src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Mon, 01 Feb 2010 17:35:05 -0700

author
dcubed
date
Mon, 01 Feb 2010 17:35:05 -0700
changeset 1648
6deeaebad47a
parent 1495
323bd24c6520
child 1651
7f8790caccb0
permissions
-rw-r--r--

6902182: 4/4 Starting with jdwp agent should not incur performance penalty
Summary: Rename can_post_exceptions support to can_post_on_exceptions. Add support for should_post_on_exceptions flag to permit per JavaThread optimizations.
Reviewed-by: never, kvn, dcubed
Contributed-by: tom.deneau@amd.com

duke@435 1 /*
dcubed@1648 2 * Copyright 2000-2010 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
duke@435 27
duke@435 28
duke@435 29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 30 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 31 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 32
duke@435 33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 35 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 36 // of 128-bits operands for SSE instructions.
duke@435 37 jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
duke@435 38 // Store the value to a 128-bits operand.
duke@435 39 operand[0] = lo;
duke@435 40 operand[1] = hi;
duke@435 41 return operand;
duke@435 42 }
duke@435 43
duke@435 44 // Buffer for 128-bits masks used by SSE instructions.
duke@435 45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 46
duke@435 47 // Static initialization during VM startup.
duke@435 48 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 50 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 52
duke@435 53
duke@435 54
duke@435 55 NEEDS_CLEANUP // remove this definitions ?
duke@435 56 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 57 const Register SYNC_header = rax; // synchronization header
duke@435 58 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 59
duke@435 60 #define __ _masm->
duke@435 61
duke@435 62
duke@435 63 static void select_different_registers(Register preserve,
duke@435 64 Register extra,
duke@435 65 Register &tmp1,
duke@435 66 Register &tmp2) {
duke@435 67 if (tmp1 == preserve) {
duke@435 68 assert_different_registers(tmp1, tmp2, extra);
duke@435 69 tmp1 = extra;
duke@435 70 } else if (tmp2 == preserve) {
duke@435 71 assert_different_registers(tmp1, tmp2, extra);
duke@435 72 tmp2 = extra;
duke@435 73 }
duke@435 74 assert_different_registers(preserve, tmp1, tmp2);
duke@435 75 }
duke@435 76
duke@435 77
duke@435 78
duke@435 79 static void select_different_registers(Register preserve,
duke@435 80 Register extra,
duke@435 81 Register &tmp1,
duke@435 82 Register &tmp2,
duke@435 83 Register &tmp3) {
duke@435 84 if (tmp1 == preserve) {
duke@435 85 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 86 tmp1 = extra;
duke@435 87 } else if (tmp2 == preserve) {
duke@435 88 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 89 tmp2 = extra;
duke@435 90 } else if (tmp3 == preserve) {
duke@435 91 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 92 tmp3 = extra;
duke@435 93 }
duke@435 94 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 95 }
duke@435 96
duke@435 97
duke@435 98
duke@435 99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 100 if (opr->is_constant()) {
duke@435 101 LIR_Const* constant = opr->as_constant_ptr();
duke@435 102 switch (constant->type()) {
duke@435 103 case T_INT: {
duke@435 104 return true;
duke@435 105 }
duke@435 106
duke@435 107 default:
duke@435 108 return false;
duke@435 109 }
duke@435 110 }
duke@435 111 return false;
duke@435 112 }
duke@435 113
duke@435 114
duke@435 115 LIR_Opr LIR_Assembler::receiverOpr() {
never@739 116 return FrameMap::receiver_opr;
duke@435 117 }
duke@435 118
duke@435 119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
duke@435 120 return receiverOpr();
duke@435 121 }
duke@435 122
duke@435 123 LIR_Opr LIR_Assembler::osrBufferPointer() {
never@739 124 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
duke@435 125 }
duke@435 126
duke@435 127 //--------------fpu register translations-----------------------
duke@435 128
duke@435 129
duke@435 130 address LIR_Assembler::float_constant(float f) {
duke@435 131 address const_addr = __ float_constant(f);
duke@435 132 if (const_addr == NULL) {
duke@435 133 bailout("const section overflow");
duke@435 134 return __ code()->consts()->start();
duke@435 135 } else {
duke@435 136 return const_addr;
duke@435 137 }
duke@435 138 }
duke@435 139
duke@435 140
duke@435 141 address LIR_Assembler::double_constant(double d) {
duke@435 142 address const_addr = __ double_constant(d);
duke@435 143 if (const_addr == NULL) {
duke@435 144 bailout("const section overflow");
duke@435 145 return __ code()->consts()->start();
duke@435 146 } else {
duke@435 147 return const_addr;
duke@435 148 }
duke@435 149 }
duke@435 150
duke@435 151
duke@435 152 void LIR_Assembler::set_24bit_FPU() {
duke@435 153 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 154 }
duke@435 155
duke@435 156 void LIR_Assembler::reset_FPU() {
duke@435 157 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 158 }
duke@435 159
duke@435 160 void LIR_Assembler::fpop() {
duke@435 161 __ fpop();
duke@435 162 }
duke@435 163
duke@435 164 void LIR_Assembler::fxch(int i) {
duke@435 165 __ fxch(i);
duke@435 166 }
duke@435 167
duke@435 168 void LIR_Assembler::fld(int i) {
duke@435 169 __ fld_s(i);
duke@435 170 }
duke@435 171
duke@435 172 void LIR_Assembler::ffree(int i) {
duke@435 173 __ ffree(i);
duke@435 174 }
duke@435 175
duke@435 176 void LIR_Assembler::breakpoint() {
duke@435 177 __ int3();
duke@435 178 }
duke@435 179
duke@435 180 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 181 if (opr->is_single_cpu()) {
duke@435 182 __ push_reg(opr->as_register());
duke@435 183 } else if (opr->is_double_cpu()) {
never@739 184 NOT_LP64(__ push_reg(opr->as_register_hi()));
duke@435 185 __ push_reg(opr->as_register_lo());
duke@435 186 } else if (opr->is_stack()) {
duke@435 187 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 188 } else if (opr->is_constant()) {
duke@435 189 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 190 if (const_opr->type() == T_OBJECT) {
duke@435 191 __ push_oop(const_opr->as_jobject());
duke@435 192 } else if (const_opr->type() == T_INT) {
duke@435 193 __ push_jint(const_opr->as_jint());
duke@435 194 } else {
duke@435 195 ShouldNotReachHere();
duke@435 196 }
duke@435 197
duke@435 198 } else {
duke@435 199 ShouldNotReachHere();
duke@435 200 }
duke@435 201 }
duke@435 202
duke@435 203 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 204 if (opr->is_single_cpu()) {
never@739 205 __ pop_reg(opr->as_register());
duke@435 206 } else {
duke@435 207 ShouldNotReachHere();
duke@435 208 }
duke@435 209 }
duke@435 210
never@739 211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
never@739 212 return addr->base()->is_illegal() && addr->index()->is_illegal();
never@739 213 }
never@739 214
duke@435 215 //-------------------------------------------
never@739 216
duke@435 217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
never@739 218 return as_Address(addr, rscratch1);
never@739 219 }
never@739 220
never@739 221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
duke@435 222 if (addr->base()->is_illegal()) {
duke@435 223 assert(addr->index()->is_illegal(), "must be illegal too");
never@739 224 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
never@739 225 if (! __ reachable(laddr)) {
never@739 226 __ movptr(tmp, laddr.addr());
never@739 227 Address res(tmp, 0);
never@739 228 return res;
never@739 229 } else {
never@739 230 return __ as_Address(laddr);
never@739 231 }
duke@435 232 }
duke@435 233
never@739 234 Register base = addr->base()->as_pointer_register();
