src/cpu/x86/vm/sharedRuntime_x86_64.cpp

Wed, 15 Apr 2020 11:49:55 +0800

author
aoqi
date
Wed, 15 Apr 2020 11:49:55 +0800
changeset 9852
70aa912cebe5
parent 9703
2fdf635bcf28
parent 9844
6a809b1ac0a8
permissions
-rw-r--r--

Merge

duke@435 1 /*
dbuck@8997 2 * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
vkempik@8318 26 #ifndef _WINDOWS
vkempik@8318 27 #include "alloca.h"
vkempik@8318 28 #endif
twisti@4318 29 #include "asm/macroAssembler.hpp"
twisti@4318 30 #include "asm/macroAssembler.inline.hpp"
stefank@2314 31 #include "code/debugInfoRec.hpp"
stefank@2314 32 #include "code/icBuffer.hpp"
stefank@2314 33 #include "code/vtableStubs.hpp"
stefank@2314 34 #include "interpreter/interpreter.hpp"
coleenp@4037 35 #include "oops/compiledICHolder.hpp"
stefank@2314 36 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/vframeArray.hpp"
stefank@2314 39 #include "vmreg_x86.inline.hpp"
stefank@2314 40 #ifdef COMPILER1
stefank@2314 41 #include "c1/c1_Runtime1.hpp"
stefank@2314 42 #endif
stefank@2314 43 #ifdef COMPILER2
stefank@2314 44 #include "opto/runtime.hpp"
stefank@2314 45 #endif
duke@435 46
never@2950 47 #define __ masm->
duke@435 48
xlu@959 49 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
xlu@959 50
duke@435 51 class SimpleRuntimeFrame {
duke@435 52
duke@435 53 public:
duke@435 54
duke@435 55 // Most of the runtime stubs have this simple frame layout.
duke@435 56 // This class exists to make the layout shared in one place.
duke@435 57 // Offsets are for compiler stack slots, which are jints.
duke@435 58 enum layout {
duke@435 59 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 60 // will override any oopMap setting for it. We must therefore force the layout
duke@435 61 // so that it agrees with the frame sender code.
duke@435 62 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
duke@435 63 rbp_off2,
duke@435 64 return_off, return_off2,
duke@435 65 framesize
duke@435 66 };
duke@435 67 };
duke@435 68
duke@435 69 class RegisterSaver {
duke@435 70 // Capture info about frame layout. Layout offsets are in jint
duke@435 71 // units because compiler frame slots are jints.
duke@435 72 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
duke@435 73 enum layout {
duke@435 74 fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
duke@435 75 xmm_off = fpu_state_off + 160/BytesPerInt, // offset in fxsave save area
duke@435 76 DEF_XMM_OFFS(0),
duke@435 77 DEF_XMM_OFFS(1),
duke@435 78 DEF_XMM_OFFS(2),
duke@435 79 DEF_XMM_OFFS(3),
duke@435 80 DEF_XMM_OFFS(4),
duke@435 81 DEF_XMM_OFFS(5),
duke@435 82 DEF_XMM_OFFS(6),
duke@435 83 DEF_XMM_OFFS(7),
duke@435 84 DEF_XMM_OFFS(8),
duke@435 85 DEF_XMM_OFFS(9),
duke@435 86 DEF_XMM_OFFS(10),
duke@435 87 DEF_XMM_OFFS(11),
duke@435 88 DEF_XMM_OFFS(12),
duke@435 89 DEF_XMM_OFFS(13),
duke@435 90 DEF_XMM_OFFS(14),
duke@435 91 DEF_XMM_OFFS(15),
duke@435 92 fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
duke@435 93 fpu_stateH_end,
duke@435 94 r15_off, r15H_off,
duke@435 95 r14_off, r14H_off,
duke@435 96 r13_off, r13H_off,
duke@435 97 r12_off, r12H_off,
duke@435 98 r11_off, r11H_off,
duke@435 99 r10_off, r10H_off,
duke@435 100 r9_off, r9H_off,
duke@435 101 r8_off, r8H_off,
duke@435 102 rdi_off, rdiH_off,
duke@435 103 rsi_off, rsiH_off,
duke@435 104 ignore_off, ignoreH_off, // extra copy of rbp
duke@435 105 rsp_off, rspH_off,
duke@435 106 rbx_off, rbxH_off,
duke@435 107 rdx_off, rdxH_off,
duke@435 108 rcx_off, rcxH_off,
duke@435 109 rax_off, raxH_off,
duke@435 110 // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
duke@435 111 align_off, alignH_off,
duke@435 112 flags_off, flagsH_off,
duke@435 113 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 114 // will override any oopMap setting for it. We must therefore force the layout
duke@435 115 // so that it agrees with the frame sender code.
duke@435 116 rbp_off, rbpH_off, // copy of rbp we will restore
duke@435 117 return_off, returnH_off, // slot for return address
duke@435 118 reg_save_size // size in compiler stack slots
duke@435 119 };
duke@435 120
duke@435 121 public:
kvn@4103 122 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
kvn@4103 123 static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
duke@435 124
duke@435 125 // Offsets into the register save area
duke@435 126 // Used by deoptimization when it is managing result register
duke@435 127 // values on its own
duke@435 128
duke@435 129 static int rax_offset_in_bytes(void) { return BytesPerInt * rax_off; }
never@739 130 static int rdx_offset_in_bytes(void) { return BytesPerInt * rdx_off; }
duke@435 131 static int rbx_offset_in_bytes(void) { return BytesPerInt * rbx_off; }
duke@435 132 static int xmm0_offset_in_bytes(void) { return BytesPerInt * xmm0_off; }
duke@435 133 static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
duke@435 134
duke@435 135 // During deoptimization only the result registers need to be restored,
duke@435 136 // all the other values have already been extracted.
duke@435 137 static void restore_result_registers(MacroAssembler* masm);
duke@435 138 };
duke@435 139
kvn@4103 140 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
kvn@4103 141 int vect_words = 0;
kvn@4103 142 #ifdef COMPILER2
kvn@4103 143 if (save_vectors) {
kvn@4103 144 assert(UseAVX > 0, "256bit vectors are supported only with AVX");
kvn@4103 145 assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
kvn@4103 146 // Save upper half of YMM registes
kvn@4103 147 vect_words = 16 * 16 / wordSize;
kvn@4103 148 additional_frame_words += vect_words;
kvn@4103 149 }
kvn@4103 150 #else
kvn@4103 151 assert(!save_vectors, "vectors are generated only by C2");
kvn@4103 152 #endif
duke@435 153
duke@435 154 // Always make the frame size 16-byte aligned
duke@435 155 int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
duke@435 156 reg_save_size*BytesPerInt, 16);
duke@435 157 // OopMap frame size is in compiler stack slots (jint's) not bytes or words
duke@435 158 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
duke@435 159 // The caller will allocate additional_frame_words
duke@435 160 int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
duke@435 161 // CodeBlob frame size is in words.
duke@435 162 int frame_size_in_words = frame_size_in_bytes / wordSize;
duke@435 163 *total_frame_words = frame_size_in_words;
duke@435 164
duke@435 165 // Save registers, fpu state, and flags.
duke@435 166 // We assume caller has already pushed the return address onto the
duke@435 167 // stack, so rsp is 8-byte aligned here.
duke@435 168 // We push rpb twice in this sequence because we want the real rbp
duke@435 169 // to be under the return like a normal enter.
duke@435 170
duke@435 171 __ enter(); // rsp becomes 16-byte aligned here
duke@435 172 __ push_CPU_state(); // Push a multiple of 16 bytes
kvn@4103 173
kvn@4103 174 if (vect_words > 0) {
kvn@4103 175 assert(vect_words*wordSize == 256, "");
kvn@4103 176 __ subptr(rsp, 256); // Save upper half of YMM registes
kvn@4103 177 __ vextractf128h(Address(rsp, 0),xmm0);
kvn@4103 178 __ vextractf128h(Address(rsp, 16),xmm1);
kvn@4103 179 __ vextractf128h(Address(rsp, 32),xmm2);
kvn@4103 180 __ vextractf128h(Address(rsp, 48),xmm3);
kvn@4103 181 __ vextractf128h(Address(rsp, 64),xmm4);
kvn@4103 182 __ vextractf128h(Address(rsp, 80),xmm5);
kvn@4103 183 __ vextractf128h(Address(rsp, 96),xmm6);
kvn@4103 184 __ vextractf128h(Address(rsp,112),xmm7);
kvn@4103 185 __ vextractf128h(Address(rsp,128),xmm8);
kvn@4103 186 __ vextractf128h(Address(rsp,144),xmm9);
kvn@4103 187 __ vextractf128h(Address(rsp,160),xmm10);
kvn@4103 188 __ vextractf128h(Address(rsp,176),xmm11);
kvn@4103 189 __ vextractf128h(Address(rsp,192),xmm12);
kvn@4103 190 __ vextractf128h(Address(rsp,208),xmm13);
kvn@4103 191 __ vextractf128h(Address(rsp,224),xmm14);
kvn@4103 192 __ vextractf128h(Address(rsp,240),xmm15);
kvn@4103 193 }
duke@435 194 if (frame::arg_reg_save_area_bytes != 0) {
duke@435 195 // Allocate argument register save area
never@739 196 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 197 }
duke@435 198
duke@435 199 // Set an oopmap for the call site. This oopmap will map all
duke@435 200 // oop-registers and debug-info registers as callee-saved. This
duke@435 201 // will allow deoptimization at this safepoint to find all possible
duke@435 202 // debug-info recordings, as well as let GC find all oops.
duke@435 203
duke@435 204 OopMapSet *oop_maps = new OopMapSet();
duke@435 205 OopMap* map = new OopMap(frame_size_in_slots, 0);
kvn@4103 206
kvn@4103 207 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_slots)
kvn@4103 208
kvn@4103 209 map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
kvn@4103 210 map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
kvn@4103 211 map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
kvn@4103 212 map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
duke@435 213 // rbp location is known implicitly by the frame sender code, needs no oopmap
duke@435 214 // and the location where rbp was saved by is ignored
kvn@4103 215 map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
kvn@4103 216 map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
kvn@4103 217 map->set_callee_saved(STACK_OFFSET( r8_off ), r8->as_VMReg());
kvn@4103 218 map->set_callee_saved(STACK_OFFSET( r9_off ), r9->as_VMReg());
kvn@4103 219 map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
kvn@4103 220 map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
kvn@4103 221 map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
kvn@4103 222 map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
kvn@4103 223 map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
kvn@4103 224 map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
kvn@4103 225 map->set_callee_saved(STACK_OFFSET(xmm0_off ), xmm0->as_VMReg());
kvn@4103 226 map->set_callee_saved(STACK_OFFSET(xmm1_off ), xmm1->as_VMReg());
kvn@4103 227 map->set_callee_saved(STACK_OFFSET(xmm2_off ), xmm2->as_VMReg());
kvn@4103 228 map->set_callee_saved(STACK_OFFSET(xmm3_off ), xmm3->as_VMReg());
kvn@4103 229 map->set_callee_saved(STACK_OFFSET(xmm4_off ), xmm4->as_VMReg());
kvn@4103 230 map->set_callee_saved(STACK_OFFSET(xmm5_off ), xmm5->as_VMReg());
kvn@4103 231 map->set_callee_saved(STACK_OFFSET(xmm6_off ), xmm6->as_VMReg());
kvn@4103 232 map->set_callee_saved(STACK_OFFSET(xmm7_off ), xmm7->as_VMReg());
kvn@4103 233 map->set_callee_saved(STACK_OFFSET(xmm8_off ), xmm8->as_VMReg());
kvn@4103 234 map->set_callee_saved(STACK_OFFSET(xmm9_off ), xmm9->as_VMReg());
kvn@4103 235 map->set_callee_saved(STACK_OFFSET(xmm10_off), xmm10->as_VMReg());
kvn@4103 236 map->set_callee_saved(STACK_OFFSET(xmm11_off), xmm11->as_VMReg());
kvn@4103 237 map->set_callee_saved(STACK_OFFSET(xmm12_off), xmm12->as_VMReg());
kvn@4103 238 map->set_callee_saved(STACK_OFFSET(xmm13_off), xmm13->as_VMReg());
kvn@4103 239 map->set_callee_saved(STACK_OFFSET(xmm14_off), xmm14->as_VMReg());
kvn@4103 240 map->set_callee_saved(STACK_OFFSET(xmm15_off), xmm15->as_VMReg());
duke@435 241
duke@435 242 // %%% These should all be a waste but we'll keep things as they were for now
duke@435 243 if (true) {
kvn@4103 244 map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
kvn@4103 245 map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
kvn@4103 246 map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
kvn@4103 247 map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
duke@435 248 // rbp location is known implicitly by the frame sender code, needs no oopmap
kvn@4103 249 map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
kvn@4103 250 map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
kvn@4103 251 map->set_callee_saved(STACK_OFFSET( r8H_off ), r8->as_VMReg()->next());
kvn@4103 252 map->set_callee_saved(STACK_OFFSET( r9H_off ), r9->as_VMReg()->next());
kvn@4103 253 map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
kvn@4103 254 map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
kvn@4103 255 map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
kvn@4103 256 map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
kvn@4103 257 map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
kvn@4103 258 map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
kvn@4103 259 map->set_callee_saved(STACK_OFFSET(xmm0H_off ), xmm0->as_VMReg()->next());
kvn@4103 260 map->set_callee_saved(STACK_OFFSET(xmm1H_off ), xmm1->as_VMReg()->next());
kvn@4103 261 map->set_callee_saved(STACK_OFFSET(xmm2H_off ), xmm2->as_VMReg()->next());
kvn@4103 262 map->set_callee_saved(STACK_OFFSET(xmm3H_off ), xmm3->as_VMReg()->next());
kvn@4103 263 map->set_callee_saved(STACK_OFFSET(xmm4H_off ), xmm4->as_VMReg()->next());
kvn@4103 264 map->set_callee_saved(STACK_OFFSET(xmm5H_off ), xmm5->as_VMReg()->next());
kvn@4103 265 map->set_callee_saved(STACK_OFFSET(xmm6H_off ), xmm6->as_VMReg()->next());
kvn@4103 266 map->set_callee_saved(STACK_OFFSET(xmm7H_off ), xmm7->as_VMReg()->next());
kvn@4103 267 map->set_callee_saved(STACK_OFFSET(xmm8H_off ), xmm8->as_VMReg()->next());
kvn@4103 268 map->set_callee_saved(STACK_OFFSET(xmm9H_off ), xmm9->as_VMReg()->next());
kvn@4103 269 map->set_callee_saved(STACK_OFFSET(xmm10H_off), xmm10->as_VMReg()->next());
kvn@4103 270 map->set_callee_saved(STACK_OFFSET(xmm11H_off), xmm11->as_VMReg()->next());
kvn@4103 271 map->set_callee_saved(STACK_OFFSET(xmm12H_off), xmm12->as_VMReg()->next());
kvn@4103 272 map->set_callee_saved(STACK_OFFSET(xmm13H_off), xmm13->as_VMReg()->next());
kvn@4103 273 map->set_callee_saved(STACK_OFFSET(xmm14H_off), xmm14->as_VMReg()->next());
kvn@4103 274 map->set_callee_saved(STACK_OFFSET(xmm15H_off), xmm15->as_VMReg()->next());
duke@435 275 }
duke@435 276
duke@435 277 return map;
duke@435 278 }
duke@435 279
kvn@4103 280 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
duke@435 281 if (frame::arg_reg_save_area_bytes != 0) {
duke@435 282 // Pop arg register save area
never@739 283 __ addptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 284 }
kvn@4103 285 #ifdef COMPILER2
kvn@4103 286 if (restore_vectors) {
kvn@4103 287 // Restore upper half of YMM registes.
kvn@4103 288 assert(UseAVX > 0, "256bit vectors are supported only with AVX");
kvn@4103 289 assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
kvn@4103 290 __ vinsertf128h(xmm0, Address(rsp, 0));
kvn@4103 291 __ vinsertf128h(xmm1, Address(rsp, 16));
kvn@4103 292 __ vinsertf128h(xmm2, Address(rsp, 32));
kvn@4103 293 __ vinsertf128h(xmm3, Address(rsp, 48));
kvn@4103 294 __ vinsertf128h(xmm4, Address(rsp, 64));
kvn@4103 295 __ vinsertf128h(xmm5, Address(rsp, 80));
kvn@4103 296 __ vinsertf128h(xmm6, Address(rsp, 96));
kvn@4103 297 __ vinsertf128h(xmm7, Address(rsp,112));
kvn@4103 298 __ vinsertf128h(xmm8, Address(rsp,128));
kvn@4103 299 __ vinsertf128h(xmm9, Address(rsp,144));
kvn@4103 300 __ vinsertf128h(xmm10, Address(rsp,160));
kvn@4103 301 __ vinsertf128h(xmm11, Address(rsp,176));
kvn@4103 302 __ vinsertf128h(xmm12, Address(rsp,192));
kvn@4103 303 __ vinsertf128h(xmm13, Address(rsp,208));
kvn@4103 304 __ vinsertf128h(xmm14, Address(rsp,224));
kvn@4103 305 __ vinsertf128h(xmm15, Address(rsp,240));
kvn@4103 306 __ addptr(rsp, 256);
kvn@4103 307 }
kvn@4103 308 #else
kvn@4103 309 assert(!restore_vectors, "vectors are generated only by C2");
kvn@4103 310 #endif
duke@435 311 // Recover CPU state
duke@435 312 __ pop_CPU_state();
duke@435 313 // Get the rbp described implicitly by the calling convention (no oopMap)
never@739 314 __ pop(rbp);
duke@435 315 }
duke@435 316
duke@435 317 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
duke@435 318
duke@435 319 // Just restore result register. Only used by deoptimization. By
duke@435 320 // now any callee save register that needs to be restored to a c2
duke@435 321 // caller of the deoptee has been extracted into the vframeArray
duke@435 322 // and will be stuffed into the c2i adapter we create for later
duke@435 323 // restoration so only result registers need to be restored here.
duke@435 324
duke@435 325 // Restore fp result register
duke@435 326 __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
duke@435 327 // Restore integer result register
never@739 328 __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
never@739 329 __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
never@739 330
duke@435 331 // Pop all of the register save are off the stack except the return address
never@739 332 __ addptr(rsp, return_offset_in_bytes());
duke@435 333 }
duke@435 334
kvn@4103 335 // Is vector's size (in bytes) bigger than a size saved by default?
kvn@4103 336 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
kvn@4103 337 bool SharedRuntime::is_wide_vector(int size) {
kvn@4103 338 return size > 16;
kvn@4103 339 }
kvn@4103 340
duke@435 341 // The java_calling_convention describes stack locations as ideal slots on
duke@435 342 // a frame with no abi restrictions. Since we must observe abi restrictions
duke@435 343 // (like the placement of the register window) the slots must be biased by
duke@435 344 // the following value.
duke@435 345 static int reg2offset_in(VMReg r) {
duke@435 346 // Account for saved rbp and return address
duke@435 347 // This should really be in_preserve_stack_slots
duke@435 348 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
duke@435 349 }
duke@435 350
duke@435 351 static int reg2offset_out(VMReg r) {
duke@435 352 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
duke@435 353 }
duke@435 354
duke@435 355 // ---------------------------------------------------------------------------
duke@435 356 // Read the array of BasicTypes from a signature, and compute where the
duke@435 357 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
duke@435 358 // quantities. Values less than VMRegImpl::stack0 are registers, those above
duke@435 359 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
duke@435 360 // as framesizes are fixed.
duke@435 361 // VMRegImpl::stack0 refers to the first slot 0(sp).
duke@435 362 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
duke@435 363 // up to RegisterImpl::number_of_registers) are the 64-bit
duke@435 364 // integer registers.
duke@435 365
duke@435 366 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
duke@435 367 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
duke@435 368 // units regardless of build. Of course for i486 there is no 64 bit build
duke@435 369
duke@435 370 // The Java calling convention is a "shifted" version of the C ABI.
duke@435 371 // By skipping the first C ABI register we can call non-static jni methods
duke@435 372 // with small numbers of arguments without having to shuffle the arguments
duke@435 373 // at all. Since we control the java ABI we ought to at least get some
duke@435 374 // advantage out of it.
duke@435 375
duke@435 376 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
duke@435 377 VMRegPair *regs,
duke@435 378 int total_args_passed,
duke@435 379 int is_outgoing) {
duke@435 380
duke@435 381 // Create the mapping between argument positions and
duke@435 382 // registers.
duke@435 383 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
duke@435 384 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
duke@435 385 };
duke@435 386 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
duke@435 387 j_farg0, j_farg1, j_farg2, j_farg3,
duke@435 388 j_farg4, j_farg5, j_farg6, j_farg7
duke@435 389 };
duke@435 390
duke@435 391
duke@435 392 uint int_args = 0;
duke@435 393 uint fp_args = 0;
duke@435 394 uint stk_args = 0; // inc by 2 each time
duke@435 395
duke@435 396 for (int i = 0; i < total_args_passed; i++) {
duke@435 397 switch (sig_bt[i]) {
duke@435 398 case T_BOOLEAN:
duke@435 399 case T_CHAR:
duke@435 400 case T_BYTE:
duke@435 401 case T_SHORT:
duke@435 402 case T_INT:
duke@435 403 if (int_args < Argument::n_int_register_parameters_j) {
duke@435 404 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
duke@435 405 } else {
duke@435 406 regs[i].set1(VMRegImpl::stack2reg(stk_args));
duke@435 407 stk_args += 2;
duke@435 408 }
duke@435 409 break;
duke@435 410 case T_VOID:
duke@435 411 // halves of T_LONG or T_DOUBLE
duke@435 412 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
duke@435 413 regs[i].set_bad();
duke@435 414 break;
duke@435 415 case T_LONG:
duke@435 416 assert(sig_bt[i + 1] == T_VOID, "expecting half");
duke@435 417 // fall through
duke@435 418 case T_OBJECT:
duke@435 419 case T_ARRAY:
duke@435 420 case T_ADDRESS:
duke@435 421 if (int_args < Argument::n_int_register_parameters_j) {
duke@435 422 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
duke@435 423 } else {
duke@435 424 regs[i].set2(VMRegImpl::stack2reg(stk_args));
duke@435 425 stk_args += 2;
duke@435 426 }
duke@435 427 break;
duke@435 428 case T_FLOAT:
duke@435 429 if (fp_args < Argument::n_float_register_parameters_j) {
duke@435 430 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
duke@435 431 } else {
duke@435 432 regs[i].set1(VMRegImpl::stack2reg(stk_args));
duke@435 433 stk_args += 2;
duke@435 434 }
duke@435 435 break;
duke@435 436 case T_DOUBLE:
duke@435 437 assert(sig_bt[i + 1] == T_VOID, "expecting half");
duke@435 438 if (fp_args < Argument::n_float_register_parameters_j) {
duke@435 439 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
duke@435 440 } else {
duke@435 441 regs[i].set2(VMRegImpl::stack2reg(stk_args));
duke@435 442 stk_args += 2;
duke@435 443 }
duke@435 444 break;
duke@435 445 default:
duke@435 446 ShouldNotReachHere();
duke@435 447 break;
duke@435 448 }
duke@435 449 }
duke@435 450
duke@435 451 return round_to(stk_args, 2);
duke@435 452 }
duke@435 453
duke@435 454 // Patch the callers callsite with entry to compiled code if it exists.
duke@435 455 static void patch_callers_callsite(MacroAssembler *masm) {
duke@435 456 Label L;
coleenp@4037 457 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
duke@435 458 __ jcc(Assembler::equal, L);
duke@435 459
duke@435 460 // Save the current stack pointer
never@739 461 __ mov(r13, rsp);
duke@435 462 // Schedule the branch target address early.
duke@435 463 // Call into the VM to patch the caller, then jump to compiled callee
duke@435 464 // rax isn't live so capture return address while we easily can
never@739 465 __ movptr(rax, Address(rsp, 0));
duke@435 466
duke@435 467 // align stack so push_CPU_state doesn't fault
never@739 468 __ andptr(rsp, -(StackAlignmentInBytes));
duke@435 469 __ push_CPU_state();
duke@435 470
duke@435 471 // VM needs caller's callsite
duke@435 472 // VM needs target method
duke@435 473 // This needs to be a long call since we will relocate this adapter to
duke@435 474 // the codeBuffer and it may not reach
duke@435 475
duke@435 476 // Allocate argument register save area
duke@435 477 if (frame::arg_reg_save_area_bytes != 0) {
never@739 478 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 479 }
never@739 480 __ mov(c_rarg0, rbx);
never@739 481 __ mov(c_rarg1, rax);
duke@435 482 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
duke@435 483
duke@435 484 // De-allocate argument register save area
duke@435 485 if (frame::arg_reg_save_area_bytes != 0) {
never@739 486 __ addptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 487 }
duke@435 488
duke@435 489 __ pop_CPU_state();
duke@435 490 // restore sp
never@739 491 __ mov(rsp, r13);
duke@435 492 __ bind(L);
duke@435 493 }
duke@435 494
duke@435 495
duke@435 496 static void gen_c2i_adapter(MacroAssembler *masm,
duke@435 497 int total_args_passed,
duke@435 498 int comp_args_on_stack,
duke@435 499 const BasicType *sig_bt,
duke@435 500 const VMRegPair *regs,
duke@435 501 Label& skip_fixup) {
duke@435 502 // Before we get into the guts of the C2I adapter, see if we should be here
duke@435 503 // at all. We've come from compiled code and are attempting to jump to the
duke@435 504 // interpreter, which means the caller made a static call to get here
duke@435 505 // (vcalls always get a compiled target if there is one). Check for a
duke@435 506 // compiled target. If there is one, we need to patch the caller's call.
