_root;
duke@435 835 assert(!has_ctrl(n), "");
duke@435 836 return (IdealLoopTree*)_nodes[n->_idx];
duke@435 837 }
duke@435 838
duke@435 839 // Is 'n' a (nested) member of 'loop'?
duke@435 840 int is_member( const IdealLoopTree *loop, Node *n ) const {
duke@435 841 return loop->is_member(get_loop(n)); }
duke@435 842
duke@435 843 // This is the basic building block of the loop optimizations. It clones an
duke@435 844 // entire loop body. It makes an old_new loop body mapping; with this
duke@435 845 // mapping you can find the new-loop equivalent to an old-loop node. All
duke@435 846 // new-loop nodes are exactly equal to their old-loop counterparts, all
duke@435 847 // edges are the same. All exits from the old-loop now have a RegionNode
duke@435 848 // that merges the equivalent new-loop path. This is true even for the
duke@435 849 // normal "loop-exit" condition. All uses of loop-invariant old-loop values
duke@435 850 // now come from (one or more) Phis that merge their new-loop equivalents.
duke@435 851 // Parameter side_by_side_idom:
duke@435 852 // When side_by_size_idom is NULL, the dominator tree is constructed for
duke@435 853 // the clone loop to dominate the original. Used in construction of
duke@435 854 // pre-main-post loop sequence.
duke@435 855 // When nonnull, the clone and original are side-by-side, both are
duke@435 856 // dominated by the passed in side_by_side_idom node. Used in
duke@435 857 // construction of unswitched loops.
duke@435 858 void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
duke@435 859 Node* side_by_side_idom = NULL);
duke@435 860
duke@435 861 // If we got the effect of peeling, either by actually peeling or by
duke@435 862 // making a pre-loop which must execute at least once, we can remove
duke@435 863 // all loop-invariant dominated tests in the main body.
duke@435 864 void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
duke@435 865
duke@435 866 // Generate code to do a loop peel for the given loop (and body).
duke@435 867 // old_new is a temp array.
duke@435 868 void do_peeling( IdealLoopTree *loop, Node_List &old_new );
duke@435 869
duke@435 870 // Add pre and post loops around the given loop. These loops are used
duke@435 871 // during RCE, unrolling and aligning loops.
duke@435 872 void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
duke@435 873 // If Node n lives in the back_ctrl block, we clone a private version of n
duke@435 874 // in preheader_ctrl block and return that, otherwise return n.
kvn@2985 875 Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
duke@435 876
duke@435 877 // Take steps to maximally unroll the loop. Peel any odd iterations, then
duke@435 878 // unroll to do double iterations. The next round of major loop transforms
duke@435 879 // will repeat till the doubled loop body does all remaining iterations in 1
duke@435 880 // pass.
duke@435 881 void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
duke@435 882
duke@435 883 // Unroll the loop body one step - make each trip do 2 iterations.
duke@435 884 void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
duke@435 885
duke@435 886 // Return true if exp is a constant times an induction var
duke@435 887 bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
duke@435 888
duke@435 889 // Return true if exp is a scaled induction var plus (or minus) constant
duke@435 890 bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
duke@435 891
cfang@1607 892 // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
kvn@2665 893 ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
kvn@2665 894 Deoptimization::DeoptReason reason);
kvn@2665 895 void register_control(Node* n, IdealLoopTree *loop, Node* pred);
kvn@2665 896
kvn@2727 897 // Clone loop predicates to cloned loops (peeled, unswitched)
kvn@2727 898 static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry,
kvn@2727 899 Deoptimization::DeoptReason reason,
kvn@2727 900 PhaseIdealLoop* loop_phase,
kvn@2727 901 PhaseIterGVN* igvn);
kvn@3043 902
kvn@2727 903 static Node* clone_loop_predicates(Node* old_entry, Node* new_entry,
kvn@2877 904 bool clone_limit_check,
kvn@2727 905 PhaseIdealLoop* loop_phase,
kvn@2727 906 PhaseIterGVN* igvn);
kvn@2877 907 Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
kvn@2727 908
kvn@2727 909 static Node* skip_loop_predicates(Node* entry);
kvn@2727 910
kvn@2727 911 // Find a good location to insert a predicate
kvn@2665 912 static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
kvn@2665 913 // Find a predicate
kvn@2665 914 static Node* find_predicate(Node* entry);
cfang@1607 915 // Construct a range check for a predicate if
kvn@2877 916 BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
cfang@1607 917 int scale, Node* offset,
thartmann@8797 918 Node* init, Node* limit, jint stride,
thartmann@8797 919 Node* range, bool upper, bool &overflow);
cfang@1607 920
cfang@1607 921 // Implementation of the loop predication to promote checks outside the loop
cfang@1607 922 bool loop_predication_impl(IdealLoopTree *loop);
cfang@1607 923
cfang@1607 924 // Helper function to collect predicate for eliminating the useless ones
cfang@1607 925 void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
cfang@1607 926 void eliminate_useless_predicates();
cfang@1607 927
roland@4589 928 // Change the control input of expensive nodes to allow commoning by
roland@4589 929 // IGVN when it is guaranteed to not result in a more frequent
roland@4589 930 // execution of the expensive node. Return true if progress.