duke@435 235
duke@435 236 if (addr->index()->is_illegal()) {
duke@435 237 return Address( base, addr->disp());
never@739 238 } else if (addr->index()->is_cpu_register()) {
never@739 239 Register index = addr->index()->as_pointer_register();
duke@435 240 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 241 } else if (addr->index()->is_constant()) {
never@739 242 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
never@739 243 assert(Assembler::is_simm32(addr_offset), "must be");
duke@435 244
duke@435 245 return Address(base, addr_offset);
duke@435 246 } else {
duke@435 247 Unimplemented();
duke@435 248 return Address();
duke@435 249 }
duke@435 250 }
duke@435 251
duke@435 252
duke@435 253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 254 Address base = as_Address(addr);
duke@435 255 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 256 }
duke@435 257
duke@435 258
duke@435 259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 260 return as_Address(addr);
duke@435 261 }
duke@435 262
duke@435 263
duke@435 264 void LIR_Assembler::osr_entry() {
duke@435 265 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 266 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 267 ValueStack* entry_state = osr_entry->state();
duke@435 268 int number_of_locks = entry_state->locks_size();
duke@435 269
duke@435 270 // we jump here if osr happens with the interpreter
duke@435 271 // state set up to continue at the beginning of the
duke@435 272 // loop that triggered osr - in particular, we have
duke@435 273 // the following registers setup:
duke@435 274 //
duke@435 275 // rcx: osr buffer
duke@435 276 //
duke@435 277
duke@435 278 // build frame
duke@435 279 ciMethod* m = compilation()->method();
duke@435 280 __ build_frame(initial_frame_size_in_bytes());
duke@435 281
duke@435 282 // OSR buffer is
duke@435 283 //
duke@435 284 // locals[nlocals-1..0]
duke@435 285 // monitors[0..number_of_locks]
duke@435 286 //
duke@435 287 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 288 // so first slot in the local array is the last local from the interpreter
duke@435 289 // and last slot is local[0] (receiver) from the interpreter
duke@435 290 //
duke@435 291 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 292 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 293 // in the interpreter frame (the method lock if a sync method)
duke@435 294
duke@435 295 // Initialize monitors in the compiled activation.
duke@435 296 // rcx: pointer to osr buffer
duke@435 297 //
duke@435 298 // All other registers are dead at this point and the locals will be
duke@435 299 // copied into place by code emitted in the IR.
duke@435 300
never@739 301 Register OSR_buf = osrBufferPointer()->as_pointer_register();
duke@435 302 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 303 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 304 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 305 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 306 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 307 // the oop.
duke@435 308 for (int i = 0; i < number_of_locks; i++) {
roland@1495 309 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 310 #ifdef ASSERT
duke@435 311 // verify the interpreter's monitor has a non-null object
duke@435 312 {
duke@435 313 Label L;
roland@1495 314 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
duke@435 315 __ jcc(Assembler::notZero, L);
duke@435 316 __ stop("locked object is NULL");
duke@435 317 __ bind(L);
duke@435 318 }
duke@435 319 #endif
roland@1495 320 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
never@739 321 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
roland@1495 322 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
never@739 323 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
duke@435 324 }
duke@435 325 }
duke@435 326 }
duke@435 327
duke@435 328
duke@435 329 // inline cache check; done before the frame is built.
duke@435 330 int LIR_Assembler::check_icache() {
duke@435 331 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 332 Register ic_klass = IC_Klass;
never@739 333 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
duke@435 334
duke@435 335 if (!VerifyOops) {
duke@435 336 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
never@739 337 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
duke@435 338 __ nop();
duke@435 339 }
duke@435 340 }
duke@435 341 int offset = __ offset();
duke@435 342 __ inline_cache_check(receiver, IC_Klass);
duke@435 343 assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
duke@435 344 if (VerifyOops) {
duke@435 345 // force alignment after the cache check.
duke@435 346 // It's been verified to be aligned if !VerifyOops
duke@435 347 __ align(CodeEntryAlignment);
duke@435 348 }
duke@435 349 return offset;
duke@435 350 }
duke@435 351
duke@435 352
duke@435 353 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 354 jobject o = NULL;
duke@435 355 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
duke@435 356 __ movoop(reg, o);
duke@435 357 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 358 }
duke@435 359
duke@435 360
duke@435 361 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
duke@435 362 if (exception->is_valid()) {
duke@435 363 // preserve exception
duke@435 364 // note: the monitor_exit runtime call is a leaf routine
duke@435 365 // and cannot block => no GC can happen
duke@435 366 // The slow case (MonitorAccessStub) uses the first two stack slots
duke@435 367 // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
never@739 368 __ movptr (Address(rsp, 2*wordSize), exception);
duke@435 369 }
duke@435 370
duke@435 371 Register obj_reg = obj_opr->as_register();
duke@435 372 Register lock_reg = lock_opr->as_register();
duke@435 373
duke@435 374 // setup registers (lock_reg must be rax, for lock_object)
duke@435 375 assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
duke@435 376 Register hdr = lock_reg;
duke@435 377 assert(new_hdr == SYNC_header, "wrong register");
duke@435 378 lock_reg = new_hdr;
duke@435 379 // compute pointer to BasicLock
duke@435 380 Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
never@739 381 __ lea(lock_reg, lock_addr);
duke@435 382 // unlock object
duke@435 383 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
duke@435 384 // _slow_case_stubs->append(slow_case);
duke@435 385 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 386 _slow_case_stubs->append(slow_case);
duke@435 387 if (UseFastLocking) {
duke@435 388 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 389 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 390 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 391 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 392 } else {
duke@435 393 // always do slow unlocking
duke@435 394 // note: the slow unlocking code could be inlined here, however if we use
duke@435 395 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 396 // simpler and requires less duplicated code - additionally, the
duke@435 397 // slow unlocking code is the same in either case which simplifies
duke@435 398 // debugging
duke@435 399 __ jmp(*slow_case->entry());
duke@435 400 }
duke@435 401 // done
duke@435 402 __ bind(*slow_case->continuation());
duke@435 403
duke@435 404 if (exception->is_valid()) {
duke@435 405 // restore exception
never@739 406 __ movptr (exception, Address(rsp, 2 * wordSize));
duke@435 407 }
duke@435 408 }
duke@435 409
duke@435 410 // This specifies the rsp decrement needed to build the frame
duke@435 411 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 412 // if rounding, must let FrameMap know!