duke@435 507 patch_callers_callsite(masm);
duke@435 508
duke@435 509 __ bind(skip_fixup);
duke@435 510
duke@435 511 // Since all args are passed on the stack, total_args_passed *
duke@435 512 // Interpreter::stackElementSize is the space we need. Plus 1 because
duke@435 513 // we also account for the return address location since
duke@435 514 // we store it first rather than hold it in rax across all the shuffling
duke@435 515
twisti@1861 516 int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
duke@435 517
duke@435 518 // stack is aligned, keep it that way
duke@435 519 extraspace = round_to(extraspace, 2*wordSize);
duke@435 520
duke@435 521 // Get return address
never@739 522 __ pop(rax);
duke@435 523
duke@435 524 // set senderSP value
never@739 525 __ mov(r13, rsp);
never@739 526
never@739 527 __ subptr(rsp, extraspace);
duke@435 528
duke@435 529 // Store the return address in the expected location
never@739 530 __ movptr(Address(rsp, 0), rax);
duke@435 531
duke@435 532 // Now write the args into the outgoing interpreter space
duke@435 533 for (int i = 0; i < total_args_passed; i++) {
duke@435 534 if (sig_bt[i] == T_VOID) {
duke@435 535 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 536 continue;
duke@435 537 }
duke@435 538
duke@435 539 // offset to start parameters
twisti@1861 540 int st_off = (total_args_passed - i) * Interpreter::stackElementSize;
twisti@1861 541 int next_off = st_off - Interpreter::stackElementSize;
duke@435 542
duke@435 543 // Say 4 args:
duke@435 544 // i st_off
duke@435 545 // 0 32 T_LONG
duke@435 546 // 1 24 T_VOID
duke@435 547 // 2 16 T_OBJECT
duke@435 548 // 3 8 T_BOOL
duke@435 549 // - 0 return address
duke@435 550 //
duke@435 551 // However to make thing extra confusing. Because we can fit a long/double in
duke@435 552 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
duke@435 553 // leaves one slot empty and only stores to a single slot. In this case the
duke@435 554 // slot that is occupied is the T_VOID slot. See I said it was confusing.
duke@435 555
duke@435 556 VMReg r_1 = regs[i].first();
duke@435 557 VMReg r_2 = regs[i].second();
duke@435 558 if (!r_1->is_valid()) {
duke@435 559 assert(!r_2->is_valid(), "");
duke@435 560 continue;
duke@435 561 }
duke@435 562 if (r_1->is_stack()) {
duke@435 563 // memory to memory use rax
duke@435 564 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
duke@435 565 if (!r_2->is_valid()) {
duke@435 566 // sign extend??
duke@435 567 __ movl(rax, Address(rsp, ld_off));
never@739 568 __ movptr(Address(rsp, st_off), rax);
duke@435 569
duke@435 570 } else {
duke@435 571
duke@435 572 __ movq(rax, Address(rsp, ld_off));
duke@435 573
duke@435 574 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
duke@435 575 // T_DOUBLE and T_LONG use two slots in the interpreter
duke@435 576 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
duke@435 577 // ld_off == LSW, ld_off+wordSize == MSW
duke@435 578 // st_off == MSW, next_off == LSW
duke@435 579 __ movq(Address(rsp, next_off), rax);
duke@435 580 #ifdef ASSERT
duke@435 581 // Overwrite the unused slot with known junk
duke@435 582 __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
never@739 583 __ movptr(Address(rsp, st_off), rax);
duke@435 584 #endif /* ASSERT */
duke@435 585 } else {
duke@435 586 __ movq(Address(rsp, st_off), rax);
duke@435 587 }
duke@435 588 }
duke@435 589 } else if (r_1->is_Register()) {
duke@435 590 Register r = r_1->as_Register();
duke@435 591 if (!r_2->is_valid()) {
duke@435 592 // must be only an int (or less ) so move only 32bits to slot
duke@435 593 // why not sign extend??
duke@435 594 __ movl(Address(rsp, st_off), r);
duke@435 595 } else {
duke@435 596 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
duke@435 597 // T_DOUBLE and T_LONG use two slots in the interpreter
duke@435 598 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
duke@435 599 // long/double in gpr
duke@435 600 #ifdef ASSERT
duke@435 601 // Overwrite the unused slot with known junk
duke@435 602 __ mov64(rax, CONST64(0xdeadffffdeadaaab));
never@739 603 __ movptr(Address(rsp, st_off), rax);
duke@435 604 #endif /* ASSERT */
duke@435 605 __ movq(Address(rsp, next_off), r);
duke@435 606 } else {
never@739 607 __ movptr(Address(rsp, st_off), r);
duke@435 608 }
duke@435 609 }
duke@435 610 } else {
duke@435 611 assert(r_1->is_XMMRegister(), "");
duke@435 612 if (!r_2->is_valid()) {
duke@435 613 // only a float use just part of the slot
duke@435 614 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
duke@435 615 } else {
duke@435 616 #ifdef ASSERT
duke@435 617 // Overwrite the unused slot with known junk
duke@435 618 __ mov64(rax, CONST64(0xdeadffffdeadaaac));
never@739 619 __ movptr(Address(rsp, st_off), rax);
duke@435 620 #endif /* ASSERT */
duke@435 621 __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
duke@435 622 }
duke@435 623 }
duke@435 624 }
duke@435 625
duke@435 626 // Schedule the branch target address early.
coleenp@4037 627 __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
duke@435 628 __ jmp(rcx);
duke@435 629 }
duke@435 630
twisti@3969 631 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
twisti@3969 632 address code_start, address code_end,
twisti@3969 633 Label& L_ok) {
twisti@3969 634 Label L_fail;
twisti@3969 635 __ lea(temp_reg, ExternalAddress(code_start));
twisti@3969 636 __ cmpptr(pc_reg, temp_reg);
twisti@3969 637 __ jcc(Assembler::belowEqual, L_fail);
twisti@3969 638 __ lea(temp_reg, ExternalAddress(code_end));
twisti@3969 639 __ cmpptr(pc_reg, temp_reg);
twisti@3969 640 __ jcc(Assembler::below, L_ok);
twisti@3969 641 __ bind(L_fail);
twisti@3969 642 }
twisti@3969 643
duke@435 644 static void gen_i2c_adapter(MacroAssembler *masm,
duke@435 645 int total_args_passed,
duke@435 646 int comp_args_on_stack,
duke@435 647 const BasicType *sig_bt,
duke@435 648 const VMRegPair *regs) {
duke@435 649
duke@435 650 // Note: r13 contains the senderSP on entry. We must preserve it since
duke@435 651 // we may do a i2c -> c2i transition if we lose a race where compiled
duke@435 652 // code goes non-entrant while we get args ready.
duke@435 653 // In addition we use r13 to locate all the interpreter args as
duke@435 654 // we must align the stack to 16 bytes on an i2c entry else we
duke@435 655 // lose alignment we expect in all compiled code and register
duke@435 656 // save code can segv when fxsave instructions find improperly
duke@435 657 // aligned stack pointer.
duke@435 658
twisti@3969 659 // Adapters can be frameless because they do not require the caller
twisti@3969 660 // to perform additional cleanup work, such as correcting the stack pointer.
twisti@3969 661 // An i2c adapter is frameless because the *caller* frame, which is interpreted,
twisti@3969 662 // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
twisti@3969 663 // even if a callee has modified the stack pointer.
twisti@3969 664 // A c2i adapter is frameless because the *callee* frame, which is interpreted,
twisti@3969 665 // routinely repairs its caller's stack pointer (from sender_sp, which is set
twisti@3969 666 // up via the senderSP register).
twisti@3969 667 // In other words, if *either* the caller or callee is interpreted, we can
twisti@3969 668 // get the stack pointer repaired after a call.
twisti@3969 669 // This is why c2i and i2c adapters cannot be indefinitely composed.
twisti@3969 670 // In particular, if a c2i adapter were to somehow call an i2c adapter,
twisti@3969 671 // both caller and callee would be compiled methods, and neither would
twisti@3969 672 // clean up the stack pointer changes performed by the two adapters.
twisti@3969 673 // If this happens, control eventually transfers back to the compiled
twisti@3969 674 // caller, but with an uncorrected stack, causing delayed havoc.
twisti@3969 675
twisti@2552 676 // Pick up the return address
never@739 677 __ movptr(rax, Address(rsp, 0));
duke@435 678
twisti@3969 679 if (VerifyAdapterCalls &&
twisti@3969 680 (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
twisti@3969 681 // So, let's test for cascading c2i/i2c adapters right now.
twisti@3969 682 // assert(Interpreter::contains($return_addr) ||
twisti@3969 683 // StubRoutines::contains($return_addr),
twisti@3969 684 // "i2c adapter must return to an interpreter frame");
twisti@3969 685 __ block_comment("verify_i2c { ");
twisti@3969 686 Label L_ok;
twisti@3969 687 if (Interpreter::code() != NULL)
twisti@3969 688 range_check(masm, rax, r11,
twisti@3969 689 Interpreter::code()->code_start(), Interpreter::code()->code_end(),
twisti@3969 690 L_ok);
twisti@3969 691 if (StubRoutines::code1() != NULL)
twisti@3969 692 range_check(masm, rax, r11,
twisti@3969 693 StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
twisti@3969 694 L_ok);
twisti@3969 695 if (StubRoutines::code2() != NULL)
twisti@3969 696 range_check(masm, rax, r11,
twisti@3969 697 StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
twisti@3969 698 L_ok);
twisti@3969 699 const char* msg = "i2c adapter must return to an interpreter frame";
twisti@3969 700 __ block_comment(msg);
twisti@3969 701 __ stop(msg);
twisti@3969 702 __ bind(L_ok);
twisti@3969 703 __ block_comment("} verify_i2ce ");
twisti@3969 704 }
twisti@3969 705
twisti@1570 706 // Must preserve original SP for loading incoming arguments because
twisti@1570 707 // we need to align the outgoing SP for compiled code.
twisti@1570 708 __ movptr(r11, rsp);
twisti@1570 709
duke@435 710 // Cut-out for having no stack args. Since up to 2 int/oop args are passed
duke@435 711 // in registers, we will occasionally have no stack args.
duke@435 712 int comp_words_on_stack = 0;
duke@435 713 if (comp_args_on_stack) {
duke@435 714 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
duke@435 715 // registers are below. By subtracting stack0, we either get a negative
duke@435 716 // number (all values in registers) or the maximum stack slot accessed.
duke@435 717
duke@435 718 // Convert 4-byte c2 stack slots to words.
duke@435 719 comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
duke@435 720 // Round up to miminum stack alignment, in wordSize
duke@435 721 comp_words_on_stack = round_to(comp_words_on_stack, 2);
never@739 722 __ subptr(rsp, comp_words_on_stack * wordSize);
duke@435 723 }
duke@435 724
duke@435 725
duke@435 726 // Ensure compiled code always sees stack at proper alignment
never@739 727 __ andptr(rsp, -16);
duke@435 728
duke@435 729 // push the return address and misalign the stack that youngest frame always sees
duke@435 730 // as far as the placement of the call instruction
never@739 731 __ push(rax);
duke@435 732
twisti@1570 733 // Put saved SP in another register
twisti@1570 734 const Register saved_sp = rax;
twisti@1570 735 __ movptr(saved_sp, r11);
twisti@1570 736
duke@435 737 // Will jump to the compiled code just as if compiled code was doing it.
duke@435 738 // Pre-load the register-jump target early, to schedule it better.
coleenp@4037 739 __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
duke@435 740
duke@435 741 // Now generate the shuffle code. Pick up all register args and move the
duke@435 742 // rest through the floating point stack top.
duke@435 743 for (int i = 0; i < total_args_passed; i++) {
duke@435 744 if (sig_bt[i] == T_VOID) {
duke@435 745 // Longs and doubles are passed in native word order, but misaligned
duke@435 746 // in the 32-bit build.
duke@435 747 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 748 continue;
duke@435 749 }
duke@435 750
duke@435 751 // Pick up 0, 1 or 2 words from SP+offset.
duke@435 752
duke@435 753 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
duke@435 754 "scrambled load targets?");
duke@435 755 // Load in argument order going down.
twisti@1861 756 int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
duke@435 757 // Point to interpreter value (vs. tag)
twisti@1861 758 int next_off = ld_off - Interpreter::stackElementSize;
duke@435 759 //
duke@435 760 //
duke@435 761 //
duke@435 762 VMReg r_1 = regs[i].first();
duke@435 763 VMReg r_2 = regs[i].second();
duke@435 764 if (!r_1->is_valid()) {
duke@435 765 assert(!r_2->is_valid(), "");
duke@435 766 continue;
duke@435 767 }
duke@435 768 if (r_1->is_stack()) {
duke@435 769 // Convert stack slot to an SP offset (+ wordSize to account for return address )
duke@435 770 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
twisti@1570 771
twisti@1570 772 // We can use r13 as a temp here because compiled code doesn't need r13 as an input
twisti@1570 773 // and if we end up going thru a c2i because of a miss a reasonable value of r13
twisti@1570 774 // will be generated.
duke@435 775 if (!r_2->is_valid()) {
duke@435 776 // sign extend???
twisti@1570 777 __ movl(r13, Address(saved_sp, ld_off));
twisti@1570 778 __ movptr(Address(rsp, st_off), r13);
duke@435 779 } else {
duke@435 780 //
duke@435 781 // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
duke@435 782 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
duke@435 783 // So we must adjust where to pick up the data to match the interpreter.
duke@435 784 //
duke@435 785 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
duke@435 786 // are accessed as negative so LSW is at LOW address
duke@435 787
duke@435 788 // ld_off is MSW so get LSW
duke@435 789 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
duke@435 790 next_off : ld_off;
twisti@1570 791 __ movq(r13, Address(saved_sp, offset));
duke@435 792 // st_off is LSW (i.e. reg.first())
twisti@1570 793 __ movq(Address(rsp, st_off), r13);
duke@435 794 }
duke@435 795 } else if (r_1->is_Register()) { // Register argument
duke@435 796 Register r = r_1->as_Register();
duke@435 797 assert(r != rax, "must be different");
duke@435 798 if (r_2->is_valid()) {
duke@435 799 //
duke@435 800 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
duke@435 801 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
duke@435 802 // So we must adjust where to pick up the data to match the interpreter.
duke@435 803
duke@435 804 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
duke@435 805 next_off : ld_off;
duke@435 806
duke@435 807 // this can be a misaligned move
twisti@1570 808 __ movq(r, Address(saved_sp, offset));
duke@435 809 } else {
duke@435 810 // sign extend and use a full word?
twisti@1570 811 __ movl(r, Address(saved_sp, ld_off));
duke@435 812 }
duke@435 813 } else {
duke@435 814 if (!r_2->is_valid()) {
twisti@1570 815 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
duke@435 816 } else {
twisti@1570 817 __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
duke@435 818 }
duke@435 819 }
duke@435 820 }
duke@435 821
duke@435 822 // 6243940 We might end up in handle_wrong_method if
duke@435 823 // the callee is deoptimized as we race thru here. If that
duke@435 824 // happens we don't want to take a safepoint because the
duke@435 825 // caller frame will look interpreted and arguments are now
duke@435 826 // "compiled" so it is much better to make this transition
duke@435 827 // invisible to the stack walking code. Unfortunately if
duke@435 828 // we try and find the callee by normal means a safepoint
duke@435 829 // is possible. So we stash the desired callee in the thread
duke@435 830 // and the vm will find there should this case occur.
duke@435 831
never@739 832 __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
duke@435 833
coleenp@4037 834 // put Method* where a c2i would expect should we end up there
coleenp@4037 835 // only needed becaus eof c2 resolve stubs return Method* as a result in
duke@435 836 // rax
never@739 837 __ mov(rax, rbx);
duke@435 838 __ jmp(r11);
duke@435 839 }
duke@435 840
duke@435 841 // ---------------------------------------------------------------
duke@435 842 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
duke@435 843 int total_args_passed,
duke@435 844 int comp_args_on_stack,
duke@435 845 const BasicType *sig_bt,
never@1622 846 const VMRegPair *regs,
never@1622 847 AdapterFingerPrint* fingerprint) {
duke@435 848 address i2c_entry = __ pc();
duke@435 849
duke@435 850 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
duke@435 851
duke@435 852 // -------------------------------------------------------------------------
coleenp@4037 853 // Generate a C2I adapter. On entry we know rbx holds the Method* during calls
duke@435 854 // to the interpreter. The args start out packed in the compiled layout. They
duke@435 855 // need to be unpacked into the interpreter layout. This will almost always
duke@435 856 // require some stack space. We grow the current (compiled) stack, then repack
duke@435 857 // the args. We finally end in a jump to the generic interpreter entry point.
duke@435 858 // On exit from the interpreter, the interpreter will restore our SP (lest the
duke@435 859 // compiled code, which relys solely on SP and not RBP, get sick).
duke@435 860
duke@435 861 address c2i_unverified_entry = __ pc();
duke@435 862 Label skip_fixup;
duke@435 863 Label ok;
duke@435 864
duke@435 865 Register holder = rax;
duke@435 866 Register receiver = j_rarg0;
duke@435 867 Register temp = rbx;
duke@435 868
duke@435 869 {
coleenp@548 870 __ load_klass(temp, receiver);
coleenp@4037 871 __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
dbuck@8997 872 __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
duke@435 873 __ jcc(Assembler::equal, ok);
duke@435 874 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 875
duke@435 876 __ bind(ok);
duke@435 877 // Method might have been compiled since the call site was patched to
duke@435 878 // interpreted if that is the case treat it as a miss so we can get
duke@435 879 // the call site corrected.
coleenp@4037 880 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
duke@435 881 __ jcc(Assembler::equal, skip_fixup);
duke@435 882 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 883 }
duke@435 884
duke@435 885 address c2i_entry = __ pc();
duke@435 886
duke@435 887 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
duke@435 888
duke@435 889 __ flush();
never@1622 890 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
duke@435 891 }
duke@435 892
duke@435 893 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
duke@435 894 VMRegPair *regs,
goetz@6466 895 VMRegPair *regs2,
duke@435 896 int total_args_passed) {
goetz@6466 897 assert(regs2 == NULL, "not needed on x86");
duke@435 898 // We return the amount of VMRegImpl stack slots we need to reserve for all
duke@435 899 // the arguments NOT counting out_preserve_stack_slots.
duke@435 900
duke@435 901 // NOTE: These arrays will have to change when c1 is ported
duke@435 902 #ifdef _WIN64
duke@435 903 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
duke@435 904 c_rarg0, c_rarg1, c_rarg2, c_rarg3
duke@435 905 };
duke@435 906 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
duke@435 907 c_farg0, c_farg1, c_farg2, c_farg3
duke@435 908 };
duke@435 909 #else
duke@435 910 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
duke@435 911 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
duke@435 912 };
duke@435 913 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
duke@435 914 c_farg0, c_farg1, c_farg2, c_farg3,
duke@435 915 c_farg4, c_farg5, c_farg6, c_farg7
duke@435 916 };
duke@435 917 #endif // _WIN64
duke@435 918
duke@435 919
duke@435 920 uint int_args = 0;
duke@435 921 uint fp_args = 0;
duke@435 922 uint stk_args = 0; // inc by 2 each time
duke@435 923
duke@435 924 for (int i = 0; i < total_args_passed; i++) {
duke@435 925 switch (sig_bt[i]) {
duke@435 926 case T_BOOLEAN:
duke@435 927 case T_CHAR:
duke@435 928 case T_BYTE:
duke@435 929 case T_SHORT:
duke@435 930 case T_INT:
duke@435 931 if (int_args < Argument::n_int_register_parameters_c) {
duke@435 932 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
duke@435 933 #ifdef _WIN64
duke@435 934 fp_args++;
duke@435 935 // Allocate slots for callee to stuff register args the stack.
duke@435 936 stk_args += 2;
duke@435 937 #endif
duke@435 938 } else {
duke@435 939 regs[i].set1(VMRegImpl::stack2reg(stk_args));
duke@435 940 stk_args += 2;
duke@435 941 }
duke@435 942 break;
duke@435 943 case T_LONG:
duke@435 944 assert(sig_bt[i + 1] == T_VOID, "expecting half");
duke@435 945 // fall through
duke@435 946 case T_OBJECT:
duke@435 947 case T_ARRAY:
duke@435 948 case T_ADDRESS:
roland@4051 949 case T_METADATA:
duke@435 950 if (int_args < Argument::n_int_register_parameters_c) {
duke@435 951 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
duke@435 952 #ifdef _WIN64
duke@435 953 fp_args++;
duke@435 954 stk_args += 2;
duke@435 955 #endif
duke@435 956 } else {
duke@435 957 regs[i].set2(VMRegImpl::stack2reg(stk_args));
duke@435 958 stk_args += 2;
duke@435 959 }
duke@435 960 break;
duke@435 961 case T_FLOAT:
duke@435 962 if (fp_args < Argument::n_float_register_parameters_c) {
duke@435 963 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
duke@435 964 #ifdef _WIN64
duke@435 965 int_args++;
duke@435 966 // Allocate slots for callee to stuff register args the stack.
duke@435 967 stk_args += 2;
duke@435 968 #endif
duke@435 969 } else {
duke@435 970 regs[i].set1(VMRegImpl::stack2reg(stk_args));
duke@435 971 stk_args += 2;
duke@435 972 }
duke@435 973 break;
duke@435 974 case T_DOUBLE:
duke@435 975 assert(sig_bt[i + 1] == T_VOID, "expecting half");
duke@435 976 if (fp_args < Argument::n_float_register_parameters_c) {
duke@435 977 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
duke@435 978 #ifdef _WIN64
duke@435 979 int_args++;
duke@435 980 // Allocate slots for callee to stuff register args the stack.
duke@435 981 stk_args += 2;
duke@435 982 #endif
duke@435 983 } else {
duke@435 984 regs[i].set2(VMRegImpl::stack2reg(stk_args));
duke@435 985 stk_args += 2;
duke@435 986 }
duke@435 987 break;
duke@435 988 case T_VOID: // Halves of longs and doubles
duke@435 989 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
duke@435 990 regs[i].set_bad();
duke@435 991 break;
duke@435 992 default:
duke@435 993 ShouldNotReachHere();
duke@435 994 break;
duke@435 995 }
duke@435 996 }
duke@435 997 #ifdef _WIN64
duke@435 998 // windows abi requires that we always allocate enough stack space
duke@435 999 // for 4 64bit registers to be stored down.
duke@435 1000 if (stk_args < 8) {
duke@435 1001 stk_args = 8;
duke@435 1002 }
duke@435 1003 #endif // _WIN64
duke@435 1004
duke@435 1005 return stk_args;
duke@435 1006 }
duke@435 1007
duke@435 1008 // On 64 bit we will store integer like items to the stack as
duke@435 1009 // 64 bits items (sparc abi) even though java would only store
duke@435 1010 // 32bits for a parameter. On 32bit it will simply be 32 bits
duke@435 1011 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
duke@435 1012 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1013 if (src.first()->is_stack()) {
duke@435 1014 if (dst.first()->is_stack()) {
duke@435 1015 // stack to stack
duke@435 1016 __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
duke@435 1017 __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1018 } else {
duke@435 1019 // stack to reg
duke@435 1020 __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
duke@435 1021 }
duke@435 1022 } else if (dst.first()->is_stack()) {
duke@435 1023 // reg to stack
duke@435 1024 // Do we really have to sign extend???
duke@435 1025 // __ movslq(src.first()->as_Register(), src.first()->as_Register());
duke@435 1026 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 1027 } else {
duke@435 1028 // Do we really have to sign extend???
