src/share/vm/opto/type.cpp

Thu, 12 Mar 2009 18:16:36 -0700

author
trims
date
Thu, 12 Mar 2009 18:16:36 -0700
changeset 1063
7bb995fbd3c0
parent 1014
0fbdb4381b99
parent 1059
337400e7a5dd
child 1255
915cc9c5ebc6
permissions
-rw-r--r--

Merge

duke@435 1 /*
twisti@1059 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 #include "incls/_precompiled.incl"
duke@435 30 #include "incls/_type.cpp.incl"
duke@435 31
duke@435 32 // Dictionary of types shared among compilations.
duke@435 33 Dict* Type::_shared_type_dict = NULL;
duke@435 34
duke@435 35 // Array which maps compiler types to Basic Types
duke@435 36 const BasicType Type::_basic_type[Type::lastype] = {
duke@435 37 T_ILLEGAL, // Bad
duke@435 38 T_ILLEGAL, // Control
duke@435 39 T_VOID, // Top
duke@435 40 T_INT, // Int
duke@435 41 T_LONG, // Long
duke@435 42 T_VOID, // Half
coleenp@548 43 T_NARROWOOP, // NarrowOop
duke@435 44
duke@435 45 T_ILLEGAL, // Tuple
duke@435 46 T_ARRAY, // Array
duke@435 47
duke@435 48 T_ADDRESS, // AnyPtr // shows up in factory methods for NULL_PTR
duke@435 49 T_ADDRESS, // RawPtr
duke@435 50 T_OBJECT, // OopPtr
duke@435 51 T_OBJECT, // InstPtr
duke@435 52 T_OBJECT, // AryPtr
duke@435 53 T_OBJECT, // KlassPtr
duke@435 54
duke@435 55 T_OBJECT, // Function
duke@435 56 T_ILLEGAL, // Abio
duke@435 57 T_ADDRESS, // Return_Address
duke@435 58 T_ILLEGAL, // Memory
duke@435 59 T_FLOAT, // FloatTop
duke@435 60 T_FLOAT, // FloatCon
duke@435 61 T_FLOAT, // FloatBot
duke@435 62 T_DOUBLE, // DoubleTop
duke@435 63 T_DOUBLE, // DoubleCon
duke@435 64 T_DOUBLE, // DoubleBot
duke@435 65 T_ILLEGAL, // Bottom
duke@435 66 };
duke@435 67
duke@435 68 // Map ideal registers (machine types) to ideal types
duke@435 69 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 70
duke@435 71 // Map basic types to canonical Type* pointers.
duke@435 72 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 73
duke@435 74 // Map basic types to constant-zero Types.
duke@435 75 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 76
duke@435 77 // Map basic types to array-body alias types.
duke@435 78 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 79
duke@435 80 //=============================================================================
duke@435 81 // Convenience common pre-built types.
duke@435 82 const Type *Type::ABIO; // State-of-machine only
duke@435 83 const Type *Type::BOTTOM; // All values
duke@435 84 const Type *Type::CONTROL; // Control only
duke@435 85 const Type *Type::DOUBLE; // All doubles
duke@435 86 const Type *Type::FLOAT; // All floats
duke@435 87 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 88 const Type *Type::MEMORY; // Abstract store only
duke@435 89 const Type *Type::RETURN_ADDRESS;
duke@435 90 const Type *Type::TOP; // No values in set
duke@435 91
duke@435 92 //------------------------------get_const_type---------------------------
duke@435 93 const Type* Type::get_const_type(ciType* type) {
duke@435 94 if (type == NULL) {
duke@435 95 return NULL;
duke@435 96 } else if (type->is_primitive_type()) {
duke@435 97 return get_const_basic_type(type->basic_type());
duke@435 98 } else {
duke@435 99 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 100 }
duke@435 101 }
duke@435 102
duke@435 103 //---------------------------array_element_basic_type---------------------------------
duke@435 104 // Mapping to the array element's basic type.
duke@435 105 BasicType Type::array_element_basic_type() const {
duke@435 106 BasicType bt = basic_type();
duke@435 107 if (bt == T_INT) {
duke@435 108 if (this == TypeInt::INT) return T_INT;
duke@435 109 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 110 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 111 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 112 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 113 return T_VOID;
duke@435 114 }
duke@435 115 return bt;
duke@435 116 }
duke@435 117
duke@435 118 //---------------------------get_typeflow_type---------------------------------
duke@435 119 // Import a type produced by ciTypeFlow.
duke@435 120 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 121 switch (type->basic_type()) {
duke@435 122
duke@435 123 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 124 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 125 return Type::BOTTOM;
duke@435 126
duke@435 127 case ciTypeFlow::StateVector::T_TOP:
duke@435 128 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 129 return Type::TOP;
duke@435 130
duke@435 131 case ciTypeFlow::StateVector::T_NULL:
duke@435 132 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 133 return TypePtr::NULL_PTR;
duke@435 134
duke@435 135 case ciTypeFlow::StateVector::T_LONG2:
duke@435 136 // The ciTypeFlow pass pushes a long, then the half.
duke@435 137 // We do the same.
duke@435 138 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 139 return TypeInt::TOP;
duke@435 140
duke@435 141 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 142 // The ciTypeFlow pass pushes double, then the half.
duke@435 143 // Our convention is the same.
duke@435 144 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 145 return Type::TOP;
duke@435 146
duke@435 147 case T_ADDRESS:
duke@435 148 assert(type->is_return_address(), "");
duke@435 149 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 150
duke@435 151 default:
duke@435 152 // make sure we did not mix up the cases:
duke@435 153 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 154 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 155 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 156 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 157 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 158 assert(!type->is_return_address(), "");
duke@435 159
duke@435 160 return Type::get_const_type(type);
duke@435 161 }
duke@435 162 }
duke@435 163
duke@435 164
duke@435 165 //------------------------------make-------------------------------------------
duke@435 166 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 167 // and look for an existing copy in the type dictionary.
duke@435 168 const Type *Type::make( enum TYPES t ) {
duke@435 169 return (new Type(t))->hashcons();
duke@435 170 }
kvn@658 171
duke@435 172 //------------------------------cmp--------------------------------------------
duke@435 173 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 174 if( t1->_base != t2->_base )
duke@435 175 return 1; // Missed badly
duke@435 176 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 177 return !t1->eq(t2); // Return ZERO if equal
duke@435 178 }
duke@435 179
duke@435 180 //------------------------------hash-------------------------------------------
duke@435 181 int Type::uhash( const Type *const t ) {
duke@435 182 return t->hash();
duke@435 183 }
duke@435 184
duke@435 185 //--------------------------Initialize_shared----------------------------------
duke@435 186 void Type::Initialize_shared(Compile* current) {
duke@435 187 // This method does not need to be locked because the first system
duke@435 188 // compilations (stub compilations) occur serially. If they are
duke@435 189 // changed to proceed in parallel, then this section will need
duke@435 190 // locking.
duke@435 191
duke@435 192 Arena* save = current->type_arena();
duke@435 193 Arena* shared_type_arena = new Arena();
duke@435 194
duke@435 195 current->set_type_arena(shared_type_arena);
duke@435 196 _shared_type_dict =
duke@435 197 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 198 shared_type_arena, 128 );
duke@435 199 current->set_type_dict(_shared_type_dict);
duke@435 200
duke@435 201 // Make shared pre-built types.
duke@435 202 CONTROL = make(Control); // Control only
duke@435 203 TOP = make(Top); // No values in set
duke@435 204 MEMORY = make(Memory); // Abstract store only
duke@435 205 ABIO = make(Abio); // State-of-machine only
duke@435 206 RETURN_ADDRESS=make(Return_Address);
duke@435 207 FLOAT = make(FloatBot); // All floats
duke@435 208 DOUBLE = make(DoubleBot); // All doubles
duke@435 209 BOTTOM = make(Bottom); // Everything
duke@435 210 HALF = make(Half); // Placeholder half of doublewide type
duke@435 211
duke@435 212 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 213 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 214
duke@435 215 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 216 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 217
duke@435 218 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 219 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 220 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 221 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 222 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 223 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 224 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 225 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 226 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 227 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 228 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 229 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 230 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 231 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 232 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 233 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 234 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 235 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 236 // CmpL is overloaded both as the bytecode computation returning
duke@435 237 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 238 // compare returning optimizer ideal-type flags.
duke@435 239 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 240 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 241 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 242 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
duke@435 243
duke@435 244 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 245 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 246 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 247 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 248 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 249 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 250 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 251
duke@435 252 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 253 fboth[0] = Type::CONTROL;
duke@435 254 fboth[1] = Type::CONTROL;
duke@435 255 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 256
duke@435 257 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 258 ffalse[0] = Type::CONTROL;
duke@435 259 ffalse[1] = Type::TOP;
duke@435 260 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 261
duke@435 262 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 263 fneither[0] = Type::TOP;
duke@435 264 fneither[1] = Type::TOP;
duke@435 265 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 266
duke@435 267 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 268 ftrue[0] = Type::TOP;
duke@435 269 ftrue[1] = Type::CONTROL;
duke@435 270 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 271
duke@435 272 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 273 floop[0] = Type::CONTROL;
duke@435 274 floop[1] = TypeInt::INT;
duke@435 275 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 276
duke@435 277 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 278 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 279 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 280
duke@435 281 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 282 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 283
duke@435 284 const Type **fmembar = TypeTuple::fields(0);
duke@435 285 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 286
duke@435 287 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 288 fsc[0] = TypeInt::CC;
duke@435 289 fsc[1] = Type::MEMORY;
duke@435 290 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 291
duke@435 292 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 293 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 294 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 295 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 296 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 297 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 298 false, 0, oopDesc::klass_offset_in_bytes());
duke@435 299 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot);
duke@435 300
coleenp@548 301 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 302 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 303
coleenp@548 304 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 305 mreg2type[Op_Set ] = 0;
coleenp@548 306 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 307 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 308 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 309 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 310 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 311 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 312 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 313
duke@435 314 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), current->env()->Object_klass(), false, arrayOopDesc::length_offset_in_bytes());
kvn@598 315
kvn@598 316 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 317
kvn@598 318 #ifdef _LP64
kvn@598 319 if (UseCompressedOops) {
kvn@598 320 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 321 } else
kvn@598 322 #endif
kvn@598 323 {
kvn@598 324 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 325 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 326 }
duke@435 327 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 328 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 329 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 330 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 331 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 332 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 333 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 334
kvn@598 335 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 336 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 337 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 338 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 339 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 340 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 341 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 342 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 343 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 344 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 345 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 346 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 347
duke@435 348 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 349 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 350
duke@435 351 const Type **fi2c = TypeTuple::fields(2);
duke@435 352 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
duke@435 353 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 354 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 355
duke@435 356 const Type **intpair = TypeTuple::fields(2);
duke@435 357 intpair[0] = TypeInt::INT;
duke@435 358 intpair[1] = TypeInt::INT;
duke@435 359 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 360
duke@435 361 const Type **longpair = TypeTuple::fields(2);
duke@435 362 longpair[0] = TypeLong::LONG;
duke@435 363 longpair[1] = TypeLong::LONG;
duke@435 364 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 365
coleenp@548 366 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
duke@435 367 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
duke@435 368 _const_basic_type[T_CHAR] = TypeInt::CHAR;
duke@435 369 _const_basic_type[T_BYTE] = TypeInt::BYTE;
duke@435 370 _const_basic_type[T_SHORT] = TypeInt::SHORT;
duke@435 371 _const_basic_type[T_INT] = TypeInt::INT;
duke@435 372 _const_basic_type[T_LONG] = TypeLong::LONG;
duke@435 373 _const_basic_type[T_FLOAT] = Type::FLOAT;
duke@435 374 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
duke@435 375 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
duke@435 376 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
duke@435 377 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
duke@435 378 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
duke@435 379 _const_basic_type[T_CONFLICT]= Type::BOTTOM; // why not?
duke@435 380
coleenp@548 381 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
duke@435 382 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
duke@435 383 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
duke@435 384 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
duke@435 385 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
duke@435 386 _zero_type[T_INT] = TypeInt::ZERO;
duke@435 387 _zero_type[T_LONG] = TypeLong::ZERO;
duke@435 388 _zero_type[T_FLOAT] = TypeF::ZERO;
duke@435 389 _zero_type[T_DOUBLE] = TypeD::ZERO;
duke@435 390 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
duke@435 391 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
duke@435 392 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
duke@435 393 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 394
duke@435 395 // get_zero_type() should not happen for T_CONFLICT
duke@435 396 _zero_type[T_CONFLICT]= NULL;
duke@435 397
duke@435 398 // Restore working type arena.
duke@435 399 current->set_type_arena(save);
duke@435 400 current->set_type_dict(NULL);
duke@435 401 }
duke@435 402
duke@435 403 //------------------------------Initialize-------------------------------------
duke@435 404 void Type::Initialize(Compile* current) {
duke@435 405 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 406
duke@435 407 if (_shared_type_dict == NULL) {
duke@435 408 Initialize_shared(current);
duke@435 409 }
duke@435 410
duke@435 411 Arena* type_arena = current->type_arena();
duke@435 412
duke@435 413 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 414 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 415 current->set_type_dict(tdic);
duke@435 416
duke@435 417 // Transfer the shared types.
duke@435 418 DictI i(_shared_type_dict);
duke@435 419 for( ; i.test(); ++i ) {
duke@435 420 Type* t = (Type*)i._value;
duke@435 421 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 422 }
coleenp@548 423
coleenp@548 424 #ifdef ASSERT
coleenp@548 425 verify_lastype();
coleenp@548 426 #endif
duke@435 427 }
duke@435 428
duke@435 429 //------------------------------hashcons---------------------------------------
duke@435 430 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 431 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 432 // current Type in the Type table.
duke@435 433 const Type *Type::hashcons(void) {
duke@435 434 debug_only(base()); // Check the assertion in Type::base().
duke@435 435 // Look up the Type in the Type dictionary
duke@435 436 Dict *tdic = type_dict();
duke@435 437 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 438 if( old ) { // Pre-existing Type?
duke@435 439 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 440 delete this; // Yes, Nuke this guy
duke@435 441 assert( old->_dual, "" );
duke@435 442 return old; // Return pre-existing
duke@435 443 }
duke@435 444
duke@435 445 // Every type has a dual (to make my lattice symmetric).
duke@435 446 // Since we just discovered a new Type, compute its dual right now.
duke@435 447 assert( !_dual, "" ); // No dual yet
duke@435 448 _dual = xdual(); // Compute the dual
duke@435 449 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 450 _dual = this;
duke@435 451 return this;
duke@435 452 }
duke@435 453 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 454 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 455 // New Type, insert into Type table
duke@435 456 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 457 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 458 #ifdef ASSERT
duke@435 459 Type *dual_dual = (Type*)_dual->xdual();
duke@435 460 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 461 delete dual_dual;
duke@435 462 #endif
duke@435 463 return this; // Return new Type
duke@435 464 }
duke@435 465
duke@435 466 //------------------------------eq---------------------------------------------
duke@435 467 // Structural equality check for Type representations
duke@435 468 bool Type::eq( const Type * ) const {
duke@435 469 return true; // Nothing else can go wrong
duke@435 470 }
duke@435 471
duke@435 472 //------------------------------hash-------------------------------------------
duke@435 473 // Type-specific hashing function.
duke@435 474 int Type::hash(void) const {
duke@435 475 return _base;
duke@435 476 }
duke@435 477
duke@435 478 //------------------------------is_finite--------------------------------------
duke@435 479 // Has a finite value
duke@435 480 bool Type::is_finite() const {
duke@435 481 return false;
duke@435 482 }
duke@435 483
duke@435 484 //------------------------------is_nan-----------------------------------------
duke@435 485 // Is not a number (NaN)
duke@435 486 bool Type::is_nan() const {
duke@435 487 return false;
duke@435 488 }
duke@435 489
duke@435 490 //------------------------------meet-------------------------------------------
duke@435 491 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 492 // commutative and the lattice is symmetric.
duke@435 493 const Type *Type::meet( const Type *t ) const {
coleenp@548 494 if (isa_narrowoop() && t->isa_narrowoop()) {
kvn@656 495 const Type* result = make_ptr()->meet(t->make_ptr());
kvn@656 496 return result->make_narrowoop();
coleenp@548 497 }
coleenp@548 498
duke@435 499 const Type *mt = xmeet(t);
coleenp@548 500 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
duke@435 501 #ifdef ASSERT
duke@435 502 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 503 const Type* dual_join = mt->_dual;
duke@435 504 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 505 const Type *t2this = dual_join->xmeet( _dual);
duke@435 506
duke@435 507 // Interface meet Oop is Not Symmetric:
duke@435 508 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 509 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
duke@435 510 const TypeInstPtr* this_inst = this->isa_instptr();
duke@435 511 const TypeInstPtr* t_inst = t->isa_instptr();
duke@435 512 bool interface_vs_oop = false;
duke@435 513 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
duke@435 514 bool this_interface = this_inst->klass()->is_interface();
duke@435 515 bool t_interface = t_inst->klass()->is_interface();
duke@435 516 interface_vs_oop = this_interface ^ t_interface;
duke@435 517 }
kvn@658 518
kvn@658 519 if( !interface_vs_oop && (t2t != t->_dual || t2this != _dual) ) {
duke@435 520 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 521 tty->print("t = "); t->dump(); tty->cr();
duke@435 522 tty->print("this= "); dump(); tty->cr();
duke@435 523 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 524
duke@435 525 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 526 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 527 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 528
duke@435 529 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 530 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 531
duke@435 532 fatal("meet not symmetric" );
duke@435 533 }
duke@435 534 #endif
duke@435 535 return mt;
duke@435 536 }
duke@435 537
duke@435 538 //------------------------------xmeet------------------------------------------
duke@435 539 // Compute the MEET of two types. It returns a new Type object.
duke@435 540 const Type *Type::xmeet( const Type *t ) const {
duke@435 541 // Perform a fast test for common case; meeting the same types together.
duke@435 542 if( this == t ) return this; // Meeting same type-rep?
duke@435 543
duke@435 544 // Meeting TOP with anything?
duke@435 545 if( _base == Top ) return t;
duke@435 546
duke@435 547 // Meeting BOTTOM with anything?
duke@435 548 if( _base == Bottom ) return BOTTOM;
duke@435 549
duke@435 550 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 551 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 552 switch (t->base()) { // Switch on original type
duke@435 553
duke@435 554 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 555 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 556 case FloatCon:
duke@435 557 case DoubleCon:
duke@435 558 case Int:
duke@435 559 case Long:
duke@435 560 return t->xmeet(this);
duke@435 561
duke@435 562 case OopPtr:
duke@435 563 return t->xmeet(this);
duke@435 564
duke@435 565 case InstPtr:
duke@435 566 return t->xmeet(this);
duke@435 567
duke@435 568 case KlassPtr:
duke@435 569 return t->xmeet(this);
duke@435 570
duke@435 571 case AryPtr:
duke@435 572 return t->xmeet(this);
duke@435 573
coleenp@548 574 case NarrowOop:
coleenp@548 575 return t->xmeet(this);
coleenp@548 576
duke@435 577 case Bad: // Type check
duke@435 578 default: // Bogus type not in lattice
duke@435 579 typerr(t);
duke@435 580 return Type::BOTTOM;
duke@435 581
duke@435 582 case Bottom: // Ye Olde Default
duke@435 583 return t;
duke@435 584
duke@435 585 case FloatTop:
duke@435 586 if( _base == FloatTop ) return this;
duke@435 587 case FloatBot: // Float
duke@435 588 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 589 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 590 typerr(t);
duke@435 591 return Type::BOTTOM;
duke@435 592
duke@435 593 case DoubleTop:
duke@435 594 if( _base == DoubleTop ) return this;
duke@435 595 case DoubleBot: // Double
duke@435 596 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 597 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 598 typerr(t);
duke@435 599 return Type::BOTTOM;
duke@435 600
duke@435 601 // These next few cases must match exactly or it is a compile-time error.