roland@4589 931 bool process_expensive_nodes();
roland@4589 932
roland@4589 933 // Check whether node has become unreachable
roland@4589 934 bool is_node_unreachable(Node *n) const {
roland@4589 935 return !has_node(n) || n->is_unreachable(_igvn);
roland@4589 936 }
roland@4589 937
duke@435 938 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
duke@435 939 void do_range_check( IdealLoopTree *loop, Node_List &old_new );
duke@435 940
duke@435 941 // Create a slow version of the loop by cloning the loop
duke@435 942 // and inserting an if to select fast-slow versions.
duke@435 943 ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
duke@435 944 Node_List &old_new);
duke@435 945
duke@435 946 // Clone loop with an invariant test (that does not exit) and
duke@435 947 // insert a clone of the test that selects which version to
duke@435 948 // execute.
duke@435 949 void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
duke@435 950
duke@435 951 // Find candidate "if" for unswitching
duke@435 952 IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
duke@435 953
duke@435 954 // Range Check Elimination uses this function!
duke@435 955 // Constrain the main loop iterations so the affine function:
kvn@2877 956 // low_limit <= scale_con * I + offset < upper_limit
duke@435 957 // always holds true. That is, either increase the number of iterations in
duke@435 958 // the pre-loop or the post-loop until the condition holds true in the main
duke@435 959 // loop. Scale_con, offset and limit are all loop invariant.
kvn@2877 960 void add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
kvn@2915 961 // Helper function for add_constraint().
roland@9739 962 Node* adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl, bool round_up);
duke@435 963
duke@435 964 // Partially peel loop up through last_peel node.
duke@435 965 bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
duke@435 966
duke@435 967 // Create a scheduled list of nodes control dependent on ctrl set.
duke@435 968 void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
duke@435 969 // Has a use in the vector set
duke@435 970 bool has_use_in_set( Node* n, VectorSet& vset );
duke@435 971 // Has use internal to the vector set (ie. not in a phi at the loop head)
duke@435 972 bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
duke@435 973 // clone "n" for uses that are outside of loop
kvn@5154 974 int clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
duke@435 975 // clone "n" for special uses that are in the not_peeled region
duke@435 976 void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
duke@435 977 VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
duke@435 978 // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
duke@435 979 void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
duke@435 980 #ifdef ASSERT
duke@435 981 // Validate the loop partition sets: peel and not_peel
duke@435 982 bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
duke@435 983 // Ensure that uses outside of loop are of the right form
duke@435 984 bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
duke@435 985 uint orig_exit_idx, uint clone_exit_idx);
duke@435 986 bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
duke@435 987 #endif
duke@435 988
duke@435 989 // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
duke@435 990 int stride_of_possible_iv( Node* iff );
duke@435 991 bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
duke@435 992 // Return the (unique) control output node that's in the loop (if it exists.)
duke@435 993 Node* stay_in_loop( Node* n, IdealLoopTree *loop);
duke@435 994 // Insert a signed compare loop exit cloned from an unsigned compare.
duke@435 995 IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
duke@435 996 void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
duke@435 997 // Utility to register node "n" with PhaseIdealLoop
duke@435 998 void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
duke@435 999 // Utility to create an if-projection
duke@435 1000 ProjNode* proj_clone(ProjNode* p, IfNode* iff);
duke@435 1001 // Force the iff control output to be the live_proj
duke@435 1002 Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
duke@435 1003 // Insert a region before an if projection
duke@435 1004 RegionNode* insert_region_before_proj(ProjNode* proj);
duke@435 1005 // Insert a new if before an if projection
duke@435 1006 ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
duke@435 1007
duke@435 1008 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
duke@435 1009 // "Nearly" because all Nodes have been cloned from the original in the loop,
duke@435 1010 // but the fall-in edges to the Cmp are different. Clone bool/Cmp pairs
duke@435 1011 // through the Phi recursively, and return a Bool.
duke@435 1012 BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
duke@435 1013 CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
duke@435 1014
duke@435 1015
duke@435 1016 // Rework addressing expressions to get the most loop-invariant stuff
duke@435 1017 // moved out. We'd like to do all associative operators, but it's especially
duke@435 1018 // important (common) to do address expressions.
duke@435 1019 Node *remix_address_expressions( Node *n );
duke@435 1020
duke@435 1021 // Attempt to use a conditional move instead of a phi/branch
duke@435 1022 Node *conditional_move( Node *n );
duke@435 1023
duke@435 1024 // Reorganize offset computations to lower register pressure.
duke@435 1025 // Mostly prevent loop-fallout uses of the pre-incremented trip counter
duke@435 1026 // (which are then alive with the post-incremented trip counter
duke@435 1027 // forcing an extra register move)
duke@435 1028 void reorg_offsets( IdealLoopTree *loop );
duke@435 1029
duke@435 1030 // Check for aggressive application of 'split-if' optimization,
duke@435 1031 // using basic block level info.