duke@435 1029 // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
duke@435 1030 if (dst.first() != src.first()) {
duke@435 1031 __ movq(dst.first()->as_Register(), src.first()->as_Register());
duke@435 1032 }
duke@435 1033 }
duke@435 1034 }
duke@435 1035
never@3500 1036 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
never@3500 1037 if (src.first()->is_stack()) {
never@3500 1038 if (dst.first()->is_stack()) {
never@3500 1039 // stack to stack
never@3500 1040 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
never@3500 1041 __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
never@3500 1042 } else {
never@3500 1043 // stack to reg
never@3500 1044 __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
never@3500 1045 }
never@3500 1046 } else if (dst.first()->is_stack()) {
never@3500 1047 // reg to stack
never@3500 1048 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
never@3500 1049 } else {
never@3500 1050 if (dst.first() != src.first()) {
never@3500 1051 __ movq(dst.first()->as_Register(), src.first()->as_Register());
never@3500 1052 }
never@3500 1053 }
never@3500 1054 }
duke@435 1055
duke@435 1056 // An oop arg. Must pass a handle not the oop itself
duke@435 1057 static void object_move(MacroAssembler* masm,
duke@435 1058 OopMap* map,
duke@435 1059 int oop_handle_offset,
duke@435 1060 int framesize_in_slots,
duke@435 1061 VMRegPair src,
duke@435 1062 VMRegPair dst,
duke@435 1063 bool is_receiver,
duke@435 1064 int* receiver_offset) {
duke@435 1065
duke@435 1066 // must pass a handle. First figure out the location we use as a handle
duke@435 1067
duke@435 1068 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
duke@435 1069
duke@435 1070 // See if oop is NULL if it is we need no handle
duke@435 1071
duke@435 1072 if (src.first()->is_stack()) {
duke@435 1073
duke@435 1074 // Oop is already on the stack as an argument
duke@435 1075 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
duke@435 1076 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
duke@435 1077 if (is_receiver) {
duke@435 1078 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
duke@435 1079 }
duke@435 1080
never@739 1081 __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
never@739 1082 __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 1083 // conditionally move a NULL
never@739 1084 __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 1085 } else {
duke@435 1086
duke@435 1087 // Oop is in an a register we must store it to the space we reserve
duke@435 1088 // on the stack for oop_handles and pass a handle if oop is non-NULL
duke@435 1089
duke@435 1090 const Register rOop = src.first()->as_Register();
duke@435 1091 int oop_slot;
duke@435 1092 if (rOop == j_rarg0)
duke@435 1093 oop_slot = 0;
duke@435 1094 else if (rOop == j_rarg1)
duke@435 1095 oop_slot = 1;
duke@435 1096 else if (rOop == j_rarg2)
duke@435 1097 oop_slot = 2;
duke@435 1098 else if (rOop == j_rarg3)
duke@435 1099 oop_slot = 3;
duke@435 1100 else if (rOop == j_rarg4)
duke@435 1101 oop_slot = 4;
duke@435 1102 else {
duke@435 1103 assert(rOop == j_rarg5, "wrong register");
duke@435 1104 oop_slot = 5;
duke@435 1105 }
duke@435 1106
duke@435 1107 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
duke@435 1108 int offset = oop_slot*VMRegImpl::stack_slot_size;
duke@435 1109
duke@435 1110 map->set_oop(VMRegImpl::stack2reg(oop_slot));
duke@435 1111 // Store oop in handle area, may be NULL
never@739 1112 __ movptr(Address(rsp, offset), rOop);
duke@435 1113 if (is_receiver) {
duke@435 1114 *receiver_offset = offset;
duke@435 1115 }
duke@435 1116
never@739 1117 __ cmpptr(rOop, (int32_t)NULL_WORD);
never@739 1118 __ lea(rHandle, Address(rsp, offset));
duke@435 1119 // conditionally move a NULL from the handle area where it was just stored
never@739 1120 __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
duke@435 1121 }
duke@435 1122
duke@435 1123 // If arg is on the stack then place it otherwise it is already in correct reg.
duke@435 1124 if (dst.first()->is_stack()) {
never@739 1125 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 1126 }
duke@435 1127 }
duke@435 1128
duke@435 1129 // A float arg may have to do float reg int reg conversion
duke@435 1130 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1131 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
duke@435 1132
duke@435 1133 // The calling conventions assures us that each VMregpair is either
duke@435 1134 // all really one physical register or adjacent stack slots.
duke@435 1135 // This greatly simplifies the cases here compared to sparc.
duke@435 1136
duke@435 1137 if (src.first()->is_stack()) {
duke@435 1138 if (dst.first()->is_stack()) {
duke@435 1139 __ movl(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1140 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1141 } else {
duke@435 1142 // stack to reg
duke@435 1143 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
duke@435 1144 __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
duke@435 1145 }
duke@435 1146 } else if (dst.first()->is_stack()) {
duke@435 1147 // reg to stack
duke@435 1148 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
duke@435 1149 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1150 } else {
duke@435 1151 // reg to reg
duke@435 1152 // In theory these overlap but the ordering is such that this is likely a nop
duke@435 1153 if ( src.first() != dst.first()) {
duke@435 1154 __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
duke@435 1155 }
duke@435 1156 }
duke@435 1157 }
duke@435 1158
duke@435 1159 // A long move
duke@435 1160 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1161
duke@435 1162 // The calling conventions assures us that each VMregpair is either
duke@435 1163 // all really one physical register or adjacent stack slots.
duke@435 1164 // This greatly simplifies the cases here compared to sparc.
duke@435 1165
duke@435 1166 if (src.is_single_phys_reg() ) {
duke@435 1167 if (dst.is_single_phys_reg()) {
duke@435 1168 if (dst.first() != src.first()) {
never@739 1169 __ mov(dst.first()->as_Register(), src.first()->as_Register());
duke@435 1170 }
duke@435 1171 } else {
duke@435 1172 assert(dst.is_single_reg(), "not a stack pair");
duke@435 1173 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 1174 }
duke@435 1175 } else if (dst.is_single_phys_reg()) {
duke@435 1176 assert(src.is_single_reg(), "not a stack pair");
duke@435 1177 __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
duke@435 1178 } else {
duke@435 1179 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
duke@435 1180 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
duke@435 1181 __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1182 }
duke@435 1183 }
duke@435 1184
duke@435 1185 // A double move
duke@435 1186 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1187
duke@435 1188 // The calling conventions assures us that each VMregpair is either
duke@435 1189 // all really one physical register or adjacent stack slots.
duke@435 1190 // This greatly simplifies the cases here compared to sparc.
duke@435 1191
duke@435 1192 if (src.is_single_phys_reg() ) {
duke@435 1193 if (dst.is_single_phys_reg()) {
duke@435 1194 // In theory these overlap but the ordering is such that this is likely a nop
duke@435 1195 if ( src.first() != dst.first()) {
duke@435 1196 __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
duke@435 1197 }
duke@435 1198 } else {
duke@435 1199 assert(dst.is_single_reg(), "not a stack pair");
duke@435 1200 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1201 }
duke@435 1202 } else if (dst.is_single_phys_reg()) {
duke@435 1203 assert(src.is_single_reg(), "not a stack pair");
duke@435 1204 __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
duke@435 1205 } else {
duke@435 1206 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
duke@435 1207 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
duke@435 1208 __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1209 }
duke@435 1210 }
duke@435 1211
duke@435 1212
duke@435 1213 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1214 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1215 // which by this time is free to use
duke@435 1216 switch (ret_type) {
duke@435 1217 case T_FLOAT:
duke@435 1218 __ movflt(Address(rbp, -wordSize), xmm0);
duke@435 1219 break;
duke@435 1220 case T_DOUBLE:
duke@435 1221 __ movdbl(Address(rbp, -wordSize), xmm0);
duke@435 1222 break;
duke@435 1223 case T_VOID: break;
duke@435 1224 default: {
never@739 1225 __ movptr(Address(rbp, -wordSize), rax);
duke@435 1226 }
duke@435 1227 }
duke@435 1228 }
duke@435 1229
duke@435 1230 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1231 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1232 // which by this time is free to use
duke@435 1233 switch (ret_type) {
duke@435 1234 case T_FLOAT:
duke@435 1235 __ movflt(xmm0, Address(rbp, -wordSize));
duke@435 1236 break;
duke@435 1237 case T_DOUBLE:
duke@435 1238 __ movdbl(xmm0, Address(rbp, -wordSize));
duke@435 1239 break;
duke@435 1240 case T_VOID: break;
duke@435 1241 default: {
never@739 1242 __ movptr(rax, Address(rbp, -wordSize));
duke@435 1243 }
duke@435 1244 }
duke@435 1245 }
duke@435 1246
duke@435 1247 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
duke@435 1248 for ( int i = first_arg ; i < arg_count ; i++ ) {
duke@435 1249 if (args[i].first()->is_Register()) {
never@739 1250 __ push(args[i].first()->as_Register());
duke@435 1251 } else if (args[i].first()->is_XMMRegister()) {
never@739 1252 __ subptr(rsp, 2*wordSize);
duke@435 1253 __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
duke@435 1254 }
duke@435 1255 }
duke@435 1256 }
duke@435 1257
duke@435 1258 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
duke@435 1259 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
duke@435 1260 if (args[i].first()->is_Register()) {
never@739 1261 __ pop(args[i].first()->as_Register());
duke@435 1262 } else if (args[i].first()->is_XMMRegister()) {
duke@435 1263 __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
never@739 1264 __ addptr(rsp, 2*wordSize);
duke@435 1265 }
duke@435 1266 }
duke@435 1267 }
duke@435 1268
never@3500 1269
never@3500 1270 static void save_or_restore_arguments(MacroAssembler* masm,
never@3500 1271 const int stack_slots,
never@3500 1272 const int total_in_args,
never@3500 1273 const int arg_save_area,
never@3500 1274 OopMap* map,
never@3500 1275 VMRegPair* in_regs,
never@3500 1276 BasicType* in_sig_bt) {
never@3500 1277 // if map is non-NULL then the code should store the values,
never@3500 1278 // otherwise it should load them.
never@3608 1279 int slot = arg_save_area;
never@3500 1280 // Save down double word first
never@3500 1281 for ( int i = 0; i < total_in_args; i++) {
never@3500 1282 if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
never@3500 1283 int offset = slot * VMRegImpl::stack_slot_size;
never@3608 1284 slot += VMRegImpl::slots_per_word;
never@3608 1285 assert(slot <= stack_slots, "overflow");
never@3500 1286 if (map != NULL) {
never@3500 1287 __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
never@3500 1288 } else {
never@3500 1289 __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
never@3500 1290 }
never@3500 1291 }
never@3500 1292 if (in_regs[i].first()->is_Register() &&
never@3500 1293 (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
never@3500 1294 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1295 if (map != NULL) {
never@3500 1296 __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
never@3500 1297 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1298 map->set_oop(VMRegImpl::stack2reg(slot));;
never@3500 1299 }
never@3500 1300 } else {
never@3500 1301 __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
never@3500 1302 }
never@3610 1303 slot += VMRegImpl::slots_per_word;
never@3500 1304 }
never@3500 1305 }
never@3500 1306 // Save or restore single word registers
never@3500 1307 for ( int i = 0; i < total_in_args; i++) {
never@3500 1308 if (in_regs[i].first()->is_Register()) {
never@3500 1309 int offset = slot * VMRegImpl::stack_slot_size;
never@3608 1310 slot++;
never@3608 1311 assert(slot <= stack_slots, "overflow");
never@3500 1312
never@3500 1313 // Value is in an input register pass we must flush it to the stack
never@3500 1314 const Register reg = in_regs[i].first()->as_Register();
never@3500 1315 switch (in_sig_bt[i]) {
never@3500 1316 case T_BOOLEAN:
never@3500 1317 case T_CHAR:
never@3500 1318 case T_BYTE:
never@3500 1319 case T_SHORT:
never@3500 1320 case T_INT:
never@3500 1321 if (map != NULL) {
never@3500 1322 __ movl(Address(rsp, offset), reg);
never@3500 1323 } else {
never@3500 1324 __ movl(reg, Address(rsp, offset));
never@3500 1325 }
never@3500 1326 break;
never@3500 1327 case T_ARRAY:
never@3500 1328 case T_LONG:
never@3500 1329 // handled above
never@3500 1330 break;
never@3500 1331 case T_OBJECT:
never@3500 1332 default: ShouldNotReachHere();
never@3500 1333 }
never@3500 1334 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1335 if (in_sig_bt[i] == T_FLOAT) {
never@3500 1336 int offset = slot * VMRegImpl::stack_slot_size;
never@3608 1337 slot++;
never@3608 1338 assert(slot <= stack_slots, "overflow");
never@3500 1339 if (map != NULL) {
never@3500 1340 __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
never@3500 1341 } else {
never@3500 1342 __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
never@3500 1343 }
never@3500 1344 }
never@3500 1345 } else if (in_regs[i].first()->is_stack()) {
never@3500 1346 if (in_sig_bt[i] == T_ARRAY && map != NULL) {
never@3500 1347 int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
never@3500 1348 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
never@3500 1349 }
never@3500 1350 }
never@3500 1351 }
never@3500 1352 }
never@3500 1353
never@3500 1354
never@3500 1355 // Check GC_locker::needs_gc and enter the runtime if it's true. This
never@3500 1356 // keeps a new JNI critical region from starting until a GC has been
never@3500 1357 // forced. Save down any oops in registers and describe them in an
never@3500 1358 // OopMap.
never@3500 1359 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
never@3500 1360 int stack_slots,
never@3500 1361 int total_c_args,
never@3500 1362 int total_in_args,
never@3500 1363 int arg_save_area,
never@3500 1364 OopMapSet* oop_maps,
never@3500 1365 VMRegPair* in_regs,
never@3500 1366 BasicType* in_sig_bt) {
never@3500 1367 __ block_comment("check GC_locker::needs_gc");
never@3500 1368 Label cont;
never@3500 1369 __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
never@3500 1370 __ jcc(Assembler::equal, cont);
never@3500 1371
never@3500 1372 // Save down any incoming oops and call into the runtime to halt for a GC
never@3500 1373
never@3500 1374 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
never@3500 1375 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1376 arg_save_area, map, in_regs, in_sig_bt);
never@3500 1377
never@3500 1378 address the_pc = __ pc();
never@3500 1379 oop_maps->add_gc_map( __ offset(), map);
never@3500 1380 __ set_last_Java_frame(rsp, noreg, the_pc);
never@3500 1381
never@3500 1382 __ block_comment("block_for_jni_critical");
never@3500 1383 __ movptr(c_rarg0, r15_thread);
never@3500 1384 __ mov(r12, rsp); // remember sp
never@3500 1385 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@3500 1386 __ andptr(rsp, -16); // align stack as required by ABI
never@3500 1387 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
never@3500 1388 __ mov(rsp, r12); // restore sp
never@3500 1389 __ reinit_heapbase();
never@3500 1390
kevinw@8877 1391 __ reset_last_Java_frame(false);
never@3500 1392
never@3500 1393 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1394 arg_save_area, NULL, in_regs, in_sig_bt);
never@3500 1395
never@3500 1396 __ bind(cont);
never@3500 1397 #ifdef ASSERT
never@3500 1398 if (StressCriticalJNINatives) {
never@3500 1399 // Stress register saving
never@3500 1400 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
never@3500 1401 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1402 arg_save_area, map, in_regs, in_sig_bt);
never@3500 1403 // Destroy argument registers
never@3500 1404 for (int i = 0; i < total_in_args - 1; i++) {
never@3500 1405 if (in_regs[i].first()->is_Register()) {
never@3500 1406 const Register reg = in_regs[i].first()->as_Register();
never@3500 1407 __ xorptr(reg, reg);
never@3500 1408 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1409 __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
never@3500 1410 } else if (in_regs[i].first()->is_FloatRegister()) {
never@3500 1411 ShouldNotReachHere();
never@3500 1412 } else if (in_regs[i].first()->is_stack()) {
never@3500 1413 // Nothing to do
never@3500 1414 } else {
never@3500 1415 ShouldNotReachHere();
never@3500 1416 }
never@3500 1417 if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
never@3500 1418 i++;
never@3500 1419 }
never@3500 1420 }
never@3500 1421
never@3500 1422 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1423 arg_save_area, NULL, in_regs, in_sig_bt);
never@3500 1424 }
never@3500 1425 #endif
never@3500 1426 }
never@3500 1427
never@3500 1428 // Unpack an array argument into a pointer to the body and the length
never@3500 1429 // if the array is non-null, otherwise pass 0 for both.
never@3500 1430 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
never@3500 1431 Register tmp_reg = rax;
never@3500 1432 assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
never@3500 1433 "possible collision");
never@3500 1434 assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
never@3500 1435 "possible collision");
never@3500 1436
twisti@5284 1437 __ block_comment("unpack_array_argument {");
twisti@5284 1438
never@3500 1439 // Pass the length, ptr pair
never@3500 1440 Label is_null, done;
never@3500 1441 VMRegPair tmp;
never@3500 1442 tmp.set_ptr(tmp_reg->as_VMReg());
never@3500 1443 if (reg.first()->is_stack()) {
never@3500 1444 // Load the arg up from the stack
never@3500 1445 move_ptr(masm, reg, tmp);
never@3500 1446 reg = tmp;
never@3500 1447 }
never@3500 1448 __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
never@3500 1449 __ jccb(Assembler::equal, is_null);
never@3500 1450 __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
never@3500 1451 move_ptr(masm, tmp, body_arg);
never@3500 1452 // load the length relative to the body.
never@3500 1453 __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
never@3500 1454 arrayOopDesc::base_offset_in_bytes(in_elem_type)));
never@3500 1455 move32_64(masm, tmp, length_arg);
never@3500 1456 __ jmpb(done);
never@3500 1457 __ bind(is_null);
never@3500 1458 // Pass zeros
never@3500 1459 __ xorptr(tmp_reg, tmp_reg);
never@3500 1460 move_ptr(masm, tmp, body_arg);
never@3500 1461 move32_64(masm, tmp, length_arg);
never@3500 1462 __ bind(done);
twisti@5284 1463
twisti@5284 1464 __ block_comment("} unpack_array_argument");
never@3500 1465 }
never@3500 1466
never@3608 1467
twisti@3969 1468 // Different signatures may require very different orders for the move
twisti@3969 1469 // to avoid clobbering other arguments. There's no simple way to
twisti@3969 1470 // order them safely. Compute a safe order for issuing stores and
twisti@3969 1471 // break any cycles in those stores. This code is fairly general but
twisti@3969 1472 // it's not necessary on the other platforms so we keep it in the
twisti@3969 1473 // platform dependent code instead of moving it into a shared file.
twisti@3969 1474 // (See bugs 7013347 & 7145024.)
twisti@3969 1475 // Note that this code is specific to LP64.
never@3608 1476 class ComputeMoveOrder: public StackObj {
never@3608 1477 class MoveOperation: public ResourceObj {
never@3608 1478 friend class ComputeMoveOrder;
never@3608 1479 private:
never@3608 1480 VMRegPair _src;
never@3608 1481 VMRegPair _dst;
never@3608 1482 int _src_index;
never@3608 1483 int _dst_index;
never@3608 1484 bool _processed;
never@3608 1485 MoveOperation* _next;
never@3608 1486 MoveOperation* _prev;
never@3608 1487
never@3608 1488 static int get_id(VMRegPair r) {
never@3608 1489 return r.first()->value();
never@3608 1490 }
never@3608 1491
never@3608 1492 public:
never@3608 1493 MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
never@3608 1494 _src(src)
never@3608 1495 , _src_index(src_index)
never@3608 1496 , _dst(dst)
never@3608 1497 , _dst_index(dst_index)
never@3608 1498 , _next(NULL)
never@3608 1499 , _prev(NULL)
never@3608 1500 , _processed(false) {
never@3608 1501 }
never@3608 1502
never@3608 1503 VMRegPair src() const { return _src; }
never@3608 1504 int src_id() const { return get_id(src()); }
never@3608 1505 int src_index() const { return _src_index; }
never@3608 1506 VMRegPair dst() const { return _dst; }
never@3608 1507 void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
never@3608 1508 int dst_index() const { return _dst_index; }
never@3608 1509 int dst_id() const { return get_id(dst()); }
never@3608 1510 MoveOperation* next() const { return _next; }
never@3608 1511 MoveOperation* prev() const { return _prev; }
never@3608 1512 void set_processed() { _processed = true; }
never@3608 1513 bool is_processed() const { return _processed; }
never@3608 1514
never@3608 1515 // insert
never@3608 1516 void break_cycle(VMRegPair temp_register) {
never@3608 1517 // create a new store following the last store
never@3608 1518 // to move from the temp_register to the original
never@3608 1519 MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
never@3608 1520
never@3608 1521 // break the cycle of links and insert new_store at the end
never@3608 1522 // break the reverse link.
never@3608 1523 MoveOperation* p = prev();
never@3608 1524 assert(p->next() == this, "must be");
never@3608 1525 _prev = NULL;
never@3608 1526 p->_next = new_store;
never@3608 1527 new_store->_prev = p;
never@3608 1528
never@3608 1529 // change the original store to save it's value in the temp.
never@3608 1530 set_dst(-1, temp_register);
never@3608 1531 }
never@3608 1532
never@3608 1533 void link(GrowableArray<MoveOperation*>& killer) {
never@3608 1534 // link this store in front the store that it depends on
never@3608 1535 MoveOperation* n = killer.at_grow(src_id(), NULL);
never@3608 1536 if (n != NULL) {
never@3608 1537 assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
never@3608 1538 _next = n;
never@3608 1539 n->_prev = this;
never@3608 1540 }
never@3608 1541 }
never@3608 1542 };
never@3608 1543
never@3608 1544 private:
never@3608 1545 GrowableArray<MoveOperation*> edges;
never@3608 1546
never@3608 1547 public:
never@3608 1548 ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
never@3608 1549 BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
never@3608 1550 // Move operations where the dest is the stack can all be
never@3608 1551 // scheduled first since they can't interfere with the other moves.
never@3608 1552 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
never@3608 1553 if (in_sig_bt[i] == T_ARRAY) {
never@3608 1554 c_arg--;
never@3608 1555 if (out_regs[c_arg].first()->is_stack() &&
never@3608 1556 out_regs[c_arg + 1].first()->is_stack()) {
never@3608 1557 arg_order.push(i);
never@3608 1558 arg_order.push(c_arg);
never@3608 1559 } else {
never@3608 1560 if (out_regs[c_arg].first()->is_stack() ||
never@3608 1561 in_regs[i].first() == out_regs[c_arg].first()) {
never@3608 1562 add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
never@3608 1563 } else {
never@3608 1564 add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
never@3608 1565 }
never@3608 1566 }
never@3608 1567 } else if (in_sig_bt[i] == T_VOID) {
never@3608 1568 arg_order.push(i);
never@3608 1569 arg_order.push(c_arg);
never@3608 1570 } else {
never@3608 1571 if (out_regs[c_arg].first()->is_stack() ||
never@3608 1572 in_regs[i].first() == out_regs[c_arg].first()) {
never@3608 1573 arg_order.push(i);
never@3608 1574 arg_order.push(c_arg);
never@3608 1575 } else {
never@3608 1576 add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
never@3608 1577 }
never@3608 1578 }
never@3608 1579 }
never@3608 1580 // Break any cycles in the register moves and emit the in the
never@3608 1581 // proper order.
never@3608 1582 GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
never@3608 1583 for (int i = 0; i < stores->length(); i++) {
never@3608 1584 arg_order.push(stores->at(i)->src_index());
never@3608 1585 arg_order.push(stores->at(i)->dst_index());
never@3608 1586 }
never@3608 1587 }
never@3608 1588
never@3608 1589 // Collected all the move operations
never@3608 1590 void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
never@3608 1591 if (src.first() == dst.first()) return;
never@3608 1592 edges.append(new MoveOperation(src_index, src, dst_index, dst));
never@3608 1593 }
never@3608 1594
never@3608 1595 // Walk the edges breaking cycles between moves. The result list
never@3608 1596 // can be walked in order to produce the proper set of loads
never@3608 1597 GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
never@3608 1598 // Record which moves kill which values
never@3608 1599 GrowableArray<MoveOperation*> killer;
never@3608 1600 for (int i = 0; i < edges.length(); i++) {
never@3608 1601 MoveOperation* s = edges.at(i);
never@3608 1602 assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
never@3608 1603 killer.at_put_grow(s->dst_id(), s, NULL);
never@3608 1604 }
never@3608 1605 assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
never@3608 1606 "make sure temp isn't in the registers that are killed");
never@3608 1607
never@3608 1608 // create links between loads and stores
never@3608 1609 for (int i = 0; i < edges.length(); i++) {
never@3608 1610 edges.at(i)->link(killer);
never@3608 1611 }
never@3608 1612
never@3608 1613 // at this point, all the move operations are chained together
never@3608 1614 // in a doubly linked list. Processing it backwards finds
never@3608 1615 // the beginning of the chain, forwards finds the end. If there's
never@3608 1616 // a cycle it can be broken at any point, so pick an edge and walk
never@3608 1617 // backward until the list ends or we end where we started.