duke@435 602 case Control: // Control of code
duke@435 603 case Abio: // State of world outside of program
duke@435 604 case Memory:
duke@435 605 if( _base == t->_base ) return this;
duke@435 606 typerr(t);
duke@435 607 return Type::BOTTOM;
duke@435 608
duke@435 609 case Top: // Top of the lattice
duke@435 610 return this;
duke@435 611 }
duke@435 612
duke@435 613 // The type is unchanged
duke@435 614 return this;
duke@435 615 }
duke@435 616
duke@435 617 //-----------------------------filter------------------------------------------
duke@435 618 const Type *Type::filter( const Type *kills ) const {
duke@435 619 const Type* ft = join(kills);
duke@435 620 if (ft->empty())
duke@435 621 return Type::TOP; // Canonical empty value
duke@435 622 return ft;
duke@435 623 }
duke@435 624
duke@435 625 //------------------------------xdual------------------------------------------
duke@435 626 // Compute dual right now.
duke@435 627 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 628 Bad, // Bad
duke@435 629 Control, // Control
duke@435 630 Bottom, // Top
duke@435 631 Bad, // Int - handled in v-call
duke@435 632 Bad, // Long - handled in v-call
duke@435 633 Half, // Half
coleenp@548 634 Bad, // NarrowOop - handled in v-call
duke@435 635
duke@435 636 Bad, // Tuple - handled in v-call
duke@435 637 Bad, // Array - handled in v-call
duke@435 638
duke@435 639 Bad, // AnyPtr - handled in v-call
duke@435 640 Bad, // RawPtr - handled in v-call
duke@435 641 Bad, // OopPtr - handled in v-call
duke@435 642 Bad, // InstPtr - handled in v-call
duke@435 643 Bad, // AryPtr - handled in v-call
duke@435 644 Bad, // KlassPtr - handled in v-call
duke@435 645
duke@435 646 Bad, // Function - handled in v-call
duke@435 647 Abio, // Abio
duke@435 648 Return_Address,// Return_Address
duke@435 649 Memory, // Memory
duke@435 650 FloatBot, // FloatTop
duke@435 651 FloatCon, // FloatCon
duke@435 652 FloatTop, // FloatBot
duke@435 653 DoubleBot, // DoubleTop
duke@435 654 DoubleCon, // DoubleCon
duke@435 655 DoubleTop, // DoubleBot
duke@435 656 Top // Bottom
duke@435 657 };
duke@435 658
duke@435 659 const Type *Type::xdual() const {
duke@435 660 // Note: the base() accessor asserts the sanity of _base.
duke@435 661 assert(dual_type[base()] != Bad, "implement with v-call");
duke@435 662 return new Type(dual_type[_base]);
duke@435 663 }
duke@435 664
duke@435 665 //------------------------------has_memory-------------------------------------
duke@435 666 bool Type::has_memory() const {
duke@435 667 Type::TYPES tx = base();
duke@435 668 if (tx == Memory) return true;
duke@435 669 if (tx == Tuple) {
duke@435 670 const TypeTuple *t = is_tuple();
duke@435 671 for (uint i=0; i < t->cnt(); i++) {
duke@435 672 tx = t->field_at(i)->base();
duke@435 673 if (tx == Memory) return true;
duke@435 674 }
duke@435 675 }
duke@435 676 return false;
duke@435 677 }
duke@435 678
duke@435 679 #ifndef PRODUCT
duke@435 680 //------------------------------dump2------------------------------------------
duke@435 681 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 682 st->print(msg[_base]);
duke@435 683 }
duke@435 684
duke@435 685 //------------------------------dump-------------------------------------------
duke@435 686 void Type::dump_on(outputStream *st) const {
duke@435 687 ResourceMark rm;
duke@435 688 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 689 dump2(d,1, st);
kvn@598 690 if (is_ptr_to_narrowoop()) {
coleenp@548 691 st->print(" [narrow]");
coleenp@548 692 }
duke@435 693 }
duke@435 694
duke@435 695 //------------------------------data-------------------------------------------
duke@435 696 const char * const Type::msg[Type::lastype] = {
coleenp@548 697 "bad","control","top","int:","long:","half", "narrowoop:",
duke@435 698 "tuple:", "aryptr",
duke@435 699 "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
duke@435 700 "func", "abIO", "return_address", "memory",
duke@435 701 "float_top", "ftcon:", "float",
duke@435 702 "double_top", "dblcon:", "double",
duke@435 703 "bottom"
duke@435 704 };
duke@435 705 #endif
duke@435 706
duke@435 707 //------------------------------singleton--------------------------------------
duke@435 708 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 709 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 710 bool Type::singleton(void) const {
duke@435 711 return _base == Top || _base == Half;
duke@435 712 }
duke@435 713
duke@435 714 //------------------------------empty------------------------------------------
duke@435 715 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 716 bool Type::empty(void) const {
duke@435 717 switch (_base) {
duke@435 718 case DoubleTop:
duke@435 719 case FloatTop:
duke@435 720 case Top:
duke@435 721 return true;
duke@435 722
duke@435 723 case Half:
duke@435 724 case Abio:
duke@435 725 case Return_Address:
duke@435 726 case Memory:
duke@435 727 case Bottom:
duke@435 728 case FloatBot:
duke@435 729 case DoubleBot:
duke@435 730 return false; // never a singleton, therefore never empty
duke@435 731 }
duke@435 732
duke@435 733 ShouldNotReachHere();
duke@435 734 return false;
duke@435 735 }
duke@435 736
duke@435 737 //------------------------------dump_stats-------------------------------------
duke@435 738 // Dump collected statistics to stderr
duke@435 739 #ifndef PRODUCT
duke@435 740 void Type::dump_stats() {
duke@435 741 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 742 }
duke@435 743 #endif
duke@435 744
duke@435 745 //------------------------------typerr-----------------------------------------
duke@435 746 void Type::typerr( const Type *t ) const {
duke@435 747 #ifndef PRODUCT
duke@435 748 tty->print("\nError mixing types: ");
duke@435 749 dump();
duke@435 750 tty->print(" and ");
duke@435 751 t->dump();
duke@435 752 tty->print("\n");
duke@435 753 #endif
duke@435 754 ShouldNotReachHere();
duke@435 755 }
duke@435 756
duke@435 757 //------------------------------isa_oop_ptr------------------------------------
duke@435 758 // Return true if type is an oop pointer type. False for raw pointers.
duke@435 759 static char isa_oop_ptr_tbl[Type::lastype] = {
coleenp@548 760 0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
duke@435 761 0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
duke@435 762 0/*func*/,0,0/*return_address*/,0,
duke@435 763 /*floats*/0,0,0, /*doubles*/0,0,0,
duke@435 764 0
duke@435 765 };
duke@435 766 bool Type::isa_oop_ptr() const {
duke@435 767 return isa_oop_ptr_tbl[_base] != 0;
duke@435 768 }
duke@435 769
duke@435 770 //------------------------------dump_stats-------------------------------------
duke@435 771 // // Check that arrays match type enum
duke@435 772 #ifndef PRODUCT
duke@435 773 void Type::verify_lastype() {
duke@435 774 // Check that arrays match enumeration
duke@435 775 assert( Type::dual_type [Type::lastype - 1] == Type::Top, "did not update array");
duke@435 776 assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
duke@435 777 // assert( PhiNode::tbl [Type::lastype - 1] == NULL, "did not update array");
duke@435 778 assert( Matcher::base2reg[Type::lastype - 1] == 0, "did not update array");
duke@435 779 assert( isa_oop_ptr_tbl [Type::lastype - 1] == (char)0, "did not update array");
duke@435 780 }
duke@435 781 #endif
duke@435 782
duke@435 783 //=============================================================================
duke@435 784 // Convenience common pre-built types.
duke@435 785 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 786 const TypeF *TypeF::ONE; // Floating point one
duke@435 787
duke@435 788 //------------------------------make-------------------------------------------
duke@435 789 // Create a float constant
duke@435 790 const TypeF *TypeF::make(float f) {
duke@435 791 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 792 }
duke@435 793
duke@435 794 //------------------------------meet-------------------------------------------
duke@435 795 // Compute the MEET of two types. It returns a new Type object.
duke@435 796 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 797 // Perform a fast test for common case; meeting the same types together.
duke@435 798 if( this == t ) return this; // Meeting same type-rep?
duke@435 799
duke@435 800 // Current "this->_base" is FloatCon
duke@435 801 switch (t->base()) { // Switch on original type
duke@435 802 case AnyPtr: // Mixing with oops happens when javac
duke@435 803 case RawPtr: // reuses local variables
duke@435 804 case OopPtr:
duke@435 805 case InstPtr:
duke@435 806 case KlassPtr:
duke@435 807 case AryPtr:
kvn@728 808 case NarrowOop:
duke@435 809 case Int:
duke@435 810 case Long:
duke@435 811 case DoubleTop:
duke@435 812 case DoubleCon:
duke@435 813 case DoubleBot:
duke@435 814 case Bottom: // Ye Olde Default
duke@435 815 return Type::BOTTOM;
duke@435 816
duke@435 817 case FloatBot:
duke@435 818 return t;
duke@435 819
duke@435 820 default: // All else is a mistake
duke@435 821 typerr(t);
duke@435 822
duke@435 823 case FloatCon: // Float-constant vs Float-constant?
duke@435 824 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 825 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 826 // all the same representation in C++
duke@435 827 return FLOAT; // Return generic float
duke@435 828 // Equal constants
duke@435 829 case Top:
duke@435 830 case FloatTop:
duke@435 831 break; // Return the float constant
duke@435 832 }
duke@435 833 return this; // Return the float constant
duke@435 834 }
duke@435 835
duke@435 836 //------------------------------xdual------------------------------------------
duke@435 837 // Dual: symmetric
duke@435 838 const Type *TypeF::xdual() const {
duke@435 839 return this;
duke@435 840 }
duke@435 841
duke@435 842 //------------------------------eq---------------------------------------------
duke@435 843 // Structural equality check for Type representations
duke@435 844 bool TypeF::eq( const Type *t ) const {
duke@435 845 if( g_isnan(_f) ||
duke@435 846 g_isnan(t->getf()) ) {
duke@435 847 // One or both are NANs. If both are NANs return true, else false.
duke@435 848 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 849 }
duke@435 850 if (_f == t->getf()) {
duke@435 851 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 852 if (_f == 0.0) {
duke@435 853 // difference between positive and negative zero
duke@435 854 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 855 }
duke@435 856 return true;
duke@435 857 }
duke@435 858 return false;
duke@435 859 }
duke@435 860
duke@435 861 //------------------------------hash-------------------------------------------
duke@435 862 // Type-specific hashing function.
duke@435 863 int TypeF::hash(void) const {
duke@435 864 return *(int*)(&_f);
duke@435 865 }
duke@435 866
duke@435 867 //------------------------------is_finite--------------------------------------
duke@435 868 // Has a finite value
duke@435 869 bool TypeF::is_finite() const {
duke@435 870 return g_isfinite(getf()) != 0;
duke@435 871 }
duke@435 872
duke@435 873 //------------------------------is_nan-----------------------------------------
duke@435 874 // Is not a number (NaN)
duke@435 875 bool TypeF::is_nan() const {
duke@435 876 return g_isnan(getf()) != 0;
duke@435 877 }
duke@435 878
duke@435 879 //------------------------------dump2------------------------------------------
duke@435 880 // Dump float constant Type
duke@435 881 #ifndef PRODUCT
duke@435 882 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 883 Type::dump2(d,depth, st);
duke@435 884 st->print("%f", _f);
duke@435 885 }
duke@435 886 #endif
duke@435 887
duke@435 888 //------------------------------singleton--------------------------------------
duke@435 889 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 890 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 891 // or a single symbol.
duke@435 892 bool TypeF::singleton(void) const {
duke@435 893 return true; // Always a singleton
duke@435 894 }
duke@435 895
duke@435 896 bool TypeF::empty(void) const {
duke@435 897 return false; // always exactly a singleton
duke@435 898 }
duke@435 899
duke@435 900 //=============================================================================
duke@435 901 // Convenience common pre-built types.
duke@435 902 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 903 const TypeD *TypeD::ONE; // Floating point one
duke@435 904
duke@435 905 //------------------------------make-------------------------------------------
duke@435 906 const TypeD *TypeD::make(double d) {
duke@435 907 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 908 }
duke@435 909
duke@435 910 //------------------------------meet-------------------------------------------
duke@435 911 // Compute the MEET of two types. It returns a new Type object.
duke@435 912 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 913 // Perform a fast test for common case; meeting the same types together.
duke@435 914 if( this == t ) return this; // Meeting same type-rep?
duke@435 915
duke@435 916 // Current "this->_base" is DoubleCon
duke@435 917 switch (t->base()) { // Switch on original type
duke@435 918 case AnyPtr: // Mixing with oops happens when javac
duke@435 919 case RawPtr: // reuses local variables
duke@435 920 case OopPtr:
duke@435 921 case InstPtr:
duke@435 922 case KlassPtr:
duke@435 923 case AryPtr:
never@618 924 case NarrowOop:
duke@435 925 case Int:
duke@435 926 case Long:
duke@435 927 case FloatTop:
duke@435 928 case FloatCon:
duke@435 929 case FloatBot:
duke@435 930 case Bottom: // Ye Olde Default
duke@435 931 return Type::BOTTOM;
duke@435 932
duke@435 933 case DoubleBot:
duke@435 934 return t;
duke@435 935
duke@435 936 default: // All else is a mistake
duke@435 937 typerr(t);
duke@435 938
duke@435 939 case DoubleCon: // Double-constant vs Double-constant?
duke@435 940 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 941 return DOUBLE; // Return generic double
duke@435 942 case Top:
duke@435 943 case DoubleTop:
duke@435 944 break;
duke@435 945 }
duke@435 946 return this; // Return the double constant
duke@435 947 }
duke@435 948
duke@435 949 //------------------------------xdual------------------------------------------
duke@435 950 // Dual: symmetric
duke@435 951 const Type *TypeD::xdual() const {
duke@435 952 return this;
duke@435 953 }
duke@435 954
duke@435 955 //------------------------------eq---------------------------------------------
duke@435 956 // Structural equality check for Type representations
duke@435 957 bool TypeD::eq( const Type *t ) const {
duke@435 958 if( g_isnan(_d) ||
duke@435 959 g_isnan(t->getd()) ) {
duke@435 960 // One or both are NANs. If both are NANs return true, else false.
duke@435 961 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 962 }
duke@435 963 if (_d == t->getd()) {
duke@435 964 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 965 if (_d == 0.0) {
duke@435 966 // difference between positive and negative zero
duke@435 967 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 968 }
duke@435 969 return true;
duke@435 970 }
duke@435 971 return false;
duke@435 972 }
duke@435 973
duke@435 974 //------------------------------hash-------------------------------------------
duke@435 975 // Type-specific hashing function.
duke@435 976 int TypeD::hash(void) const {
duke@435 977 return *(int*)(&_d);
duke@435 978 }
duke@435 979
duke@435 980 //------------------------------is_finite--------------------------------------
duke@435 981 // Has a finite value
duke@435 982 bool TypeD::is_finite() const {
duke@435 983 return g_isfinite(getd()) != 0;
duke@435 984 }
duke@435 985
duke@435 986 //------------------------------is_nan-----------------------------------------
duke@435 987 // Is not a number (NaN)
duke@435 988 bool TypeD::is_nan() const {
duke@435 989 return g_isnan(getd()) != 0;
duke@435 990 }
duke@435 991
duke@435 992 //------------------------------dump2------------------------------------------
duke@435 993 // Dump double constant Type
duke@435 994 #ifndef PRODUCT
duke@435 995 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 996 Type::dump2(d,depth,st);
duke@435 997 st->print("%f", _d);
duke@435 998 }
duke@435 999 #endif
duke@435 1000
duke@435 1001 //------------------------------singleton--------------------------------------
duke@435 1002 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1003 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1004 // or a single symbol.
duke@435 1005 bool TypeD::singleton(void) const {
duke@435 1006 return true; // Always a singleton
duke@435 1007 }
duke@435 1008
duke@435 1009 bool TypeD::empty(void) const {
duke@435 1010 return false; // always exactly a singleton
duke@435 1011 }
duke@435 1012
duke@435 1013 //=============================================================================
duke@435 1014 // Convience common pre-built types.
duke@435 1015 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1016 const TypeInt *TypeInt::ZERO; // 0
duke@435 1017 const TypeInt *TypeInt::ONE; // 1
duke@435 1018 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1019 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1020 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1021 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1022 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1023 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1024 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1025 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1026 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1027 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1028 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1029 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1030 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1031 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1032 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1033
duke@435 1034 //------------------------------TypeInt----------------------------------------
duke@435 1035 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1036 }
duke@435 1037
duke@435 1038 //------------------------------make-------------------------------------------
duke@435 1039 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1040 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1041 }
duke@435 1042
duke@435 1043 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
duke@435 1044
duke@435 1045 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
duke@435 1046 // Certain normalizations keep us sane when comparing types.
duke@435 1047 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1048 assert(CC == NULL || (juint)(CC->_hi - CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 1049 if (lo <= hi) {
duke@435 1050 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
duke@435 1051 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // plain int
duke@435 1052 }
duke@435 1053 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1054 }
duke@435 1055
duke@435 1056 //------------------------------meet-------------------------------------------
duke@435 1057 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1058 // with reference count equal to the number of Types pointing at it.
duke@435 1059 // Caller should wrap a Types around it.
duke@435 1060 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1061 // Perform a fast test for common case; meeting the same types together.
duke@435 1062 if( this == t ) return this; // Meeting same type?
duke@435 1063
duke@435 1064 // Currently "this->_base" is a TypeInt
duke@435 1065 switch (t->base()) { // Switch on original type
duke@435 1066 case AnyPtr: // Mixing with oops happens when javac
duke@435 1067 case RawPtr: // reuses local variables
duke@435 1068 case OopPtr:
duke@435 1069 case InstPtr:
duke@435 1070 case KlassPtr:
duke@435 1071 case AryPtr:
never@618 1072 case NarrowOop:
duke@435 1073 case Long:
duke@435 1074 case FloatTop:
duke@435 1075 case FloatCon:
duke@435 1076 case FloatBot:
duke@435 1077 case DoubleTop:
duke@435 1078 case DoubleCon:
duke@435 1079 case DoubleBot:
duke@435 1080 case Bottom: // Ye Olde Default
duke@435 1081 return Type::BOTTOM;
duke@435 1082 default: // All else is a mistake
duke@435 1083 typerr(t);
duke@435 1084 case Top: // No change
duke@435 1085 return this;
duke@435 1086 case Int: // Int vs Int?
duke@435 1087 break;
duke@435 1088 }
duke@435 1089
duke@435 1090 // Expand covered set
duke@435 1091 const TypeInt *r = t->is_int();
duke@435 1092 // (Avoid TypeInt::make, to avoid the argument normalizations it enforces.)