never@739 413
never@739 414 // The frame_map records size in slots (32bit word)
never@739 415
never@739 416 // subtract two words to account for return address and link
never@739 417 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
duke@435 418 }
duke@435 419
duke@435 420
duke@435 421 void LIR_Assembler::emit_exception_handler() {
duke@435 422 // if the last instruction is a call (typically to do a throw which
duke@435 423 // is coming at the end after block reordering) the return address
duke@435 424 // must still point into the code area in order to avoid assertion
duke@435 425 // failures when searching for the corresponding bci => add a nop
duke@435 426 // (was bug 5/14/1999 - gri)
duke@435 427
duke@435 428 __ nop();
duke@435 429
duke@435 430 // generate code for exception handler
duke@435 431 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 432 if (handler_base == NULL) {
duke@435 433 // not enough space left for the handler
duke@435 434 bailout("exception handler overflow");
duke@435 435 return;
duke@435 436 }
duke@435 437 #ifdef ASSERT
duke@435 438 int offset = code_offset();
duke@435 439 #endif // ASSERT
duke@435 440
duke@435 441 compilation()->offsets()->set_value(CodeOffsets::Exceptions, code_offset());
duke@435 442
duke@435 443 // if the method does not have an exception handler, then there is
duke@435 444 // no reason to search for one
dcubed@1648 445 if (compilation()->has_exception_handlers() || compilation()->env()->jvmti_can_post_on_exceptions()) {
duke@435 446 // the exception oop and pc are in rax, and rdx
duke@435 447 // no other registers need to be preserved, so invalidate them
duke@435 448 __ invalidate_registers(false, true, true, false, true, true);
duke@435 449
duke@435 450 // check that there is really an exception
duke@435 451 __ verify_not_null_oop(rax);
duke@435 452
duke@435 453 // search an exception handler (rax: exception oop, rdx: throwing pc)
duke@435 454 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
duke@435 455
duke@435 456 // if the call returns here, then the exception handler for particular
duke@435 457 // exception doesn't exist -> unwind activation and forward exception to caller
duke@435 458 }
duke@435 459
duke@435 460 // the exception oop is in rax,
duke@435 461 // no other registers need to be preserved, so invalidate them
duke@435 462 __ invalidate_registers(false, true, true, true, true, true);
duke@435 463
duke@435 464 // check that there is really an exception
duke@435 465 __ verify_not_null_oop(rax);
duke@435 466
duke@435 467 // unlock the receiver/klass if necessary
duke@435 468 // rax,: exception
duke@435 469 ciMethod* method = compilation()->method();
duke@435 470 if (method->is_synchronized() && GenerateSynchronizationCode) {
duke@435 471 monitorexit(FrameMap::rbx_oop_opr, FrameMap::rcx_opr, SYNC_header, 0, rax);
duke@435 472 }
duke@435 473
duke@435 474 // unwind activation and forward exception to caller
duke@435 475 // rax,: exception
duke@435 476 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
duke@435 477
duke@435 478 assert(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 479
duke@435 480 __ end_a_stub();
duke@435 481 }
duke@435 482
duke@435 483 void LIR_Assembler::emit_deopt_handler() {
duke@435 484 // if the last instruction is a call (typically to do a throw which
duke@435 485 // is coming at the end after block reordering) the return address
duke@435 486 // must still point into the code area in order to avoid assertion
duke@435 487 // failures when searching for the corresponding bci => add a nop
duke@435 488 // (was bug 5/14/1999 - gri)
duke@435 489
duke@435 490 __ nop();
duke@435 491
duke@435 492 // generate code for exception handler
duke@435 493 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 494 if (handler_base == NULL) {
duke@435 495 // not enough space left for the handler
duke@435 496 bailout("deopt handler overflow");
duke@435 497 return;
duke@435 498 }
duke@435 499 #ifdef ASSERT
duke@435 500 int offset = code_offset();
duke@435 501 #endif // ASSERT
duke@435 502
duke@435 503 compilation()->offsets()->set_value(CodeOffsets::Deopt, code_offset());
duke@435 504
duke@435 505 InternalAddress here(__ pc());
duke@435 506 __ pushptr(here.addr());
duke@435 507
duke@435 508 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
duke@435 509
duke@435 510 assert(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 511
duke@435 512 __ end_a_stub();
duke@435 513
duke@435 514 }
duke@435 515
duke@435 516
duke@435 517 // This is the fast version of java.lang.String.compare; it has not
duke@435 518 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 519 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
never@739 520 __ movptr (rbx, rcx); // receiver is in rcx
never@739 521 __ movptr (rax, arg1->as_register());
duke@435 522
duke@435 523 // Get addresses of first characters from both Strings
never@739 524 __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
never@739 525 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
never@739 526 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 527
duke@435 528
duke@435 529 // rbx, may be NULL
duke@435 530 add_debug_info_for_null_check_here(info);
never@739 531 __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
never@739 532 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
never@739 533 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 534
duke@435 535 // compute minimum length (in rax) and difference of lengths (on top of stack)
duke@435 536 if (VM_Version::supports_cmov()) {
never@739 537 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 538 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 539 __ mov (rcx, rbx);
never@739 540 __ subptr (rbx, rax); // subtract lengths
never@739 541 __ push (rbx); // result
never@739 542 __ cmov (Assembler::lessEqual, rax, rcx);
duke@435 543 } else {
duke@435 544 Label L;
never@739 545 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 546 __ movl (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 547 __ mov (rax, rbx);
never@739 548 __ subptr (rbx, rcx);
never@739 549 __ push (rbx);
never@739 550 __ jcc (Assembler::lessEqual, L);
never@739 551 __ mov (rax, rcx);
duke@435 552 __ bind (L);
duke@435 553 }
duke@435 554 // is minimum length 0?