never@3608 1618 GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
never@3608 1619 for (int e = 0; e < edges.length(); e++) {
never@3608 1620 MoveOperation* s = edges.at(e);
never@3608 1621 if (!s->is_processed()) {
never@3608 1622 MoveOperation* start = s;
never@3608 1623 // search for the beginning of the chain or cycle
never@3608 1624 while (start->prev() != NULL && start->prev() != s) {
never@3608 1625 start = start->prev();
never@3608 1626 }
never@3608 1627 if (start->prev() == s) {
never@3608 1628 start->break_cycle(temp_register);
never@3608 1629 }
never@3608 1630 // walk the chain forward inserting to store list
never@3608 1631 while (start != NULL) {
never@3608 1632 stores->append(start);
never@3608 1633 start->set_processed();
never@3608 1634 start = start->next();
never@3608 1635 }
never@3608 1636 }
never@3608 1637 }
never@3608 1638 return stores;
never@3608 1639 }
never@3608 1640 };
never@3608 1641
twisti@3969 1642 static void verify_oop_args(MacroAssembler* masm,
twisti@4101 1643 methodHandle method,
twisti@3969 1644 const BasicType* sig_bt,
twisti@3969 1645 const VMRegPair* regs) {
twisti@3969 1646 Register temp_reg = rbx; // not part of any compiled calling seq
twisti@3969 1647 if (VerifyOops) {
twisti@4101 1648 for (int i = 0; i < method->size_of_parameters(); i++) {
twisti@3969 1649 if (sig_bt[i] == T_OBJECT ||
twisti@3969 1650 sig_bt[i] == T_ARRAY) {
twisti@3969 1651 VMReg r = regs[i].first();
twisti@3969 1652 assert(r->is_valid(), "bad oop arg");
twisti@3969 1653 if (r->is_stack()) {
twisti@3969 1654 __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1655 __ verify_oop(temp_reg);
twisti@3969 1656 } else {
twisti@3969 1657 __ verify_oop(r->as_Register());
twisti@3969 1658 }
twisti@3969 1659 }
twisti@3969 1660 }
twisti@3969 1661 }
twisti@3969 1662 }
twisti@3969 1663
twisti@3969 1664 static void gen_special_dispatch(MacroAssembler* masm,
twisti@4101 1665 methodHandle method,
twisti@3969 1666 const BasicType* sig_bt,
twisti@3969 1667 const VMRegPair* regs) {
twisti@4101 1668 verify_oop_args(masm, method, sig_bt, regs);
twisti@4101 1669 vmIntrinsics::ID iid = method->intrinsic_id();
twisti@3969 1670
twisti@3969 1671 // Now write the args into the outgoing interpreter space
twisti@3969 1672 bool has_receiver = false;
twisti@3969 1673 Register receiver_reg = noreg;
twisti@3969 1674 int member_arg_pos = -1;
twisti@3969 1675 Register member_reg = noreg;
twisti@4101 1676 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
twisti@3969 1677 if (ref_kind != 0) {
twisti@4101 1678 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument
twisti@3969 1679 member_reg = rbx; // known to be free at this point
twisti@3969 1680 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
twisti@4101 1681 } else if (iid == vmIntrinsics::_invokeBasic) {
twisti@3969 1682 has_receiver = true;
twisti@3969 1683 } else {
twisti@4101 1684 fatal(err_msg_res("unexpected intrinsic id %d", iid));
twisti@3969 1685 }
twisti@3969 1686
twisti@3969 1687 if (member_reg != noreg) {
twisti@3969 1688 // Load the member_arg into register, if necessary.
twisti@4101 1689 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
twisti@3969 1690 VMReg r = regs[member_arg_pos].first();
twisti@3969 1691 if (r->is_stack()) {
twisti@3969 1692 __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1693 } else {
twisti@3969 1694 // no data motion is needed
twisti@3969 1695 member_reg = r->as_Register();
twisti@3969 1696 }
twisti@3969 1697 }
twisti@3969 1698
twisti@3969 1699 if (has_receiver) {
twisti@3969 1700 // Make sure the receiver is loaded into a register.
twisti@4101 1701 assert(method->size_of_parameters() > 0, "oob");
twisti@3969 1702 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
twisti@3969 1703 VMReg r = regs[0].first();
twisti@3969 1704 assert(r->is_valid(), "bad receiver arg");
twisti@3969 1705 if (r->is_stack()) {
twisti@3969 1706 // Porting note: This assumes that compiled calling conventions always
twisti@3969 1707 // pass the receiver oop in a register. If this is not true on some
twisti@3969 1708 // platform, pick a temp and load the receiver from stack.
twisti@4101 1709 fatal("receiver always in a register");
twisti@3969 1710 receiver_reg = j_rarg0; // known to be free at this point
twisti@3969 1711 __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1712 } else {
twisti@3969 1713 // no data motion is needed
twisti@3969 1714 receiver_reg = r->as_Register();
twisti@3969 1715 }
twisti@3969 1716 }
twisti@3969 1717
twisti@3969 1718 // Figure out which address we are really jumping to:
twisti@4101 1719 MethodHandles::generate_method_handle_dispatch(masm, iid,
twisti@3969 1720 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
twisti@3969 1721 }
never@3608 1722
duke@435 1723 // ---------------------------------------------------------------------------
duke@435 1724 // Generate a native wrapper for a given method. The method takes arguments
duke@435 1725 // in the Java compiled code convention, marshals them to the native
duke@435 1726 // convention (handlizes oops, etc), transitions to native, makes the call,
duke@435 1727 // returns to java state (possibly blocking), unhandlizes any result and
duke@435 1728 // returns.
twisti@3969 1729 //
twisti@3969 1730 // Critical native functions are a shorthand for the use of
twisti@3969 1731 // GetPrimtiveArrayCritical and disallow the use of any other JNI
twisti@3969 1732 // functions. The wrapper is expected to unpack the arguments before
twisti@3969 1733 // passing them to the callee and perform checks before and after the
twisti@3969 1734 // native call to ensure that they GC_locker
twisti@3969 1735 // lock_critical/unlock_critical semantics are followed. Some other
twisti@3969 1736 // parts of JNI setup are skipped like the tear down of the JNI handle
twisti@3969 1737 // block and the check for pending exceptions it's impossible for them
twisti@3969 1738 // to be thrown.
twisti@3969 1739 //
twisti@3969 1740 // They are roughly structured like this:
twisti@3969 1741 // if (GC_locker::needs_gc())
twisti@3969 1742 // SharedRuntime::block_for_jni_critical();
twisti@3969 1743 // tranistion to thread_in_native
twisti@3969 1744 // unpack arrray arguments and call native entry point
twisti@3969 1745 // check for safepoint in progress
twisti@3969 1746 // check if any thread suspend flags are set
twisti@3969 1747 // call into JVM and possible unlock the JNI critical
twisti@3969 1748 // if a GC was suppressed while in the critical native.
twisti@3969 1749 // transition back to thread_in_Java
twisti@3969 1750 // return to caller
twisti@3969 1751 //
twisti@3969 1752 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
duke@435 1753 methodHandle method,
twisti@2687 1754 int compile_id,
twisti@3969 1755 BasicType* in_sig_bt,
twisti@3969 1756 VMRegPair* in_regs,
duke@435 1757 BasicType ret_type) {
twisti@3969 1758 if (method->is_method_handle_intrinsic()) {
twisti@3969 1759 vmIntrinsics::ID iid = method->intrinsic_id();
twisti@3969 1760 intptr_t start = (intptr_t)__ pc();
twisti@3969 1761 int vep_offset = ((intptr_t)__ pc()) - start;
twisti@3969 1762 gen_special_dispatch(masm,
twisti@4101 1763 method,
twisti@3969 1764 in_sig_bt,
twisti@3969 1765 in_regs);
twisti@3969 1766 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
twisti@3969 1767 __ flush();
twisti@3969 1768 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
twisti@3969 1769 return nmethod::new_native_nmethod(method,
twisti@3969 1770 compile_id,
twisti@3969 1771 masm->code(),
twisti@3969 1772 vep_offset,
twisti@3969 1773 frame_complete,
twisti@3969 1774 stack_slots / VMRegImpl::slots_per_word,
twisti@3969 1775 in_ByteSize(-1),
twisti@3969 1776 in_ByteSize(-1),
twisti@3969 1777 (OopMapSet*)NULL);
twisti@3969 1778 }
never@3500 1779 bool is_critical_native = true;
never@3500 1780 address native_func = method->critical_native_function();
never@3500 1781 if (native_func == NULL) {
never@3500 1782 native_func = method->native_function();
never@3500 1783 is_critical_native = false;
never@3500 1784 }
never@3500 1785 assert(native_func != NULL, "must have function");
never@3500 1786
duke@435 1787 // An OopMap for lock (and class if static)
duke@435 1788 OopMapSet *oop_maps = new OopMapSet();
duke@435 1789 intptr_t start = (intptr_t)__ pc();
duke@435 1790
duke@435 1791 // We have received a description of where all the java arg are located
duke@435 1792 // on entry to the wrapper. We need to convert these args to where
duke@435 1793 // the jni function will expect them. To figure out where they go
duke@435 1794 // we convert the java signature to a C signature by inserting
duke@435 1795 // the hidden arguments as arg[0] and possibly arg[1] (static method)
duke@435 1796
twisti@4101 1797 const int total_in_args = method->size_of_parameters();
never@3500 1798 int total_c_args = total_in_args;
never@3500 1799 if (!is_critical_native) {
never@3500 1800 total_c_args += 1;
never@3500 1801 if (method->is_static()) {
never@3500 1802 total_c_args++;
never@3500 1803 }
never@3500 1804 } else {
never@3500 1805 for (int i = 0; i < total_in_args; i++) {
never@3500 1806 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1807 total_c_args++;
never@3500 1808 }
never@3500 1809 }
duke@435 1810 }
duke@435 1811
duke@435 1812 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
never@3500 1813 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
never@3500 1814 BasicType* in_elem_bt = NULL;
duke@435 1815
duke@435 1816 int argc = 0;
never@3500 1817 if (!is_critical_native) {
never@3500 1818 out_sig_bt[argc++] = T_ADDRESS;
never@3500 1819 if (method->is_static()) {
never@3500 1820 out_sig_bt[argc++] = T_OBJECT;
never@3500 1821 }
never@3500 1822
never@3500 1823 for (int i = 0; i < total_in_args ; i++ ) {
never@3500 1824 out_sig_bt[argc++] = in_sig_bt[i];
never@3500 1825 }
never@3500 1826 } else {
never@3500 1827 Thread* THREAD = Thread::current();
never@3500 1828 in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
never@3500 1829 SignatureStream ss(method->signature());
never@3500 1830 for (int i = 0; i < total_in_args ; i++ ) {
never@3500 1831 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1832 // Arrays are passed as int, elem* pair
never@3500 1833 out_sig_bt[argc++] = T_INT;
never@3500 1834 out_sig_bt[argc++] = T_ADDRESS;
never@3500 1835 Symbol* atype = ss.as_symbol(CHECK_NULL);
never@3500 1836 const char* at = atype->as_C_string();
never@3500 1837 if (strlen(at) == 2) {
never@3500 1838 assert(at[0] == '[', "must be");
never@3500 1839 switch (at[1]) {
never@3500 1840 case 'B': in_elem_bt[i] = T_BYTE; break;
never@3500 1841 case 'C': in_elem_bt[i] = T_CHAR; break;
never@3500 1842 case 'D': in_elem_bt[i] = T_DOUBLE; break;
never@3500 1843 case 'F': in_elem_bt[i] = T_FLOAT; break;
never@3500 1844 case 'I': in_elem_bt[i] = T_INT; break;
never@3500 1845 case 'J': in_elem_bt[i] = T_LONG; break;
never@3500 1846 case 'S': in_elem_bt[i] = T_SHORT; break;
never@3500 1847 case 'Z': in_elem_bt[i] = T_BOOLEAN; break;
never@3500 1848 default: ShouldNotReachHere();
never@3500 1849 }
never@3500 1850 }
never@3500 1851 } else {
never@3500 1852 out_sig_bt[argc++] = in_sig_bt[i];
never@3500 1853 in_elem_bt[i] = T_VOID;
never@3500 1854 }
never@3500 1855 if (in_sig_bt[i] != T_VOID) {
never@3500 1856 assert(in_sig_bt[i] == ss.type(), "must match");
never@3500 1857 ss.next();
never@3500 1858 }
never@3500 1859 }
duke@435 1860 }
duke@435 1861
duke@435 1862 // Now figure out where the args must be stored and how much stack space
duke@435 1863 // they require.
duke@435 1864 int out_arg_slots;
goetz@6466 1865 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
duke@435 1866
duke@435 1867 // Compute framesize for the wrapper. We need to handlize all oops in
duke@435 1868 // incoming registers
duke@435 1869
duke@435 1870 // Calculate the total number of stack slots we will need.
duke@435 1871
duke@435 1872 // First count the abi requirement plus all of the outgoing args
duke@435 1873 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
duke@435 1874
duke@435 1875 // Now the space for the inbound oop handle area
never@3500 1876 int total_save_slots = 6 * VMRegImpl::slots_per_word; // 6 arguments passed in registers
never@3500 1877 if (is_critical_native) {
never@3500 1878 // Critical natives may have to call out so they need a save area
never@3500 1879 // for register arguments.
never@3500 1880 int double_slots = 0;
never@3500 1881 int single_slots = 0;
never@3500 1882 for ( int i = 0; i < total_in_args; i++) {
never@3500 1883 if (in_regs[i].first()->is_Register()) {
never@3500 1884 const Register reg = in_regs[i].first()->as_Register();
never@3500 1885 switch (in_sig_bt[i]) {
never@3500 1886 case T_BOOLEAN:
never@3500 1887 case T_BYTE:
never@3500 1888 case T_SHORT:
never@3500 1889 case T_CHAR:
never@3500 1890 case T_INT: single_slots++; break;
twisti@3969 1891 case T_ARRAY: // specific to LP64 (7145024)
never@3500 1892 case T_LONG: double_slots++; break;
never@3500 1893 default: ShouldNotReachHere();
never@3500 1894 }
never@3500 1895 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1896 switch (in_sig_bt[i]) {
never@3500 1897 case T_FLOAT: single_slots++; break;
never@3500 1898 case T_DOUBLE: double_slots++; break;
never@3500 1899 default: ShouldNotReachHere();
never@3500 1900 }
never@3500 1901 } else if (in_regs[i].first()->is_FloatRegister()) {
never@3500 1902 ShouldNotReachHere();
never@3500 1903 }
never@3500 1904 }
never@3500 1905 total_save_slots = double_slots * 2 + single_slots;
never@3500 1906 // align the save area
never@3500 1907 if (double_slots != 0) {
never@3500 1908 stack_slots = round_to(stack_slots, 2);
never@3500 1909 }
never@3500 1910 }
duke@435 1911
duke@435 1912 int oop_handle_offset = stack_slots;
never@3500 1913 stack_slots += total_save_slots;
duke@435 1914
duke@435 1915 // Now any space we need for handlizing a klass if static method
duke@435 1916
duke@435 1917 int klass_slot_offset = 0;
duke@435 1918 int klass_offset = -1;
duke@435 1919 int lock_slot_offset = 0;
duke@435 1920 bool is_static = false;
duke@435 1921
duke@435 1922 if (method->is_static()) {
duke@435 1923 klass_slot_offset = stack_slots;
duke@435 1924 stack_slots += VMRegImpl::slots_per_word;
duke@435 1925 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
duke@435 1926 is_static = true;
duke@435 1927 }
duke@435 1928
duke@435 1929 // Plus a lock if needed
duke@435 1930
duke@435 1931 if (method->is_synchronized()) {
duke@435 1932 lock_slot_offset = stack_slots;
duke@435 1933 stack_slots += VMRegImpl::slots_per_word;
duke@435 1934 }
duke@435 1935
duke@435 1936 // Now a place (+2) to save return values or temp during shuffling
duke@435 1937 // + 4 for return address (which we own) and saved rbp
duke@435 1938 stack_slots += 6;
duke@435 1939
duke@435 1940 // Ok The space we have allocated will look like:
duke@435 1941 //
duke@435 1942 //
duke@435 1943 // FP-> | |
duke@435 1944 // |---------------------|
duke@435 1945 // | 2 slots for moves |
duke@435 1946 // |---------------------|
duke@435 1947 // | lock box (if sync) |
duke@435 1948 // |---------------------| <- lock_slot_offset
duke@435 1949 // | klass (if static) |
duke@435 1950 // |---------------------| <- klass_slot_offset
duke@435 1951 // | oopHandle area |
duke@435 1952 // |---------------------| <- oop_handle_offset (6 java arg registers)
duke@435 1953 // | outbound memory |
duke@435 1954 // | based arguments |
duke@435 1955 // | |
duke@435 1956 // |---------------------|
duke@435 1957 // | |
duke@435 1958 // SP-> | out_preserved_slots |
duke@435 1959 //
duke@435 1960 //
duke@435 1961
duke@435 1962
duke@435 1963 // Now compute actual number of stack words we need rounding to make
duke@435 1964 // stack properly aligned.
xlu@959 1965 stack_slots = round_to(stack_slots, StackAlignmentInSlots);
duke@435 1966
duke@435 1967 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
duke@435 1968
duke@435 1969 // First thing make an ic check to see if we should even be here
duke@435 1970
duke@435 1971 // We are free to use all registers as temps without saving them and
duke@435 1972 // restoring them except rbp. rbp is the only callee save register
duke@435 1973 // as far as the interpreter and the compiler(s) are concerned.
duke@435 1974
duke@435 1975
duke@435 1976 const Register ic_reg = rax;
duke@435 1977 const Register receiver = j_rarg0;
duke@435 1978
never@3500 1979 Label hit;
duke@435 1980 Label exception_pending;
duke@435 1981
never@1283 1982 assert_different_registers(ic_reg, receiver, rscratch1);
duke@435 1983 __ verify_oop(receiver);
never@1283 1984 __ load_klass(rscratch1, receiver);
never@1283 1985 __ cmpq(ic_reg, rscratch1);
never@3500 1986 __ jcc(Assembler::equal, hit);
duke@435 1987
duke@435 1988 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 1989
duke@435 1990 // Verified entry point must be aligned
duke@435 1991 __ align(8);
duke@435 1992
never@3500 1993 __ bind(hit);
never@3500 1994
duke@435 1995 int vep_offset = ((intptr_t)__ pc()) - start;
duke@435 1996
duke@435 1997 // The instruction at the verified entry point must be 5 bytes or longer
duke@435 1998 // because it can be patched on the fly by make_non_entrant. The stack bang
duke@435 1999 // instruction fits that requirement.
duke@435 2000
duke@435 2001 // Generate stack overflow check
duke@435 2002
duke@435 2003 if (UseStackBanging) {
duke@435 2004 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
duke@435 2005 } else {
duke@435 2006 // need a 5 byte instruction to allow MT safe patching to non-entrant
duke@435 2007 __ fat_nop();
duke@435 2008 }
duke@435 2009
duke@435 2010 // Generate a new frame for the wrapper.
duke@435 2011 __ enter();
duke@435 2012 // -2 because return address is already present and so is saved rbp
never@739 2013 __ subptr(rsp, stack_size - 2*wordSize);
duke@435 2014
never@3500 2015 // Frame is now completed as far as size and linkage.
never@3500 2016 int frame_complete = ((intptr_t)__ pc()) - start;
duke@435 2017
kvn@6429 2018 if (UseRTMLocking) {
kvn@6429 2019 // Abort RTM transaction before calling JNI
kvn@6429 2020 // because critical section will be large and will be
kvn@6429 2021 // aborted anyway. Also nmethod could be deoptimized.
kvn@6429 2022 __ xabort(0);
kvn@6429 2023 }
kvn@6429 2024
duke@435 2025 #ifdef ASSERT
duke@435 2026 {
duke@435 2027 Label L;
never@739 2028 __ mov(rax, rsp);
twisti@1040 2029 __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
never@739 2030 __ cmpptr(rax, rsp);
duke@435 2031 __ jcc(Assembler::equal, L);
duke@435 2032 __ stop("improperly aligned stack");
duke@435 2033 __ bind(L);
duke@435 2034 }
duke@435 2035 #endif /* ASSERT */
duke@435 2036
duke@435 2037
duke@435 2038 // We use r14 as the oop handle for the receiver/klass
duke@435 2039 // It is callee save so it survives the call to native
duke@435 2040
duke@435 2041 const Register oop_handle_reg = r14;
duke@435 2042
never@3500 2043 if (is_critical_native) {
never@3500 2044 check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
never@3500 2045 oop_handle_offset, oop_maps, in_regs, in_sig_bt);
never@3500 2046 }
duke@435 2047
duke@435 2048 //
duke@435 2049 // We immediately shuffle the arguments so that any vm call we have to
duke@435 2050 // make from here on out (sync slow path, jvmti, etc.) we will have
duke@435 2051 // captured the oops from our caller and have a valid oopMap for
duke@435 2052 // them.
duke@435 2053
duke@435 2054 // -----------------
duke@435 2055 // The Grand Shuffle
duke@435 2056
duke@435 2057 // The Java calling convention is either equal (linux) or denser (win64) than the
duke@435 2058 // c calling convention. However the because of the jni_env argument the c calling
duke@435 2059 // convention always has at least one more (and two for static) arguments than Java.
duke@435 2060 // Therefore if we move the args from java -> c backwards then we will never have
duke@435 2061 // a register->register conflict and we don't have to build a dependency graph
duke@435 2062 // and figure out how to break any cycles.
duke@435 2063 //
duke@435 2064
duke@435 2065 // Record esp-based slot for receiver on stack for non-static methods
duke@435 2066 int receiver_offset = -1;
duke@435 2067
duke@435 2068 // This is a trick. We double the stack slots so we can claim
duke@435 2069 // the oops in the caller's frame. Since we are sure to have
duke@435 2070 // more args than the caller doubling is enough to make
duke@435 2071 // sure we can capture all the incoming oop args from the
duke@435 2072 // caller.
duke@435 2073 //
duke@435 2074 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
duke@435 2075
duke@435 2076 // Mark location of rbp (someday)
duke@435 2077 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
duke@435 2078
duke@435 2079 // Use eax, ebx as temporaries during any memory-memory moves we have to do
duke@435 2080 // All inbound args are referenced based on rbp and all outbound args via rsp.
duke@435 2081
duke@435 2082
duke@435 2083 #ifdef ASSERT
duke@435 2084 bool reg_destroyed[RegisterImpl::number_of_registers];
duke@435 2085 bool freg_destroyed[XMMRegisterImpl::number_of_registers];
duke@435 2086 for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
duke@435 2087 reg_destroyed[r] = false;
duke@435 2088 }
duke@435 2089 for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
duke@435 2090 freg_destroyed[f] = false;
duke@435 2091 }
duke@435 2092
duke@435 2093 #endif /* ASSERT */
duke@435 2094
never@3500 2095 // This may iterate in two different directions depending on the
never@3500 2096 // kind of native it is. The reason is that for regular JNI natives
never@3500 2097 // the incoming and outgoing registers are offset upwards and for
never@3500 2098 // critical natives they are offset down.