duke@435 1093 return (new TypeInt( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
duke@435 1094 }
duke@435 1095
duke@435 1096 //------------------------------xdual------------------------------------------
duke@435 1097 // Dual: reverse hi & lo; flip widen
duke@435 1098 const Type *TypeInt::xdual() const {
duke@435 1099 return new TypeInt(_hi,_lo,WidenMax-_widen);
duke@435 1100 }
duke@435 1101
duke@435 1102 //------------------------------widen------------------------------------------
duke@435 1103 // Only happens for optimistic top-down optimizations.
duke@435 1104 const Type *TypeInt::widen( const Type *old ) const {
duke@435 1105 // Coming from TOP or such; no widening
duke@435 1106 if( old->base() != Int ) return this;
duke@435 1107 const TypeInt *ot = old->is_int();
duke@435 1108
duke@435 1109 // If new guy is equal to old guy, no widening
duke@435 1110 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1111 return old;
duke@435 1112
duke@435 1113 // If new guy contains old, then we widened
duke@435 1114 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1115 // New contains old
duke@435 1116 // If new guy is already wider than old, no widening
duke@435 1117 if( _widen > ot->_widen ) return this;
duke@435 1118 // If old guy was a constant, do not bother
duke@435 1119 if (ot->_lo == ot->_hi) return this;
duke@435 1120 // Now widen new guy.
duke@435 1121 // Check for widening too far
duke@435 1122 if (_widen == WidenMax) {
duke@435 1123 if (min_jint < _lo && _hi < max_jint) {
duke@435 1124 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1125 // which is closer to its respective limit.
duke@435 1126 if (_lo >= 0 || // easy common case
duke@435 1127 (juint)(_lo - min_jint) >= (juint)(max_jint - _hi)) {
duke@435 1128 // Try to widen to an unsigned range type of 31 bits:
duke@435 1129 return make(_lo, max_jint, WidenMax);
duke@435 1130 } else {
duke@435 1131 return make(min_jint, _hi, WidenMax);
duke@435 1132 }
duke@435 1133 }
duke@435 1134 return TypeInt::INT;
duke@435 1135 }
duke@435 1136 // Returned widened new guy
duke@435 1137 return make(_lo,_hi,_widen+1);
duke@435 1138 }
duke@435 1139
duke@435 1140 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1141 // bottom. Return the wider fellow.
duke@435 1142 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1143 return old;
duke@435 1144
duke@435 1145 //fatal("Integer value range is not subset");
duke@435 1146 //return this;
duke@435 1147 return TypeInt::INT;
duke@435 1148 }
duke@435 1149
duke@435 1150 //------------------------------narrow---------------------------------------
duke@435 1151 // Only happens for pessimistic optimizations.
duke@435 1152 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1153 if (_lo >= _hi) return this; // already narrow enough
duke@435 1154 if (old == NULL) return this;
duke@435 1155 const TypeInt* ot = old->isa_int();
duke@435 1156 if (ot == NULL) return this;
duke@435 1157 jint olo = ot->_lo;
duke@435 1158 jint ohi = ot->_hi;
duke@435 1159
duke@435 1160 // If new guy is equal to old guy, no narrowing
duke@435 1161 if (_lo == olo && _hi == ohi) return old;
duke@435 1162
duke@435 1163 // If old guy was maximum range, allow the narrowing
duke@435 1164 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1165
duke@435 1166 if (_lo < olo || _hi > ohi)
duke@435 1167 return this; // doesn't narrow; pretty wierd
duke@435 1168
duke@435 1169 // The new type narrows the old type, so look for a "death march".
duke@435 1170 // See comments on PhaseTransform::saturate.
duke@435 1171 juint nrange = _hi - _lo;
duke@435 1172 juint orange = ohi - olo;
duke@435 1173 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1174 // Use the new type only if the range shrinks a lot.
duke@435 1175 // We do not want the optimizer computing 2^31 point by point.
duke@435 1176 return old;
duke@435 1177 }
duke@435 1178
duke@435 1179 return this;
duke@435 1180 }
duke@435 1181
duke@435 1182 //-----------------------------filter------------------------------------------
duke@435 1183 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1184 const TypeInt* ft = join(kills)->isa_int();
duke@435 1185 if (ft == NULL || ft->_lo > ft->_hi)
duke@435 1186 return Type::TOP; // Canonical empty value
duke@435 1187 if (ft->_widen < this->_widen) {
duke@435 1188 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1189 // The widen bits must be allowed to run freely through the graph.
duke@435 1190 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1191 }
duke@435 1192 return ft;
duke@435 1193 }
duke@435 1194
duke@435 1195 //------------------------------eq---------------------------------------------
duke@435 1196 // Structural equality check for Type representations
duke@435 1197 bool TypeInt::eq( const Type *t ) const {
duke@435 1198 const TypeInt *r = t->is_int(); // Handy access
duke@435 1199 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1200 }
duke@435 1201
duke@435 1202 //------------------------------hash-------------------------------------------
duke@435 1203 // Type-specific hashing function.
duke@435 1204 int TypeInt::hash(void) const {
duke@435 1205 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1206 }
duke@435 1207
duke@435 1208 //------------------------------is_finite--------------------------------------
duke@435 1209 // Has a finite value
duke@435 1210 bool TypeInt::is_finite() const {
duke@435 1211 return true;
duke@435 1212 }
duke@435 1213
duke@435 1214 //------------------------------dump2------------------------------------------
duke@435 1215 // Dump TypeInt
duke@435 1216 #ifndef PRODUCT
duke@435 1217 static const char* intname(char* buf, jint n) {
duke@435 1218 if (n == min_jint)
duke@435 1219 return "min";
duke@435 1220 else if (n < min_jint + 10000)
duke@435 1221 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1222 else if (n == max_jint)
duke@435 1223 return "max";
duke@435 1224 else if (n > max_jint - 10000)
duke@435 1225 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1226 else
duke@435 1227 sprintf(buf, INT32_FORMAT, n);
duke@435 1228 return buf;
duke@435 1229 }
duke@435 1230
duke@435 1231 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1232 char buf[40], buf2[40];
duke@435 1233 if (_lo == min_jint && _hi == max_jint)
duke@435 1234 st->print("int");
duke@435 1235 else if (is_con())
duke@435 1236 st->print("int:%s", intname(buf, get_con()));
duke@435 1237 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1238 st->print("bool");
duke@435 1239 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1240 st->print("byte");
duke@435 1241 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1242 st->print("char");
duke@435 1243 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1244 st->print("short");
duke@435 1245 else if (_hi == max_jint)
duke@435 1246 st->print("int:>=%s", intname(buf, _lo));
duke@435 1247 else if (_lo == min_jint)
duke@435 1248 st->print("int:<=%s", intname(buf, _hi));
duke@435 1249 else
duke@435 1250 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1251
duke@435 1252 if (_widen != 0 && this != TypeInt::INT)
duke@435 1253 st->print(":%.*s", _widen, "wwww");
duke@435 1254 }
duke@435 1255 #endif
duke@435 1256
duke@435 1257 //------------------------------singleton--------------------------------------
duke@435 1258 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1259 // constants.
duke@435 1260 bool TypeInt::singleton(void) const {
duke@435 1261 return _lo >= _hi;
duke@435 1262 }
duke@435 1263
duke@435 1264 bool TypeInt::empty(void) const {
duke@435 1265 return _lo > _hi;
duke@435 1266 }
duke@435 1267
duke@435 1268 //=============================================================================
duke@435 1269 // Convenience common pre-built types.
duke@435 1270 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1271 const TypeLong *TypeLong::ZERO; // 0
duke@435 1272 const TypeLong *TypeLong::ONE; // 1
duke@435 1273 const TypeLong *TypeLong::POS; // >=0
duke@435 1274 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1275 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1276 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1277
duke@435 1278 //------------------------------TypeLong---------------------------------------
duke@435 1279 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1280 }
duke@435 1281
duke@435 1282 //------------------------------make-------------------------------------------
duke@435 1283 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1284 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1285 }
duke@435 1286
duke@435 1287 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
duke@435 1288 // Certain normalizations keep us sane when comparing types.
duke@435 1289 // The '1' covers constants.
duke@435 1290 if (lo <= hi) {
duke@435 1291 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
duke@435 1292 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // plain long
duke@435 1293 }
duke@435 1294 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1295 }
duke@435 1296
duke@435 1297
duke@435 1298 //------------------------------meet-------------------------------------------
duke@435 1299 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1300 // with reference count equal to the number of Types pointing at it.
duke@435 1301 // Caller should wrap a Types around it.
duke@435 1302 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1303 // Perform a fast test for common case; meeting the same types together.
duke@435 1304 if( this == t ) return this; // Meeting same type?
duke@435 1305
duke@435 1306 // Currently "this->_base" is a TypeLong
duke@435 1307 switch (t->base()) { // Switch on original type
duke@435 1308 case AnyPtr: // Mixing with oops happens when javac
duke@435 1309 case RawPtr: // reuses local variables
duke@435 1310 case OopPtr:
duke@435 1311 case InstPtr:
duke@435 1312 case KlassPtr:
duke@435 1313 case AryPtr:
never@618 1314 case NarrowOop:
duke@435 1315 case Int:
duke@435 1316 case FloatTop:
duke@435 1317 case FloatCon:
duke@435 1318 case FloatBot:
duke@435 1319 case DoubleTop:
duke@435 1320 case DoubleCon:
duke@435 1321 case DoubleBot:
duke@435 1322 case Bottom: // Ye Olde Default
duke@435 1323 return Type::BOTTOM;
duke@435 1324 default: // All else is a mistake
duke@435 1325 typerr(t);
duke@435 1326 case Top: // No change
duke@435 1327 return this;
duke@435 1328 case Long: // Long vs Long?
duke@435 1329 break;
duke@435 1330 }
duke@435 1331
duke@435 1332 // Expand covered set
duke@435 1333 const TypeLong *r = t->is_long(); // Turn into a TypeLong
duke@435 1334 // (Avoid TypeLong::make, to avoid the argument normalizations it enforces.)
duke@435 1335 return (new TypeLong( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
duke@435 1336 }
duke@435 1337
duke@435 1338 //------------------------------xdual------------------------------------------
duke@435 1339 // Dual: reverse hi & lo; flip widen
duke@435 1340 const Type *TypeLong::xdual() const {
duke@435 1341 return new TypeLong(_hi,_lo,WidenMax-_widen);
duke@435 1342 }
duke@435 1343
duke@435 1344 //------------------------------widen------------------------------------------
duke@435 1345 // Only happens for optimistic top-down optimizations.
duke@435 1346 const Type *TypeLong::widen( const Type *old ) const {
duke@435 1347 // Coming from TOP or such; no widening
duke@435 1348 if( old->base() != Long ) return this;
duke@435 1349 const TypeLong *ot = old->is_long();
duke@435 1350
duke@435 1351 // If new guy is equal to old guy, no widening
duke@435 1352 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1353 return old;
duke@435 1354
duke@435 1355 // If new guy contains old, then we widened
duke@435 1356 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1357 // New contains old
duke@435 1358 // If new guy is already wider than old, no widening
duke@435 1359 if( _widen > ot->_widen ) return this;
duke@435 1360 // If old guy was a constant, do not bother
duke@435 1361 if (ot->_lo == ot->_hi) return this;
duke@435 1362 // Now widen new guy.
duke@435 1363 // Check for widening too far
duke@435 1364 if (_widen == WidenMax) {
duke@435 1365 if (min_jlong < _lo && _hi < max_jlong) {
duke@435 1366 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1367 // which is closer to its respective limit.
duke@435 1368 if (_lo >= 0 || // easy common case
duke@435 1369 (julong)(_lo - min_jlong) >= (julong)(max_jlong - _hi)) {
duke@435 1370 // Try to widen to an unsigned range type of 32/63 bits:
duke@435 1371 if (_hi < max_juint)
duke@435 1372 return make(_lo, max_juint, WidenMax);
duke@435 1373 else
duke@435 1374 return make(_lo, max_jlong, WidenMax);
duke@435 1375 } else {
duke@435 1376 return make(min_jlong, _hi, WidenMax);
duke@435 1377 }
duke@435 1378 }
duke@435 1379 return TypeLong::LONG;
duke@435 1380 }
duke@435 1381 // Returned widened new guy
duke@435 1382 return make(_lo,_hi,_widen+1);
duke@435 1383 }
duke@435 1384
duke@435 1385 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1386 // bottom. Return the wider fellow.
duke@435 1387 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1388 return old;
duke@435 1389
duke@435 1390 // fatal("Long value range is not subset");
duke@435 1391 // return this;
duke@435 1392 return TypeLong::LONG;
duke@435 1393 }
duke@435 1394
duke@435 1395 //------------------------------narrow----------------------------------------
duke@435 1396 // Only happens for pessimistic optimizations.
duke@435 1397 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1398 if (_lo >= _hi) return this; // already narrow enough
duke@435 1399 if (old == NULL) return this;
duke@435 1400 const TypeLong* ot = old->isa_long();
duke@435 1401 if (ot == NULL) return this;
duke@435 1402 jlong olo = ot->_lo;
duke@435 1403 jlong ohi = ot->_hi;
duke@435 1404
duke@435 1405 // If new guy is equal to old guy, no narrowing
duke@435 1406 if (_lo == olo && _hi == ohi) return old;
duke@435 1407
duke@435 1408 // If old guy was maximum range, allow the narrowing
duke@435 1409 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1410
duke@435 1411 if (_lo < olo || _hi > ohi)
duke@435 1412 return this; // doesn't narrow; pretty wierd
duke@435 1413
duke@435 1414 // The new type narrows the old type, so look for a "death march".
duke@435 1415 // See comments on PhaseTransform::saturate.
duke@435 1416 julong nrange = _hi - _lo;
duke@435 1417 julong orange = ohi - olo;
duke@435 1418 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1419 // Use the new type only if the range shrinks a lot.
duke@435 1420 // We do not want the optimizer computing 2^31 point by point.
duke@435 1421 return old;
duke@435 1422 }
duke@435 1423
duke@435 1424 return this;
duke@435 1425 }
duke@435 1426
duke@435 1427 //-----------------------------filter------------------------------------------
duke@435 1428 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1429 const TypeLong* ft = join(kills)->isa_long();
duke@435 1430 if (ft == NULL || ft->_lo > ft->_hi)
duke@435 1431 return Type::TOP; // Canonical empty value
duke@435 1432 if (ft->_widen < this->_widen) {
duke@435 1433 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1434 // The widen bits must be allowed to run freely through the graph.
duke@435 1435 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1436 }
duke@435 1437 return ft;
duke@435 1438 }
duke@435 1439
duke@435 1440 //------------------------------eq---------------------------------------------
duke@435 1441 // Structural equality check for Type representations
duke@435 1442 bool TypeLong::eq( const Type *t ) const {
duke@435 1443 const TypeLong *r = t->is_long(); // Handy access
duke@435 1444 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1445 }
duke@435 1446
duke@435 1447 //------------------------------hash-------------------------------------------
duke@435 1448 // Type-specific hashing function.
duke@435 1449 int TypeLong::hash(void) const {
duke@435 1450 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1451 }
duke@435 1452
duke@435 1453 //------------------------------is_finite--------------------------------------
duke@435 1454 // Has a finite value
duke@435 1455 bool TypeLong::is_finite() const {
duke@435 1456 return true;
duke@435 1457 }
duke@435 1458
duke@435 1459 //------------------------------dump2------------------------------------------
duke@435 1460 // Dump TypeLong
duke@435 1461 #ifndef PRODUCT
duke@435 1462 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1463 if (n > x) {
duke@435 1464 if (n >= x + 10000) return NULL;
duke@435 1465 sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
duke@435 1466 } else if (n < x) {
duke@435 1467 if (n <= x - 10000) return NULL;
duke@435 1468 sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
duke@435 1469 } else {
duke@435 1470 return xname;
duke@435 1471 }
duke@435 1472 return buf;
duke@435 1473 }
duke@435 1474
duke@435 1475 static const char* longname(char* buf, jlong n) {
duke@435 1476 const char* str;
duke@435 1477 if (n == min_jlong)
duke@435 1478 return "min";
duke@435 1479 else if (n < min_jlong + 10000)
duke@435 1480 sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
duke@435 1481 else if (n == max_jlong)
duke@435 1482 return "max";
duke@435 1483 else if (n > max_jlong - 10000)
duke@435 1484 sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
duke@435 1485 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1486 return str;
duke@435 1487 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1488 return str;
duke@435 1489 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1490 return str;
duke@435 1491 else
duke@435 1492 sprintf(buf, INT64_FORMAT, n);
duke@435 1493 return buf;
duke@435 1494 }
duke@435 1495
duke@435 1496 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1497 char buf[80], buf2[80];
duke@435 1498 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1499 st->print("long");
duke@435 1500 else if (is_con())
duke@435 1501 st->print("long:%s", longname(buf, get_con()));
duke@435 1502 else if (_hi == max_jlong)
duke@435 1503 st->print("long:>=%s", longname(buf, _lo));
duke@435 1504 else if (_lo == min_jlong)
duke@435 1505 st->print("long:<=%s", longname(buf, _hi));
duke@435 1506 else
duke@435 1507 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1508
duke@435 1509 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1510 st->print(":%.*s", _widen, "wwww");
duke@435 1511 }
duke@435 1512 #endif
duke@435 1513
duke@435 1514 //------------------------------singleton--------------------------------------
duke@435 1515 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1516 // constants
duke@435 1517 bool TypeLong::singleton(void) const {
duke@435 1518 return _lo >= _hi;
duke@435 1519 }
duke@435 1520
duke@435 1521 bool TypeLong::empty(void) const {
duke@435 1522 return _lo > _hi;
duke@435 1523 }
duke@435 1524
duke@435 1525 //=============================================================================
duke@435 1526 // Convenience common pre-built types.