duke@435 555 Label noLoop, haveResult;
never@739 556 __ testptr (rax, rax);
duke@435 557 __ jcc (Assembler::zero, noLoop);
duke@435 558
duke@435 559 // compare first characters
jrose@1057 560 __ load_unsigned_short(rcx, Address(rdi, 0));
jrose@1057 561 __ load_unsigned_short(rbx, Address(rsi, 0));
duke@435 562 __ subl(rcx, rbx);
duke@435 563 __ jcc(Assembler::notZero, haveResult);
duke@435 564 // starting loop
duke@435 565 __ decrement(rax); // we already tested index: skip one
duke@435 566 __ jcc(Assembler::zero, noLoop);
duke@435 567
duke@435 568 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 569 // negate the index
duke@435 570
never@739 571 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 572 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 573 __ negptr(rax);
duke@435 574
duke@435 575 // compare the strings in a loop
duke@435 576
duke@435 577 Label loop;
duke@435 578 __ align(wordSize);
duke@435 579 __ bind(loop);
jrose@1057 580 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
jrose@1057 581 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 582 __ subl(rcx, rbx);
duke@435 583 __ jcc(Assembler::notZero, haveResult);
duke@435 584 __ increment(rax);
duke@435 585 __ jcc(Assembler::notZero, loop);
duke@435 586
duke@435 587 // strings are equal up to min length
duke@435 588
duke@435 589 __ bind(noLoop);
never@739 590 __ pop(rax);
duke@435 591 return_op(LIR_OprFact::illegalOpr);
duke@435 592
duke@435 593 __ bind(haveResult);
duke@435 594 // leave instruction is going to discard the TOS value
never@739 595 __ mov (rax, rcx); // result of call is in rax,
duke@435 596 }
duke@435 597
duke@435 598
duke@435 599 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 600 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 601 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 602 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 603 }
duke@435 604
duke@435 605 // Pop the stack before the safepoint code
duke@435 606 __ leave();
duke@435 607
duke@435 608 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 609
duke@435 610 // Note: we do not need to round double result; float result has the right precision
duke@435 611 // the poll sets the condition code, but no data registers
duke@435 612 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 613 relocInfo::poll_return_type);
never@739 614
never@739 615 // NOTE: the requires that the polling page be reachable else the reloc
never@739 616 // goes to the movq that loads the address and not the faulting instruction
never@739 617 // which breaks the signal handler code
never@739 618
duke@435 619 __ test32(rax, polling_page);
duke@435 620
duke@435 621 __ ret(0);
duke@435 622 }
duke@435 623
duke@435 624
duke@435 625 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 626 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 627 relocInfo::poll_type);
duke@435 628
duke@435 629 if (info != NULL) {
duke@435 630 add_debug_info_for_branch(info);
duke@435 631 } else {
duke@435 632 ShouldNotReachHere();
duke@435 633 }
duke@435 634
duke@435 635 int offset = __ offset();
never@739 636
never@739 637 // NOTE: the requires that the polling page be reachable else the reloc
never@739 638 // goes to the movq that loads the address and not the faulting instruction
never@739 639 // which breaks the signal handler code
never@739 640
duke@435 641 __ test32(rax, polling_page);
duke@435 642 return offset;
duke@435 643 }
duke@435 644
duke@435 645
duke@435 646 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
never@739 647 if (from_reg != to_reg) __ mov(to_reg, from_reg);
duke@435 648 }
duke@435 649
duke@435 650 void LIR_Assembler::swap_reg(Register a, Register b) {
never@739 651 __ xchgptr(a, b);
duke@435 652 }
duke@435 653
duke@435 654
duke@435 655 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 656 assert(src->is_constant(), "should not call otherwise");
duke@435 657 assert(dest->is_register(), "should not call otherwise");
duke@435 658 LIR_Const* c = src->as_constant_ptr();
duke@435 659
duke@435 660 switch (c->type()) {
duke@435 661 case T_INT: {
duke@435 662 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 663 __ movl(dest->as_register(), c->as_jint());
duke@435 664 break;
duke@435 665 }
duke@435 666
duke@435 667 case T_LONG: {
duke@435 668 assert(patch_code == lir_patch_none, "no patching handled here");
never@739 669 #ifdef _LP64
never@739 670 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
never@739 671 #else
never@739 672 __ movptr(dest->as_register_lo(), c->as_jint_lo());
never@739 673 __ movptr(dest->as_register_hi(), c->as_jint_hi());
never@739 674 #endif // _LP64
duke@435 675 break;
duke@435 676 }
duke@435 677
duke@435 678 case T_OBJECT: {
duke@435 679 if (patch_code != lir_patch_none) {
duke@435 680 jobject2reg_with_patching(dest->as_register(), info);
duke@435 681 } else {
duke@435 682 __ movoop(dest->as_register(), c->as_jobject());
duke@435 683 }
duke@435 684 break;
duke@435 685 }
duke@435 686
duke@435 687 case T_FLOAT: {
duke@435 688 if (dest->is_single_xmm()) {
duke@435 689 if (c->is_zero_float()) {
duke@435 690 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 691 } else {
duke@435 692 __ movflt(dest->as_xmm_float_reg(),
duke@435 693 InternalAddress(float_constant(c->as_jfloat())));
duke@435 694 }
duke@435 695 } else {
duke@435 696 assert(dest->is_single_fpu(), "must be");
duke@435 697 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 698 if (c->is_zero_float()) {
duke@435 699 __ fldz();
duke@435 700 } else if (c->is_one_float()) {
duke@435 701 __ fld1();
duke@435 702 } else {
duke@435 703 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 704 }
duke@435 705 }
duke@435 706 break;
duke@435 707 }
duke@435 708
duke@435 709 case T_DOUBLE: {
duke@435 710 if (dest->is_double_xmm()) {
duke@435 711 if (c->is_zero_double()) {
duke@435 712 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 713 } else {
duke@435 714 __ movdbl(dest->as_xmm_double_reg(),
duke@435 715 InternalAddress(double_constant(c->as_jdouble())));
duke@435 716 }
duke@435 717 } else {
duke@435 718 assert(dest->is_double_fpu(), "must be");
duke@435 719 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 720 if (c->is_zero_double()) {
duke@435 721 __ fldz();
duke@435 722 } else if (c->is_one_double()) {
duke@435 723 __ fld1();
duke@435 724 } else {
duke@435 725 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 726 }
duke@435 727 }
duke@435 728 break;
duke@435 729 }
duke@435 730
duke@435 731 default:
duke@435 732 ShouldNotReachHere();
duke@435 733 }
duke@435 734 }
duke@435 735
duke@435 736 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 737 assert(src->is_constant(), "should not call otherwise");