never@3608 2099 GrowableArray<int> arg_order(2 * total_in_args);
never@3608 2100 VMRegPair tmp_vmreg;
fyang@9844 2101 tmp_vmreg.set2(rbx->as_VMReg());
never@3608 2102
never@3608 2103 if (!is_critical_native) {
never@3608 2104 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
never@3608 2105 arg_order.push(i);
never@3608 2106 arg_order.push(c_arg);
never@3608 2107 }
never@3608 2108 } else {
never@3608 2109 // Compute a valid move order, using tmp_vmreg to break any cycles
never@3608 2110 ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
never@3500 2111 }
never@3608 2112
never@3608 2113 int temploc = -1;
never@3608 2114 for (int ai = 0; ai < arg_order.length(); ai += 2) {
never@3608 2115 int i = arg_order.at(ai);
never@3608 2116 int c_arg = arg_order.at(ai + 1);
never@3608 2117 __ block_comment(err_msg("move %d -> %d", i, c_arg));
never@3608 2118 if (c_arg == -1) {
never@3608 2119 assert(is_critical_native, "should only be required for critical natives");
never@3608 2120 // This arg needs to be moved to a temporary
never@3608 2121 __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
never@3608 2122 in_regs[i] = tmp_vmreg;
never@3608 2123 temploc = i;
never@3608 2124 continue;
never@3608 2125 } else if (i == -1) {
never@3608 2126 assert(is_critical_native, "should only be required for critical natives");
never@3608 2127 // Read from the temporary location
never@3608 2128 assert(temploc != -1, "must be valid");
never@3608 2129 i = temploc;
never@3608 2130 temploc = -1;
never@3608 2131 }
duke@435 2132 #ifdef ASSERT
duke@435 2133 if (in_regs[i].first()->is_Register()) {
duke@435 2134 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
duke@435 2135 } else if (in_regs[i].first()->is_XMMRegister()) {
duke@435 2136 assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
duke@435 2137 }
duke@435 2138 if (out_regs[c_arg].first()->is_Register()) {
duke@435 2139 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
duke@435 2140 } else if (out_regs[c_arg].first()->is_XMMRegister()) {
duke@435 2141 freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
duke@435 2142 }
duke@435 2143 #endif /* ASSERT */
duke@435 2144 switch (in_sig_bt[i]) {
duke@435 2145 case T_ARRAY:
never@3500 2146 if (is_critical_native) {
never@3500 2147 unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
never@3500 2148 c_arg++;
never@3500 2149 #ifdef ASSERT
never@3500 2150 if (out_regs[c_arg].first()->is_Register()) {
never@3500 2151 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
never@3500 2152 } else if (out_regs[c_arg].first()->is_XMMRegister()) {
never@3500 2153 freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
never@3500 2154 }
never@3500 2155 #endif
never@3500 2156 break;
never@3500 2157 }
duke@435 2158 case T_OBJECT:
never@3500 2159 assert(!is_critical_native, "no oop arguments");
duke@435 2160 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
duke@435 2161 ((i == 0) && (!is_static)),
duke@435 2162 &receiver_offset);
duke@435 2163 break;
duke@435 2164 case T_VOID:
duke@435 2165 break;
duke@435 2166
duke@435 2167 case T_FLOAT:
duke@435 2168 float_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 2169 break;
duke@435 2170
duke@435 2171 case T_DOUBLE:
duke@435 2172 assert( i + 1 < total_in_args &&
duke@435 2173 in_sig_bt[i + 1] == T_VOID &&
duke@435 2174 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
duke@435 2175 double_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 2176 break;
duke@435 2177
duke@435 2178 case T_LONG :
duke@435 2179 long_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 2180 break;
duke@435 2181
duke@435 2182 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
duke@435 2183
duke@435 2184 default:
duke@435 2185 move32_64(masm, in_regs[i], out_regs[c_arg]);
duke@435 2186 }
duke@435 2187 }
duke@435 2188
twisti@5284 2189 int c_arg;
duke@435 2190
duke@435 2191 // Pre-load a static method's oop into r14. Used both by locking code and
duke@435 2192 // the normal JNI call code.
twisti@5284 2193 if (!is_critical_native) {
twisti@5284 2194 // point c_arg at the first arg that is already loaded in case we
twisti@5284 2195 // need to spill before we call out
twisti@5284 2196 c_arg = total_c_args - total_in_args;
twisti@5284 2197
twisti@5284 2198 if (method->is_static()) {
twisti@5284 2199
twisti@5284 2200 // load oop into a register
twisti@5284 2201 __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
twisti@5284 2202
twisti@5284 2203 // Now handlize the static class mirror it's known not-null.
twisti@5284 2204 __ movptr(Address(rsp, klass_offset), oop_handle_reg);
twisti@5284 2205 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
twisti@5284 2206
twisti@5284 2207 // Now get the handle
twisti@5284 2208 __ lea(oop_handle_reg, Address(rsp, klass_offset));
twisti@5284 2209 // store the klass handle as second argument
twisti@5284 2210 __ movptr(c_rarg1, oop_handle_reg);
twisti@5284 2211 // and protect the arg if we must spill
twisti@5284 2212 c_arg--;
twisti@5284 2213 }
twisti@5284 2214 } else {
twisti@5284 2215 // For JNI critical methods we need to save all registers in save_args.
twisti@5284 2216 c_arg = 0;
duke@435 2217 }
duke@435 2218
duke@435 2219 // Change state to native (we save the return address in the thread, since it might not
duke@435 2220 // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
duke@435 2221 // points into the right code segment. It does not have to be the correct return pc.
duke@435 2222 // We use the same pc/oopMap repeatedly when we call out
duke@435 2223
duke@435 2224 intptr_t the_pc = (intptr_t) __ pc();
duke@435 2225 oop_maps->add_gc_map(the_pc - start, map);
duke@435 2226
duke@435 2227 __ set_last_Java_frame(rsp, noreg, (address)the_pc);
duke@435 2228
duke@435 2229
duke@435 2230 // We have all of the arguments setup at this point. We must not touch any register
duke@435 2231 // argument registers at this point (what if we save/restore them there are no oop?
duke@435 2232
duke@435 2233 {
duke@435 2234 SkipIfEqual skip(masm, &DTraceMethodProbes, false);
duke@435 2235 // protect the args we've loaded
duke@435 2236 save_args(masm, total_c_args, c_arg, out_regs);
coleenp@4037 2237 __ mov_metadata(c_rarg1, method());
duke@435 2238 __ call_VM_leaf(
duke@435 2239 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 2240 r15_thread, c_rarg1);
duke@435 2241 restore_args(masm, total_c_args, c_arg, out_regs);
duke@435 2242 }
duke@435 2243
dcubed@1045 2244 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 2245 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2246 // protect the args we've loaded
dcubed@1045 2247 save_args(masm, total_c_args, c_arg, out_regs);
coleenp@4037 2248 __ mov_metadata(c_rarg1, method());
dcubed@1045 2249 __ call_VM_leaf(
dcubed@1045 2250 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 2251 r15_thread, c_rarg1);
dcubed@1045 2252 restore_args(masm, total_c_args, c_arg, out_regs);
dcubed@1045 2253 }
dcubed@1045 2254
duke@435 2255 // Lock a synchronized method
duke@435 2256
duke@435 2257 // Register definitions used by locking and unlocking
duke@435 2258
duke@435 2259 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
duke@435 2260 const Register obj_reg = rbx; // Will contain the oop
duke@435 2261 const Register lock_reg = r13; // Address of compiler lock object (BasicLock)
duke@435 2262 const Register old_hdr = r13; // value of old header at unlock time
duke@435 2263
duke@435 2264 Label slow_path_lock;
duke@435 2265 Label lock_done;
duke@435 2266
duke@435 2267 if (method->is_synchronized()) {
never@3500 2268 assert(!is_critical_native, "unhandled");
duke@435 2269
duke@435 2270
duke@435 2271 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
duke@435 2272
duke@435 2273 // Get the handle (the 2nd argument)
never@739 2274 __ mov(oop_handle_reg, c_rarg1);
duke@435 2275
duke@435 2276 // Get address of the box
duke@435 2277
never@739 2278 __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
duke@435 2279
duke@435 2280 // Load the oop from the handle
never@739 2281 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 2282
duke@435 2283 if (UseBiasedLocking) {
duke@435 2284 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
duke@435 2285 }
duke@435 2286
duke@435 2287 // Load immediate 1 into swap_reg %rax
duke@435 2288 __ movl(swap_reg, 1);
duke@435 2289
duke@435 2290 // Load (object->mark() | 1) into swap_reg %rax
never@739 2291 __ orptr(swap_reg, Address(obj_reg, 0));
duke@435 2292
duke@435 2293 // Save (object->mark() | 1) into BasicLock's displaced header
never@739 2294 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 2295
duke@435 2296 if (os::is_MP()) {
duke@435 2297 __ lock();
duke@435 2298 }
duke@435 2299
duke@435 2300 // src -> dest iff dest == rax else rax <- dest
never@739 2301 __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
duke@435 2302 __ jcc(Assembler::equal, lock_done);
duke@435 2303
duke@435 2304 // Hmm should this move to the slow path code area???
duke@435 2305
duke@435 2306 // Test if the oopMark is an obvious stack pointer, i.e.,
duke@435 2307 // 1) (mark & 3) == 0, and
duke@435 2308 // 2) rsp <= mark < mark + os::pagesize()
duke@435 2309 // These 3 tests can be done by evaluating the following
duke@435 2310 // expression: ((mark - rsp) & (3 - os::vm_page_size())),
duke@435 2311 // assuming both stack pointer and pagesize have their
duke@435 2312 // least significant 2 bits clear.
duke@435 2313 // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
duke@435 2314
never@739 2315 __ subptr(swap_reg, rsp);
never@739 2316 __ andptr(swap_reg, 3 - os::vm_page_size());
duke@435 2317
duke@435 2318 // Save the test result, for recursive case, the result is zero
never@739 2319 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 2320 __ jcc(Assembler::notEqual, slow_path_lock);
duke@435 2321
duke@435 2322 // Slow path will re-enter here
duke@435 2323
duke@435 2324 __ bind(lock_done);
duke@435 2325 }
duke@435 2326
duke@435 2327
duke@435 2328 // Finally just about ready to make the JNI call
duke@435 2329
duke@435 2330
duke@435 2331 // get JNIEnv* which is first argument to native
never@3500 2332 if (!is_critical_native) {
never@3500 2333 __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
never@3500 2334 }
duke@435 2335
duke@435 2336 // Now set thread in native
never@739 2337 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
duke@435 2338
never@3500 2339 __ call(RuntimeAddress(native_func));
duke@435 2340
kvn@4873 2341 // Verify or restore cpu control state after JNI call
kvn@4873 2342 __ restore_cpu_control_state_after_jni();
duke@435 2343
duke@435 2344 // Unpack native results.
duke@435 2345 switch (ret_type) {
duke@435 2346 case T_BOOLEAN: __ c2bool(rax); break;
duke@435 2347 case T_CHAR : __ movzwl(rax, rax); break;
duke@435 2348 case T_BYTE : __ sign_extend_byte (rax); break;
duke@435 2349 case T_SHORT : __ sign_extend_short(rax); break;
duke@435 2350 case T_INT : /* nothing to do */ break;
duke@435 2351 case T_DOUBLE :
duke@435 2352 case T_FLOAT :
duke@435 2353 // Result is in xmm0 we'll save as needed
duke@435 2354 break;
duke@435 2355 case T_ARRAY: // Really a handle
duke@435 2356 case T_OBJECT: // Really a handle
duke@435 2357 break; // can't de-handlize until after safepoint check
duke@435 2358 case T_VOID: break;
duke@435 2359 case T_LONG: break;
duke@435 2360 default : ShouldNotReachHere();
duke@435 2361 }
duke@435 2362
duke@435 2363 // Switch thread to "native transition" state before reading the synchronization state.
duke@435 2364 // This additional state is necessary because reading and testing the synchronization
duke@435 2365 // state is not atomic w.r.t. GC, as this scenario demonstrates:
duke@435 2366 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
duke@435 2367 // VM thread changes sync state to synchronizing and suspends threads for GC.
duke@435 2368 // Thread A is resumed to finish this native method, but doesn't block here since it
duke@435 2369 // didn't see any synchronization is progress, and escapes.
never@739 2370 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
duke@435 2371
duke@435 2372 if(os::is_MP()) {
duke@435 2373 if (UseMembar) {
duke@435 2374 // Force this write out before the read below
duke@435 2375 __ membar(Assembler::Membar_mask_bits(
duke@435 2376 Assembler::LoadLoad | Assembler::LoadStore |
duke@435 2377 Assembler::StoreLoad | Assembler::StoreStore));
duke@435 2378 } else {
duke@435 2379 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 2380 // We use the current thread pointer to calculate a thread specific
duke@435 2381 // offset to write to within the page. This minimizes bus traffic
duke@435 2382 // due to cache line collision.
duke@435 2383 __ serialize_memory(r15_thread, rcx);
duke@435 2384 }
duke@435 2385 }
duke@435 2386
never@3500 2387 Label after_transition;
duke@435 2388
duke@435 2389 // check for safepoint operation in progress and/or pending suspend requests
duke@435 2390 {
duke@435 2391 Label Continue;
duke@435 2392
duke@435 2393 __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
duke@435 2394 SafepointSynchronize::_not_synchronized);
duke@435 2395
duke@435 2396 Label L;
duke@435 2397 __ jcc(Assembler::notEqual, L);
duke@435 2398 __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
duke@435 2399 __ jcc(Assembler::equal, Continue);
duke@435 2400 __ bind(L);
duke@435 2401
duke@435 2402 // Don't use call_VM as it will see a possible pending exception and forward it
duke@435 2403 // and never return here preventing us from clearing _last_native_pc down below.
duke@435 2404 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
duke@435 2405 // preserved and correspond to the bcp/locals pointers. So we do a runtime call
duke@435 2406 // by hand.
duke@435 2407 //
duke@435 2408 save_native_result(masm, ret_type, stack_slots);
never@739 2409 __ mov(c_rarg0, r15_thread);
never@739 2410 __ mov(r12, rsp); // remember sp
never@739 2411 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 2412 __ andptr(rsp, -16); // align stack as required by ABI
never@3500 2413 if (!is_critical_native) {
never@3500 2414 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
never@3500 2415 } else {
never@3500 2416 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
never@3500 2417 }
never@739 2418 __ mov(rsp, r12); // restore sp
coleenp@548 2419 __ reinit_heapbase();
duke@435 2420 // Restore any method result value
duke@435 2421 restore_native_result(masm, ret_type, stack_slots);
never@3500 2422
never@3500 2423 if (is_critical_native) {
never@3500 2424 // The call above performed the transition to thread_in_Java so
never@3500 2425 // skip the transition logic below.
never@3500 2426 __ jmpb(after_transition);
never@3500 2427 }
never@3500 2428
duke@435 2429 __ bind(Continue);
duke@435 2430 }
duke@435 2431
duke@435 2432 // change thread state
duke@435 2433 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
never@3500 2434 __ bind(after_transition);
duke@435 2435
duke@435 2436 Label reguard;
duke@435 2437 Label reguard_done;
duke@435 2438 __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
duke@435 2439 __ jcc(Assembler::equal, reguard);
duke@435 2440 __ bind(reguard_done);
duke@435 2441
duke@435 2442 // native result if any is live
duke@435 2443
duke@435 2444 // Unlock
duke@435 2445 Label unlock_done;
duke@435 2446 Label slow_path_unlock;
duke@435 2447 if (method->is_synchronized()) {
duke@435 2448
duke@435 2449 // Get locked oop from the handle we passed to jni
never@739 2450 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 2451
duke@435 2452 Label done;
duke@435 2453
duke@435 2454 if (UseBiasedLocking) {
duke@435 2455 __ biased_locking_exit(obj_reg, old_hdr, done);
duke@435 2456 }
duke@435 2457
duke@435 2458 // Simple recursive lock?
duke@435 2459
never@739 2460 __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
duke@435 2461 __ jcc(Assembler::equal, done);
duke@435 2462
duke@435 2463 // Must save rax if if it is live now because cmpxchg must use it
duke@435 2464 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 2465 save_native_result(masm, ret_type, stack_slots);
duke@435 2466 }
duke@435 2467
duke@435 2468
duke@435 2469 // get address of the stack lock
never@739 2470 __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
duke@435 2471 // get old displaced header
never@739 2472 __ movptr(old_hdr, Address(rax, 0));
duke@435 2473
duke@435 2474 // Atomic swap old header if oop still contains the stack lock
duke@435 2475 if (os::is_MP()) {
duke@435 2476 __ lock();
duke@435 2477 }
never@739 2478 __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
duke@435 2479 __ jcc(Assembler::notEqual, slow_path_unlock);
duke@435 2480
duke@435 2481 // slow path re-enters here
duke@435 2482 __ bind(unlock_done);
duke@435 2483 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 2484 restore_native_result(masm, ret_type, stack_slots);
duke@435 2485 }
duke@435 2486
duke@435 2487 __ bind(done);
duke@435 2488
duke@435 2489 }
duke@435 2490 {
duke@435 2491 SkipIfEqual skip(masm, &DTraceMethodProbes, false);
duke@435 2492 save_native_result(masm, ret_type, stack_slots);
coleenp@4037 2493 __ mov_metadata(c_rarg1, method());
duke@435 2494 __ call_VM_leaf(
duke@435 2495 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2496 r15_thread, c_rarg1);
duke@435 2497 restore_native_result(masm, ret_type, stack_slots);
duke@435 2498 }
duke@435 2499
kevinw@8877 2500 __ reset_last_Java_frame(false);
duke@435 2501
phh@9669 2502 // Unbox oop result, e.g. JNIHandles::resolve value.
duke@435 2503 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
phh@9669 2504 __ resolve_jobject(rax /* value */,
phh@9669 2505 r15_thread /* thread */,
phh@9669 2506 rcx /* tmp */);
duke@435 2507 }
duke@435 2508
never@3500 2509 if (!is_critical_native) {
never@3500 2510 // reset handle block
never@3500 2511 __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
goetz@6558 2512 __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
never@3500 2513 }
duke@435 2514
duke@435 2515 // pop our frame
duke@435 2516
duke@435 2517 __ leave();
duke@435 2518
never@3500 2519 if (!is_critical_native) {
never@3500 2520 // Any exception pending?
never@3500 2521 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
never@3500 2522 __ jcc(Assembler::notEqual, exception_pending);
never@3500 2523 }
duke@435 2524
duke@435 2525 // Return
duke@435 2526
duke@435 2527 __ ret(0);
duke@435 2528
duke@435 2529 // Unexpected paths are out of line and go here
duke@435 2530
never@3500 2531 if (!is_critical_native) {
never@3500 2532 // forward the exception
never@3500 2533 __ bind(exception_pending);
never@3500 2534
never@3500 2535 // and forward the exception
never@3500 2536 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
never@3500 2537 }
duke@435 2538
duke@435 2539 // Slow path locking & unlocking
duke@435 2540 if (method->is_synchronized()) {
duke@435 2541
duke@435 2542 // BEGIN Slow path lock
duke@435 2543 __ bind(slow_path_lock);
duke@435 2544
duke@435 2545 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
duke@435 2546 // args are (oop obj, BasicLock* lock, JavaThread* thread)
duke@435 2547
duke@435 2548 // protect the args we've loaded
duke@435 2549 save_args(masm, total_c_args, c_arg, out_regs);
duke@435 2550
never@739 2551 __ mov(c_rarg0, obj_reg);
never@739 2552 __ mov(c_rarg1, lock_reg);
never@739 2553 __ mov(c_rarg2, r15_thread);
duke@435 2554
duke@435 2555 // Not a leaf but we have last_Java_frame setup as we want
duke@435 2556 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
duke@435 2557 restore_args(masm, total_c_args, c_arg, out_regs);
duke@435 2558
duke@435 2559 #ifdef ASSERT
duke@435 2560 { Label L;
never@739 2561 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 2562 __ jcc(Assembler::equal, L);
duke@435 2563 __ stop("no pending exception allowed on exit from monitorenter");
duke@435 2564 __ bind(L);
duke@435 2565 }
duke@435 2566 #endif
duke@435 2567 __ jmp(lock_done);
duke@435 2568
duke@435 2569 // END Slow path lock
duke@435 2570
duke@435 2571 // BEGIN Slow path unlock
duke@435 2572 __ bind(slow_path_unlock);
duke@435 2573
duke@435 2574 // If we haven't already saved the native result we must save it now as xmm registers
duke@435 2575 // are still exposed.
duke@435 2576
duke@435 2577 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 2578 save_native_result(masm, ret_type, stack_slots);
duke@435 2579 }
duke@435 2580
never@739 2581 __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
never@739 2582
never@739 2583 __ mov(c_rarg0, obj_reg);
never@739 2584 __ mov(r12, rsp); // remember sp
never@739 2585 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 2586 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 2587
duke@435 2588 // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
duke@435 2589 // NOTE that obj_reg == rbx currently
never@739 2590 __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
never@739 2591 __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 2592
duke@435 2593 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
never@739 2594 __ mov(rsp, r12); // restore sp
coleenp@548 2595 __ reinit_heapbase();
duke@435 2596 #ifdef ASSERT
duke@435 2597 {
duke@435 2598 Label L;
never@739 2599 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
duke@435 2600 __ jcc(Assembler::equal, L);
duke@435 2601 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
duke@435 2602 __ bind(L);
duke@435 2603 }
duke@435 2604 #endif /* ASSERT */
duke@435 2605
never@739 2606 __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
duke@435 2607
duke@435 2608 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 2609 restore_native_result(masm, ret_type, stack_slots);
duke@435 2610 }
duke@435 2611 __ jmp(unlock_done);
duke@435 2612
duke@435 2613 // END Slow path unlock
duke@435 2614
duke@435 2615 } // synchronized
duke@435 2616
duke@435 2617 // SLOW PATH Reguard the stack if needed
duke@435 2618
duke@435 2619 __ bind(reguard);
duke@435 2620 save_native_result(masm, ret_type, stack_slots);
never@739 2621 __ mov(r12, rsp); // remember sp
never@739 2622 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 2623 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 2624 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
never@739 2625 __ mov(rsp, r12); // restore sp
coleenp@548 2626 __ reinit_heapbase();
duke@435 2627 restore_native_result(masm, ret_type, stack_slots);
duke@435 2628 // and continue
duke@435 2629 __ jmp(reguard_done);
duke@435 2630
duke@435 2631
duke@435 2632
duke@435 2633 __ flush();
duke@435 2634
duke@435 2635 nmethod *nm = nmethod::new_native_nmethod(method,
twisti@2687 2636 compile_id,
duke@435 2637 masm->code(),
duke@435 2638 vep_offset,
duke@435 2639 frame_complete,
duke@435 2640 stack_slots / VMRegImpl::slots_per_word,
duke@435 2641 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
duke@435 2642 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
duke@435 2643 oop_maps);
never@3500 2644
never@3500 2645 if (is_critical_native) {
never@3500 2646 nm->set_lazy_critical_native(true);
never@3500 2647 }
never@3500 2648
duke@435 2649 return nm;
duke@435 2650
duke@435 2651 }
duke@435 2652
kamg@551 2653 #ifdef HAVE_DTRACE_H
kamg@551 2654 // ---------------------------------------------------------------------------
kamg@551 2655 // Generate a dtrace nmethod for a given signature. The method takes arguments
kamg@551 2656 // in the Java compiled code convention, marshals them to the native
kamg@551 2657 // abi and then leaves nops at the position you would expect to call a native
kamg@551 2658 // function. When the probe is enabled the nops are replaced with a trap
kamg@551 2659 // instruction that dtrace inserts and the trace will cause a notification
kamg@551 2660 // to dtrace.
kamg@551 2661 //
kamg@551 2662 // The probes are only able to take primitive types and java/lang/String as
kamg@551 2663 // arguments. No other java types are allowed. Strings are converted to utf8
kamg@551 2664 // strings so that from dtrace point of view java strings are converted to C
kamg@551 2665 // strings. There is an arbitrary fixed limit on the total space that a method
kamg@551 2666 // can use for converting the strings. (256 chars per string in the signature).
kamg@551 2667 // So any java string larger then this is truncated.
kamg@551 2668
kamg@551 2669 static int fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
kamg@551 2670 static bool offsets_initialized = false;
kamg@551 2671
kamg@551 2672
kamg@551 2673 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
kamg@551 2674 methodHandle method) {
kamg@551 2675
kamg@551 2676
kamg@551 2677 // generate_dtrace_nmethod is guarded by a mutex so we are sure to
kamg@551 2678 // be single threaded in this method.
kamg@551 2679 assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
kamg@551 2680
kamg@551 2681 if (!offsets_initialized) {
kamg@551 2682 fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
kamg@551 2683 fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
kamg@551 2684 fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
kamg@551 2685 fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
kamg@551 2686 fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
kamg@551 2687 fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
kamg@551 2688
kamg@551 2689 fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
kamg@551 2690 fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
kamg@551 2691 fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
kamg@551 2692 fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
kamg@551 2693 fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
kamg@551 2694 fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
kamg@551 2695 fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
kamg@551 2696 fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
kamg@551 2697
kamg@551 2698 offsets_initialized = true;
kamg@551 2699 }
kamg@551 2700 // Fill in the signature array, for the calling-convention call.
kamg@551 2701 int total_args_passed = method->size_of_parameters();
kamg@551 2702
kamg@551 2703 BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
kamg@551 2704 VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kamg@551 2705
kamg@551 2706 // The signature we are going to use for the trap that dtrace will see
kamg@551 2707 // java/lang/String is converted. We drop "this" and any other object
kamg@551 2708 // is converted to NULL. (A one-slot java/lang/Long object reference
kamg@551 2709 // is converted to a two-slot long, which is why we double the allocation).
kamg@551 2710 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
kamg@551 2711 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
kamg@551 2712
kamg@551 2713 int i=0;
kamg@551 2714 int total_strings = 0;
kamg@551 2715 int first_arg_to_pass = 0;
kamg@551 2716 int total_c_args = 0;
kamg@551 2717
kamg@551 2718 // Skip the receiver as dtrace doesn't want to see it
kamg@551 2719 if( !method->is_static() ) {
kamg@551 2720 in_sig_bt[i++] = T_OBJECT;
kamg@551 2721 first_arg_to_pass = 1;
kamg@551 2722 }
kamg@551 2723
kamg@551 2724 // We need to convert the java args to where a native (non-jni) function
kamg@551 2725 // would expect them. To figure out where they go we convert the java
kamg@551 2726 // signature to a C signature.