duke@435 1527 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1528 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1529 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1530 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1531 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1532 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1533 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1534 const TypeTuple *TypeTuple::START_I2C;
duke@435 1535 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1536 const TypeTuple *TypeTuple::LONG_PAIR;
duke@435 1537
duke@435 1538
duke@435 1539 //------------------------------make-------------------------------------------
duke@435 1540 // Make a TypeTuple from the range of a method signature
duke@435 1541 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1542 ciType* return_type = sig->return_type();
duke@435 1543 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1544 const Type **field_array = fields(total_fields);
duke@435 1545 switch (return_type->basic_type()) {
duke@435 1546 case T_LONG:
duke@435 1547 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1548 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1549 break;
duke@435 1550 case T_DOUBLE:
duke@435 1551 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1552 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1553 break;
duke@435 1554 case T_OBJECT:
duke@435 1555 case T_ARRAY:
duke@435 1556 case T_BOOLEAN:
duke@435 1557 case T_CHAR:
duke@435 1558 case T_FLOAT:
duke@435 1559 case T_BYTE:
duke@435 1560 case T_SHORT:
duke@435 1561 case T_INT:
duke@435 1562 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1563 break;
duke@435 1564 case T_VOID:
duke@435 1565 break;
duke@435 1566 default:
duke@435 1567 ShouldNotReachHere();
duke@435 1568 }
duke@435 1569 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1570 }
duke@435 1571
duke@435 1572 // Make a TypeTuple from the domain of a method signature
duke@435 1573 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1574 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1575
duke@435 1576 uint pos = TypeFunc::Parms;
duke@435 1577 const Type **field_array;
duke@435 1578 if (recv != NULL) {
duke@435 1579 total_fields++;
duke@435 1580 field_array = fields(total_fields);
duke@435 1581 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1582 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1583 } else {
duke@435 1584 field_array = fields(total_fields);
duke@435 1585 }
duke@435 1586
duke@435 1587 int i = 0;
duke@435 1588 while (pos < total_fields) {
duke@435 1589 ciType* type = sig->type_at(i);
duke@435 1590
duke@435 1591 switch (type->basic_type()) {
duke@435 1592 case T_LONG:
duke@435 1593 field_array[pos++] = TypeLong::LONG;
duke@435 1594 field_array[pos++] = Type::HALF;
duke@435 1595 break;
duke@435 1596 case T_DOUBLE:
duke@435 1597 field_array[pos++] = Type::DOUBLE;
duke@435 1598 field_array[pos++] = Type::HALF;
duke@435 1599 break;
duke@435 1600 case T_OBJECT:
duke@435 1601 case T_ARRAY:
duke@435 1602 case T_BOOLEAN:
duke@435 1603 case T_CHAR:
duke@435 1604 case T_FLOAT:
duke@435 1605 case T_BYTE:
duke@435 1606 case T_SHORT:
duke@435 1607 case T_INT:
duke@435 1608 field_array[pos++] = get_const_type(type);
duke@435 1609 break;
duke@435 1610 default:
duke@435 1611 ShouldNotReachHere();
duke@435 1612 }
duke@435 1613 i++;
duke@435 1614 }
duke@435 1615 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1616 }
duke@435 1617
duke@435 1618 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1619 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1620 }
duke@435 1621
duke@435 1622 //------------------------------fields-----------------------------------------
duke@435 1623 // Subroutine call type with space allocated for argument types
duke@435 1624 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1625 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1626 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1627 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1628 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1629 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1630 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1631
duke@435 1632 return flds;
duke@435 1633 }
duke@435 1634
duke@435 1635 //------------------------------meet-------------------------------------------
duke@435 1636 // Compute the MEET of two types. It returns a new Type object.
duke@435 1637 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1638 // Perform a fast test for common case; meeting the same types together.
duke@435 1639 if( this == t ) return this; // Meeting same type-rep?
duke@435 1640
duke@435 1641 // Current "this->_base" is Tuple
duke@435 1642 switch (t->base()) { // switch on original type
duke@435 1643
duke@435 1644 case Bottom: // Ye Olde Default
duke@435 1645 return t;
duke@435 1646
duke@435 1647 default: // All else is a mistake
duke@435 1648 typerr(t);
duke@435 1649
duke@435 1650 case Tuple: { // Meeting 2 signatures?
duke@435 1651 const TypeTuple *x = t->is_tuple();
duke@435 1652 assert( _cnt == x->_cnt, "" );
duke@435 1653 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1654 for( uint i=0; i<_cnt; i++ )
duke@435 1655 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1656 return TypeTuple::make(_cnt,fields);
duke@435 1657 }
duke@435 1658 case Top:
duke@435 1659 break;
duke@435 1660 }
duke@435 1661 return this; // Return the double constant
duke@435 1662 }
duke@435 1663
duke@435 1664 //------------------------------xdual------------------------------------------
duke@435 1665 // Dual: compute field-by-field dual
duke@435 1666 const Type *TypeTuple::xdual() const {
duke@435 1667 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1668 for( uint i=0; i<_cnt; i++ )
duke@435 1669 fields[i] = _fields[i]->dual();
duke@435 1670 return new TypeTuple(_cnt,fields);
duke@435 1671 }
duke@435 1672
duke@435 1673 //------------------------------eq---------------------------------------------
duke@435 1674 // Structural equality check for Type representations
duke@435 1675 bool TypeTuple::eq( const Type *t ) const {
duke@435 1676 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1677 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1678 for (uint i = 0; i < _cnt; i++)
duke@435 1679 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1680 return false; // Missed
duke@435 1681 return true;
duke@435 1682 }
duke@435 1683
duke@435 1684 //------------------------------hash-------------------------------------------
duke@435 1685 // Type-specific hashing function.
duke@435 1686 int TypeTuple::hash(void) const {
duke@435 1687 intptr_t sum = _cnt;
duke@435 1688 for( uint i=0; i<_cnt; i++ )
duke@435 1689 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1690 return sum;
duke@435 1691 }
duke@435 1692
duke@435 1693 //------------------------------dump2------------------------------------------
duke@435 1694 // Dump signature Type
duke@435 1695 #ifndef PRODUCT
duke@435 1696 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1697 st->print("{");
duke@435 1698 if( !depth || d[this] ) { // Check for recursive print
duke@435 1699 st->print("...}");
duke@435 1700 return;
duke@435 1701 }
duke@435 1702 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1703 if( _cnt ) {
duke@435 1704 uint i;
duke@435 1705 for( i=0; i<_cnt-1; i++ ) {
duke@435 1706 st->print("%d:", i);
duke@435 1707 _fields[i]->dump2(d, depth-1, st);
duke@435 1708 st->print(", ");
duke@435 1709 }
duke@435 1710 st->print("%d:", i);
duke@435 1711 _fields[i]->dump2(d, depth-1, st);
duke@435 1712 }
duke@435 1713 st->print("}");
duke@435 1714 }
duke@435 1715 #endif
duke@435 1716
duke@435 1717 //------------------------------singleton--------------------------------------
duke@435 1718 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1719 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1720 // or a single symbol.
duke@435 1721 bool TypeTuple::singleton(void) const {
duke@435 1722 return false; // Never a singleton
duke@435 1723 }
duke@435 1724
duke@435 1725 bool TypeTuple::empty(void) const {
duke@435 1726 for( uint i=0; i<_cnt; i++ ) {
duke@435 1727 if (_fields[i]->empty()) return true;
duke@435 1728 }
duke@435 1729 return false;
duke@435 1730 }
duke@435 1731
duke@435 1732 //=============================================================================
duke@435 1733 // Convenience common pre-built types.
duke@435 1734
duke@435 1735 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1736 // Certain normalizations keep us sane when comparing types.
duke@435 1737 // We do not want arrayOop variables to differ only by the wideness
duke@435 1738 // of their index types. Pick minimum wideness, since that is the
duke@435 1739 // forced wideness of small ranges anyway.
duke@435 1740 if (size->_widen != Type::WidenMin)
duke@435 1741 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1742 else
duke@435 1743 return size;
duke@435 1744 }
duke@435 1745
duke@435 1746 //------------------------------make-------------------------------------------
duke@435 1747 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
coleenp@548 1748 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1749 elem = elem->make_narrowoop();
coleenp@548 1750 }
duke@435 1751 size = normalize_array_size(size);
duke@435 1752 return (TypeAry*)(new TypeAry(elem,size))->hashcons();
duke@435 1753 }
duke@435 1754
duke@435 1755 //------------------------------meet-------------------------------------------
duke@435 1756 // Compute the MEET of two types. It returns a new Type object.
duke@435 1757 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1758 // Perform a fast test for common case; meeting the same types together.
duke@435 1759 if( this == t ) return this; // Meeting same type-rep?
duke@435 1760
duke@435 1761 // Current "this->_base" is Ary
duke@435 1762 switch (t->base()) { // switch on original type
duke@435 1763
duke@435 1764 case Bottom: // Ye Olde Default
duke@435 1765 return t;
duke@435 1766
duke@435 1767 default: // All else is a mistake
duke@435 1768 typerr(t);
duke@435 1769
duke@435 1770 case Array: { // Meeting 2 arrays?
duke@435 1771 const TypeAry *a = t->is_ary();
duke@435 1772 return TypeAry::make(_elem->meet(a->_elem),
duke@435 1773 _size->xmeet(a->_size)->is_int());
duke@435 1774 }
duke@435 1775 case Top:
duke@435 1776 break;
duke@435 1777 }
duke@435 1778 return this; // Return the double constant
duke@435 1779 }
duke@435 1780
duke@435 1781 //------------------------------xdual------------------------------------------
duke@435 1782 // Dual: compute field-by-field dual
duke@435 1783 const Type *TypeAry::xdual() const {
duke@435 1784 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1785 size_dual = normalize_array_size(size_dual);
duke@435 1786 return new TypeAry( _elem->dual(), size_dual);
duke@435 1787 }
duke@435 1788
duke@435 1789 //------------------------------eq---------------------------------------------
duke@435 1790 // Structural equality check for Type representations
duke@435 1791 bool TypeAry::eq( const Type *t ) const {
duke@435 1792 const TypeAry *a = (const TypeAry*)t;
duke@435 1793 return _elem == a->_elem &&
duke@435 1794 _size == a->_size;
duke@435 1795 }
duke@435 1796
duke@435 1797 //------------------------------hash-------------------------------------------
duke@435 1798 // Type-specific hashing function.
duke@435 1799 int TypeAry::hash(void) const {
duke@435 1800 return (intptr_t)_elem + (intptr_t)_size;
duke@435 1801 }
duke@435 1802
duke@435 1803 //------------------------------dump2------------------------------------------
duke@435 1804 #ifndef PRODUCT
duke@435 1805 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1806 _elem->dump2(d, depth, st);
duke@435 1807 st->print("[");
duke@435 1808 _size->dump2(d, depth, st);
duke@435 1809 st->print("]");
duke@435 1810 }
duke@435 1811 #endif
duke@435 1812
duke@435 1813 //------------------------------singleton--------------------------------------
duke@435 1814 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1815 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1816 // or a single symbol.
duke@435 1817 bool TypeAry::singleton(void) const {
duke@435 1818 return false; // Never a singleton
duke@435 1819 }
duke@435 1820
duke@435 1821 bool TypeAry::empty(void) const {
duke@435 1822 return _elem->empty() || _size->empty();
duke@435 1823 }
duke@435 1824
duke@435 1825 //--------------------------ary_must_be_exact----------------------------------
duke@435 1826 bool TypeAry::ary_must_be_exact() const {
duke@435 1827 if (!UseExactTypes) return false;
duke@435 1828 // This logic looks at the element type of an array, and returns true
duke@435 1829 // if the element type is either a primitive or a final instance class.
duke@435 1830 // In such cases, an array built on this ary must have no subclasses.
duke@435 1831 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1832 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 1833 const TypeOopPtr* toop = NULL;
kvn@656 1834 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 1835 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 1836 } else {
coleenp@548 1837 toop = _elem->isa_oopptr();
coleenp@548 1838 }
duke@435 1839 if (!toop) return true; // a primitive type, like int
duke@435 1840 ciKlass* tklass = toop->klass();
duke@435 1841 if (tklass == NULL) return false; // unloaded class
duke@435 1842 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 1843 const TypeInstPtr* tinst;
coleenp@548 1844 if (_elem->isa_narrowoop())
kvn@656 1845 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 1846 else
coleenp@548 1847 tinst = _elem->isa_instptr();
kvn@656 1848 if (tinst)
kvn@656 1849 return tklass->as_instance_klass()->is_final();
coleenp@548 1850 const TypeAryPtr* tap;
coleenp@548 1851 if (_elem->isa_narrowoop())
kvn@656 1852 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 1853 else
coleenp@548 1854 tap = _elem->isa_aryptr();
kvn@656 1855 if (tap)
kvn@656 1856 return tap->ary()->ary_must_be_exact();
duke@435 1857 return false;
duke@435 1858 }
duke@435 1859
duke@435 1860 //=============================================================================
duke@435 1861 // Convenience common pre-built types.
duke@435 1862 const TypePtr *TypePtr::NULL_PTR;
duke@435 1863 const TypePtr *TypePtr::NOTNULL;
duke@435 1864 const TypePtr *TypePtr::BOTTOM;
duke@435 1865
duke@435 1866 //------------------------------meet-------------------------------------------
duke@435 1867 // Meet over the PTR enum
duke@435 1868 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 1869 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 1870 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 1871 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1872 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1873 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 1874 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 1875 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 1876 };
duke@435 1877
duke@435 1878 //------------------------------make-------------------------------------------
duke@435 1879 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 1880 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 1881 }
duke@435 1882
duke@435 1883 //------------------------------cast_to_ptr_type-------------------------------
duke@435 1884 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 1885 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 1886 if( ptr == _ptr ) return this;
duke@435 1887 return make(_base, ptr, _offset);
duke@435 1888 }
duke@435 1889
duke@435 1890 //------------------------------get_con----------------------------------------
duke@435 1891 intptr_t TypePtr::get_con() const {
duke@435 1892 assert( _ptr == Null, "" );
duke@435 1893 return _offset;
duke@435 1894 }
duke@435 1895
duke@435 1896 //------------------------------meet-------------------------------------------
duke@435 1897 // Compute the MEET of two types. It returns a new Type object.
duke@435 1898 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 1899 // Perform a fast test for common case; meeting the same types together.
duke@435 1900 if( this == t ) return this; // Meeting same type-rep?
duke@435 1901
duke@435 1902 // Current "this->_base" is AnyPtr
duke@435 1903 switch (t->base()) { // switch on original type
duke@435 1904 case Int: // Mixing ints & oops happens when javac
duke@435 1905 case Long: // reuses local variables
duke@435 1906 case FloatTop:
duke@435 1907 case FloatCon:
duke@435 1908 case FloatBot:
duke@435 1909 case DoubleTop:
duke@435 1910 case DoubleCon:
duke@435 1911 case DoubleBot:
coleenp@548 1912 case NarrowOop:
duke@435 1913 case Bottom: // Ye Olde Default
duke@435 1914 return Type::BOTTOM;
duke@435 1915 case Top:
duke@435 1916 return this;
duke@435 1917
duke@435 1918 case AnyPtr: { // Meeting to AnyPtrs
duke@435 1919 const TypePtr *tp = t->is_ptr();
duke@435 1920 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 1921 }
duke@435 1922 case RawPtr: // For these, flip the call around to cut down
duke@435 1923 case OopPtr:
duke@435 1924 case InstPtr: // on the cases I have to handle.
duke@435 1925 case KlassPtr:
duke@435 1926 case AryPtr:
duke@435 1927 return t->xmeet(this); // Call in reverse direction
duke@435 1928 default: // All else is a mistake
duke@435 1929 typerr(t);
duke@435 1930
duke@435 1931 }
duke@435 1932 return this;
duke@435 1933 }
duke@435 1934
duke@435 1935 //------------------------------meet_offset------------------------------------
duke@435 1936 int TypePtr::meet_offset( int offset ) const {
duke@435 1937 // Either is 'TOP' offset? Return the other offset!
duke@435 1938 if( _offset == OffsetTop ) return offset;
duke@435 1939 if( offset == OffsetTop ) return _offset;
duke@435 1940 // If either is different, return 'BOTTOM' offset
duke@435 1941 if( _offset != offset ) return OffsetBot;
duke@435 1942 return _offset;
duke@435 1943 }
duke@435 1944
duke@435 1945 //------------------------------dual_offset------------------------------------
duke@435 1946 int TypePtr::dual_offset( ) const {
duke@435 1947 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 1948 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 1949 return _offset; // Map everything else into self
duke@435 1950 }
duke@435 1951
duke@435 1952 //------------------------------xdual------------------------------------------
duke@435 1953 // Dual: compute field-by-field dual
duke@435 1954 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 1955 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 1956 };
duke@435 1957 const Type *TypePtr::xdual() const {
duke@435 1958 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 1959 }
duke@435 1960
kvn@741 1961 //------------------------------xadd_offset------------------------------------
kvn@741 1962 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 1963 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 1964 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 1965 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 1966 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 1967 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 1968 offset += (intptr_t)_offset;
kvn@741 1969 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 1970
kvn@741 1971 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 1972 // It is possible to construct a negative offset during PhaseCCP
kvn@741 1973
kvn@741 1974 return (int)offset; // Sum valid offsets
kvn@741 1975 }
kvn@741 1976
duke@435 1977 //------------------------------add_offset-------------------------------------
kvn@741 1978 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 1979 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 1980 }
duke@435 1981
duke@435 1982 //------------------------------eq---------------------------------------------
duke@435 1983 // Structural equality check for Type representations
duke@435 1984 bool TypePtr::eq( const Type *t ) const {
duke@435 1985 const TypePtr *a = (const TypePtr*)t;
duke@435 1986 return _ptr == a->ptr() && _offset == a->offset();
duke@435 1987 }
duke@435 1988
duke@435 1989 //------------------------------hash-------------------------------------------
duke@435 1990 // Type-specific hashing function.
duke@435 1991 int TypePtr::hash(void) const {
duke@435 1992 return _ptr + _offset;
duke@435 1993 }
duke@435 1994
duke@435 1995 //------------------------------dump2------------------------------------------
duke@435 1996 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 1997 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 1998 };
duke@435 1999
duke@435 2000 #ifndef PRODUCT
duke@435 2001 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2002 if( _ptr == Null ) st->print("NULL");
duke@435 2003 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2004 if( _offset == OffsetTop ) st->print("+top");
duke@435 2005 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2006 else if( _offset ) st->print("+%d", _offset);
duke@435 2007 }
duke@435 2008 #endif
duke@435 2009
duke@435 2010 //------------------------------singleton--------------------------------------
duke@435 2011 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2012 // constants
duke@435 2013 bool TypePtr::singleton(void) const {
duke@435 2014 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2015 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2016 }
duke@435 2017
duke@435 2018 bool TypePtr::empty(void) const {
duke@435 2019 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2020 }
duke@435 2021
duke@435 2022 //=============================================================================
duke@435 2023 // Convenience common pre-built types.
duke@435 2024 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2025 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2026
duke@435 2027 //------------------------------make-------------------------------------------
duke@435 2028 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2029 assert( ptr != Constant, "what is the constant?" );
duke@435 2030 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2031 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2032 }
duke@435 2033
duke@435 2034 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2035 assert( bits, "Use TypePtr for NULL" );
duke@435 2036 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2037 }
duke@435 2038
duke@435 2039 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2040 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2041 assert( ptr != Constant, "what is the constant?" );
duke@435 2042 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2043 assert( _bits==0, "Why cast a constant address?");
duke@435 2044 if( ptr == _ptr ) return this;
duke@435 2045 return make(ptr);
duke@435 2046 }
duke@435 2047
duke@435 2048 //------------------------------get_con----------------------------------------
duke@435 2049 intptr_t TypeRawPtr::get_con() const {
duke@435 2050 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2051 return (intptr_t)_bits;
duke@435 2052 }
duke@435 2053
duke@435 2054 //------------------------------meet-------------------------------------------
duke@435 2055 // Compute the MEET of two types. It returns a new Type object.
duke@435 2056 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2057 // Perform a fast test for common case; meeting the same types together.
duke@435 2058 if( this == t ) return this; // Meeting same type-rep?