duke@435 738 assert(dest->is_stack(), "should not call otherwise");
duke@435 739 LIR_Const* c = src->as_constant_ptr();
duke@435 740
duke@435 741 switch (c->type()) {
duke@435 742 case T_INT: // fall through
duke@435 743 case T_FLOAT:
duke@435 744 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 745 break;
duke@435 746
duke@435 747 case T_OBJECT:
duke@435 748 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 749 break;
duke@435 750
duke@435 751 case T_LONG: // fall through
duke@435 752 case T_DOUBLE:
never@739 753 #ifdef _LP64
never@739 754 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 755 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
never@739 756 #else
never@739 757 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 758 lo_word_offset_in_bytes), c->as_jint_lo_bits());
never@739 759 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 760 hi_word_offset_in_bytes), c->as_jint_hi_bits());
never@739 761 #endif // _LP64
duke@435 762 break;
duke@435 763
duke@435 764 default:
duke@435 765 ShouldNotReachHere();
duke@435 766 }
duke@435 767 }
duke@435 768
duke@435 769 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
duke@435 770 assert(src->is_constant(), "should not call otherwise");
duke@435 771 assert(dest->is_address(), "should not call otherwise");
duke@435 772 LIR_Const* c = src->as_constant_ptr();
duke@435 773 LIR_Address* addr = dest->as_address_ptr();
duke@435 774
never@739 775 int null_check_here = code_offset();
duke@435 776 switch (type) {
duke@435 777 case T_INT: // fall through
duke@435 778 case T_FLOAT:
duke@435 779 __ movl(as_Address(addr), c->as_jint_bits());
duke@435 780 break;
duke@435 781
duke@435 782 case T_OBJECT: // fall through
duke@435 783 case T_ARRAY:
duke@435 784 if (c->as_jobject() == NULL) {
xlu@947 785 __ movptr(as_Address(addr), NULL_WORD);
duke@435 786 } else {
never@739 787 if (is_literal_address(addr)) {
never@739 788 ShouldNotReachHere();
never@739 789 __ movoop(as_Address(addr, noreg), c->as_jobject());
never@739 790 } else {
roland@1495 791 #ifdef _LP64
roland@1495 792 __ movoop(rscratch1, c->as_jobject());
roland@1495 793 null_check_here = code_offset();
roland@1495 794 __ movptr(as_Address_lo(addr), rscratch1);
roland@1495 795 #else
never@739 796 __ movoop(as_Address(addr), c->as_jobject());
roland@1495 797 #endif
never@739 798 }
duke@435 799 }
duke@435 800 break;
duke@435 801
duke@435 802 case T_LONG: // fall through
duke@435 803 case T_DOUBLE:
never@739 804 #ifdef _LP64
never@739 805 if (is_literal_address(addr)) {
never@739 806 ShouldNotReachHere();
never@739 807 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
never@739 808 } else {
never@739 809 __ movptr(r10, (intptr_t)c->as_jlong_bits());
never@739 810 null_check_here = code_offset();
never@739 811 __ movptr(as_Address_lo(addr), r10);
never@739 812 }
never@739 813 #else
never@739 814 // Always reachable in 32bit so this doesn't produce useless move literal
never@739 815 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
never@739 816 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
never@739 817 #endif // _LP64
duke@435 818 break;
duke@435 819
duke@435 820 case T_BOOLEAN: // fall through
duke@435 821 case T_BYTE:
duke@435 822 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 823 break;
duke@435 824
duke@435 825 case T_CHAR: // fall through
duke@435 826 case T_SHORT:
duke@435 827 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 828 break;
duke@435 829
duke@435 830 default:
duke@435 831 ShouldNotReachHere();
duke@435 832 };
never@739 833
never@739 834 if (info != NULL) {
never@739 835 add_debug_info_for_null_check(null_check_here, info);
never@739 836 }
duke@435 837 }
duke@435 838
duke@435 839
duke@435 840 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 841 assert(src->is_register(), "should not call otherwise");
duke@435 842 assert(dest->is_register(), "should not call otherwise");
duke@435 843
duke@435 844 // move between cpu-registers
duke@435 845 if (dest->is_single_cpu()) {
never@739 846 #ifdef _LP64
never@739 847 if (src->type() == T_LONG) {
never@739 848 // Can do LONG -> OBJECT
never@739 849 move_regs(src->as_register_lo(), dest->as_register());
never@739 850 return;
never@739 851 }
never@739 852 #endif
duke@435 853 assert(src->is_single_cpu(), "must match");
duke@435 854 if (src->type() == T_OBJECT) {
duke@435 855 __ verify_oop(src->as_register());
duke@435 856 }
duke@435 857 move_regs(src->as_register(), dest->as_register());
duke@435 858
duke@435 859 } else if (dest->is_double_cpu()) {
never@739 860 #ifdef _LP64
never@739 861 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
never@739 862 // Surprising to me but we can see move of a long to t_object
never@739 863 __ verify_oop(src->as_register());
never@739 864 move_regs(src->as_register(), dest->as_register_lo());
never@739 865 return;
never@739 866 }
never@739 867 #endif
duke@435 868 assert(src->is_double_cpu(), "must match");
duke@435 869 Register f_lo = src->as_register_lo();
duke@435 870 Register f_hi = src->as_register_hi();
duke@435 871 Register t_lo = dest->as_register_lo();
duke@435 872 Register t_hi = dest->as_register_hi();
never@739 873 #ifdef _LP64
never@739 874 assert(f_hi == f_lo, "must be same");
never@739 875 assert(t_hi == t_lo, "must be same");
never@739 876 move_regs(f_lo, t_lo);
never@739 877 #else
duke@435 878 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 879
never@739 880
duke@435 881 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 882 swap_reg(f_lo, f_hi);
duke@435 883 } else if (f_hi == t_lo) {
duke@435 884 assert(f_lo != t_hi, "overwriting register");
duke@435 885 move_regs(f_hi, t_hi);
duke@435 886 move_regs(f_lo, t_lo);
duke@435 887 } else {
duke@435 888 assert(f_hi != t_lo, "overwriting register");
duke@435 889 move_regs(f_lo, t_lo);
duke@435 890 move_regs(f_hi, t_hi);
duke@435 891 }
never@739 892 #endif // LP64
duke@435 893
duke@435 894 // special moves from fpu-register to xmm-register
duke@435 895 // necessary for method results
duke@435 896 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 897 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 898 __ fld_s(Address(rsp, 0));
duke@435 899 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 900 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 901 __ fld_d(Address(rsp, 0));
duke@435 902 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 903 __ fstp_s(Address(rsp, 0));
duke@435 904 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 905 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 906 __ fstp_d(Address(rsp, 0));
duke@435 907 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 908