kamg@551 2727
kamg@551 2728 SignatureStream ss(method->signature());
kamg@551 2729 for ( ; !ss.at_return_type(); ss.next()) {
kamg@551 2730 BasicType bt = ss.type();
kamg@551 2731 in_sig_bt[i++] = bt; // Collect remaining bits of signature
kamg@551 2732 out_sig_bt[total_c_args++] = bt;
kamg@551 2733 if( bt == T_OBJECT) {
coleenp@2497 2734 Symbol* s = ss.as_symbol_or_null(); // symbol is created
kamg@551 2735 if (s == vmSymbols::java_lang_String()) {
kamg@551 2736 total_strings++;
kamg@551 2737 out_sig_bt[total_c_args-1] = T_ADDRESS;
kamg@551 2738 } else if (s == vmSymbols::java_lang_Boolean() ||
kamg@551 2739 s == vmSymbols::java_lang_Character() ||
kamg@551 2740 s == vmSymbols::java_lang_Byte() ||
kamg@551 2741 s == vmSymbols::java_lang_Short() ||
kamg@551 2742 s == vmSymbols::java_lang_Integer() ||
kamg@551 2743 s == vmSymbols::java_lang_Float()) {
kamg@551 2744 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 2745 } else if (s == vmSymbols::java_lang_Long() ||
kamg@551 2746 s == vmSymbols::java_lang_Double()) {
kamg@551 2747 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 2748 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2749 }
kamg@551 2750 } else if ( bt == T_LONG || bt == T_DOUBLE ) {
kamg@551 2751 in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kamg@551 2752 // We convert double to long
kamg@551 2753 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 2754 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2755 } else if ( bt == T_FLOAT) {
kamg@551 2756 // We convert float to int
kamg@551 2757 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 2758 }
kamg@551 2759 }
kamg@551 2760
kamg@551 2761 assert(i==total_args_passed, "validly parsed signature");
kamg@551 2762
kamg@551 2763 // Now get the compiled-Java layout as input arguments
kamg@551 2764 int comp_args_on_stack;
kamg@551 2765 comp_args_on_stack = SharedRuntime::java_calling_convention(
kamg@551 2766 in_sig_bt, in_regs, total_args_passed, false);
kamg@551 2767
kamg@551 2768 // Now figure out where the args must be stored and how much stack space
kamg@551 2769 // they require (neglecting out_preserve_stack_slots but space for storing
kamg@551 2770 // the 1st six register arguments). It's weird see int_stk_helper.
kamg@551 2771
kamg@551 2772 int out_arg_slots;
goetz@6466 2773 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
kamg@551 2774
kamg@551 2775 // Calculate the total number of stack slots we will need.
kamg@551 2776
kamg@551 2777 // First count the abi requirement plus all of the outgoing args
kamg@551 2778 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
kamg@551 2779
kamg@551 2780 // Now space for the string(s) we must convert
kamg@551 2781 int* string_locs = NEW_RESOURCE_ARRAY(int, total_strings + 1);
kamg@551 2782 for (i = 0; i < total_strings ; i++) {
kamg@551 2783 string_locs[i] = stack_slots;
kamg@551 2784 stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
kamg@551 2785 }
kamg@551 2786
kamg@551 2787 // Plus the temps we might need to juggle register args
kamg@551 2788 // regs take two slots each
kamg@551 2789 stack_slots += (Argument::n_int_register_parameters_c +
kamg@551 2790 Argument::n_float_register_parameters_c) * 2;
kamg@551 2791
kamg@551 2792
kamg@551 2793 // + 4 for return address (which we own) and saved rbp,
kamg@551 2794
kamg@551 2795 stack_slots += 4;
kamg@551 2796
kamg@551 2797 // Ok The space we have allocated will look like:
kamg@551 2798 //
kamg@551 2799 //
kamg@551 2800 // FP-> | |
kamg@551 2801 // |---------------------|
kamg@551 2802 // | string[n] |
kamg@551 2803 // |---------------------| <- string_locs[n]
kamg@551 2804 // | string[n-1] |
kamg@551 2805 // |---------------------| <- string_locs[n-1]
kamg@551 2806 // | ... |
kamg@551 2807 // | ... |
kamg@551 2808 // |---------------------| <- string_locs[1]
kamg@551 2809 // | string[0] |
kamg@551 2810 // |---------------------| <- string_locs[0]
kamg@551 2811 // | outbound memory |
kamg@551 2812 // | based arguments |
kamg@551 2813 // | |
kamg@551 2814 // |---------------------|
kamg@551 2815 // | |
kamg@551 2816 // SP-> | out_preserved_slots |
kamg@551 2817 //
kamg@551 2818 //
kamg@551 2819
kamg@551 2820 // Now compute actual number of stack words we need rounding to make
kamg@551 2821 // stack properly aligned.
kamg@551 2822 stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
kamg@551 2823
kamg@551 2824 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
kamg@551 2825
kamg@551 2826 intptr_t start = (intptr_t)__ pc();
kamg@551 2827
kamg@551 2828 // First thing make an ic check to see if we should even be here
kamg@551 2829
kamg@551 2830 // We are free to use all registers as temps without saving them and
kamg@551 2831 // restoring them except rbp. rbp, is the only callee save register
kamg@551 2832 // as far as the interpreter and the compiler(s) are concerned.
kamg@551 2833
kamg@551 2834 const Register ic_reg = rax;
kamg@551 2835 const Register receiver = rcx;
kamg@551 2836 Label hit;
kamg@551 2837 Label exception_pending;
kamg@551 2838
kamg@551 2839
kamg@551 2840 __ verify_oop(receiver);
kamg@551 2841 __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
kamg@551 2842 __ jcc(Assembler::equal, hit);
kamg@551 2843
kamg@551 2844 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
kamg@551 2845
kamg@551 2846 // verified entry must be aligned for code patching.
kamg@551 2847 // and the first 5 bytes must be in the same cache line
kamg@551 2848 // if we align at 8 then we will be sure 5 bytes are in the same line
kamg@551 2849 __ align(8);
kamg@551 2850
kamg@551 2851 __ bind(hit);
kamg@551 2852
kamg@551 2853 int vep_offset = ((intptr_t)__ pc()) - start;
kamg@551 2854
kamg@551 2855
kamg@551 2856 // The instruction at the verified entry point must be 5 bytes or longer
kamg@551 2857 // because it can be patched on the fly by make_non_entrant. The stack bang
kamg@551 2858 // instruction fits that requirement.
kamg@551 2859
kamg@551 2860 // Generate stack overflow check
kamg@551 2861
kamg@551 2862 if (UseStackBanging) {
kamg@551 2863 if (stack_size <= StackShadowPages*os::vm_page_size()) {
kamg@551 2864 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
kamg@551 2865 } else {
kamg@551 2866 __ movl(rax, stack_size);
kamg@551 2867 __ bang_stack_size(rax, rbx);
kamg@551 2868 }
kamg@551 2869 } else {
kamg@551 2870 // need a 5 byte instruction to allow MT safe patching to non-entrant
kamg@551 2871 __ fat_nop();
kamg@551 2872 }
kamg@551 2873
kamg@551 2874 assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
kamg@551 2875 "valid size for make_non_entrant");
kamg@551 2876
kamg@551 2877 // Generate a new frame for the wrapper.
kamg@551 2878 __ enter();
kamg@551 2879
kamg@551 2880 // -4 because return address is already present and so is saved rbp,
kamg@551 2881 if (stack_size - 2*wordSize != 0) {
kamg@551 2882 __ subq(rsp, stack_size - 2*wordSize);
kamg@551 2883 }
kamg@551 2884
kamg@551 2885 // Frame is now completed as far a size and linkage.
kamg@551 2886
kamg@551 2887 int frame_complete = ((intptr_t)__ pc()) - start;
kamg@551 2888
kamg@551 2889 int c_arg, j_arg;
kamg@551 2890
kamg@551 2891 // State of input register args
kamg@551 2892
kamg@551 2893 bool live[ConcreteRegisterImpl::number_of_registers];
kamg@551 2894
kamg@551 2895 live[j_rarg0->as_VMReg()->value()] = false;
kamg@551 2896 live[j_rarg1->as_VMReg()->value()] = false;
kamg@551 2897 live[j_rarg2->as_VMReg()->value()] = false;
kamg@551 2898 live[j_rarg3->as_VMReg()->value()] = false;
kamg@551 2899 live[j_rarg4->as_VMReg()->value()] = false;
kamg@551 2900 live[j_rarg5->as_VMReg()->value()] = false;
kamg@551 2901
kamg@551 2902 live[j_farg0->as_VMReg()->value()] = false;
kamg@551 2903 live[j_farg1->as_VMReg()->value()] = false;
kamg@551 2904 live[j_farg2->as_VMReg()->value()] = false;
kamg@551 2905 live[j_farg3->as_VMReg()->value()] = false;
kamg@551 2906 live[j_farg4->as_VMReg()->value()] = false;
kamg@551 2907 live[j_farg5->as_VMReg()->value()] = false;
kamg@551 2908 live[j_farg6->as_VMReg()->value()] = false;
kamg@551 2909 live[j_farg7->as_VMReg()->value()] = false;
kamg@551 2910
kamg@551 2911
kamg@551 2912 bool rax_is_zero = false;
kamg@551 2913
kamg@551 2914 // All args (except strings) destined for the stack are moved first
kamg@551 2915 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2916 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2917 VMRegPair src = in_regs[j_arg];
kamg@551 2918 VMRegPair dst = out_regs[c_arg];
kamg@551 2919
kamg@551 2920 // Get the real reg value or a dummy (rsp)
kamg@551 2921
kamg@551 2922 int src_reg = src.first()->is_reg() ?
kamg@551 2923 src.first()->value() :
kamg@551 2924 rsp->as_VMReg()->value();
kamg@551 2925
kamg@551 2926 bool useless = in_sig_bt[j_arg] == T_ARRAY ||
kamg@551 2927 (in_sig_bt[j_arg] == T_OBJECT &&
kamg@551 2928 out_sig_bt[c_arg] != T_INT &&
kamg@551 2929 out_sig_bt[c_arg] != T_ADDRESS &&
kamg@551 2930 out_sig_bt[c_arg] != T_LONG);
kamg@551 2931
kamg@551 2932 live[src_reg] = !useless;
kamg@551 2933
kamg@551 2934 if (dst.first()->is_stack()) {
kamg@551 2935
kamg@551 2936 // Even though a string arg in a register is still live after this loop
kamg@551 2937 // after the string conversion loop (next) it will be dead so we take
kamg@551 2938 // advantage of that now for simpler code to manage live.
kamg@551 2939
kamg@551 2940 live[src_reg] = false;
kamg@551 2941 switch (in_sig_bt[j_arg]) {
kamg@551 2942
kamg@551 2943 case T_ARRAY:
kamg@551 2944 case T_OBJECT:
kamg@551 2945 {
kamg@551 2946 Address stack_dst(rsp, reg2offset_out(dst.first()));
kamg@551 2947
kamg@551 2948 if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 2949 // need to unbox a one-word value
kamg@551 2950 Register in_reg = rax;
kamg@551 2951 if ( src.first()->is_reg() ) {
kamg@551 2952 in_reg = src.first()->as_Register();
kamg@551 2953 } else {
kamg@551 2954 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
kamg@551 2955 rax_is_zero = false;
kamg@551 2956 }
kamg@551 2957 Label skipUnbox;
kamg@551 2958 __ movptr(Address(rsp, reg2offset_out(dst.first())),
kamg@551 2959 (int32_t)NULL_WORD);
kamg@551 2960 __ testq(in_reg, in_reg);
kamg@551 2961 __ jcc(Assembler::zero, skipUnbox);
kamg@551 2962
kvn@600 2963 BasicType bt = out_sig_bt[c_arg];
kvn@600 2964 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kamg@551 2965 Address src1(in_reg, box_offset);
kvn@600 2966 if ( bt == T_LONG ) {
kamg@551 2967 __ movq(in_reg, src1);
kamg@551 2968 __ movq(stack_dst, in_reg);
kamg@551 2969 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2970 ++c_arg; // skip over T_VOID to keep the loop indices in sync
kamg@551 2971 } else {
kamg@551 2972 __ movl(in_reg, src1);
kamg@551 2973 __ movl(stack_dst, in_reg);
kamg@551 2974 }
kamg@551 2975
kamg@551 2976 __ bind(skipUnbox);
kamg@551 2977 } else if (out_sig_bt[c_arg] != T_ADDRESS) {
kamg@551 2978 // Convert the arg to NULL
kamg@551 2979 if (!rax_is_zero) {
kamg@551 2980 __ xorq(rax, rax);
kamg@551 2981 rax_is_zero = true;
kamg@551 2982 }
kamg@551 2983 __ movq(stack_dst, rax);
kamg@551 2984 }
kamg@551 2985 }
kamg@551 2986 break;
kamg@551 2987
kamg@551 2988 case T_VOID:
kamg@551 2989 break;
kamg@551 2990
kamg@551 2991 case T_FLOAT:
kamg@551 2992 // This does the right thing since we know it is destined for the
kamg@551 2993 // stack
kamg@551 2994 float_move(masm, src, dst);
kamg@551 2995 break;
kamg@551 2996
kamg@551 2997 case T_DOUBLE:
kamg@551 2998 // This does the right thing since we know it is destined for the
kamg@551 2999 // stack
kamg@551 3000 double_move(masm, src, dst);
kamg@551 3001 break;
kamg@551 3002
kamg@551 3003 case T_LONG :
kamg@551 3004 long_move(masm, src, dst);
kamg@551 3005 break;
kamg@551 3006
kamg@551 3007 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
kamg@551 3008
kamg@551 3009 default:
kamg@551 3010 move32_64(masm, src, dst);
kamg@551 3011 }
kamg@551 3012 }
kamg@551 3013
kamg@551 3014 }
kamg@551 3015
kamg@551 3016 // If we have any strings we must store any register based arg to the stack
kamg@551 3017 // This includes any still live xmm registers too.
kamg@551 3018
kamg@551 3019 int sid = 0;
kamg@551 3020
kamg@551 3021 if (total_strings > 0 ) {
kamg@551 3022 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 3023 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 3024 VMRegPair src = in_regs[j_arg];
kamg@551 3025 VMRegPair dst = out_regs[c_arg];
kamg@551 3026
kamg@551 3027 if (src.first()->is_reg()) {
kamg@551 3028 Address src_tmp(rbp, fp_offset[src.first()->value()]);
kamg@551 3029
kamg@551 3030 // string oops were left untouched by the previous loop even if the
kamg@551 3031 // eventual (converted) arg is destined for the stack so park them
kamg@551 3032 // away now (except for first)
kamg@551 3033
kamg@551 3034 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 3035 Address utf8_addr = Address(
kamg@551 3036 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
kamg@551 3037 if (sid != 1) {
kamg@551 3038 // The first string arg won't be killed until after the utf8
kamg@551 3039 // conversion
kamg@551 3040 __ movq(utf8_addr, src.first()->as_Register());
kamg@551 3041 }
kamg@551 3042 } else if (dst.first()->is_reg()) {
kamg@551 3043 if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
kamg@551 3044
kamg@551 3045 // Convert the xmm register to an int and store it in the reserved
kamg@551 3046 // location for the eventual c register arg
kamg@551 3047 XMMRegister f = src.first()->as_XMMRegister();
kamg@551 3048 if (in_sig_bt[j_arg] == T_FLOAT) {
kamg@551 3049 __ movflt(src_tmp, f);
kamg@551 3050 } else {
kamg@551 3051 __ movdbl(src_tmp, f);
kamg@551 3052 }
kamg@551 3053 } else {
kamg@551 3054 // If the arg is an oop type we don't support don't bother to store
kamg@551 3055 // it remember string was handled above.
kamg@551 3056 bool useless = in_sig_bt[j_arg] == T_ARRAY ||
kamg@551 3057 (in_sig_bt[j_arg] == T_OBJECT &&
kamg@551 3058 out_sig_bt[c_arg] != T_INT &&
kamg@551 3059 out_sig_bt[c_arg] != T_LONG);
kamg@551 3060
kamg@551 3061 if (!useless) {
kamg@551 3062 __ movq(src_tmp, src.first()->as_Register());
kamg@551 3063 }
kamg@551 3064 }
kamg@551 3065 }
kamg@551 3066 }
kamg@551 3067 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 3068 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 3069 ++c_arg; // skip over T_VOID to keep the loop indices in sync
kamg@551 3070 }
kamg@551 3071 }
kamg@551 3072
kamg@551 3073 // Now that the volatile registers are safe, convert all the strings
kamg@551 3074 sid = 0;
kamg@551 3075
kamg@551 3076 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 3077 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 3078 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 3079 // It's a string
kamg@551 3080 Address utf8_addr = Address(
kamg@551 3081 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
kamg@551 3082 // The first string we find might still be in the original java arg
kamg@551 3083 // register
kamg@551 3084
kamg@551 3085 VMReg src = in_regs[j_arg].first();
kamg@551 3086
kamg@551 3087 // We will need to eventually save the final argument to the trap
kamg@551 3088 // in the von-volatile location dedicated to src. This is the offset
kamg@551 3089 // from fp we will use.
kamg@551 3090 int src_off = src->is_reg() ?
kamg@551 3091 fp_offset[src->value()] : reg2offset_in(src);
kamg@551 3092
kamg@551 3093 // This is where the argument will eventually reside
kamg@551 3094 VMRegPair dst = out_regs[c_arg];
kamg@551 3095
kamg@551 3096 if (src->is_reg()) {
kamg@551 3097 if (sid == 1) {
kamg@551 3098 __ movq(c_rarg0, src->as_Register());
kamg@551 3099 } else {
kamg@551 3100 __ movq(c_rarg0, utf8_addr);
kamg@551 3101 }
kamg@551 3102 } else {
kamg@551 3103 // arg is still in the original location
kamg@551 3104 __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
kamg@551 3105 }
kamg@551 3106 Label done, convert;
kamg@551 3107
kamg@551 3108 // see if the oop is NULL
kamg@551 3109 __ testq(c_rarg0, c_rarg0);
kamg@551 3110 __ jcc(Assembler::notEqual, convert);
kamg@551 3111
kamg@551 3112 if (dst.first()->is_reg()) {
kamg@551 3113 // Save the ptr to utf string in the origina src loc or the tmp
kamg@551 3114 // dedicated to it
kamg@551 3115 __ movq(Address(rbp, src_off), c_rarg0);
kamg@551 3116 } else {
kamg@551 3117 __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
kamg@551 3118 }
kamg@551 3119 __ jmp(done);
kamg@551 3120
kamg@551 3121 __ bind(convert);
kamg@551 3122
kamg@551 3123 __ lea(c_rarg1, utf8_addr);
kamg@551 3124 if (dst.first()->is_reg()) {
kamg@551 3125 __ movq(Address(rbp, src_off), c_rarg1);
kamg@551 3126 } else {
kamg@551 3127 __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
kamg@551 3128 }
kamg@551 3129 // And do the conversion
kamg@551 3130 __ call(RuntimeAddress(
kamg@551 3131 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
kamg@551 3132
kamg@551 3133 __ bind(done);
kamg@551 3134 }
kamg@551 3135 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 3136 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 3137 ++c_arg; // skip over T_VOID to keep the loop indices in sync
kamg@551 3138 }
kamg@551 3139 }
kamg@551 3140 // The get_utf call killed all the c_arg registers
kamg@551 3141 live[c_rarg0->as_VMReg()->value()] = false;
kamg@551 3142 live[c_rarg1->as_VMReg()->value()] = false;
kamg@551 3143 live[c_rarg2->as_VMReg()->value()] = false;
kamg@551 3144 live[c_rarg3->as_VMReg()->value()] = false;
kamg@551 3145 live[c_rarg4->as_VMReg()->value()] = false;
kamg@551 3146 live[c_rarg5->as_VMReg()->value()] = false;
kamg@551 3147
kamg@551 3148 live[c_farg0->as_VMReg()->value()] = false;
kamg@551 3149 live[c_farg1->as_VMReg()->value()] = false;
kamg@551 3150 live[c_farg2->as_VMReg()->value()] = false;
kamg@551 3151 live[c_farg3->as_VMReg()->value()] = false;
kamg@551 3152 live[c_farg4->as_VMReg()->value()] = false;
kamg@551 3153 live[c_farg5->as_VMReg()->value()] = false;
kamg@551 3154 live[c_farg6->as_VMReg()->value()] = false;
kamg@551 3155 live[c_farg7->as_VMReg()->value()] = false;
kamg@551 3156 }
kamg@551 3157
kamg@551 3158 // Now we can finally move the register args to their desired locations
kamg@551 3159
kamg@551 3160 rax_is_zero = false;
kamg@551 3161
kamg@551 3162 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 3163 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 3164
kamg@551 3165 VMRegPair src = in_regs[j_arg];
kamg@551 3166 VMRegPair dst = out_regs[c_arg];
kamg@551 3167
kamg@551 3168 // Only need to look for args destined for the interger registers (since we
kamg@551 3169 // convert float/double args to look like int/long outbound)
kamg@551 3170 if (dst.first()->is_reg()) {
kamg@551 3171 Register r = dst.first()->as_Register();
kamg@551 3172
kamg@551 3173 // Check if the java arg is unsupported and thereofre useless
kamg@551 3174 bool useless = in_sig_bt[j_arg] == T_ARRAY ||
kamg@551 3175 (in_sig_bt[j_arg] == T_OBJECT &&
kamg@551 3176 out_sig_bt[c_arg] != T_INT &&
kamg@551 3177 out_sig_bt[c_arg] != T_ADDRESS &&
kamg@551 3178 out_sig_bt[c_arg] != T_LONG);
kamg@551 3179
kamg@551 3180
kamg@551 3181 // If we're going to kill an existing arg save it first
kamg@551 3182 if (live[dst.first()->value()]) {
kamg@551 3183 // you can't kill yourself
kamg@551 3184 if (src.first() != dst.first()) {
kamg@551 3185 __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
kamg@551 3186 }
kamg@551 3187 }
kamg@551 3188 if (src.first()->is_reg()) {
kamg@551 3189 if (live[src.first()->value()] ) {
kamg@551 3190 if (in_sig_bt[j_arg] == T_FLOAT) {
kamg@551 3191 __ movdl(r, src.first()->as_XMMRegister());
kamg@551 3192 } else if (in_sig_bt[j_arg] == T_DOUBLE) {
kamg@551 3193 __ movdq(r, src.first()->as_XMMRegister());
kamg@551 3194 } else if (r != src.first()->as_Register()) {
kamg@551 3195 if (!useless) {
kamg@551 3196 __ movq(r, src.first()->as_Register());
kamg@551 3197 }
kamg@551 3198 }
kamg@551 3199 } else {
kamg@551 3200 // If the arg is an oop type we don't support don't bother to store
kamg@551 3201 // it
kamg@551 3202 if (!useless) {
kamg@551 3203 if (in_sig_bt[j_arg] == T_DOUBLE ||
kamg@551 3204 in_sig_bt[j_arg] == T_LONG ||
kamg@551 3205 in_sig_bt[j_arg] == T_OBJECT ) {
kamg@551 3206 __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
kamg@551 3207 } else {
kamg@551 3208 __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
kamg@551 3209 }
kamg@551 3210 }
kamg@551 3211 }
kamg@551 3212 live[src.first()->value()] = false;
kamg@551 3213 } else if (!useless) {
kamg@551 3214 // full sized move even for int should be ok
kamg@551 3215 __ movq(r, Address(rbp, reg2offset_in(src.first())));
kamg@551 3216 }
kamg@551 3217
kamg@551 3218 // At this point r has the original java arg in the final location
kamg@551 3219 // (assuming it wasn't useless). If the java arg was an oop
kamg@551 3220 // we have a bit more to do
kamg@551 3221
kamg@551 3222 if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
kamg@551 3223 if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 3224 // need to unbox a one-word value
kamg@551 3225 Label skip;
kamg@551 3226 __ testq(r, r);
kamg@551 3227 __ jcc(Assembler::equal, skip);
kvn@600 3228 BasicType bt = out_sig_bt[c_arg];
kvn@600 3229 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kamg@551 3230 Address src1(r, box_offset);
kvn@600 3231 if ( bt == T_LONG ) {
kamg@551 3232 __ movq(r, src1);
kamg@551 3233 } else {
kamg@551 3234 __ movl(r, src1);
kamg@551 3235 }
kamg@551 3236 __ bind(skip);
kamg@551 3237
kamg@551 3238 } else if (out_sig_bt[c_arg] != T_ADDRESS) {
kamg@551 3239 // Convert the arg to NULL
kamg@551 3240 __ xorq(r, r);
kamg@551 3241 }
kamg@551 3242 }
kamg@551 3243
kamg@551 3244 // dst can longer be holding an input value
kamg@551 3245 live[dst.first()->value()] = false;
kamg@551 3246 }
kamg@551 3247 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 3248 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 3249 ++c_arg; // skip over T_VOID to keep the loop indices in sync
kamg@551 3250 }
kamg@551 3251 }
kamg@551 3252
kamg@551 3253
kamg@551 3254 // Ok now we are done. Need to place the nop that dtrace wants in order to
kamg@551 3255 // patch in the trap
kamg@551 3256 int patch_offset = ((intptr_t)__ pc()) - start;
kamg@551 3257
kamg@551 3258 __ nop();
kamg@551 3259
kamg@551 3260
kamg@551 3261 // Return
kamg@551 3262
kamg@551 3263 __ leave();
kamg@551 3264 __ ret(0);
kamg@551 3265
kamg@551 3266 __ flush();
kamg@551 3267
kamg@551 3268 nmethod *nm = nmethod::new_dtrace_nmethod(
kamg@551 3269 method, masm->code(), vep_offset, patch_offset, frame_complete,
kamg@551 3270 stack_slots / VMRegImpl::slots_per_word);
kamg@551 3271 return nm;
kamg@551 3272
kamg@551 3273 }
kamg@551 3274
kamg@551 3275 #endif // HAVE_DTRACE_H
kamg@551 3276
duke@435 3277 // this function returns the adjust size (in number of words) to a c2i adapter
duke@435 3278 // activation for use during deoptimization
duke@435 3279 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
twisti@1861 3280 return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
duke@435 3281 }
duke@435 3282
duke@435 3283
duke@435 3284 uint SharedRuntime::out_preserve_stack_slots() {
duke@435 3285 return 0;
duke@435 3286 }
duke@435 3287
duke@435 3288 //------------------------------generate_deopt_blob----------------------------
duke@435 3289 void SharedRuntime::generate_deopt_blob() {
duke@435 3290 // Allocate space for the code
duke@435 3291 ResourceMark rm;
duke@435 3292 // Setup code generation tools
duke@435 3293 CodeBuffer buffer("deopt_blob", 2048, 1024);
duke@435 3294 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3295 int frame_size_in_words;
duke@435 3296 OopMap* map = NULL;
duke@435 3297 OopMapSet *oop_maps = new OopMapSet();
duke@435 3298
duke@435 3299 // -------------
duke@435 3300 // This code enters when returning to a de-optimized nmethod. A return
duke@435 3301 // address has been pushed on the the stack, and return values are in
duke@435 3302 // registers.