duke@435 2059
duke@435 2060 // Current "this->_base" is RawPtr
duke@435 2061 switch( t->base() ) { // switch on original type
duke@435 2062 case Bottom: // Ye Olde Default
duke@435 2063 return t;
duke@435 2064 case Top:
duke@435 2065 return this;
duke@435 2066 case AnyPtr: // Meeting to AnyPtrs
duke@435 2067 break;
duke@435 2068 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2069 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2070 enum PTR ptr = meet_ptr( tptr );
duke@435 2071 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2072 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2073 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2074 ptr = NotNull; // Fall down in lattice
duke@435 2075 }
duke@435 2076 return make( ptr );
duke@435 2077 }
duke@435 2078
duke@435 2079 case OopPtr:
duke@435 2080 case InstPtr:
duke@435 2081 case KlassPtr:
duke@435 2082 case AryPtr:
duke@435 2083 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2084 default: // All else is a mistake
duke@435 2085 typerr(t);
duke@435 2086 }
duke@435 2087
duke@435 2088 // Found an AnyPtr type vs self-RawPtr type
duke@435 2089 const TypePtr *tp = t->is_ptr();
duke@435 2090 switch (tp->ptr()) {
duke@435 2091 case TypePtr::TopPTR: return this;
duke@435 2092 case TypePtr::BotPTR: return t;
duke@435 2093 case TypePtr::Null:
duke@435 2094 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2095 return TypeRawPtr::BOTTOM;
duke@435 2096 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2097 case TypePtr::AnyNull:
duke@435 2098 if( _ptr == TypePtr::Constant) return this;
duke@435 2099 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2100 default: ShouldNotReachHere();
duke@435 2101 }
duke@435 2102 return this;
duke@435 2103 }
duke@435 2104
duke@435 2105 //------------------------------xdual------------------------------------------
duke@435 2106 // Dual: compute field-by-field dual
duke@435 2107 const Type *TypeRawPtr::xdual() const {
duke@435 2108 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2109 }
duke@435 2110
duke@435 2111 //------------------------------add_offset-------------------------------------
kvn@741 2112 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2113 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2114 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2115 if( offset == 0 ) return this; // No change
duke@435 2116 switch (_ptr) {
duke@435 2117 case TypePtr::TopPTR:
duke@435 2118 case TypePtr::BotPTR:
duke@435 2119 case TypePtr::NotNull:
duke@435 2120 return this;
duke@435 2121 case TypePtr::Null:
duke@435 2122 case TypePtr::Constant:
duke@435 2123 return make( _bits+offset );
duke@435 2124 default: ShouldNotReachHere();
duke@435 2125 }
duke@435 2126 return NULL; // Lint noise
duke@435 2127 }
duke@435 2128
duke@435 2129 //------------------------------eq---------------------------------------------
duke@435 2130 // Structural equality check for Type representations
duke@435 2131 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2132 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2133 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2134 }
duke@435 2135
duke@435 2136 //------------------------------hash-------------------------------------------
duke@435 2137 // Type-specific hashing function.
duke@435 2138 int TypeRawPtr::hash(void) const {
duke@435 2139 return (intptr_t)_bits + TypePtr::hash();
duke@435 2140 }
duke@435 2141
duke@435 2142 //------------------------------dump2------------------------------------------
duke@435 2143 #ifndef PRODUCT
duke@435 2144 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2145 if( _ptr == Constant )
duke@435 2146 st->print(INTPTR_FORMAT, _bits);
duke@435 2147 else
duke@435 2148 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2149 }
duke@435 2150 #endif
duke@435 2151
duke@435 2152 //=============================================================================
duke@435 2153 // Convenience common pre-built type.
duke@435 2154 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2155
kvn@598 2156 //------------------------------TypeOopPtr-------------------------------------
kvn@598 2157 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
kvn@598 2158 : TypePtr(t, ptr, offset),
kvn@598 2159 _const_oop(o), _klass(k),
kvn@598 2160 _klass_is_exact(xk),
kvn@598 2161 _is_ptr_to_narrowoop(false),
kvn@598 2162 _instance_id(instance_id) {
kvn@598 2163 #ifdef _LP64
kvn@598 2164 if (UseCompressedOops && _offset != 0) {
kvn@598 2165 if (klass() == NULL) {
kvn@598 2166 assert(this->isa_aryptr(), "only arrays without klass");
kvn@598 2167 _is_ptr_to_narrowoop = true;
kvn@598 2168 } else if (_offset == oopDesc::klass_offset_in_bytes()) {
kvn@598 2169 _is_ptr_to_narrowoop = true;
kvn@598 2170 } else if (this->isa_aryptr()) {
kvn@598 2171 _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
kvn@598 2172 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2173 } else if (klass() == ciEnv::current()->Class_klass() &&
kvn@598 2174 (_offset == java_lang_Class::klass_offset_in_bytes() ||
kvn@598 2175 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
kvn@598 2176 // Special hidden fields from the Class.
kvn@598 2177 assert(this->isa_instptr(), "must be an instance ptr.");
kvn@598 2178 _is_ptr_to_narrowoop = true;
kvn@598 2179 } else if (klass()->is_instance_klass()) {
kvn@598 2180 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2181 ciField* field = NULL;
kvn@598 2182 if (this->isa_klassptr()) {
kvn@598 2183 // Perm objects don't use compressed references, except for
kvn@598 2184 // static fields which are currently compressed.
kvn@598 2185 field = ik->get_field_by_offset(_offset, true);
kvn@598 2186 if (field != NULL) {
kvn@598 2187 BasicType basic_elem_type = field->layout_type();
kvn@598 2188 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2189 basic_elem_type == T_ARRAY);
kvn@598 2190 }
kvn@598 2191 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2192 // unsafe access
kvn@598 2193 _is_ptr_to_narrowoop = true;
kvn@598 2194 } else { // exclude unsafe ops
kvn@598 2195 assert(this->isa_instptr(), "must be an instance ptr.");
kvn@598 2196 // Field which contains a compressed oop references.
kvn@598 2197 field = ik->get_field_by_offset(_offset, false);
kvn@598 2198 if (field != NULL) {
kvn@598 2199 BasicType basic_elem_type = field->layout_type();
kvn@598 2200 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2201 basic_elem_type == T_ARRAY);
kvn@598 2202 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@598 2203 // Compile::find_alias_type() cast exactness on all types to verify
kvn@598 2204 // that it does not affect alias type.
kvn@598 2205 _is_ptr_to_narrowoop = true;
kvn@598 2206 } else {
kvn@598 2207 // Type for the copy start in LibraryCallKit::inline_native_clone().
kvn@598 2208 assert(!klass_is_exact(), "only non-exact klass");
kvn@598 2209 _is_ptr_to_narrowoop = true;
kvn@598 2210 }
kvn@598 2211 }
kvn@598 2212 }
kvn@598 2213 }
kvn@598 2214 #endif
kvn@598 2215 }
kvn@598 2216
duke@435 2217 //------------------------------make-------------------------------------------
duke@435 2218 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
duke@435 2219 int offset) {
duke@435 2220 assert(ptr != Constant, "no constant generic pointers");
duke@435 2221 ciKlass* k = ciKlassKlass::make();
duke@435 2222 bool xk = false;
duke@435 2223 ciObject* o = NULL;
kvn@658 2224 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, InstanceBot))->hashcons();
duke@435 2225 }
duke@435 2226
duke@435 2227
duke@435 2228 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2229 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2230 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2231 if( ptr == _ptr ) return this;
duke@435 2232 return make(ptr, _offset);
duke@435 2233 }
duke@435 2234
kvn@682 2235 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2236 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2237 // There are no instances of a general oop.
duke@435 2238 // Return self unchanged.
duke@435 2239 return this;
duke@435 2240 }
duke@435 2241
duke@435 2242 //-----------------------------cast_to_exactness-------------------------------
duke@435 2243 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2244 // There is no such thing as an exact general oop.
duke@435 2245 // Return self unchanged.
duke@435 2246 return this;
duke@435 2247 }
duke@435 2248
duke@435 2249
duke@435 2250 //------------------------------as_klass_type----------------------------------
duke@435 2251 // Return the klass type corresponding to this instance or array type.
duke@435 2252 // It is the type that is loaded from an object of this type.
duke@435 2253 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2254 ciKlass* k = klass();
duke@435 2255 bool xk = klass_is_exact();
duke@435 2256 if (k == NULL || !k->is_java_klass())
duke@435 2257 return TypeKlassPtr::OBJECT;
duke@435 2258 else
duke@435 2259 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2260 }
duke@435 2261
duke@435 2262
duke@435 2263 //------------------------------meet-------------------------------------------
duke@435 2264 // Compute the MEET of two types. It returns a new Type object.
duke@435 2265 const Type *TypeOopPtr::xmeet( const Type *t ) const {
duke@435 2266 // Perform a fast test for common case; meeting the same types together.
duke@435 2267 if( this == t ) return this; // Meeting same type-rep?
duke@435 2268
duke@435 2269 // Current "this->_base" is OopPtr
duke@435 2270 switch (t->base()) { // switch on original type
duke@435 2271
duke@435 2272 case Int: // Mixing ints & oops happens when javac
duke@435 2273 case Long: // reuses local variables
duke@435 2274 case FloatTop:
duke@435 2275 case FloatCon:
duke@435 2276 case FloatBot:
duke@435 2277 case DoubleTop:
duke@435 2278 case DoubleCon:
duke@435 2279 case DoubleBot:
kvn@728 2280 case NarrowOop:
duke@435 2281 case Bottom: // Ye Olde Default
duke@435 2282 return Type::BOTTOM;
duke@435 2283 case Top:
duke@435 2284 return this;
duke@435 2285
duke@435 2286 default: // All else is a mistake
duke@435 2287 typerr(t);
duke@435 2288
duke@435 2289 case RawPtr:
duke@435 2290 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2291
duke@435 2292 case AnyPtr: {
duke@435 2293 // Found an AnyPtr type vs self-OopPtr type
duke@435 2294 const TypePtr *tp = t->is_ptr();
duke@435 2295 int offset = meet_offset(tp->offset());
duke@435 2296 PTR ptr = meet_ptr(tp->ptr());
duke@435 2297 switch (tp->ptr()) {
duke@435 2298 case Null:
duke@435 2299 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2300 // else fall through:
duke@435 2301 case TopPTR:
duke@435 2302 case AnyNull:
duke@435 2303 return make(ptr, offset);
duke@435 2304 case BotPTR:
duke@435 2305 case NotNull:
duke@435 2306 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2307 default: typerr(t);
duke@435 2308 }
duke@435 2309 }
duke@435 2310
duke@435 2311 case OopPtr: { // Meeting to other OopPtrs
duke@435 2312 const TypeOopPtr *tp = t->is_oopptr();
duke@435 2313 return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2314 }
duke@435 2315
duke@435 2316 case InstPtr: // For these, flip the call around to cut down
duke@435 2317 case KlassPtr: // on the cases I have to handle.
duke@435 2318 case AryPtr:
duke@435 2319 return t->xmeet(this); // Call in reverse direction
duke@435 2320
duke@435 2321 } // End of switch
duke@435 2322 return this; // Return the double constant
duke@435 2323 }
duke@435 2324
duke@435 2325
duke@435 2326 //------------------------------xdual------------------------------------------
duke@435 2327 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2328 const Type *TypeOopPtr::xdual() const {
duke@435 2329 assert(klass() == ciKlassKlass::make(), "no klasses here");
duke@435 2330 assert(const_oop() == NULL, "no constants here");
kvn@658 2331 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 2332 }
duke@435 2333
duke@435 2334 //--------------------------make_from_klass_common-----------------------------
duke@435 2335 // Computes the element-type given a klass.
duke@435 2336 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2337 assert(klass->is_java_klass(), "must be java language klass");
duke@435 2338 if (klass->is_instance_klass()) {
duke@435 2339 Compile* C = Compile::current();
duke@435 2340 Dependencies* deps = C->dependencies();
duke@435 2341 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2342 // Element is an instance
duke@435 2343 bool klass_is_exact = false;
duke@435 2344 if (klass->is_loaded()) {
duke@435 2345 // Try to set klass_is_exact.
duke@435 2346 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2347 klass_is_exact = ik->is_final();
duke@435 2348 if (!klass_is_exact && klass_change
duke@435 2349 && deps != NULL && UseUniqueSubclasses) {
duke@435 2350 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2351 if (sub != NULL) {
duke@435 2352 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2353 klass = ik = sub;
duke@435 2354 klass_is_exact = sub->is_final();
duke@435 2355 }
duke@435 2356 }
duke@435 2357 if (!klass_is_exact && try_for_exact
duke@435 2358 && deps != NULL && UseExactTypes) {
duke@435 2359 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2360 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2361 deps->assert_leaf_type(ik);
duke@435 2362 klass_is_exact = true;
duke@435 2363 }
duke@435 2364 }
duke@435 2365 }
duke@435 2366 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2367 } else if (klass->is_obj_array_klass()) {
duke@435 2368 // Element is an object array. Recursively call ourself.
duke@435 2369 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2370 bool xk = etype->klass_is_exact();
duke@435 2371 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2372 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2373 // are all not-null. This is not true in generally, as code can
duke@435 2374 // slam NULLs down in the subarrays.
duke@435 2375 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2376 return arr;
duke@435 2377 } else if (klass->is_type_array_klass()) {
duke@435 2378 // Element is an typeArray
duke@435 2379 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2380 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2381 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2382 // is not-null. That was not true in general.
duke@435 2383 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2384 return arr;
duke@435 2385 } else {
duke@435 2386 ShouldNotReachHere();
duke@435 2387 return NULL;
duke@435 2388 }
duke@435 2389 }
duke@435 2390
duke@435 2391 //------------------------------make_from_constant-----------------------------
duke@435 2392 // Make a java pointer from an oop constant
duke@435 2393 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o) {
duke@435 2394 if (o->is_method_data() || o->is_method()) {
duke@435 2395 // Treat much like a typeArray of bytes, like below, but fake the type...
duke@435 2396 assert(o->has_encoding(), "must be a perm space object");
duke@435 2397 const Type* etype = (Type*)get_const_basic_type(T_BYTE);
duke@435 2398 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2399 ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
duke@435 2400 assert(o->has_encoding(), "method data oops should be tenured");
duke@435 2401 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2402 return arr;
duke@435 2403 } else {
duke@435 2404 assert(o->is_java_object(), "must be java language object");
duke@435 2405 assert(!o->is_null_object(), "null object not yet handled here.");
duke@435 2406 ciKlass *klass = o->klass();
duke@435 2407 if (klass->is_instance_klass()) {
duke@435 2408 // Element is an instance
duke@435 2409 if (!o->has_encoding()) { // not a perm-space constant
duke@435 2410 // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
duke@435 2411 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
duke@435 2412 }
duke@435 2413 return TypeInstPtr::make(o);
duke@435 2414 } else if (klass->is_obj_array_klass()) {
duke@435 2415 // Element is an object array. Recursively call ourself.
duke@435 2416 const Type *etype =
duke@435 2417 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
duke@435 2418 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2419 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2420 // are all not-null. This is not true in generally, as code can
duke@435 2421 // slam NULLs down in the subarrays.
duke@435 2422 if (!o->has_encoding()) { // not a perm-space constant
duke@435 2423 // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
duke@435 2424 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2425 }
duke@435 2426 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2427 return arr;
duke@435 2428 } else if (klass->is_type_array_klass()) {
duke@435 2429 // Element is an typeArray
duke@435 2430 const Type* etype =
duke@435 2431 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2432 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2433 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2434 // is not-null. That was not true in general.
duke@435 2435 if (!o->has_encoding()) { // not a perm-space constant
duke@435 2436 // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
duke@435 2437 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2438 }
duke@435 2439 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2440 return arr;
duke@435 2441 }
duke@435 2442 }
duke@435 2443
duke@435 2444 ShouldNotReachHere();
duke@435 2445 return NULL;
duke@435 2446 }
duke@435 2447
duke@435 2448 //------------------------------get_con----------------------------------------
duke@435 2449 intptr_t TypeOopPtr::get_con() const {
duke@435 2450 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2451 assert( _offset >= 0, "" );
duke@435 2452
duke@435 2453 if (_offset != 0) {
duke@435 2454 // After being ported to the compiler interface, the compiler no longer
duke@435 2455 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2456 // to a handle at compile time. This handle is embedded in the generated
duke@435 2457 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2458 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2459 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2460 // but this assertion here is to help prevent its occurence.
duke@435 2461 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2462 ShouldNotReachHere();
duke@435 2463 }
duke@435 2464
duke@435 2465 return (intptr_t)const_oop()->encoding();
duke@435 2466 }
duke@435 2467
duke@435 2468
duke@435 2469 //-----------------------------filter------------------------------------------
duke@435 2470 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 2471 const Type *TypeOopPtr::filter( const Type *kills ) const {
duke@435 2472
duke@435 2473 const Type* ft = join(kills);
duke@435 2474 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2475 const TypeInstPtr* ktip = kills->isa_instptr();
never@990 2476 const TypeKlassPtr* ftkp = ft->isa_klassptr();
never@990 2477 const TypeKlassPtr* ktkp = kills->isa_klassptr();
duke@435 2478
duke@435 2479 if (ft->empty()) {
duke@435 2480 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2481 // interface. This can happen because the bytecodes do not contain
duke@435 2482 // enough type info to distinguish a Java-level interface variable
duke@435 2483 // from a Java-level object variable. If we meet 2 classes which
duke@435 2484 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2485 // doesn't implement I, we have no way to tell if the result should
duke@435 2486 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2487 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2488 // uplift the type.
duke@435 2489 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2490 return kills; // Uplift to interface
never@990 2491 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
never@990 2492 return kills; // Uplift to interface
duke@435 2493
duke@435 2494 return Type::TOP; // Canonical empty value
duke@435 2495 }
duke@435 2496
duke@435 2497 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2498 // the join should report back the class. However, if we have a J/L/Object
duke@435 2499 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2500 // join report an interface back out. This isn't possible but happens
duke@435 2501 // because the type system doesn't interact well with interfaces.
duke@435 2502 if (ftip != NULL && ktip != NULL &&
duke@435 2503 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2504 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2505 // Happens in a CTW of rt.jar, 320-341, no extra flags
duke@435 2506 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2507 }
never@990 2508 if (ftkp != NULL && ktkp != NULL &&
never@990 2509 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
never@990 2510 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
never@990 2511 // Happens in a CTW of rt.jar, 320-341, no extra flags
never@990 2512 return ktkp->cast_to_ptr_type(ftkp->ptr());
never@990 2513 }
duke@435 2514
duke@435 2515 return ft;
duke@435 2516 }
duke@435 2517
duke@435 2518 //------------------------------eq---------------------------------------------
duke@435 2519 // Structural equality check for Type representations
duke@435 2520 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2521 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2522 if (_klass_is_exact != a->_klass_is_exact ||
duke@435 2523 _instance_id != a->_instance_id) return false;
duke@435 2524 ciObject* one = const_oop();
duke@435 2525 ciObject* two = a->const_oop();
duke@435 2526 if (one == NULL || two == NULL) {
duke@435 2527 return (one == two) && TypePtr::eq(t);
duke@435 2528 } else {
duke@435 2529 return one->equals(two) && TypePtr::eq(t);
duke@435 2530 }
duke@435 2531 }
duke@435 2532
duke@435 2533 //------------------------------hash-------------------------------------------
duke@435 2534 // Type-specific hashing function.