duke@435 909 // move between xmm-registers
duke@435 910 } else if (dest->is_single_xmm()) {
duke@435 911 assert(src->is_single_xmm(), "must match");
duke@435 912 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 913 } else if (dest->is_double_xmm()) {
duke@435 914 assert(src->is_double_xmm(), "must match");
duke@435 915 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 916
duke@435 917 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 918 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 919 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 920 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 921 } else {
duke@435 922 ShouldNotReachHere();
duke@435 923 }
duke@435 924 }
duke@435 925
duke@435 926 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 927 assert(src->is_register(), "should not call otherwise");
duke@435 928 assert(dest->is_stack(), "should not call otherwise");
duke@435 929
duke@435 930 if (src->is_single_cpu()) {
duke@435 931 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 932 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 933 __ verify_oop(src->as_register());
never@739 934 __ movptr (dst, src->as_register());
never@739 935 } else {
never@739 936 __ movl (dst, src->as_register());
duke@435 937 }
duke@435 938
duke@435 939 } else if (src->is_double_cpu()) {
duke@435 940 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 941 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
never@739 942 __ movptr (dstLO, src->as_register_lo());
never@739 943 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
duke@435 944
duke@435 945 } else if (src->is_single_xmm()) {
duke@435 946 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 947 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 948
duke@435 949 } else if (src->is_double_xmm()) {
duke@435 950 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 951 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 952
duke@435 953 } else if (src->is_single_fpu()) {
duke@435 954 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 955 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 956 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 957 else __ fst_s (dst_addr);
duke@435 958
duke@435 959 } else if (src->is_double_fpu()) {
duke@435 960 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 961 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 962 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 963 else __ fst_d (dst_addr);
duke@435 964
duke@435 965 } else {
duke@435 966 ShouldNotReachHere();
duke@435 967 }
duke@435 968 }
duke@435 969
duke@435 970
duke@435 971 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
duke@435 972 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 973 PatchingStub* patch = NULL;
duke@435 974
duke@435 975 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 976 __ verify_oop(src->as_register());
duke@435 977 }
duke@435 978 if (patch_code != lir_patch_none) {
duke@435 979 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 980 Address toa = as_Address(to_addr);
never@739 981 assert(toa.disp() != 0, "must have");
duke@435 982 }
duke@435 983 if (info != NULL) {
duke@435 984 add_debug_info_for_null_check_here(info);
duke@435 985 }
duke@435 986
duke@435 987 switch (type) {
duke@435 988 case T_FLOAT: {
duke@435 989 if (src->is_single_xmm()) {
duke@435 990 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 991 } else {
duke@435 992 assert(src->is_single_fpu(), "must be");
duke@435 993 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 994 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 995 else __ fst_s (as_Address(to_addr));
duke@435 996 }
duke@435 997 break;
duke@435 998 }
duke@435 999
duke@435 1000 case T_DOUBLE: {
duke@435 1001 if (src->is_double_xmm()) {
duke@435 1002 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 1003 } else {
duke@435 1004 assert(src->is_double_fpu(), "must be");
duke@435 1005 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1006 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 1007 else __ fst_d (as_Address(to_addr));
duke@435 1008 }
duke@435 1009 break;
duke@435 1010 }
duke@435 1011
duke@435 1012 case T_ADDRESS: // fall through
duke@435 1013 case T_ARRAY: // fall through
duke@435 1014 case T_OBJECT: // fall through
never@739 1015 #ifdef _LP64
never@739 1016 __ movptr(as_Address(to_addr), src->as_register());
never@739 1017 break;
never@739 1018 #endif // _LP64
duke@435 1019 case T_INT:
duke@435 1020 __ movl(as_Address(to_addr), src->as_register());
duke@435 1021 break;
duke@435 1022
duke@435 1023 case T_LONG: {
duke@435 1024 Register from_lo = src->as_register_lo();
duke@435 1025 Register from_hi = src->as_register_hi();
never@739 1026 #ifdef _LP64
never@739 1027 __ movptr(as_Address_lo(to_addr), from_lo);
never@739 1028 #else
duke@435 1029 Register base = to_addr->base()->as_register();
duke@435 1030 Register index = noreg;
duke@435 1031 if (to_addr->index()->is_register()) {
duke@435 1032 index = to_addr->index()->as_register();
duke@435 1033 }
duke@435 1034 if (base == from_lo || index == from_lo) {
duke@435 1035 assert(base != from_hi, "can't be");
duke@435 1036 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 1037 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1038 if (patch != NULL) {
duke@435 1039 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1040 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1041 patch_code = lir_patch_low;
duke@435 1042 }
duke@435 1043 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1044 } else {
duke@435 1045 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 1046 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1047 if (patch != NULL) {
duke@435 1048 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1049 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1050 patch_code = lir_patch_high;
duke@435 1051 }
duke@435 1052 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1053 }
never@739 1054 #endif // _LP64
duke@435 1055 break;
duke@435 1056 }
duke@435 1057
duke@435 1058 case T_BYTE: // fall through
duke@435 1059 case T_BOOLEAN: {
duke@435 1060 Register src_reg = src->as_register();
duke@435 1061 Address dst_addr = as_Address(to_addr);
duke@435 1062 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1063 __ movb(dst_addr, src_reg);
duke@435 1064 break;
duke@435 1065 }
duke@435 1066
duke@435 1067 case T_CHAR: // fall through
duke@435 1068 case T_SHORT:
duke@435 1069 __ movw(as_Address(to_addr), src->as_register());
duke@435 1070 break;
duke@435 1071
duke@435 1072 default:
duke@435 1073 ShouldNotReachHere();
duke@435 1074 }
duke@435 1075
duke@435 1076 if (patch_code != lir_patch_none) {