duke@435 3303 // If we are doing a normal deopt then we were called from the patched
duke@435 3304 // nmethod from the point we returned to the nmethod. So the return
duke@435 3305 // address on the stack is wrong by NativeCall::instruction_size
duke@435 3306 // We will adjust the value so it looks like we have the original return
duke@435 3307 // address on the stack (like when we eagerly deoptimized).
duke@435 3308 // In the case of an exception pending when deoptimizing, we enter
duke@435 3309 // with a return address on the stack that points after the call we patched
duke@435 3310 // into the exception handler. We have the following register state from,
duke@435 3311 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
duke@435 3312 // rax: exception oop
duke@435 3313 // rbx: exception handler
duke@435 3314 // rdx: throwing pc
duke@435 3315 // So in this case we simply jam rdx into the useless return address and
duke@435 3316 // the stack looks just like we want.
duke@435 3317 //
duke@435 3318 // At this point we need to de-opt. We save the argument return
duke@435 3319 // registers. We call the first C routine, fetch_unroll_info(). This
duke@435 3320 // routine captures the return values and returns a structure which
duke@435 3321 // describes the current frame size and the sizes of all replacement frames.
duke@435 3322 // The current frame is compiled code and may contain many inlined
duke@435 3323 // functions, each with their own JVM state. We pop the current frame, then
duke@435 3324 // push all the new frames. Then we call the C routine unpack_frames() to
duke@435 3325 // populate these frames. Finally unpack_frames() returns us the new target
duke@435 3326 // address. Notice that callee-save registers are BLOWN here; they have
duke@435 3327 // already been captured in the vframeArray at the time the return PC was
duke@435 3328 // patched.
duke@435 3329 address start = __ pc();
duke@435 3330 Label cont;
duke@435 3331
duke@435 3332 // Prolog for non exception case!
duke@435 3333
duke@435 3334 // Save everything in sight.
duke@435 3335 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
duke@435 3336
duke@435 3337 // Normal deoptimization. Save exec mode for unpack_frames.
coleenp@548 3338 __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
duke@435 3339 __ jmp(cont);
never@739 3340
never@739 3341 int reexecute_offset = __ pc() - start;
never@739 3342
never@739 3343 // Reexecute case
never@739 3344 // return address is the pc describes what bci to do re-execute at
never@739 3345
never@739 3346 // No need to update map as each call to save_live_registers will produce identical oopmap
never@739 3347 (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
never@739 3348
never@739 3349 __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
never@739 3350 __ jmp(cont);
never@739 3351
duke@435 3352 int exception_offset = __ pc() - start;
duke@435 3353
duke@435 3354 // Prolog for exception case
duke@435 3355
never@739 3356 // all registers are dead at this entry point, except for rax, and
never@739 3357 // rdx which contain the exception oop and exception pc
never@739 3358 // respectively. Set them in TLS and fall thru to the
never@739 3359 // unpack_with_exception_in_tls entry point.
never@739 3360
never@739 3361 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
never@739 3362 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
never@739 3363
never@739 3364 int exception_in_tls_offset = __ pc() - start;
never@739 3365
never@739 3366 // new implementation because exception oop is now passed in JavaThread
never@739 3367
never@739 3368 // Prolog for exception case
never@739 3369 // All registers must be preserved because they might be used by LinearScan
never@739 3370 // Exceptiop oop and throwing PC are passed in JavaThread
never@739 3371 // tos: stack at point of call to method that threw the exception (i.e. only
never@739 3372 // args are on the stack, no return address)
never@739 3373
never@739 3374 // make room on stack for the return address
never@739 3375 // It will be patched later with the throwing pc. The correct value is not
never@739 3376 // available now because loading it from memory would destroy registers.
never@739 3377 __ push(0);
duke@435 3378
duke@435 3379 // Save everything in sight.
duke@435 3380 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
duke@435 3381
never@739 3382 // Now it is safe to overwrite any register
never@739 3383
duke@435 3384 // Deopt during an exception. Save exec mode for unpack_frames.
coleenp@548 3385 __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
duke@435 3386
never@739 3387 // load throwing pc from JavaThread and patch it as the return address
never@739 3388 // of the current frame. Then clear the field in JavaThread
never@739 3389
never@739 3390 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
never@739 3391 __ movptr(Address(rbp, wordSize), rdx);
never@739 3392 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
never@739 3393
never@739 3394 #ifdef ASSERT
never@739 3395 // verify that there is really an exception oop in JavaThread
never@739 3396 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
never@739 3397 __ verify_oop(rax);
never@739 3398
never@739 3399 // verify that there is no pending exception
never@739 3400 Label no_pending_exception;
never@739 3401 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
never@739 3402 __ testptr(rax, rax);
never@739 3403 __ jcc(Assembler::zero, no_pending_exception);
never@739 3404 __ stop("must not have pending exception here");
never@739 3405 __ bind(no_pending_exception);
never@739 3406 #endif
never@739 3407
duke@435 3408 __ bind(cont);
duke@435 3409
duke@435 3410 // Call C code. Need thread and this frame, but NOT official VM entry
duke@435 3411 // crud. We cannot block on this call, no GC can happen.
duke@435 3412 //
duke@435 3413 // UnrollBlock* fetch_unroll_info(JavaThread* thread)
duke@435 3414
duke@435 3415 // fetch_unroll_info needs to call last_java_frame().
duke@435 3416
duke@435 3417 __ set_last_Java_frame(noreg, noreg, NULL);
duke@435 3418 #ifdef ASSERT
duke@435 3419 { Label L;
never@739 3420 __ cmpptr(Address(r15_thread,
duke@435 3421 JavaThread::last_Java_fp_offset()),
never@739 3422 (int32_t)0);
duke@435 3423 __ jcc(Assembler::equal, L);
duke@435 3424 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
duke@435 3425 __ bind(L);
duke@435 3426 }
duke@435 3427 #endif // ASSERT
never@739 3428 __ mov(c_rarg0, r15_thread);
duke@435 3429 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
duke@435 3430
duke@435 3431 // Need to have an oopmap that tells fetch_unroll_info where to
duke@435 3432 // find any register it might need.
duke@435 3433 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 3434
kevinw@8877 3435 __ reset_last_Java_frame(false);
duke@435 3436
duke@435 3437 // Load UnrollBlock* into rdi
never@739 3438 __ mov(rdi, rax);
never@739 3439
never@739 3440 Label noException;
never@1117 3441 __ cmpl(r14, Deoptimization::Unpack_exception); // Was exception pending?
never@739 3442 __ jcc(Assembler::notEqual, noException);
never@739 3443 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
never@739 3444 // QQQ this is useless it was NULL above
never@739 3445 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
never@739 3446 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
never@739 3447 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
never@739 3448
never@739 3449 __ verify_oop(rax);
never@739 3450
never@739 3451 // Overwrite the result registers with the exception results.
never@739 3452 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
never@739 3453 // I think this is useless
never@739 3454 __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
never@739 3455
never@739 3456 __ bind(noException);
duke@435 3457
duke@435 3458 // Only register save data is on the stack.
duke@435 3459 // Now restore the result registers. Everything else is either dead
duke@435 3460 // or captured in the vframeArray.
duke@435 3461 RegisterSaver::restore_result_registers(masm);
duke@435 3462
duke@435 3463 // All of the register save area has been popped of the stack. Only the
duke@435 3464 // return address remains.
duke@435 3465
duke@435 3466 // Pop all the frames we must move/replace.
duke@435 3467 //
duke@435 3468 // Frame picture (youngest to oldest)
duke@435 3469 // 1: self-frame (no frame link)
duke@435 3470 // 2: deopting frame (no frame link)
duke@435 3471 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 3472 //
duke@435 3473 // Note: by leaving the return address of self-frame on the stack
duke@435 3474 // and using the size of frame 2 to adjust the stack
duke@435 3475 // when we are done the return to frame 3 will still be on the stack.
duke@435 3476
duke@435 3477 // Pop deoptimized frame
duke@435 3478 __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
never@739 3479 __ addptr(rsp, rcx);
duke@435 3480
duke@435 3481 // rsp should be pointing at the return address to the caller (3)
duke@435 3482
roland@6115 3483 // Pick up the initial fp we should save
roland@6115 3484 // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
roland@6115 3485 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
roland@6115 3486
roland@6723 3487 #ifdef ASSERT
roland@6723 3488 // Compilers generate code that bang the stack by as much as the
roland@6723 3489 // interpreter would need. So this stack banging should never
roland@6723 3490 // trigger a fault. Verify that it does not on non product builds.
duke@435 3491 if (UseStackBanging) {
duke@435 3492 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 3493 __ bang_stack_size(rbx, rcx);
duke@435 3494 }
roland@6723 3495 #endif
duke@435 3496
duke@435 3497 // Load address of array of frame pcs into rcx
never@739 3498 __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 3499
duke@435 3500 // Trash the old pc
never@739 3501 __ addptr(rsp, wordSize);
duke@435 3502
duke@435 3503 // Load address of array of frame sizes into rsi
never@739 3504 __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 3505
duke@435 3506 // Load counter into rdx
duke@435 3507 __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 3508
duke@435 3509 // Now adjust the caller's stack to make up for the extra locals
duke@435 3510 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 3511 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 3512 // value and not the "real" sp value.
duke@435 3513
duke@435 3514 const Register sender_sp = r8;
duke@435 3515
never@739 3516 __ mov(sender_sp, rsp);
duke@435 3517 __ movl(rbx, Address(rdi,
duke@435 3518 Deoptimization::UnrollBlock::
duke@435 3519 caller_adjustment_offset_in_bytes()));
never@739 3520 __ subptr(rsp, rbx);
duke@435 3521
duke@435 3522 // Push interpreter frames in a loop
duke@435 3523 Label loop;
duke@435 3524 __ bind(loop);
never@739 3525 __ movptr(rbx, Address(rsi, 0)); // Load frame size
never@739 3526 #ifdef CC_INTERP
never@739 3527 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
never@739 3528 #ifdef ASSERT
never@739 3529 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 3530 __ push(0xDEADDEAD);
never@739 3531 #else /* ASSERT */
never@739 3532 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
never@739 3533 #endif /* ASSERT */
never@739 3534 #else
never@739 3535 __ subptr(rbx, 2*wordSize); // We'll push pc and ebp by hand
never@739 3536 #endif // CC_INTERP
never@739 3537 __ pushptr(Address(rcx, 0)); // Save return address
duke@435 3538 __ enter(); // Save old & set new ebp
never@739 3539 __ subptr(rsp, rbx); // Prolog
never@739 3540 #ifdef CC_INTERP
never@739 3541 __ movptr(Address(rbp,
never@739 3542 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
never@739 3543 sender_sp); // Make it walkable
never@739 3544 #else /* CC_INTERP */
duke@435 3545 // This value is corrected by layout_activation_impl
never@739 3546 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
never@739 3547 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
never@739 3548 #endif /* CC_INTERP */
never@739 3549 __ mov(sender_sp, rsp); // Pass sender_sp to next frame
never@739 3550 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 3551 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
duke@435 3552 __ decrementl(rdx); // Decrement counter
duke@435 3553 __ jcc(Assembler::notZero, loop);
never@739 3554 __ pushptr(Address(rcx, 0)); // Save final return address
duke@435 3555
duke@435 3556 // Re-push self-frame
duke@435 3557 __ enter(); // Save old & set new ebp
duke@435 3558
duke@435 3559 // Allocate a full sized register save area.
duke@435 3560 // Return address and rbp are in place, so we allocate two less words.
never@739 3561 __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
duke@435 3562
duke@435 3563 // Restore frame locals after moving the frame
duke@435 3564 __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
never@739 3565 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
duke@435 3566
duke@435 3567 // Call C code. Need thread but NOT official VM entry
duke@435 3568 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3569 // restore return values to their stack-slots with the new SP.
duke@435 3570 //
duke@435 3571 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
duke@435 3572
duke@435 3573 // Use rbp because the frames look interpreted now
never@3253 3574 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
never@3253 3575 // Don't need the precise return PC here, just precise enough to point into this code blob.
never@3253 3576 address the_pc = __ pc();
never@3253 3577 __ set_last_Java_frame(noreg, rbp, the_pc);
never@3253 3578
never@3253 3579 __ andptr(rsp, -(StackAlignmentInBytes)); // Fix stack alignment as required by ABI
never@739 3580 __ mov(c_rarg0, r15_thread);
coleenp@548 3581 __ movl(c_rarg1, r14); // second arg: exec_mode
duke@435 3582 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
never@3253 3583 // Revert SP alignment after call since we're going to do some SP relative addressing below
never@3253 3584 __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
duke@435 3585
duke@435 3586 // Set an oopmap for the call site
never@3253 3587 // Use the same PC we used for the last java frame
never@3253 3588 oop_maps->add_gc_map(the_pc - start,
duke@435 3589 new OopMap( frame_size_in_words, 0 ));
duke@435 3590
never@3253 3591 // Clear fp AND pc
kevinw@8877 3592 __ reset_last_Java_frame(true);
duke@435 3593
duke@435 3594 // Collect return values
duke@435 3595 __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
never@739 3596 __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
never@739 3597 // I think this is useless (throwing pc?)
never@739 3598 __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
duke@435 3599
duke@435 3600 // Pop self-frame.
duke@435 3601 __ leave(); // Epilog
duke@435 3602
duke@435 3603 // Jump to interpreter
duke@435 3604 __ ret(0);
duke@435 3605
duke@435 3606 // Make sure all code is generated
duke@435 3607 masm->flush();
duke@435 3608
never@739 3609 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
never@739 3610 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
duke@435 3611 }
duke@435 3612
duke@435 3613 #ifdef COMPILER2
duke@435 3614 //------------------------------generate_uncommon_trap_blob--------------------
duke@435 3615 void SharedRuntime::generate_uncommon_trap_blob() {
duke@435 3616 // Allocate space for the code
duke@435 3617 ResourceMark rm;
duke@435 3618 // Setup code generation tools
duke@435 3619 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
duke@435 3620 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3621
duke@435 3622 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
duke@435 3623
duke@435 3624 address start = __ pc();
duke@435 3625
kvn@6429 3626 if (UseRTMLocking) {
kvn@6429 3627 // Abort RTM transaction before possible nmethod deoptimization.
kvn@6429 3628 __ xabort(0);
kvn@6429 3629 }
kvn@6429 3630
duke@435 3631 // Push self-frame. We get here with a return address on the
duke@435 3632 // stack, so rsp is 8-byte aligned until we allocate our frame.
never@739 3633 __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
duke@435 3634
duke@435 3635 // No callee saved registers. rbp is assumed implicitly saved
never@739 3636 __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
duke@435 3637
duke@435 3638 // compiler left unloaded_class_index in j_rarg0 move to where the
duke@435 3639 // runtime expects it.
duke@435 3640 __ movl(c_rarg1, j_rarg0);
duke@435 3641
duke@435 3642 __ set_last_Java_frame(noreg, noreg, NULL);
duke@435 3643
duke@435 3644 // Call C code. Need thread but NOT official VM entry
duke@435 3645 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3646 // capture callee-saved registers as well as return values.
duke@435 3647 // Thread is in rdi already.
duke@435 3648 //
duke@435 3649 // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
duke@435 3650
never@739 3651 __ mov(c_rarg0, r15_thread);
duke@435 3652 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
duke@435 3653
duke@435 3654 // Set an oopmap for the call site
duke@435 3655 OopMapSet* oop_maps = new OopMapSet();
duke@435 3656 OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
duke@435 3657
duke@435 3658 // location of rbp is known implicitly by the frame sender code
duke@435 3659
duke@435 3660 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 3661
kevinw@8877 3662 __ reset_last_Java_frame(false);
duke@435 3663
duke@435 3664 // Load UnrollBlock* into rdi
never@739 3665 __ mov(rdi, rax);
duke@435 3666
duke@435 3667 // Pop all the frames we must move/replace.
duke@435 3668 //
duke@435 3669 // Frame picture (youngest to oldest)
duke@435 3670 // 1: self-frame (no frame link)
duke@435 3671 // 2: deopting frame (no frame link)
duke@435 3672 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 3673
duke@435 3674 // Pop self-frame. We have no frame, and must rely only on rax and rsp.
never@739 3675 __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
duke@435 3676
duke@435 3677 // Pop deoptimized frame (int)
duke@435 3678 __ movl(rcx, Address(rdi,
duke@435 3679 Deoptimization::UnrollBlock::
duke@435 3680 size_of_deoptimized_frame_offset_in_bytes()));
never@739 3681 __ addptr(rsp, rcx);
duke@435 3682
duke@435 3683 // rsp should be pointing at the return address to the caller (3)
duke@435 3684
roland@6115 3685 // Pick up the initial fp we should save
roland@6115 3686 // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
roland@6115 3687 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
roland@6115 3688
roland@6723 3689 #ifdef ASSERT
roland@6723 3690 // Compilers generate code that bang the stack by as much as the
roland@6723 3691 // interpreter would need. So this stack banging should never
roland@6723 3692 // trigger a fault. Verify that it does not on non product builds.
duke@435 3693 if (UseStackBanging) {
duke@435 3694 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 3695 __ bang_stack_size(rbx, rcx);
duke@435 3696 }
roland@6723 3697 #endif
duke@435 3698
duke@435 3699 // Load address of array of frame pcs into rcx (address*)
roland@6115 3700 __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 3701
duke@435 3702 // Trash the return pc
never@739 3703 __ addptr(rsp, wordSize);
duke@435 3704
duke@435 3705 // Load address of array of frame sizes into rsi (intptr_t*)
roland@6115 3706 __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
duke@435 3707
duke@435 3708 // Counter
roland@6115 3709 __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
duke@435 3710
duke@435 3711 // Now adjust the caller's stack to make up for the extra locals but
duke@435 3712 // record the original sp so that we can save it in the skeletal
duke@435 3713 // interpreter frame and the stack walking of interpreter_sender
duke@435 3714 // will get the unextended sp value and not the "real" sp value.
duke@435 3715
duke@435 3716 const Register sender_sp = r8;
duke@435 3717
never@739 3718 __ mov(sender_sp, rsp);
roland@6115 3719 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
never@739 3720 __ subptr(rsp, rbx);
duke@435 3721
duke@435 3722 // Push interpreter frames in a loop
duke@435 3723 Label loop;
duke@435 3724 __ bind(loop);
never@739 3725 __ movptr(rbx, Address(rsi, 0)); // Load frame size
never@739 3726 __ subptr(rbx, 2 * wordSize); // We'll push pc and rbp by hand
never@739 3727 __ pushptr(Address(rcx, 0)); // Save return address
never@739 3728 __ enter(); // Save old & set new rbp
never@739 3729 __ subptr(rsp, rbx); // Prolog
coleenp@955 3730 #ifdef CC_INTERP
coleenp@955 3731 __ movptr(Address(rbp,
coleenp@955 3732 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
coleenp@955 3733 sender_sp); // Make it walkable
coleenp@955 3734 #else // CC_INTERP
never@739 3735 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
never@739 3736 sender_sp); // Make it walkable
duke@435 3737 // This value is corrected by layout_activation_impl
never@739 3738 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
coleenp@955 3739 #endif // CC_INTERP
never@739 3740 __ mov(sender_sp, rsp); // Pass sender_sp to next frame
never@739 3741 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 3742 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 3743 __ decrementl(rdx); // Decrement counter
duke@435 3744 __ jcc(Assembler::notZero, loop);
never@739 3745 __ pushptr(Address(rcx, 0)); // Save final return address
duke@435 3746
duke@435 3747 // Re-push self-frame
duke@435 3748 __ enter(); // Save old & set new rbp
never@739 3749 __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
duke@435 3750 // Prolog
duke@435 3751
duke@435 3752 // Use rbp because the frames look interpreted now
never@3253 3753 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
never@3253 3754 // Don't need the precise return PC here, just precise enough to point into this code blob.
never@3253 3755 address the_pc = __ pc();
never@3253 3756 __ set_last_Java_frame(noreg, rbp, the_pc);
duke@435 3757
duke@435 3758 // Call C code. Need thread but NOT official VM entry
duke@435 3759 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3760 // restore return values to their stack-slots with the new SP.
duke@435 3761 // Thread is in rdi already.
duke@435 3762 //
duke@435 3763 // BasicType unpack_frames(JavaThread* thread, int exec_mode);
duke@435 3764
never@3253 3765 __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
never@739 3766 __ mov(c_rarg0, r15_thread);
duke@435 3767 __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
duke@435 3768 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 3769
duke@435 3770 // Set an oopmap for the call site
never@3253 3771 // Use the same PC we used for the last java frame
never@3253 3772 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
never@3253 3773
never@3253 3774 // Clear fp AND pc
kevinw@8877 3775 __ reset_last_Java_frame(true);
duke@435 3776
duke@435 3777 // Pop self-frame.
duke@435 3778 __ leave(); // Epilog
duke@435 3779
duke@435 3780 // Jump to interpreter
duke@435 3781 __ ret(0);
duke@435 3782
duke@435 3783 // Make sure all code is generated
duke@435 3784 masm->flush();
duke@435 3785
duke@435 3786 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps,
duke@435 3787 SimpleRuntimeFrame::framesize >> 1);
duke@435 3788 }
duke@435 3789 #endif // COMPILER2
duke@435 3790
duke@435 3791
duke@435 3792 //------------------------------generate_handler_blob------
duke@435 3793 //
duke@435 3794 // Generate a special Compile2Runtime blob that saves all registers,
duke@435 3795 // and setup oopmap.
duke@435 3796 //
kvn@4103 3797 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
duke@435 3798 assert(StubRoutines::forward_exception_entry() != NULL,
duke@435 3799 "must be generated before");
duke@435 3800
duke@435 3801 ResourceMark rm;
duke@435 3802 OopMapSet *oop_maps = new OopMapSet();
duke@435 3803 OopMap* map;
duke@435 3804
duke@435 3805 // Allocate space for the code. Setup code generation tools.
duke@435 3806 CodeBuffer buffer("handler_blob", 2048, 1024);
duke@435 3807 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3808
duke@435 3809 address start = __ pc();
duke@435 3810 address call_pc = NULL;
duke@435 3811 int frame_size_in_words;
kvn@4103 3812 bool cause_return = (poll_type == POLL_AT_RETURN);
kvn@4103 3813 bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
duke@435 3814
kvn@6429 3815 if (UseRTMLocking) {
kvn@6429 3816 // Abort RTM transaction before calling runtime
kvn@6429 3817 // because critical section will be large and will be
kvn@6429 3818 // aborted anyway. Also nmethod could be deoptimized.