duke@435 2535 int TypeOopPtr::hash(void) const {
duke@435 2536 return
duke@435 2537 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2538 _klass_is_exact +
duke@435 2539 _instance_id +
duke@435 2540 TypePtr::hash();
duke@435 2541 }
duke@435 2542
duke@435 2543 //------------------------------dump2------------------------------------------
duke@435 2544 #ifndef PRODUCT
duke@435 2545 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2546 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2547 if( _klass_is_exact ) st->print(":exact");
duke@435 2548 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2549 switch( _offset ) {
duke@435 2550 case OffsetTop: st->print("+top"); break;
duke@435 2551 case OffsetBot: st->print("+any"); break;
duke@435 2552 case 0: break;
duke@435 2553 default: st->print("+%d",_offset); break;
duke@435 2554 }
kvn@658 2555 if (_instance_id == InstanceTop)
kvn@658 2556 st->print(",iid=top");
kvn@658 2557 else if (_instance_id != InstanceBot)
duke@435 2558 st->print(",iid=%d",_instance_id);
duke@435 2559 }
duke@435 2560 #endif
duke@435 2561
duke@435 2562 //------------------------------singleton--------------------------------------
duke@435 2563 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2564 // constants
duke@435 2565 bool TypeOopPtr::singleton(void) const {
duke@435 2566 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2567 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2568 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2569 }
duke@435 2570
duke@435 2571 //------------------------------add_offset-------------------------------------
kvn@741 2572 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
duke@435 2573 return make( _ptr, xadd_offset(offset) );
duke@435 2574 }
duke@435 2575
kvn@658 2576 //------------------------------meet_instance_id--------------------------------
kvn@658 2577 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2578 // Either is 'TOP' instance? Return the other instance!
kvn@658 2579 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2580 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2581 // If either is different, return 'BOTTOM' instance
kvn@658 2582 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2583 return _instance_id;
duke@435 2584 }
duke@435 2585
kvn@658 2586 //------------------------------dual_instance_id--------------------------------
kvn@658 2587 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2588 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2589 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2590 return _instance_id; // Map everything else into self
kvn@658 2591 }
kvn@658 2592
kvn@658 2593
duke@435 2594 //=============================================================================
duke@435 2595 // Convenience common pre-built types.
duke@435 2596 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 2597 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 2598 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 2599 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 2600 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 2601
duke@435 2602 //------------------------------TypeInstPtr-------------------------------------
duke@435 2603 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
duke@435 2604 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
duke@435 2605 assert(k != NULL &&
duke@435 2606 (k->is_loaded() || o == NULL),
duke@435 2607 "cannot have constants with non-loaded klass");
duke@435 2608 };
duke@435 2609
duke@435 2610 //------------------------------make-------------------------------------------
duke@435 2611 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 2612 ciKlass* k,
duke@435 2613 bool xk,
duke@435 2614 ciObject* o,
duke@435 2615 int offset,
duke@435 2616 int instance_id) {
duke@435 2617 assert( !k->is_loaded() || k->is_instance_klass() ||
duke@435 2618 k->is_method_klass(), "Must be for instance or method");
duke@435 2619 // Either const_oop() is NULL or else ptr is Constant
duke@435 2620 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 2621 "constant pointers must have a value supplied" );
duke@435 2622 // Ptr is never Null
duke@435 2623 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 2624
kvn@682 2625 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 2626 if (!UseExactTypes) xk = false;
duke@435 2627 if (ptr == Constant) {
duke@435 2628 // Note: This case includes meta-object constants, such as methods.
duke@435 2629 xk = true;
duke@435 2630 } else if (k->is_loaded()) {
duke@435 2631 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 2632 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 2633 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 2634 }
duke@435 2635
duke@435 2636 // Now hash this baby
duke@435 2637 TypeInstPtr *result =
duke@435 2638 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
duke@435 2639
duke@435 2640 return result;
duke@435 2641 }
duke@435 2642
duke@435 2643
duke@435 2644 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2645 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2646 if( ptr == _ptr ) return this;
duke@435 2647 // Reconstruct _sig info here since not a problem with later lazy
duke@435 2648 // construction, _sig will show up on demand.
kvn@658 2649 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
duke@435 2650 }
duke@435 2651
duke@435 2652
duke@435 2653 //-----------------------------cast_to_exactness-------------------------------
duke@435 2654 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2655 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 2656 if (!UseExactTypes) return this;
duke@435 2657 if (!_klass->is_loaded()) return this;
duke@435 2658 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 2659 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 2660 if( ik->is_interface() ) return this; // cannot set xk
duke@435 2661 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
duke@435 2662 }
duke@435 2663
kvn@682 2664 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2665 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 2666 if( instance_id == _instance_id ) return this;
kvn@682 2667 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
duke@435 2668 }
duke@435 2669
duke@435 2670 //------------------------------xmeet_unloaded---------------------------------
duke@435 2671 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 2672 // Assume classes are different since called after check for same name/class-loader
duke@435 2673 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 2674 int off = meet_offset(tinst->offset());
duke@435 2675 PTR ptr = meet_ptr(tinst->ptr());
duke@435 2676
duke@435 2677 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 2678 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 2679 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 2680 //
duke@435 2681 // Meet unloaded class with java/lang/Object
duke@435 2682 //
duke@435 2683 // Meet
duke@435 2684 // | Unloaded Class
duke@435 2685 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 2686 // ===================================================================
duke@435 2687 // TOP | ..........................Unloaded......................|
duke@435 2688 // AnyNull | U-AN |................Unloaded......................|
duke@435 2689 // Constant | ... O-NN .................................. | O-BOT |
duke@435 2690 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 2691 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 2692 //
duke@435 2693 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 2694 //
duke@435 2695 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2696 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass() ); }
duke@435 2697 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2698 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 2699 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2700 else { return TypeInstPtr::NOTNULL; }
duke@435 2701 }
duke@435 2702 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2703
duke@435 2704 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 2705 }
duke@435 2706
duke@435 2707 // Both are unloaded, not the same class, not Object
duke@435 2708 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 2709 if( ptr != TypePtr::BotPTR ) {
duke@435 2710 return TypeInstPtr::NOTNULL;
duke@435 2711 }
duke@435 2712 return TypeInstPtr::BOTTOM;
duke@435 2713 }
duke@435 2714
duke@435 2715
duke@435 2716 //------------------------------meet-------------------------------------------
duke@435 2717 // Compute the MEET of two types. It returns a new Type object.
duke@435 2718 const Type *TypeInstPtr::xmeet( const Type *t ) const {
duke@435 2719 // Perform a fast test for common case; meeting the same types together.
duke@435 2720 if( this == t ) return this; // Meeting same type-rep?
duke@435 2721
duke@435 2722 // Current "this->_base" is Pointer
duke@435 2723 switch (t->base()) { // switch on original type
duke@435 2724
duke@435 2725 case Int: // Mixing ints & oops happens when javac
duke@435 2726 case Long: // reuses local variables
duke@435 2727 case FloatTop:
duke@435 2728 case FloatCon:
duke@435 2729 case FloatBot:
duke@435 2730 case DoubleTop:
duke@435 2731 case DoubleCon:
duke@435 2732 case DoubleBot:
coleenp@548 2733 case NarrowOop:
duke@435 2734 case Bottom: // Ye Olde Default
duke@435 2735 return Type::BOTTOM;
duke@435 2736 case Top:
duke@435 2737 return this;
duke@435 2738
duke@435 2739 default: // All else is a mistake
duke@435 2740 typerr(t);
duke@435 2741
duke@435 2742 case RawPtr: return TypePtr::BOTTOM;
duke@435 2743
duke@435 2744 case AryPtr: { // All arrays inherit from Object class
duke@435 2745 const TypeAryPtr *tp = t->is_aryptr();
duke@435 2746 int offset = meet_offset(tp->offset());
duke@435 2747 PTR ptr = meet_ptr(tp->ptr());
kvn@658 2748 int instance_id = meet_instance_id(tp->instance_id());
duke@435 2749 switch (ptr) {
duke@435 2750 case TopPTR:
duke@435 2751 case AnyNull: // Fall 'down' to dual of object klass
duke@435 2752 if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@658 2753 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2754 } else {
duke@435 2755 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 2756 ptr = NotNull;
kvn@658 2757 instance_id = InstanceBot;
kvn@658 2758 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
duke@435 2759 }
duke@435 2760 case Constant:
duke@435 2761 case NotNull:
duke@435 2762 case BotPTR: // Fall down to object klass
duke@435 2763 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 2764 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 2765 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 2766 // then we can subclass in the Java class hierarchy.
duke@435 2767 if (klass()->equals(ciEnv::current()->Object_klass())) {
duke@435 2768 // that is, tp's array type is a subtype of my klass
kvn@658 2769 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2770 }
duke@435 2771 }
duke@435 2772 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 2773 // The meet falls down to Object class below centerline.
duke@435 2774 if( ptr == Constant )
duke@435 2775 ptr = NotNull;
kvn@658 2776 instance_id = InstanceBot;
kvn@658 2777 return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
duke@435 2778 default: typerr(t);
duke@435 2779 }
duke@435 2780 }
duke@435 2781
duke@435 2782 case OopPtr: { // Meeting to OopPtrs
duke@435 2783 // Found a OopPtr type vs self-InstPtr type
duke@435 2784 const TypePtr *tp = t->is_oopptr();
duke@435 2785 int offset = meet_offset(tp->offset());
duke@435 2786 PTR ptr = meet_ptr(tp->ptr());
duke@435 2787 switch (tp->ptr()) {
duke@435 2788 case TopPTR:
kvn@658 2789 case AnyNull: {
kvn@658 2790 int instance_id = meet_instance_id(InstanceTop);
duke@435 2791 return make(ptr, klass(), klass_is_exact(),
kvn@658 2792 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2793 }
duke@435 2794 case NotNull:
duke@435 2795 case BotPTR:
duke@435 2796 return TypeOopPtr::make(ptr, offset);
duke@435 2797 default: typerr(t);
duke@435 2798 }
duke@435 2799 }
duke@435 2800
duke@435 2801 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2802 // Found an AnyPtr type vs self-InstPtr type
duke@435 2803 const TypePtr *tp = t->is_ptr();
duke@435 2804 int offset = meet_offset(tp->offset());
duke@435 2805 PTR ptr = meet_ptr(tp->ptr());
duke@435 2806 switch (tp->ptr()) {
duke@435 2807 case Null:
duke@435 2808 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
kvn@658 2809 // else fall through to AnyNull
duke@435 2810 case TopPTR:
kvn@658 2811 case AnyNull: {
kvn@658 2812 int instance_id = meet_instance_id(InstanceTop);
duke@435 2813 return make( ptr, klass(), klass_is_exact(),
kvn@658 2814 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2815 }
duke@435 2816 case NotNull:
duke@435 2817 case BotPTR:
duke@435 2818 return TypePtr::make( AnyPtr, ptr, offset );
duke@435 2819 default: typerr(t);
duke@435 2820 }
duke@435 2821 }
duke@435 2822
duke@435 2823 /*
duke@435 2824 A-top }
duke@435 2825 / | \ } Tops
duke@435 2826 B-top A-any C-top }
duke@435 2827 | / | \ | } Any-nulls
duke@435 2828 B-any | C-any }
duke@435 2829 | | |
duke@435 2830 B-con A-con C-con } constants; not comparable across classes
duke@435 2831 | | |
duke@435 2832 B-not | C-not }
duke@435 2833 | \ | / | } not-nulls
duke@435 2834 B-bot A-not C-bot }
duke@435 2835 \ | / } Bottoms
duke@435 2836 A-bot }
duke@435 2837 */
duke@435 2838
duke@435 2839 case InstPtr: { // Meeting 2 Oops?
duke@435 2840 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 2841 const TypeInstPtr *tinst = t->is_instptr();
duke@435 2842 int off = meet_offset( tinst->offset() );
duke@435 2843 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 2844 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2845
duke@435 2846 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 2847 // If we have constants, then we created oops so classes are loaded
duke@435 2848 // and we can handle the constants further down. This case handles
duke@435 2849 // both-not-loaded or both-loaded classes
duke@435 2850 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
duke@435 2851 return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
duke@435 2852 }
duke@435 2853
duke@435 2854 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 2855 ciKlass* tinst_klass = tinst->klass();
duke@435 2856 ciKlass* this_klass = this->klass();
duke@435 2857 bool tinst_xk = tinst->klass_is_exact();
duke@435 2858 bool this_xk = this->klass_is_exact();
duke@435 2859 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 2860 // One of these classes has not been loaded
duke@435 2861 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 2862 #ifndef PRODUCT
duke@435 2863 if( PrintOpto && Verbose ) {
duke@435 2864 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 2865 tty->print(" this == "); this->dump(); tty->cr();
duke@435 2866 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 2867 }
duke@435 2868 #endif
duke@435 2869 return unloaded_meet;
duke@435 2870 }
duke@435 2871
duke@435 2872 // Handle mixing oops and interfaces first.
duke@435 2873 if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
duke@435 2874 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 2875 tinst_klass = this_klass;
duke@435 2876 this_klass = tmp;
duke@435 2877 bool tmp2 = tinst_xk;
duke@435 2878 tinst_xk = this_xk;
duke@435 2879 this_xk = tmp2;
duke@435 2880 }
duke@435 2881 if (tinst_klass->is_interface() &&
duke@435 2882 !(this_klass->is_interface() ||
duke@435 2883 // Treat java/lang/Object as an honorary interface,
duke@435 2884 // because we need a bottom for the interface hierarchy.
duke@435 2885 this_klass == ciEnv::current()->Object_klass())) {
duke@435 2886 // Oop meets interface!
duke@435 2887
duke@435 2888 // See if the oop subtypes (implements) interface.
duke@435 2889 ciKlass *k;
duke@435 2890 bool xk;
duke@435 2891 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2892 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 2893 // on whether we are both above the centerline or either is
duke@435 2894 // below the centerline. If we are on the centerline
duke@435 2895 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 2896 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 2897 // If we are keeping this_klass, keep its exactness too.
duke@435 2898 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 2899 } else { // Does not implement, fall to Object
duke@435 2900 // Oop does not implement interface, so mixing falls to Object
duke@435 2901 // just like the verifier does (if both are above the
duke@435 2902 // centerline fall to interface)
duke@435 2903 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 2904 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 2905 // Watch out for Constant vs. AnyNull interface.
duke@435 2906 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 2907 instance_id = InstanceBot;
duke@435 2908 }
duke@435 2909 ciObject* o = NULL; // the Constant value, if any
duke@435 2910 if (ptr == Constant) {
duke@435 2911 // Find out which constant.
duke@435 2912 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 2913 }
kvn@658 2914 return make( ptr, k, xk, o, off, instance_id );
duke@435 2915 }
duke@435 2916
duke@435 2917 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 2918
duke@435 2919 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 2920 // If we split one up & one down AND they subtype, take the down man.
duke@435 2921 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 2922 // If both are up and they subtype, take the subtype class.
duke@435 2923 // If both are up and they do NOT subtype, "fall hard".
duke@435 2924 // If both are down and they subtype, take the supertype class.
duke@435 2925 // If both are down and they do NOT subtype, "fall hard".
duke@435 2926 // Constants treated as down.
duke@435 2927
duke@435 2928 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 2929 // "fall hard"; "fall hard" becomes the default case:
duke@435 2930 // If we split one up & one down AND they subtype, take the down man.
duke@435 2931 // If both are up and they subtype, take the subtype class.
duke@435 2932
duke@435 2933 // If both are down and they subtype, "fall hard".
duke@435 2934 // If both are down and they do NOT subtype, "fall hard".
duke@435 2935 // If both are up and they do NOT subtype, "fall hard".
duke@435 2936 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 2937
duke@435 2938 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 2939 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 2940 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 2941 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 2942
duke@435 2943 // Check for subtyping:
duke@435 2944 ciKlass *subtype = NULL;
duke@435 2945 bool subtype_exact = false;
duke@435 2946 if( tinst_klass->equals(this_klass) ) {
duke@435 2947 subtype = this_klass;
duke@435 2948 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 2949 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2950 subtype = this_klass; // Pick subtyping class
duke@435 2951 subtype_exact = this_xk;
duke@435 2952 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 2953 subtype = tinst_klass; // Pick subtyping class
duke@435 2954 subtype_exact = tinst_xk;
duke@435 2955 }
duke@435 2956
duke@435 2957 if( subtype ) {
duke@435 2958 if( above_centerline(ptr) ) { // both are up?
duke@435 2959 this_klass = tinst_klass = subtype;
duke@435 2960 this_xk = tinst_xk = subtype_exact;
duke@435 2961 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 2962 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 2963 this_xk = tinst_xk;
duke@435 2964 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 2965 tinst_klass = this_klass; // this is down; keep down man
duke@435 2966 tinst_xk = this_xk;
duke@435 2967 } else {
duke@435 2968 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 2969 }
duke@435 2970 }
duke@435 2971
duke@435 2972 // Check for classes now being equal
duke@435 2973 if (tinst_klass->equals(this_klass)) {
duke@435 2974 // If the klasses are equal, the constants may still differ. Fall to
duke@435 2975 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 2976 // handled elsewhere).
duke@435 2977 ciObject* o = NULL; // Assume not constant when done
duke@435 2978 ciObject* this_oop = const_oop();
duke@435 2979 ciObject* tinst_oop = tinst->const_oop();
duke@435 2980 if( ptr == Constant ) {
duke@435 2981 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 2982 this_oop->equals(tinst_oop) )
duke@435 2983 o = this_oop;
duke@435 2984 else if (above_centerline(this ->_ptr))
duke@435 2985 o = tinst_oop;
duke@435 2986 else if (above_centerline(tinst ->_ptr))
duke@435 2987 o = this_oop;
duke@435 2988 else
duke@435 2989 ptr = NotNull;
duke@435 2990 }
duke@435 2991 return make( ptr, this_klass, this_xk, o, off, instance_id );
duke@435 2992 } // Else classes are not equal
duke@435 2993
duke@435 2994 // Since klasses are different, we require a LCA in the Java
duke@435 2995 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 2996 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 2997 ptr = NotNull;
kvn@682 2998 instance_id = InstanceBot;
duke@435 2999
duke@435 3000 // Now we find the LCA of Java classes
duke@435 3001 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
kvn@658 3002 return make( ptr, k, false, NULL, off, instance_id );
duke@435 3003 } // End of case InstPtr
duke@435 3004
duke@435 3005 case KlassPtr:
duke@435 3006 return TypeInstPtr::BOTTOM;
duke@435 3007
duke@435 3008 } // End of switch
duke@435 3009 return this; // Return the double constant
duke@435 3010 }
duke@435 3011
duke@435 3012
duke@435 3013 //------------------------java_mirror_type--------------------------------------
duke@435 3014 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3015 // must be a singleton type
duke@435 3016 if( const_oop() == NULL ) return NULL;
duke@435 3017
duke@435 3018 // must be of type java.lang.Class
duke@435 3019 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3020
duke@435 3021 return const_oop()->as_instance()->java_mirror_type();
duke@435 3022 }
duke@435 3023
duke@435 3024
duke@435 3025 //------------------------------xdual------------------------------------------
duke@435 3026 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3027 // inheritance mechanism.
duke@435 3028 const Type *TypeInstPtr::xdual() const {
kvn@658 3029 return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 3030 }
duke@435 3031
duke@435 3032 //------------------------------eq---------------------------------------------
duke@435 3033 // Structural equality check for Type representations
duke@435 3034 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3035 const TypeInstPtr *p = t->is_instptr();
duke@435 3036 return
duke@435 3037 klass()->equals(p->klass()) &&
duke@435 3038 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3039 }
duke@435 3040
duke@435 3041 //------------------------------hash-------------------------------------------
duke@435 3042 // Type-specific hashing function.
duke@435 3043 int TypeInstPtr::hash(void) const {
duke@435 3044 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3045 return hash;
duke@435 3046 }
duke@435 3047
duke@435 3048 //------------------------------dump2------------------------------------------
duke@435 3049 // Dump oop Type
duke@435 3050 #ifndef PRODUCT
duke@435 3051 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3052 // Print the name of the klass.