duke@435 1077 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 1078 }
duke@435 1079 }
duke@435 1080
duke@435 1081
duke@435 1082 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1083 assert(src->is_stack(), "should not call otherwise");
duke@435 1084 assert(dest->is_register(), "should not call otherwise");
duke@435 1085
duke@435 1086 if (dest->is_single_cpu()) {
duke@435 1087 if (type == T_ARRAY || type == T_OBJECT) {
never@739 1088 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1089 __ verify_oop(dest->as_register());
never@739 1090 } else {
never@739 1091 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1092 }
duke@435 1093
duke@435 1094 } else if (dest->is_double_cpu()) {
duke@435 1095 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1096 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1097 __ movptr(dest->as_register_lo(), src_addr_LO);
never@739 1098 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
duke@435 1099
duke@435 1100 } else if (dest->is_single_xmm()) {
duke@435 1101 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1102 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 1103
duke@435 1104 } else if (dest->is_double_xmm()) {
duke@435 1105 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1106 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1107
duke@435 1108 } else if (dest->is_single_fpu()) {
duke@435 1109 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1110 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1111 __ fld_s(src_addr);
duke@435 1112
duke@435 1113 } else if (dest->is_double_fpu()) {
duke@435 1114 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1115 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1116 __ fld_d(src_addr);
duke@435 1117
duke@435 1118 } else {
duke@435 1119 ShouldNotReachHere();
duke@435 1120 }
duke@435 1121 }
duke@435 1122
duke@435 1123
duke@435 1124 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1125 if (src->is_single_stack()) {
never@739 1126 if (type == T_OBJECT || type == T_ARRAY) {
never@739 1127 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1128 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1129 } else {
roland@1495 1130 #ifndef _LP64
never@739 1131 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1132 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
roland@1495 1133 #else
roland@1495 1134 //no pushl on 64bits
roland@1495 1135 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
roland@1495 1136 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
roland@1495 1137 #endif
never@739 1138 }
duke@435 1139
duke@435 1140 } else if (src->is_double_stack()) {
never@739 1141 #ifdef _LP64
never@739 1142 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
never@739 1143 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
never@739 1144 #else
duke@435 1145 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
never@739 1146 // push and pop the part at src + wordSize, adding wordSize for the previous push
never@756 1147 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
never@756 1148 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
duke@435 1149 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
never@739 1150 #endif // _LP64
duke@435 1151
duke@435 1152 } else {
duke@435 1153 ShouldNotReachHere();
duke@435 1154 }
duke@435 1155 }
duke@435 1156
duke@435 1157
duke@435 1158 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
duke@435 1159 assert(src->is_address(), "should not call otherwise");
duke@435 1160 assert(dest->is_register(), "should not call otherwise");
duke@435 1161
duke@435 1162 LIR_Address* addr = src->as_address_ptr();
duke@435 1163 Address from_addr = as_Address(addr);
duke@435 1164
duke@435 1165 switch (type) {
duke@435 1166 case T_BOOLEAN: // fall through
duke@435 1167 case T_BYTE: // fall through
duke@435 1168 case T_CHAR: // fall through
duke@435 1169 case T_SHORT:
duke@435 1170 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1171 // on pre P6 processors we may get partial register stalls
duke@435 1172 // so blow away the value of to_rinfo before loading a
duke@435 1173 // partial word into it. Do it here so that it precedes
duke@435 1174 // the potential patch point below.
never@739 1175 __ xorptr(dest->as_register(), dest->as_register());
duke@435 1176 }
duke@435 1177 break;
duke@435 1178 }
duke@435 1179
duke@435 1180 PatchingStub* patch = NULL;
duke@435 1181 if (patch_code != lir_patch_none) {
duke@435 1182 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1183 assert(from_addr.disp() != 0, "must have");
duke@435 1184 }
duke@435 1185 if (info != NULL) {
duke@435 1186 add_debug_info_for_null_check_here(info);
duke@435 1187 }
duke@435 1188
duke@435 1189 switch (type) {
duke@435 1190 case T_FLOAT: {
duke@435 1191 if (dest->is_single_xmm()) {
duke@435 1192 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1193 } else {
duke@435 1194 assert(dest->is_single_fpu(), "must be");
duke@435 1195 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1196 __ fld_s(from_addr);
duke@435 1197 }
duke@435 1198 break;
duke@435 1199 }
duke@435 1200
duke@435 1201 case T_DOUBLE: {
duke@435 1202 if (dest->is_double_xmm()) {
duke@435 1203 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1204 } else {
duke@435 1205 assert(dest->is_double_fpu(), "must be");
duke@435 1206 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1207 __ fld_d(from_addr);
duke@435 1208 }
duke@435 1209 break;
duke@435 1210 }
duke@435 1211
duke@435 1212 case T_ADDRESS: // fall through
duke@435 1213 case T_OBJECT: // fall through
duke@435 1214 case T_ARRAY: // fall through
never@739 1215 #ifdef _LP64
never@739 1216 __ movptr(dest->as_register(), from_addr);
never@739 1217 break;
never@739 1218 #endif // _L64
duke@435 1219 case T_INT:
never@739 1220 // %%% could this be a movl? this is safer but longer instruction
never@739 1221 __ movl2ptr(dest->as_register(), from_addr);
duke@435 1222 break;
duke@435 1223
duke@435 1224 case T_LONG: {
duke@435 1225 Register to_lo = dest->as_register_lo();
duke@435 1226 Register to_hi = dest->as_register_hi();
never@739 1227 #ifdef _LP64
never@739 1228 __ movptr(to_lo, as_Address_lo(addr));
never@739 1229 #else
duke@435 1230 Register base = addr->base()->as_register();
duke@435 1231 Register index = noreg;
duke@435 1232 if (addr->index()->is_register()) {
duke@435 1233 index = addr->index()->as_register();
duke@435 1234 }
duke@435 1235 if ((base == to_lo && index == to_hi) ||
duke@435 1236 (base == to_hi && index == to_lo)) {
duke@435 1237 // addresses with 2 registers are only formed as a result of
duke@435 1238 // array access so this code will never have to deal with
duke@435 1239 // patches or null checks.