kvn@6429 3819 __ xabort(0);
kvn@6429 3820 }
kvn@6429 3821
duke@435 3822 // Make room for return address (or push it again)
duke@435 3823 if (!cause_return) {
never@739 3824 __ push(rbx);
duke@435 3825 }
duke@435 3826
duke@435 3827 // Save registers, fpu state, and flags
kvn@4103 3828 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
duke@435 3829
duke@435 3830 // The following is basically a call_VM. However, we need the precise
duke@435 3831 // address of the call in order to generate an oopmap. Hence, we do all the
duke@435 3832 // work outselves.
duke@435 3833
duke@435 3834 __ set_last_Java_frame(noreg, noreg, NULL);
duke@435 3835
duke@435 3836 // The return address must always be correct so that frame constructor never
duke@435 3837 // sees an invalid pc.
duke@435 3838
duke@435 3839 if (!cause_return) {
duke@435 3840 // overwrite the dummy value we pushed on entry
never@739 3841 __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
never@739 3842 __ movptr(Address(rbp, wordSize), c_rarg0);
duke@435 3843 }
duke@435 3844
duke@435 3845 // Do the call
never@739 3846 __ mov(c_rarg0, r15_thread);
duke@435 3847 __ call(RuntimeAddress(call_ptr));
duke@435 3848
duke@435 3849 // Set an oopmap for the call site. This oopmap will map all
duke@435 3850 // oop-registers and debug-info registers as callee-saved. This
duke@435 3851 // will allow deoptimization at this safepoint to find all possible
duke@435 3852 // debug-info recordings, as well as let GC find all oops.
duke@435 3853
duke@435 3854 oop_maps->add_gc_map( __ pc() - start, map);
duke@435 3855
duke@435 3856 Label noException;
duke@435 3857
kevinw@8877 3858 __ reset_last_Java_frame(false);
duke@435 3859
never@739 3860 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3861 __ jcc(Assembler::equal, noException);
duke@435 3862
duke@435 3863 // Exception pending
duke@435 3864
kvn@4103 3865 RegisterSaver::restore_live_registers(masm, save_vectors);
duke@435 3866
duke@435 3867 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3868
duke@435 3869 // No exception case
duke@435 3870 __ bind(noException);
duke@435 3871
duke@435 3872 // Normal exit, restore registers and exit.
kvn@4103 3873 RegisterSaver::restore_live_registers(masm, save_vectors);
duke@435 3874
duke@435 3875 __ ret(0);
duke@435 3876
duke@435 3877 // Make sure all code is generated
duke@435 3878 masm->flush();
duke@435 3879
duke@435 3880 // Fill-out other meta info
duke@435 3881 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
duke@435 3882 }
duke@435 3883
duke@435 3884 //
duke@435 3885 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
duke@435 3886 //
duke@435 3887 // Generate a stub that calls into vm to find out the proper destination
duke@435 3888 // of a java call. All the argument registers are live at this point
duke@435 3889 // but since this is generic code we don't know what they are and the caller
duke@435 3890 // must do any gc of the args.
duke@435 3891 //
never@2950 3892 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
duke@435 3893 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 3894
duke@435 3895 // allocate space for the code
duke@435 3896 ResourceMark rm;
duke@435 3897
duke@435 3898 CodeBuffer buffer(name, 1000, 512);
duke@435 3899 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3900
duke@435 3901 int frame_size_in_words;
duke@435 3902
duke@435 3903 OopMapSet *oop_maps = new OopMapSet();
duke@435 3904 OopMap* map = NULL;
duke@435 3905
duke@435 3906 int start = __ offset();
duke@435 3907
duke@435 3908 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
duke@435 3909
duke@435 3910 int frame_complete = __ offset();
duke@435 3911
duke@435 3912 __ set_last_Java_frame(noreg, noreg, NULL);
duke@435 3913
never@739 3914 __ mov(c_rarg0, r15_thread);
duke@435 3915
duke@435 3916 __ call(RuntimeAddress(destination));
duke@435 3917
duke@435 3918
duke@435 3919 // Set an oopmap for the call site.
duke@435 3920 // We need this not only for callee-saved registers, but also for volatile
duke@435 3921 // registers that the compiler might be keeping live across a safepoint.
duke@435 3922
duke@435 3923 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 3924
duke@435 3925 // rax contains the address we are going to jump to assuming no exception got installed
duke@435 3926
duke@435 3927 // clear last_Java_sp
kevinw@8877 3928 __ reset_last_Java_frame(false);
duke@435 3929 // check for pending exceptions
duke@435 3930 Label pending;
never@739 3931 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3932 __ jcc(Assembler::notEqual, pending);
duke@435 3933
coleenp@4037 3934 // get the returned Method*
coleenp@4037 3935 __ get_vm_result_2(rbx, r15_thread);
never@739 3936 __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
never@739 3937
never@739 3938 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
duke@435 3939
duke@435 3940 RegisterSaver::restore_live_registers(masm);
duke@435 3941
duke@435 3942 // We are back the the original state on entry and ready to go.
duke@435 3943
duke@435 3944 __ jmp(rax);
duke@435 3945
duke@435 3946 // Pending exception after the safepoint
duke@435 3947
duke@435 3948 __ bind(pending);
duke@435 3949
duke@435 3950 RegisterSaver::restore_live_registers(masm);
duke@435 3951
duke@435 3952 // exception pending => remove activation and forward to exception handler
duke@435 3953
duke@435 3954 __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
duke@435 3955
never@739 3956 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
duke@435 3957 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3958
duke@435 3959 // -------------
duke@435 3960 // make sure all code is generated
duke@435 3961 masm->flush();
duke@435 3962
duke@435 3963 // return the blob
duke@435 3964 // frame_size_words or bytes??
duke@435 3965 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
duke@435 3966 }
duke@435 3967
duke@435 3968
vkempik@8318 3969 //------------------------------Montgomery multiplication------------------------
vkempik@8318 3970 //
vkempik@8318 3971
vkempik@8318 3972 #ifndef _WINDOWS
vkempik@8318 3973
vkempik@8318 3974 #define ASM_SUBTRACT
vkempik@8318 3975
vkempik@8318 3976 #ifdef ASM_SUBTRACT
vkempik@8318 3977 // Subtract 0:b from carry:a. Return carry.
vkempik@8318 3978 static unsigned long
vkempik@8318 3979 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
vkempik@8318 3980 long i = 0, cnt = len;
vkempik@8318 3981 unsigned long tmp;
vkempik@8318 3982 asm volatile("clc; "
vkempik@8318 3983 "0: ; "
vkempik@8318 3984 "mov (%[b], %[i], 8), %[tmp]; "
vkempik@8318 3985 "sbb %[tmp], (%[a], %[i], 8); "
vkempik@8318 3986 "inc %[i]; dec %[cnt]; "
vkempik@8318 3987 "jne 0b; "
vkempik@8318 3988 "mov %[carry], %[tmp]; sbb $0, %[tmp]; "
vkempik@8318 3989 : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
vkempik@8318 3990 : [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
vkempik@8318 3991 : "memory");
vkempik@8318 3992 return tmp;
vkempik@8318 3993 }
vkempik@8318 3994 #else // ASM_SUBTRACT
vkempik@8318 3995 typedef int __attribute__((mode(TI))) int128;
vkempik@8318 3996
vkempik@8318 3997 // Subtract 0:b from carry:a. Return carry.
vkempik@8318 3998 static unsigned long
vkempik@8318 3999 sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) {
vkempik@8318 4000 int128 tmp = 0;
vkempik@8318 4001 int i;
vkempik@8318 4002 for (i = 0; i < len; i++) {
vkempik@8318 4003 tmp += a[i];
vkempik@8318 4004 tmp -= b[i];
vkempik@8318 4005 a[i] = tmp;
vkempik@8318 4006 tmp >>= 64;
vkempik@8318 4007 assert(-1 <= tmp && tmp <= 0, "invariant");
vkempik@8318 4008 }
vkempik@8318 4009 return tmp + carry;
vkempik@8318 4010 }
vkempik@8318 4011 #endif // ! ASM_SUBTRACT
vkempik@8318 4012
vkempik@8318 4013 // Multiply (unsigned) Long A by Long B, accumulating the double-
vkempik@8318 4014 // length result into the accumulator formed of T0, T1, and T2.
vkempik@8318 4015 #define MACC(A, B, T0, T1, T2) \
vkempik@8318 4016 do { \
vkempik@8318 4017 unsigned long hi, lo; \
vkempik@8318 4018 asm volatile("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4" \
vkempik@8318 4019 : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2) \
vkempik@8318 4020 : "r"(A), "a"(B) : "cc"); \
vkempik@8318 4021 } while(0)
vkempik@8318 4022
vkempik@8318 4023 // As above, but add twice the double-length result into the
vkempik@8318 4024 // accumulator.
vkempik@8318 4025 #define MACC2(A, B, T0, T1, T2) \
vkempik@8318 4026 do { \
vkempik@8318 4027 unsigned long hi, lo; \
vkempik@8318 4028 asm volatile("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4;" \
vkempik@8318 4029 "add %%rax, %2; adc %%rdx, %3; adc $0, %4" \
vkempik@8318 4030 : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2) \
vkempik@8318 4031 : "r"(A), "a"(B) : "cc"); \
vkempik@8318 4032 } while(0)
vkempik@8318 4033
vkempik@8318 4034 // Fast Montgomery multiplication. The derivation of the algorithm is
vkempik@8318 4035 // in A Cryptographic Library for the Motorola DSP56000,
vkempik@8318 4036 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
vkempik@8318 4037
vkempik@8318 4038 static void __attribute__((noinline))
vkempik@8318 4039 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
vkempik@8318 4040 unsigned long m[], unsigned long inv, int len) {
vkempik@8318 4041 unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
vkempik@8318 4042 int i;
vkempik@8318 4043
vkempik@8318 4044 assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
vkempik@8318 4045
vkempik@8318 4046 for (i = 0; i < len; i++) {
vkempik@8318 4047 int j;
vkempik@8318 4048 for (j = 0; j < i; j++) {
vkempik@8318 4049 MACC(a[j], b[i-j], t0, t1, t2);
vkempik@8318 4050 MACC(m[j], n[i-j], t0, t1, t2);
vkempik@8318 4051 }
vkempik@8318 4052 MACC(a[i], b[0], t0, t1, t2);
vkempik@8318 4053 m[i] = t0 * inv;
vkempik@8318 4054 MACC(m[i], n[0], t0, t1, t2);
vkempik@8318 4055
vkempik@8318 4056 assert(t0 == 0, "broken Montgomery multiply");
vkempik@8318 4057
vkempik@8318 4058 t0 = t1; t1 = t2; t2 = 0;
vkempik@8318 4059 }
vkempik@8318 4060
vkempik@8318 4061 for (i = len; i < 2*len; i++) {
vkempik@8318 4062 int j;
vkempik@8318 4063 for (j = i-len+1; j < len; j++) {
vkempik@8318 4064 MACC(a[j], b[i-j], t0, t1, t2);
vkempik@8318 4065 MACC(m[j], n[i-j], t0, t1, t2);
vkempik@8318 4066 }
vkempik@8318 4067 m[i-len] = t0;
vkempik@8318 4068 t0 = t1; t1 = t2; t2 = 0;
vkempik@8318 4069 }
vkempik@8318 4070
vkempik@8318 4071 while (t0)
vkempik@8318 4072 t0 = sub(m, n, t0, len);
vkempik@8318 4073 }
vkempik@8318 4074
vkempik@8318 4075 // Fast Montgomery squaring. This uses asymptotically 25% fewer
vkempik@8318 4076 // multiplies so it should be up to 25% faster than Montgomery
vkempik@8318 4077 // multiplication. However, its loop control is more complex and it
vkempik@8318 4078 // may actually run slower on some machines.
vkempik@8318 4079
vkempik@8318 4080 static void __attribute__((noinline))
vkempik@8318 4081 montgomery_square(unsigned long a[], unsigned long n[],
vkempik@8318 4082 unsigned long m[], unsigned long inv, int len) {
vkempik@8318 4083 unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
vkempik@8318 4084 int i;
vkempik@8318 4085
vkempik@8318 4086 assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
vkempik@8318 4087
vkempik@8318 4088 for (i = 0; i < len; i++) {
vkempik@8318 4089 int j;
vkempik@8318 4090 int end = (i+1)/2;
vkempik@8318 4091 for (j = 0; j < end; j++) {
vkempik@8318 4092 MACC2(a[j], a[i-j], t0, t1, t2);
vkempik@8318 4093 MACC(m[j], n[i-j], t0, t1, t2);
vkempik@8318 4094 }
vkempik@8318 4095 if ((i & 1) == 0) {
vkempik@8318 4096 MACC(a[j], a[j], t0, t1, t2);
vkempik@8318 4097 }
vkempik@8318 4098 for (; j < i; j++) {
vkempik@8318 4099 MACC(m[j], n[i-j], t0, t1, t2);
vkempik@8318 4100 }
vkempik@8318 4101 m[i] = t0 * inv;
vkempik@8318 4102 MACC(m[i], n[0], t0, t1, t2);
vkempik@8318 4103
vkempik@8318 4104 assert(t0 == 0, "broken Montgomery square");
vkempik@8318 4105
vkempik@8318 4106 t0 = t1; t1 = t2; t2 = 0;
vkempik@8318 4107 }
vkempik@8318 4108
vkempik@8318 4109 for (i = len; i < 2*len; i++) {
vkempik@8318 4110 int start = i-len+1;
vkempik@8318 4111 int end = start + (len - start)/2;
vkempik@8318 4112 int j;
vkempik@8318 4113 for (j = start; j < end; j++) {
vkempik@8318 4114 MACC2(a[j], a[i-j], t0, t1, t2);
vkempik@8318 4115 MACC(m[j], n[i-j], t0, t1, t2);
vkempik@8318 4116 }
vkempik@8318 4117 if ((i & 1) == 0) {
vkempik@8318 4118 MACC(a[j], a[j], t0, t1, t2);
vkempik@8318 4119 }
vkempik@8318 4120 for (; j < len; j++) {
vkempik@8318 4121 MACC(m[j], n[i-j], t0, t1, t2);
vkempik@8318 4122 }
vkempik@8318 4123 m[i-len] = t0;
vkempik@8318 4124 t0 = t1; t1 = t2; t2 = 0;
vkempik@8318 4125 }
vkempik@8318 4126
vkempik@8318 4127 while (t0)
vkempik@8318 4128 t0 = sub(m, n, t0, len);
vkempik@8318 4129 }
vkempik@8318 4130
vkempik@8318 4131 // Swap words in a longword.
vkempik@8318 4132 static unsigned long swap(unsigned long x) {
vkempik@8318 4133 return (x << 32) | (x >> 32);
vkempik@8318 4134 }
vkempik@8318 4135
vkempik@8318 4136 // Copy len longwords from s to d, word-swapping as we go. The
vkempik@8318 4137 // destination array is reversed.
vkempik@8318 4138 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
vkempik@8318 4139 d += len;
vkempik@8318 4140 while(len-- > 0) {
vkempik@8318 4141 d--;
vkempik@8318 4142 *d = swap(*s);
vkempik@8318 4143 s++;
vkempik@8318 4144 }
vkempik@8318 4145 }
vkempik@8318 4146
vkempik@8318 4147 // The threshold at which squaring is advantageous was determined
vkempik@8318 4148 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
vkempik@8318 4149 #define MONTGOMERY_SQUARING_THRESHOLD 64
vkempik@8318 4150
vkempik@8318 4151 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
vkempik@8318 4152 jint len, jlong inv,
vkempik@8318 4153 jint *m_ints) {
vkempik@8318 4154 assert(len % 2 == 0, "array length in montgomery_multiply must be even");
vkempik@8318 4155 int longwords = len/2;
vkempik@8318 4156
vkempik@8318 4157 // Make very sure we don't use so much space that the stack might
vkempik@8318 4158 // overflow. 512 jints corresponds to an 16384-bit integer and
vkempik@8318 4159 // will use here a total of 8k bytes of stack space.
vkempik@8318 4160 int total_allocation = longwords * sizeof (unsigned long) * 4;
vkempik@8318 4161 guarantee(total_allocation <= 8192, "must be");
vkempik@8318 4162 unsigned long *scratch = (unsigned long *)alloca(total_allocation);
vkempik@8318 4163
vkempik@8318 4164 // Local scratch arrays
vkempik@8318 4165 unsigned long
vkempik@8318 4166 *a = scratch + 0 * longwords,
vkempik@8318 4167 *b = scratch + 1 * longwords,
vkempik@8318 4168 *n = scratch + 2 * longwords,
vkempik@8318 4169 *m = scratch + 3 * longwords;
vkempik@8318 4170
vkempik@8318 4171 reverse_words((unsigned long *)a_ints, a, longwords);
vkempik@8318 4172 reverse_words((unsigned long *)b_ints, b, longwords);
vkempik@8318 4173 reverse_words((unsigned long *)n_ints, n, longwords);
vkempik@8318 4174
vkempik@8318 4175 ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
vkempik@8318 4176
vkempik@8318 4177 reverse_words(m, (unsigned long *)m_ints, longwords);
vkempik@8318 4178 }
vkempik@8318 4179
vkempik@8318 4180 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
vkempik@8318 4181 jint len, jlong inv,
vkempik@8318 4182 jint *m_ints) {
vkempik@8318 4183 assert(len % 2 == 0, "array length in montgomery_square must be even");
vkempik@8318 4184 int longwords = len/2;
vkempik@8318 4185
vkempik@8318 4186 // Make very sure we don't use so much space that the stack might
vkempik@8318 4187 // overflow. 512 jints corresponds to an 16384-bit integer and
vkempik@8318 4188 // will use here a total of 6k bytes of stack space.
vkempik@8318 4189 int total_allocation = longwords * sizeof (unsigned long) * 3;
vkempik@8318 4190 guarantee(total_allocation <= 8192, "must be");
vkempik@8318 4191 unsigned long *scratch = (unsigned long *)alloca(total_allocation);
vkempik@8318 4192
vkempik@8318 4193 // Local scratch arrays
vkempik@8318 4194 unsigned long
vkempik@8318 4195 *a = scratch + 0 * longwords,
vkempik@8318 4196 *n = scratch + 1 * longwords,
vkempik@8318 4197 *m = scratch + 2 * longwords;
vkempik@8318 4198
vkempik@8318 4199 reverse_words((unsigned long *)a_ints, a, longwords);
vkempik@8318 4200 reverse_words((unsigned long *)n_ints, n, longwords);
vkempik@8318 4201
vkempik@8318 4202 //montgomery_square fails to pass BigIntegerTest on solaris amd64
vkempik@8318 4203 //on jdk7 and jdk8.
vkempik@8318 4204 #ifndef SOLARIS
vkempik@8318 4205 if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
vkempik@8318 4206 #else
vkempik@8318 4207 if (0) {
vkempik@8318 4208 #endif
vkempik@8318 4209 ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
vkempik@8318 4210 } else {
vkempik@8318 4211 ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
vkempik@8318 4212 }
vkempik@8318 4213
vkempik@8318 4214 reverse_words(m, (unsigned long *)m_ints, longwords);
vkempik@8318 4215 }
vkempik@8318 4216
vkempik@8318 4217 #endif // WINDOWS
vkempik@8318 4218
duke@435 4219 #ifdef COMPILER2
duke@435 4220 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
duke@435 4221 //
duke@435 4222 //------------------------------generate_exception_blob---------------------------
duke@435 4223 // creates exception blob at the end
duke@435 4224 // Using exception blob, this code is jumped from a compiled method.
duke@435 4225 // (see emit_exception_handler in x86_64.ad file)
duke@435 4226 //
duke@435 4227 // Given an exception pc at a call we call into the runtime for the
duke@435 4228 // handler in this method. This handler might merely restore state
duke@435 4229 // (i.e. callee save registers) unwind the frame and jump to the
duke@435 4230 // exception handler for the nmethod if there is no Java level handler
duke@435 4231 // for the nmethod.
duke@435 4232 //
duke@435 4233 // This code is entered with a jmp.
duke@435 4234 //
duke@435 4235 // Arguments:
duke@435 4236 // rax: exception oop
duke@435 4237 // rdx: exception pc
duke@435 4238 //
duke@435 4239 // Results:
duke@435 4240 // rax: exception oop
duke@435 4241 // rdx: exception pc in caller or ???
duke@435 4242 // destination: exception handler of caller
duke@435 4243 //
duke@435 4244 // Note: the exception pc MUST be at a call (precise debug information)
duke@435 4245 // Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
duke@435 4246 //
duke@435 4247
duke@435 4248 void OptoRuntime::generate_exception_blob() {
duke@435 4249 assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
duke@435 4250 assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
duke@435 4251 assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
duke@435 4252
duke@435 4253 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
duke@435 4254
duke@435 4255 // Allocate space for the code
duke@435 4256 ResourceMark rm;
duke@435 4257 // Setup code generation tools
duke@435 4258 CodeBuffer buffer("exception_blob", 2048, 1024);
duke@435 4259 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 4260
duke@435 4261
duke@435 4262 address start = __ pc();
duke@435 4263
duke@435 4264 // Exception pc is 'return address' for stack walker
never@739 4265 __ push(rdx);
never@739 4266 __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
duke@435 4267
duke@435 4268 // Save callee-saved registers. See x86_64.ad.
duke@435 4269
zmajo@7854 4270 // rbp is an implicitly saved callee saved register (i.e., the calling
zmajo@7854 4271 // convention will save/restore it in the prolog/epilog). Other than that
duke@435 4272 // there are no callee save registers now that adapter frames are gone.
duke@435 4273
never@739 4274 __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
duke@435 4275
duke@435 4276 // Store exception in Thread object. We cannot pass any arguments to the
duke@435 4277 // handle_exception call, since we do not want to make any assumption
duke@435 4278 // about the size of the frame where the exception happened in.
duke@435 4279 // c_rarg0 is either rdi (Linux) or rcx (Windows).
never@739 4280 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
never@739 4281 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
duke@435 4282
duke@435 4283 // This call does all the hard work. It checks if an exception handler
duke@435 4284 // exists in the method.
duke@435 4285 // If so, it returns the handler address.
duke@435 4286 // If not, it prepares for stack-unwinding, restoring the callee-save
duke@435 4287 // registers of the frame being removed.
duke@435 4288 //
duke@435 4289 // address OptoRuntime::handle_exception_C(JavaThread* thread)
duke@435 4290
roland@3607 4291 // At a method handle call, the stack may not be properly aligned
roland@3607 4292 // when returning with an exception.
roland@3607 4293 address the_pc = __ pc();
roland@3607 4294 __ set_last_Java_frame(noreg, noreg, the_pc);
never@739 4295 __ mov(c_rarg0, r15_thread);
roland@3607 4296 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
duke@435 4297 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
duke@435 4298
duke@435 4299 // Set an oopmap for the call site. This oopmap will only be used if we
duke@435 4300 // are unwinding the stack. Hence, all locations will be dead.
duke@435 4301 // Callee-saved registers will be the same as the frame above (i.e.,
duke@435 4302 // handle_exception_stub), since they were restored when we got the
duke@435 4303 // exception.
duke@435 4304
duke@435 4305 OopMapSet* oop_maps = new OopMapSet();
duke@435 4306
roland@3607 4307 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
roland@3607 4308
kevinw@8877 4309 __ reset_last_Java_frame(false);
duke@435 4310
duke@435 4311 // Restore callee-saved registers
duke@435 4312
zmajo@7854 4313 // rbp is an implicitly saved callee-saved register (i.e., the calling
duke@435 4314 // convention will save restore it in prolog/epilog) Other than that
zmajo@7854 4315 // there are no callee save registers now that adapter frames are gone.
duke@435 4316
never@739 4317 __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
never@739 4318
never@739 4319 __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
never@739 4320 __ pop(rdx); // No need for exception pc anymore
duke@435 4321
duke@435 4322 // rax: exception handler
duke@435 4323
duke@435 4324 // We have a handler in rax (could be deopt blob).
never@739 4325 __ mov(r8, rax);
duke@435 4326
duke@435 4327 // Get the exception oop
never@739 4328 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
duke@435 4329 // Get the exception pc in case we are deoptimized
never@739 4330 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
duke@435 4331 #ifdef ASSERT
duke@435 4332 __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
duke@435 4333 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
duke@435 4334 #endif
duke@435 4335 // Clear the exception oop so GC no longer processes it as a root.
duke@435 4336 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
duke@435 4337
duke@435 4338 // rax: exception oop
duke@435 4339 // r8: exception handler
duke@435 4340 // rdx: exception pc
duke@435 4341 // Jump to handler
duke@435 4342
duke@435 4343 __ jmp(r8);
duke@435 4344
duke@435 4345 // Make sure all code is generated
duke@435 4346 masm->flush();
duke@435 4347
duke@435 4348 // Set exception blob
duke@435 4349 _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
duke@435 4350 }
duke@435 4351 #endif // COMPILER2

mercurial