duke@435 3053 klass()->print_name_on(st);
duke@435 3054
duke@435 3055 switch( _ptr ) {
duke@435 3056 case Constant:
duke@435 3057 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3058 if (WizardMode || Verbose) {
duke@435 3059 const_oop()->print_oop(st);
duke@435 3060 }
duke@435 3061 case BotPTR:
duke@435 3062 if (!WizardMode && !Verbose) {
duke@435 3063 if( _klass_is_exact ) st->print(":exact");
duke@435 3064 break;
duke@435 3065 }
duke@435 3066 case TopPTR:
duke@435 3067 case AnyNull:
duke@435 3068 case NotNull:
duke@435 3069 st->print(":%s", ptr_msg[_ptr]);
duke@435 3070 if( _klass_is_exact ) st->print(":exact");
duke@435 3071 break;
duke@435 3072 }
duke@435 3073
duke@435 3074 if( _offset ) { // Dump offset, if any
duke@435 3075 if( _offset == OffsetBot ) st->print("+any");
duke@435 3076 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3077 else st->print("+%d", _offset);
duke@435 3078 }
duke@435 3079
duke@435 3080 st->print(" *");
kvn@658 3081 if (_instance_id == InstanceTop)
kvn@658 3082 st->print(",iid=top");
kvn@658 3083 else if (_instance_id != InstanceBot)
duke@435 3084 st->print(",iid=%d",_instance_id);
duke@435 3085 }
duke@435 3086 #endif
duke@435 3087
duke@435 3088 //------------------------------add_offset-------------------------------------
kvn@741 3089 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
duke@435 3090 return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
duke@435 3091 }
duke@435 3092
duke@435 3093 //=============================================================================
duke@435 3094 // Convenience common pre-built types.
duke@435 3095 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3096 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3097 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3098 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3099 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3100 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3101 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3102 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3103 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3104 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3105
duke@435 3106 //------------------------------make-------------------------------------------
duke@435 3107 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3108 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3109 "integral arrays must be pre-equipped with a class");
duke@435 3110 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3111 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3112 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3113 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3114 }
duke@435 3115
duke@435 3116 //------------------------------make-------------------------------------------
duke@435 3117 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3118 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3119 "integral arrays must be pre-equipped with a class");
duke@435 3120 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3121 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3122 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3123 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3124 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3125 }
duke@435 3126
duke@435 3127 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3128 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3129 if( ptr == _ptr ) return this;
kvn@658 3130 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3131 }
duke@435 3132
duke@435 3133
duke@435 3134 //-----------------------------cast_to_exactness-------------------------------
duke@435 3135 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3136 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3137 if (!UseExactTypes) return this;
duke@435 3138 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
duke@435 3139 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
duke@435 3140 }
duke@435 3141
kvn@682 3142 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3143 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3144 if( instance_id == _instance_id ) return this;
kvn@682 3145 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
duke@435 3146 }
duke@435 3147
duke@435 3148 //-----------------------------narrow_size_type-------------------------------
duke@435 3149 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3150 // which is kind of slow (and cached elsewhere by other users).
duke@435 3151 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3152 static jint max_array_length(BasicType etype) {
duke@435 3153 jint& cache = max_array_length_cache[etype];
duke@435 3154 jint res = cache;
duke@435 3155 if (res == 0) {
duke@435 3156 switch (etype) {
coleenp@548 3157 case T_NARROWOOP:
coleenp@548 3158 etype = T_OBJECT;
coleenp@548 3159 break;
duke@435 3160 case T_CONFLICT:
duke@435 3161 case T_ILLEGAL:
duke@435 3162 case T_VOID:
duke@435 3163 etype = T_BYTE; // will produce conservatively high value
duke@435 3164 }
duke@435 3165 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3166 }
duke@435 3167 return res;
duke@435 3168 }
duke@435 3169
duke@435 3170 // Narrow the given size type to the index range for the given array base type.
duke@435 3171 // Return NULL if the resulting int type becomes empty.
rasbold@801 3172 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3173 jint hi = size->_hi;
duke@435 3174 jint lo = size->_lo;
duke@435 3175 jint min_lo = 0;
rasbold@801 3176 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3177 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3178 bool chg = false;
duke@435 3179 if (lo < min_lo) { lo = min_lo; chg = true; }
duke@435 3180 if (hi > max_hi) { hi = max_hi; chg = true; }
twisti@1040 3181 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3182 if (lo > hi)
rasbold@801 3183 return TypeInt::ZERO;
duke@435 3184 if (!chg)
duke@435 3185 return size;
duke@435 3186 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3187 }
duke@435 3188
duke@435 3189 //-------------------------------cast_to_size----------------------------------
duke@435 3190 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3191 assert(new_size != NULL, "");
rasbold@801 3192 new_size = narrow_size_type(new_size);
duke@435 3193 if (new_size == size()) return this;
duke@435 3194 const TypeAry* new_ary = TypeAry::make(elem(), new_size);
kvn@658 3195 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3196 }
duke@435 3197
duke@435 3198
duke@435 3199 //------------------------------eq---------------------------------------------
duke@435 3200 // Structural equality check for Type representations
duke@435 3201 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3202 const TypeAryPtr *p = t->is_aryptr();
duke@435 3203 return
duke@435 3204 _ary == p->_ary && // Check array
duke@435 3205 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3206 }
duke@435 3207
duke@435 3208 //------------------------------hash-------------------------------------------
duke@435 3209 // Type-specific hashing function.
duke@435 3210 int TypeAryPtr::hash(void) const {
duke@435 3211 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3212 }
duke@435 3213
duke@435 3214 //------------------------------meet-------------------------------------------
duke@435 3215 // Compute the MEET of two types. It returns a new Type object.
duke@435 3216 const Type *TypeAryPtr::xmeet( const Type *t ) const {
duke@435 3217 // Perform a fast test for common case; meeting the same types together.
duke@435 3218 if( this == t ) return this; // Meeting same type-rep?
duke@435 3219 // Current "this->_base" is Pointer
duke@435 3220 switch (t->base()) { // switch on original type
duke@435 3221
duke@435 3222 // Mixing ints & oops happens when javac reuses local variables
duke@435 3223 case Int:
duke@435 3224 case Long:
duke@435 3225 case FloatTop:
duke@435 3226 case FloatCon:
duke@435 3227 case FloatBot:
duke@435 3228 case DoubleTop:
duke@435 3229 case DoubleCon:
duke@435 3230 case DoubleBot:
coleenp@548 3231 case NarrowOop:
duke@435 3232 case Bottom: // Ye Olde Default
duke@435 3233 return Type::BOTTOM;
duke@435 3234 case Top:
duke@435 3235 return this;
duke@435 3236
duke@435 3237 default: // All else is a mistake
duke@435 3238 typerr(t);
duke@435 3239
duke@435 3240 case OopPtr: { // Meeting to OopPtrs
duke@435 3241 // Found a OopPtr type vs self-AryPtr type
duke@435 3242 const TypePtr *tp = t->is_oopptr();
duke@435 3243 int offset = meet_offset(tp->offset());
duke@435 3244 PTR ptr = meet_ptr(tp->ptr());
duke@435 3245 switch (tp->ptr()) {
duke@435 3246 case TopPTR:
kvn@658 3247 case AnyNull: {
kvn@658 3248 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3249 return make(ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3250 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3251 }
duke@435 3252 case BotPTR:
duke@435 3253 case NotNull:
duke@435 3254 return TypeOopPtr::make(ptr, offset);
duke@435 3255 default: ShouldNotReachHere();
duke@435 3256 }
duke@435 3257 }
duke@435 3258
duke@435 3259 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3260 // Found an AnyPtr type vs self-AryPtr type
duke@435 3261 const TypePtr *tp = t->is_ptr();
duke@435 3262 int offset = meet_offset(tp->offset());
duke@435 3263 PTR ptr = meet_ptr(tp->ptr());
duke@435 3264 switch (tp->ptr()) {
duke@435 3265 case TopPTR:
duke@435 3266 return this;
duke@435 3267 case BotPTR:
duke@435 3268 case NotNull:
duke@435 3269 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3270 case Null:
duke@435 3271 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3272 // else fall through to AnyNull
kvn@658 3273 case AnyNull: {
kvn@658 3274 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3275 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3276 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3277 }
duke@435 3278 default: ShouldNotReachHere();
duke@435 3279 }
duke@435 3280 }
duke@435 3281
duke@435 3282 case RawPtr: return TypePtr::BOTTOM;
duke@435 3283
duke@435 3284 case AryPtr: { // Meeting 2 references?
duke@435 3285 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3286 int off = meet_offset(tap->offset());
duke@435 3287 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3288 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3289 int instance_id = meet_instance_id(tap->instance_id());
duke@435 3290 ciKlass* lazy_klass = NULL;
duke@435 3291 if (tary->_elem->isa_int()) {
duke@435 3292 // Integral array element types have irrelevant lattice relations.
duke@435 3293 // It is the klass that determines array layout, not the element type.
duke@435 3294 if (_klass == NULL)
duke@435 3295 lazy_klass = tap->_klass;
duke@435 3296 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3297 lazy_klass = _klass;
duke@435 3298 } else {
duke@435 3299 // Something like byte[int+] meets char[int+].
duke@435 3300 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3301 instance_id = InstanceBot;
duke@435 3302 tary = TypeAry::make(Type::BOTTOM, tary->_size);
duke@435 3303 }
duke@435 3304 }
duke@435 3305 bool xk;
duke@435 3306 switch (tap->ptr()) {
duke@435 3307 case AnyNull:
duke@435 3308 case TopPTR:
duke@435 3309 // Compute new klass on demand, do not use tap->_klass
duke@435 3310 xk = (tap->_klass_is_exact | this->_klass_is_exact);
kvn@658 3311 return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
duke@435 3312 case Constant: {
duke@435 3313 ciObject* o = const_oop();
duke@435 3314 if( _ptr == Constant ) {
duke@435 3315 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
duke@435 3316 ptr = NotNull;
duke@435 3317 o = NULL;
kvn@682 3318 instance_id = InstanceBot;
duke@435 3319 }
duke@435 3320 } else if( above_centerline(_ptr) ) {
duke@435 3321 o = tap->const_oop();
duke@435 3322 }
duke@435 3323 xk = true;
kvn@658 3324 return TypeAryPtr::make( ptr, o, tary, tap->_klass, xk, off, instance_id );
duke@435 3325 }
duke@435 3326 case NotNull:
duke@435 3327 case BotPTR:
duke@435 3328 // Compute new klass on demand, do not use tap->_klass
duke@435 3329 if (above_centerline(this->_ptr))
duke@435 3330 xk = tap->_klass_is_exact;
duke@435 3331 else if (above_centerline(tap->_ptr))
duke@435 3332 xk = this->_klass_is_exact;
duke@435 3333 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3334 (klass() == tap->klass()); // Only precise for identical arrays
kvn@658 3335 return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
duke@435 3336 default: ShouldNotReachHere();
duke@435 3337 }
duke@435 3338 }
duke@435 3339
duke@435 3340 // All arrays inherit from Object class
duke@435 3341 case InstPtr: {
duke@435 3342 const TypeInstPtr *tp = t->is_instptr();
duke@435 3343 int offset = meet_offset(tp->offset());
duke@435 3344 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3345 int instance_id = meet_instance_id(tp->instance_id());
duke@435 3346 switch (ptr) {
duke@435 3347 case TopPTR:
duke@435 3348 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3349 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
kvn@658 3350 return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3351 } else {
duke@435 3352 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3353 ptr = NotNull;
kvn@658 3354 instance_id = InstanceBot;
kvn@658 3355 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3356 }
duke@435 3357 case Constant:
duke@435 3358 case NotNull:
duke@435 3359 case BotPTR: // Fall down to object klass
duke@435 3360 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3361 if (above_centerline(tp->ptr())) {
duke@435 3362 // If 'tp' is above the centerline and it is Object class
twisti@1040 3363 // then we can subclass in the Java class hierarchy.
duke@435 3364 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3365 // that is, my array type is a subtype of 'tp' klass
kvn@658 3366 return make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3367 }
duke@435 3368 }
duke@435 3369 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3370 // The meet falls down to Object class below centerline.
duke@435 3371 if( ptr == Constant )
duke@435 3372 ptr = NotNull;
kvn@658 3373 instance_id = InstanceBot;
kvn@658 3374 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3375 default: typerr(t);
duke@435 3376 }
duke@435 3377 }
duke@435 3378
duke@435 3379 case KlassPtr:
duke@435 3380 return TypeInstPtr::BOTTOM;
duke@435 3381
duke@435 3382 }
duke@435 3383 return this; // Lint noise
duke@435 3384 }
duke@435 3385
duke@435 3386 //------------------------------xdual------------------------------------------
duke@435 3387 // Dual: compute field-by-field dual
duke@435 3388 const Type *TypeAryPtr::xdual() const {
kvn@658 3389 return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
duke@435 3390 }
duke@435 3391
duke@435 3392 //------------------------------dump2------------------------------------------
duke@435 3393 #ifndef PRODUCT
duke@435 3394 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3395 _ary->dump2(d,depth,st);
duke@435 3396 switch( _ptr ) {
duke@435 3397 case Constant:
duke@435 3398 const_oop()->print(st);
duke@435 3399 break;
duke@435 3400 case BotPTR:
duke@435 3401 if (!WizardMode && !Verbose) {
duke@435 3402 if( _klass_is_exact ) st->print(":exact");
duke@435 3403 break;
duke@435 3404 }
duke@435 3405 case TopPTR:
duke@435 3406 case AnyNull:
duke@435 3407 case NotNull:
duke@435 3408 st->print(":%s", ptr_msg[_ptr]);
duke@435 3409 if( _klass_is_exact ) st->print(":exact");
duke@435 3410 break;
duke@435 3411 }
duke@435 3412
kvn@499 3413 if( _offset != 0 ) {
kvn@499 3414 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3415 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3416 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3417 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3418 else {
kvn@499 3419 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3420 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3421 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3422 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3423 }
kvn@499 3424 }
kvn@499 3425 st->print(" *");
kvn@658 3426 if (_instance_id == InstanceTop)
kvn@658 3427 st->print(",iid=top");
kvn@658 3428 else if (_instance_id != InstanceBot)
duke@435 3429 st->print(",iid=%d",_instance_id);
duke@435 3430 }
duke@435 3431 #endif
duke@435 3432
duke@435 3433 bool TypeAryPtr::empty(void) const {
duke@435 3434 if (_ary->empty()) return true;
duke@435 3435 return TypeOopPtr::empty();
duke@435 3436 }
duke@435 3437
duke@435 3438 //------------------------------add_offset-------------------------------------
kvn@741 3439 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
duke@435 3440 return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
duke@435 3441 }
duke@435 3442
duke@435 3443
duke@435 3444 //=============================================================================
coleenp@548 3445 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
coleenp@548 3446 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
coleenp@548 3447
coleenp@548 3448
coleenp@548 3449 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
coleenp@548 3450 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
coleenp@548 3451 }
coleenp@548 3452
coleenp@548 3453 //------------------------------hash-------------------------------------------
coleenp@548 3454 // Type-specific hashing function.
coleenp@548 3455 int TypeNarrowOop::hash(void) const {
coleenp@548 3456 return _ooptype->hash() + 7;
coleenp@548 3457 }
coleenp@548 3458
coleenp@548 3459
coleenp@548 3460 bool TypeNarrowOop::eq( const Type *t ) const {
coleenp@548 3461 const TypeNarrowOop* tc = t->isa_narrowoop();
coleenp@548 3462 if (tc != NULL) {
coleenp@548 3463 if (_ooptype->base() != tc->_ooptype->base()) {
coleenp@548 3464 return false;
coleenp@548 3465 }
coleenp@548 3466 return tc->_ooptype->eq(_ooptype);
coleenp@548 3467 }
coleenp@548 3468 return false;
coleenp@548 3469 }
coleenp@548 3470
coleenp@548 3471 bool TypeNarrowOop::singleton(void) const { // TRUE if type is a singleton
coleenp@548 3472 return _ooptype->singleton();
coleenp@548 3473 }
coleenp@548 3474
coleenp@548 3475 bool TypeNarrowOop::empty(void) const {
coleenp@548 3476 return _ooptype->empty();
coleenp@548 3477 }
coleenp@548 3478
kvn@728 3479 //------------------------------xmeet------------------------------------------
coleenp@548 3480 // Compute the MEET of two types. It returns a new Type object.
coleenp@548 3481 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
coleenp@548 3482 // Perform a fast test for common case; meeting the same types together.
coleenp@548 3483 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 3484
coleenp@548 3485
coleenp@548 3486 // Current "this->_base" is OopPtr
coleenp@548 3487 switch (t->base()) { // switch on original type
coleenp@548 3488
coleenp@548 3489 case Int: // Mixing ints & oops happens when javac
coleenp@548 3490 case Long: // reuses local variables
coleenp@548 3491 case FloatTop:
coleenp@548 3492 case FloatCon:
coleenp@548 3493 case FloatBot:
coleenp@548 3494 case DoubleTop:
coleenp@548 3495 case DoubleCon:
coleenp@548 3496 case DoubleBot:
kvn@728 3497 case AnyPtr:
kvn@728 3498 case RawPtr:
kvn@728 3499 case OopPtr:
kvn@728 3500 case InstPtr:
kvn@728 3501 case KlassPtr:
kvn@728 3502 case AryPtr:
kvn@728 3503
coleenp@548 3504 case Bottom: // Ye Olde Default
coleenp@548 3505 return Type::BOTTOM;
coleenp@548 3506 case Top:
coleenp@548 3507 return this;
coleenp@548 3508
coleenp@548 3509 case NarrowOop: {
kvn@656 3510 const Type* result = _ooptype->xmeet(t->make_ptr());
coleenp@548 3511 if (result->isa_ptr()) {
coleenp@548 3512 return TypeNarrowOop::make(result->is_ptr());
coleenp@548 3513 }
coleenp@548 3514 return result;
coleenp@548 3515 }
coleenp@548 3516
coleenp@548 3517 default: // All else is a mistake
coleenp@548 3518 typerr(t);
coleenp@548 3519
coleenp@548 3520 } // End of switch
kvn@728 3521
kvn@728 3522 return this;
coleenp@548 3523 }
coleenp@548 3524
coleenp@548 3525 const Type *TypeNarrowOop::xdual() const { // Compute dual right now.
coleenp@548 3526 const TypePtr* odual = _ooptype->dual()->is_ptr();
coleenp@548 3527 return new TypeNarrowOop(odual);
coleenp@548 3528 }
coleenp@548 3529
coleenp@548 3530 const Type *TypeNarrowOop::filter( const Type *kills ) const {
coleenp@548 3531 if (kills->isa_narrowoop()) {
coleenp@548 3532 const Type* ft =_ooptype->filter(kills->is_narrowoop()->_ooptype);
coleenp@548 3533 if (ft->empty())
coleenp@548 3534 return Type::TOP; // Canonical empty value
coleenp@548 3535 if (ft->isa_ptr()) {
coleenp@548 3536 return make(ft->isa_ptr());
coleenp@548 3537 }
coleenp@548 3538 return ft;
coleenp@548 3539 } else if (kills->isa_ptr()) {
coleenp@548 3540 const Type* ft = _ooptype->join(kills);
coleenp@548 3541 if (ft->empty())
coleenp@548 3542 return Type::TOP; // Canonical empty value
coleenp@548 3543 return ft;
coleenp@548 3544 } else {
coleenp@548 3545 return Type::TOP;
coleenp@548 3546 }
coleenp@548 3547 }
coleenp@548 3548
coleenp@548 3549
coleenp@548 3550 intptr_t TypeNarrowOop::get_con() const {
coleenp@548 3551 return _ooptype->get_con();
coleenp@548 3552 }
coleenp@548 3553
coleenp@548 3554 #ifndef PRODUCT
coleenp@548 3555 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 3556 st->print("narrowoop: ");
coleenp@548 3557 _ooptype->dump2(d, depth, st);
coleenp@548 3558 }
coleenp@548 3559 #endif
coleenp@548 3560
coleenp@548 3561
coleenp@548 3562 //=============================================================================
duke@435 3563 // Convenience common pre-built types.