duke@435 1032 void split_if_with_blocks ( VectorSet &visited, Node_Stack &nstack );
duke@435 1033 Node *split_if_with_blocks_pre ( Node *n );
duke@435 1034 void split_if_with_blocks_post( Node *n );
duke@435 1035 Node *has_local_phi_input( Node *n );
duke@435 1036 // Mark an IfNode as being dominated by a prior test,
duke@435 1037 // without actually altering the CFG (and hence IDOM info).
kvn@3038 1038 void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false );
duke@435 1039
duke@435 1040 // Split Node 'n' through merge point
duke@435 1041 Node *split_thru_region( Node *n, Node *region );
duke@435 1042 // Split Node 'n' through merge point if there is enough win.
duke@435 1043 Node *split_thru_phi( Node *n, Node *region, int policy );
duke@435 1044 // Found an If getting its condition-code input from a Phi in the
duke@435 1045 // same block. Split thru the Region.
duke@435 1046 void do_split_if( Node *iff );
duke@435 1047
never@2118 1048 // Conversion of fill/copy patterns into intrisic versions
never@2118 1049 bool do_intrinsify_fill();
never@2118 1050 bool intrinsify_fill(IdealLoopTree* lpt);
never@2118 1051 bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
never@2118 1052 Node*& shift, Node*& offset);
never@2118 1053
duke@435 1054 private:
duke@435 1055 // Return a type based on condition control flow
duke@435 1056 const TypeInt* filtered_type( Node *n, Node* n_ctrl);
duke@435 1057 const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
duke@435 1058 // Helpers for filtered type
duke@435 1059 const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
duke@435 1060
duke@435 1061 // Helper functions
duke@435 1062 Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
duke@435 1063 Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
duke@435 1064 void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
duke@435 1065 bool split_up( Node *n, Node *blk1, Node *blk2 );
duke@435 1066 void sink_use( Node *use, Node *post_loop );
duke@435 1067 Node *place_near_use( Node *useblock ) const;
duke@435 1068
duke@435 1069 bool _created_loop_node;
duke@435 1070 public:
duke@435 1071 void set_created_loop_node() { _created_loop_node = true; }
duke@435 1072 bool created_loop_node() { return _created_loop_node; }
cfang@1607 1073 void register_new_node( Node *n, Node *blk );
duke@435 1074
kvn@3408 1075 #ifdef ASSERT
roland@4589 1076 void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
kvn@3408 1077 #endif
kvn@3408 1078
duke@435 1079 #ifndef PRODUCT
duke@435 1080 void dump( ) const;
duke@435 1081 void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
duke@435 1082 void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
duke@435 1083 void verify() const; // Major slow :-)
duke@435 1084 void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
duke@435 1085 IdealLoopTree *get_loop_idx(Node* n) const {
duke@435 1086 // Dead nodes have no loop, so return the top level loop instead
duke@435 1087 return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
duke@435 1088 }
duke@435 1089 // Print some stats
duke@435 1090 static void print_statistics();
duke@435 1091 static int _loop_invokes; // Count of PhaseIdealLoop invokes
duke@435 1092 static int _loop_work; // Sum of PhaseIdealLoop x _unique
duke@435 1093 #endif
duke@435 1094 };
duke@435 1095
duke@435 1096 inline Node* IdealLoopTree::tail() {
duke@435 1097 // Handle lazy update of _tail field
duke@435 1098 Node *n = _tail;
duke@435 1099 //while( !n->in(0) ) // Skip dead CFG nodes
duke@435 1100 //n = n->in(1);
duke@435 1101 if (n->in(0) == NULL)
duke@435 1102 n = _phase->get_ctrl(n);
duke@435 1103 _tail = n;
duke@435 1104 return n;
duke@435 1105 }
duke@435 1106
duke@435 1107
duke@435 1108 // Iterate over the loop tree using a preorder, left-to-right traversal.
duke@435 1109 //
duke@435 1110 // Example that visits all counted loops from within PhaseIdealLoop
duke@435 1111 //
duke@435 1112 // for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
duke@435 1113 // IdealLoopTree* lpt = iter.current();
duke@435 1114 // if (!lpt->is_counted()) continue;
duke@435 1115 // ...
duke@435 1116 class LoopTreeIterator : public StackObj {
duke@435 1117 private:
duke@435 1118 IdealLoopTree* _root;
duke@435 1119 IdealLoopTree* _curnt;
duke@435 1120
duke@435 1121 public:
duke@435 1122 LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
duke@435 1123
duke@435 1124 bool done() { return _curnt == NULL; } // Finished iterating?
duke@435 1125
duke@435 1126 void next(); // Advance to next loop tree
duke@435 1127
duke@435 1128 IdealLoopTree* current() { return _curnt; } // Return current value of iterator.
duke@435 1129 };
stefank@2314 1130
stefank@2314 1131 #endif // SHARE_VM_OPTO_LOOPNODE_HPP

mercurial