duke@435 3564
duke@435 3565 // Not-null object klass or below
duke@435 3566 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 3567 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3568
duke@435 3569 //------------------------------TypeKlasPtr------------------------------------
duke@435 3570 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
duke@435 3571 : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
duke@435 3572 }
duke@435 3573
duke@435 3574 //------------------------------make-------------------------------------------
duke@435 3575 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 3576 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 3577 assert( k != NULL, "Expect a non-NULL klass");
duke@435 3578 assert(k->is_instance_klass() || k->is_array_klass() ||
duke@435 3579 k->is_method_klass(), "Incorrect type of klass oop");
duke@435 3580 TypeKlassPtr *r =
duke@435 3581 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 3582
duke@435 3583 return r;
duke@435 3584 }
duke@435 3585
duke@435 3586 //------------------------------eq---------------------------------------------
duke@435 3587 // Structural equality check for Type representations
duke@435 3588 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 3589 const TypeKlassPtr *p = t->is_klassptr();
duke@435 3590 return
duke@435 3591 klass()->equals(p->klass()) &&
duke@435 3592 TypeOopPtr::eq(p);
duke@435 3593 }
duke@435 3594
duke@435 3595 //------------------------------hash-------------------------------------------
duke@435 3596 // Type-specific hashing function.
duke@435 3597 int TypeKlassPtr::hash(void) const {
duke@435 3598 return klass()->hash() + TypeOopPtr::hash();
duke@435 3599 }
duke@435 3600
duke@435 3601
duke@435 3602 //------------------------------klass------------------------------------------
duke@435 3603 // Return the defining klass for this class
duke@435 3604 ciKlass* TypeAryPtr::klass() const {
duke@435 3605 if( _klass ) return _klass; // Return cached value, if possible
duke@435 3606
duke@435 3607 // Oops, need to compute _klass and cache it
duke@435 3608 ciKlass* k_ary = NULL;
duke@435 3609 const TypeInstPtr *tinst;
duke@435 3610 const TypeAryPtr *tary;
coleenp@548 3611 const Type* el = elem();
coleenp@548 3612 if (el->isa_narrowoop()) {
kvn@656 3613 el = el->make_ptr();
coleenp@548 3614 }
coleenp@548 3615
duke@435 3616 // Get element klass
coleenp@548 3617 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 3618 // Compute array klass from element klass
duke@435 3619 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 3620 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 3621 // Compute array klass from element klass
duke@435 3622 ciKlass* k_elem = tary->klass();
duke@435 3623 // If element type is something like bottom[], k_elem will be null.
duke@435 3624 if (k_elem != NULL)
duke@435 3625 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 3626 } else if ((el->base() == Type::Top) ||
coleenp@548 3627 (el->base() == Type::Bottom)) {
duke@435 3628 // element type of Bottom occurs from meet of basic type
duke@435 3629 // and object; Top occurs when doing join on Bottom.
duke@435 3630 // Leave k_ary at NULL.
duke@435 3631 } else {
duke@435 3632 // Cannot compute array klass directly from basic type,
duke@435 3633 // since subtypes of TypeInt all have basic type T_INT.
coleenp@548 3634 assert(!el->isa_int(),
duke@435 3635 "integral arrays must be pre-equipped with a class");
duke@435 3636 // Compute array klass directly from basic type
coleenp@548 3637 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 3638 }
duke@435 3639
kvn@598 3640 if( this != TypeAryPtr::OOPS ) {
duke@435 3641 // The _klass field acts as a cache of the underlying
duke@435 3642 // ciKlass for this array type. In order to set the field,
duke@435 3643 // we need to cast away const-ness.
duke@435 3644 //
duke@435 3645 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 3646 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 3647 // active compilations. However, the ciKlass which represents
duke@435 3648 // this Type is *not* shared between compilations, so caching
duke@435 3649 // this value would result in fetching a dangling pointer.
duke@435 3650 //
duke@435 3651 // Recomputing the underlying ciKlass for each request is
duke@435 3652 // a bit less efficient than caching, but calls to
duke@435 3653 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 3654 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 3655 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 3656 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 3657 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 3658 }
kvn@598 3659 }
duke@435 3660 return k_ary;
duke@435 3661 }
duke@435 3662
duke@435 3663
duke@435 3664 //------------------------------add_offset-------------------------------------
duke@435 3665 // Access internals of klass object
kvn@741 3666 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 3667 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 3668 }
duke@435 3669
duke@435 3670 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3671 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 3672 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 3673 if( ptr == _ptr ) return this;
duke@435 3674 return make(ptr, _klass, _offset);
duke@435 3675 }
duke@435 3676
duke@435 3677
duke@435 3678 //-----------------------------cast_to_exactness-------------------------------
duke@435 3679 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3680 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3681 if (!UseExactTypes) return this;
duke@435 3682 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 3683 }
duke@435 3684
duke@435 3685
duke@435 3686 //-----------------------------as_instance_type--------------------------------
duke@435 3687 // Corresponding type for an instance of the given class.
duke@435 3688 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 3689 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 3690 ciKlass* k = klass();
duke@435 3691 bool xk = klass_is_exact();
duke@435 3692 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 3693 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
duke@435 3694 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 3695 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 3696 }
duke@435 3697
duke@435 3698
duke@435 3699 //------------------------------xmeet------------------------------------------
duke@435 3700 // Compute the MEET of two types, return a new Type object.
duke@435 3701 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 3702 // Perform a fast test for common case; meeting the same types together.
duke@435 3703 if( this == t ) return this; // Meeting same type-rep?
duke@435 3704
duke@435 3705 // Current "this->_base" is Pointer
duke@435 3706 switch (t->base()) { // switch on original type
duke@435 3707
duke@435 3708 case Int: // Mixing ints & oops happens when javac
duke@435 3709 case Long: // reuses local variables
duke@435 3710 case FloatTop:
duke@435 3711 case FloatCon:
duke@435 3712 case FloatBot:
duke@435 3713 case DoubleTop:
duke@435 3714 case DoubleCon:
duke@435 3715 case DoubleBot:
kvn@728 3716 case NarrowOop:
duke@435 3717 case Bottom: // Ye Olde Default
duke@435 3718 return Type::BOTTOM;
duke@435 3719 case Top:
duke@435 3720 return this;
duke@435 3721
duke@435 3722 default: // All else is a mistake
duke@435 3723 typerr(t);
duke@435 3724
duke@435 3725 case RawPtr: return TypePtr::BOTTOM;
duke@435 3726
duke@435 3727 case OopPtr: { // Meeting to OopPtrs
duke@435 3728 // Found a OopPtr type vs self-KlassPtr type
duke@435 3729 const TypePtr *tp = t->is_oopptr();
duke@435 3730 int offset = meet_offset(tp->offset());
duke@435 3731 PTR ptr = meet_ptr(tp->ptr());
duke@435 3732 switch (tp->ptr()) {
duke@435 3733 case TopPTR:
duke@435 3734 case AnyNull:
duke@435 3735 return make(ptr, klass(), offset);
duke@435 3736 case BotPTR:
duke@435 3737 case NotNull:
duke@435 3738 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3739 default: typerr(t);
duke@435 3740 }
duke@435 3741 }
duke@435 3742
duke@435 3743 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3744 // Found an AnyPtr type vs self-KlassPtr type
duke@435 3745 const TypePtr *tp = t->is_ptr();
duke@435 3746 int offset = meet_offset(tp->offset());
duke@435 3747 PTR ptr = meet_ptr(tp->ptr());
duke@435 3748 switch (tp->ptr()) {
duke@435 3749 case TopPTR:
duke@435 3750 return this;
duke@435 3751 case Null:
duke@435 3752 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 3753 case AnyNull:
duke@435 3754 return make( ptr, klass(), offset );
duke@435 3755 case BotPTR:
duke@435 3756 case NotNull:
duke@435 3757 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3758 default: typerr(t);
duke@435 3759 }
duke@435 3760 }
duke@435 3761
duke@435 3762 case AryPtr: // Meet with AryPtr
duke@435 3763 case InstPtr: // Meet with InstPtr
duke@435 3764 return TypeInstPtr::BOTTOM;
duke@435 3765
duke@435 3766 //
duke@435 3767 // A-top }
duke@435 3768 // / | \ } Tops
duke@435 3769 // B-top A-any C-top }
duke@435 3770 // | / | \ | } Any-nulls
duke@435 3771 // B-any | C-any }
duke@435 3772 // | | |
duke@435 3773 // B-con A-con C-con } constants; not comparable across classes
duke@435 3774 // | | |
duke@435 3775 // B-not | C-not }
duke@435 3776 // | \ | / | } not-nulls
duke@435 3777 // B-bot A-not C-bot }
duke@435 3778 // \ | / } Bottoms
duke@435 3779 // A-bot }
duke@435 3780 //
duke@435 3781
duke@435 3782 case KlassPtr: { // Meet two KlassPtr types
duke@435 3783 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 3784 int off = meet_offset(tkls->offset());
duke@435 3785 PTR ptr = meet_ptr(tkls->ptr());
duke@435 3786
duke@435 3787 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3788 // If we have constants, then we created oops so classes are loaded
duke@435 3789 // and we can handle the constants further down. This case handles
duke@435 3790 // not-loaded classes
duke@435 3791 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 3792 return make( ptr, klass(), off );
duke@435 3793 }
duke@435 3794
duke@435 3795 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3796 ciKlass* tkls_klass = tkls->klass();
duke@435 3797 ciKlass* this_klass = this->klass();
duke@435 3798 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 3799 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 3800
duke@435 3801 // If 'this' type is above the centerline and is a superclass of the
duke@435 3802 // other, we can treat 'this' as having the same type as the other.
duke@435 3803 if ((above_centerline(this->ptr())) &&
duke@435 3804 tkls_klass->is_subtype_of(this_klass)) {
duke@435 3805 this_klass = tkls_klass;
duke@435 3806 }
duke@435 3807 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 3808 // other, we can treat 'tinst' as having the same type as the other.
duke@435 3809 if ((above_centerline(tkls->ptr())) &&
duke@435 3810 this_klass->is_subtype_of(tkls_klass)) {
duke@435 3811 tkls_klass = this_klass;
duke@435 3812 }
duke@435 3813
duke@435 3814 // Check for classes now being equal
duke@435 3815 if (tkls_klass->equals(this_klass)) {
duke@435 3816 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3817 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3818 // handled elsewhere).
duke@435 3819 ciObject* o = NULL; // Assume not constant when done
duke@435 3820 ciObject* this_oop = const_oop();
duke@435 3821 ciObject* tkls_oop = tkls->const_oop();
duke@435 3822 if( ptr == Constant ) {
duke@435 3823 if (this_oop != NULL && tkls_oop != NULL &&
duke@435 3824 this_oop->equals(tkls_oop) )
duke@435 3825 o = this_oop;
duke@435 3826 else if (above_centerline(this->ptr()))
duke@435 3827 o = tkls_oop;
duke@435 3828 else if (above_centerline(tkls->ptr()))
duke@435 3829 o = this_oop;
duke@435 3830 else
duke@435 3831 ptr = NotNull;
duke@435 3832 }
duke@435 3833 return make( ptr, this_klass, off );
duke@435 3834 } // Else classes are not equal
duke@435 3835
duke@435 3836 // Since klasses are different, we require the LCA in the Java
duke@435 3837 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3838 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3839 ptr = NotNull;
duke@435 3840 // Now we find the LCA of Java classes
duke@435 3841 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 3842 return make( ptr, k, off );
duke@435 3843 } // End of case KlassPtr
duke@435 3844
duke@435 3845 } // End of switch
duke@435 3846 return this; // Return the double constant
duke@435 3847 }
duke@435 3848
duke@435 3849 //------------------------------xdual------------------------------------------
duke@435 3850 // Dual: compute field-by-field dual
duke@435 3851 const Type *TypeKlassPtr::xdual() const {
duke@435 3852 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 3853 }
duke@435 3854
duke@435 3855 //------------------------------dump2------------------------------------------
duke@435 3856 // Dump Klass Type
duke@435 3857 #ifndef PRODUCT
duke@435 3858 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 3859 switch( _ptr ) {
duke@435 3860 case Constant:
duke@435 3861 st->print("precise ");
duke@435 3862 case NotNull:
duke@435 3863 {
duke@435 3864 const char *name = klass()->name()->as_utf8();
duke@435 3865 if( name ) {
duke@435 3866 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 3867 } else {
duke@435 3868 ShouldNotReachHere();
duke@435 3869 }
duke@435 3870 }
duke@435 3871 case BotPTR:
duke@435 3872 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 3873 case TopPTR:
duke@435 3874 case AnyNull:
duke@435 3875 st->print(":%s", ptr_msg[_ptr]);
duke@435 3876 if( _klass_is_exact ) st->print(":exact");
duke@435 3877 break;
duke@435 3878 }
duke@435 3879
duke@435 3880 if( _offset ) { // Dump offset, if any
duke@435 3881 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 3882 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 3883 else { st->print("+%d", _offset); }
duke@435 3884 }
duke@435 3885
duke@435 3886 st->print(" *");
duke@435 3887 }
duke@435 3888 #endif
duke@435 3889
duke@435 3890
duke@435 3891
duke@435 3892 //=============================================================================
duke@435 3893 // Convenience common pre-built types.
duke@435 3894
duke@435 3895 //------------------------------make-------------------------------------------
duke@435 3896 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 3897 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 3898 }
duke@435 3899
duke@435 3900 //------------------------------make-------------------------------------------
duke@435 3901 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 3902 Compile* C = Compile::current();
duke@435 3903 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 3904 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 3905 const TypeTuple *domain;
duke@435 3906 if (method->flags().is_static()) {
duke@435 3907 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 3908 } else {
duke@435 3909 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 3910 }
duke@435 3911 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 3912 tf = TypeFunc::make(domain, range);
duke@435 3913 C->set_last_tf(method, tf); // fill cache
duke@435 3914 return tf;
duke@435 3915 }
duke@435 3916
duke@435 3917 //------------------------------meet-------------------------------------------
duke@435 3918 // Compute the MEET of two types. It returns a new Type object.
duke@435 3919 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 3920 // Perform a fast test for common case; meeting the same types together.
duke@435 3921 if( this == t ) return this; // Meeting same type-rep?
duke@435 3922
duke@435 3923 // Current "this->_base" is Func
duke@435 3924 switch (t->base()) { // switch on original type
duke@435 3925
duke@435 3926 case Bottom: // Ye Olde Default
duke@435 3927 return t;
duke@435 3928
duke@435 3929 default: // All else is a mistake
duke@435 3930 typerr(t);
duke@435 3931
duke@435 3932 case Top:
duke@435 3933 break;
duke@435 3934 }
duke@435 3935 return this; // Return the double constant
duke@435 3936 }
duke@435 3937
duke@435 3938 //------------------------------xdual------------------------------------------
duke@435 3939 // Dual: compute field-by-field dual
duke@435 3940 const Type *TypeFunc::xdual() const {
duke@435 3941 return this;
duke@435 3942 }
duke@435 3943
duke@435 3944 //------------------------------eq---------------------------------------------
duke@435 3945 // Structural equality check for Type representations
duke@435 3946 bool TypeFunc::eq( const Type *t ) const {
duke@435 3947 const TypeFunc *a = (const TypeFunc*)t;
duke@435 3948 return _domain == a->_domain &&
duke@435 3949 _range == a->_range;
duke@435 3950 }
duke@435 3951
duke@435 3952 //------------------------------hash-------------------------------------------
duke@435 3953 // Type-specific hashing function.
duke@435 3954 int TypeFunc::hash(void) const {
duke@435 3955 return (intptr_t)_domain + (intptr_t)_range;
duke@435 3956 }
duke@435 3957
duke@435 3958 //------------------------------dump2------------------------------------------
duke@435 3959 // Dump Function Type
duke@435 3960 #ifndef PRODUCT
duke@435 3961 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3962 if( _range->_cnt <= Parms )
duke@435 3963 st->print("void");
duke@435 3964 else {
duke@435 3965 uint i;
duke@435 3966 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 3967 _range->field_at(i)->dump2(d,depth,st);
duke@435 3968 st->print("/");
duke@435 3969 }
duke@435 3970 _range->field_at(i)->dump2(d,depth,st);
duke@435 3971 }
duke@435 3972 st->print(" ");
duke@435 3973 st->print("( ");
duke@435 3974 if( !depth || d[this] ) { // Check for recursive dump
duke@435 3975 st->print("...)");
duke@435 3976 return;
duke@435 3977 }
duke@435 3978 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 3979 if (Parms < _domain->_cnt)
duke@435 3980 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 3981 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 3982 st->print(", ");
duke@435 3983 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 3984 }
duke@435 3985 st->print(" )");
duke@435 3986 }
duke@435 3987
duke@435 3988 //------------------------------print_flattened--------------------------------
duke@435 3989 // Print a 'flattened' signature
duke@435 3990 static const char * const flat_type_msg[Type::lastype] = {
coleenp@548 3991 "bad","control","top","int","long","_", "narrowoop",
duke@435 3992 "tuple:", "array:",
duke@435 3993 "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
duke@435 3994 "func", "abIO", "return_address", "mem",
duke@435 3995 "float_top", "ftcon:", "flt",
duke@435 3996 "double_top", "dblcon:", "dbl",
duke@435 3997 "bottom"
duke@435 3998 };
duke@435 3999
duke@435 4000 void TypeFunc::print_flattened() const {
duke@435 4001 if( _range->_cnt <= Parms )
duke@435 4002 tty->print("void");
duke@435 4003 else {
duke@435 4004 uint i;
duke@435 4005 for (i = Parms; i < _range->_cnt-1; i++)
duke@435 4006 tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4007 tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4008 }
duke@435 4009 tty->print(" ( ");
duke@435 4010 if (Parms < _domain->_cnt)
duke@435 4011 tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
duke@435 4012 for (uint i = Parms+1; i < _domain->_cnt; i++)
duke@435 4013 tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
duke@435 4014 tty->print(" )");
duke@435 4015 }
duke@435 4016 #endif
duke@435 4017
duke@435 4018 //------------------------------singleton--------------------------------------
duke@435 4019 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4020 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4021 // or a single symbol.
duke@435 4022 bool TypeFunc::singleton(void) const {
duke@435 4023 return false; // Never a singleton
duke@435 4024 }
duke@435 4025
duke@435 4026 bool TypeFunc::empty(void) const {
duke@435 4027 return false; // Never empty
duke@435 4028 }
duke@435 4029
duke@435 4030
duke@435 4031 BasicType TypeFunc::return_type() const{
duke@435 4032 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4033 return T_VOID;
duke@435 4034 }
duke@435 4035 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4036 }

mercurial