duke@435 1240 assert(info == NULL && patch == NULL, "must be");
never@739 1241 __ lea(to_hi, as_Address(addr));
duke@435 1242 __ movl(to_lo, Address(to_hi, 0));
duke@435 1243 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1244 } else if (base == to_lo || index == to_lo) {
duke@435 1245 assert(base != to_hi, "can't be");
duke@435 1246 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1247 __ movl(to_hi, as_Address_hi(addr));
duke@435 1248 if (patch != NULL) {
duke@435 1249 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1250 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1251 patch_code = lir_patch_low;
duke@435 1252 }
duke@435 1253 __ movl(to_lo, as_Address_lo(addr));
duke@435 1254 } else {
duke@435 1255 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1256 __ movl(to_lo, as_Address_lo(addr));
duke@435 1257 if (patch != NULL) {
duke@435 1258 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1259 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1260 patch_code = lir_patch_high;
duke@435 1261 }
duke@435 1262 __ movl(to_hi, as_Address_hi(addr));
duke@435 1263 }
never@739 1264 #endif // _LP64
duke@435 1265 break;
duke@435 1266 }
duke@435 1267
duke@435 1268 case T_BOOLEAN: // fall through
duke@435 1269 case T_BYTE: {
duke@435 1270 Register dest_reg = dest->as_register();
duke@435 1271 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1272 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1273 __ movsbl(dest_reg, from_addr);
duke@435 1274 } else {
duke@435 1275 __ movb(dest_reg, from_addr);
duke@435 1276 __ shll(dest_reg, 24);
duke@435 1277 __ sarl(dest_reg, 24);
duke@435 1278 }
never@739 1279 // These are unsigned so the zero extension on 64bit is just what we need
duke@435 1280 break;
duke@435 1281 }
duke@435 1282
duke@435 1283 case T_CHAR: {
duke@435 1284 Register dest_reg = dest->as_register();
duke@435 1285 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1286 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1287 __ movzwl(dest_reg, from_addr);
duke@435 1288 } else {
duke@435 1289 __ movw(dest_reg, from_addr);
duke@435 1290 }
never@739 1291 // This is unsigned so the zero extension on 64bit is just what we need
never@739 1292 // __ movl2ptr(dest_reg, dest_reg);
duke@435 1293 break;
duke@435 1294 }
duke@435 1295
duke@435 1296 case T_SHORT: {
duke@435 1297 Register dest_reg = dest->as_register();
duke@435 1298 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1299 __ movswl(dest_reg, from_addr);
duke@435 1300 } else {
duke@435 1301 __ movw(dest_reg, from_addr);
duke@435 1302 __ shll(dest_reg, 16);
duke@435 1303 __ sarl(dest_reg, 16);
duke@435 1304 }
never@739 1305 // Might not be needed in 64bit but certainly doesn't hurt (except for code size)
never@739 1306 __ movl2ptr(dest_reg, dest_reg);
duke@435 1307 break;
duke@435 1308 }
duke@435 1309
duke@435 1310 default:
duke@435 1311 ShouldNotReachHere();
duke@435 1312 }
duke@435 1313
duke@435 1314 if (patch != NULL) {
duke@435 1315 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1316 }
duke@435 1317
duke@435 1318 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 1319 __ verify_oop(dest->as_register());
duke@435 1320 }
duke@435 1321 }
duke@435 1322
duke@435 1323
duke@435 1324 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1325 LIR_Address* addr = src->as_address_ptr();
duke@435 1326 Address from_addr = as_Address(addr);
duke@435 1327
duke@435 1328 if (VM_Version::supports_sse()) {
duke@435 1329 switch (ReadPrefetchInstr) {
duke@435 1330 case 0:
duke@435 1331 __ prefetchnta(from_addr); break;
duke@435 1332 case 1:
duke@435 1333 __ prefetcht0(from_addr); break;
duke@435 1334 case 2:
duke@435 1335 __ prefetcht2(from_addr); break;
duke@435 1336 default:
duke@435 1337 ShouldNotReachHere(); break;
duke@435 1338 }
duke@435 1339 } else if (VM_Version::supports_3dnow()) {
duke@435 1340 __ prefetchr(from_addr);
duke@435 1341 }
duke@435 1342 }
duke@435 1343
duke@435 1344
duke@435 1345 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1346 LIR_Address* addr = src->as_address_ptr();
duke@435 1347 Address from_addr = as_Address(addr);
duke@435 1348
duke@435 1349 if (VM_Version::supports_sse()) {
duke@435 1350 switch (AllocatePrefetchInstr) {
duke@435 1351 case 0:
duke@435 1352 __ prefetchnta(from_addr); break;
duke@435 1353 case 1:
duke@435 1354 __ prefetcht0(from_addr); break;
duke@435 1355 case 2:
duke@435 1356 __ prefetcht2(from_addr); break;
duke@435 1357 case 3:
duke@435 1358 __ prefetchw(from_addr); break;
duke@435 1359 default:
duke@435 1360 ShouldNotReachHere(); break;
duke@435 1361 }
duke@435 1362 } else if (VM_Version::supports_3dnow()) {
duke@435 1363 __ prefetchw(from_addr);
duke@435 1364 }
duke@435 1365 }
duke@435 1366
duke@435 1367
duke@435 1368 NEEDS_CLEANUP; // This could be static?
duke@435 1369 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1370 int elem_size = type2aelembytes(type);
duke@435 1371 switch (elem_size) {
duke@435 1372 case 1: return Address::times_1;
duke@435 1373 case 2: return Address::times_2;
duke@435 1374 case 4: return Address::times_4;
duke@435 1375 case 8: return Address::times_8;
duke@435 1376 }
duke@435 1377 ShouldNotReachHere();
duke@435 1378 return Address::no_scale;
duke@435 1379 }
duke@435 1380
duke@435 1381
duke@435 1382 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1383 switch (op->code()) {
duke@435 1384 case lir_idiv:
duke@435 1385 case lir_irem:
duke@435 1386 arithmetic_idiv(op->code(),
duke@435 1387 op->in_opr1(),
duke@435 1388 op->in_opr2(),
duke@435 1389 op->in_opr3(),
duke@435 1390 op->result_opr(),
duke@435 1391 op->info());
duke@435 1392 break;
duke@435 1393 default: ShouldNotReachHere(); break;
duke@435 1394 }
duke@435 1395 }
duke@435 1396
duke@435 1397 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1398 #ifdef ASSERT
duke@435 1399 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1400 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1401 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1402 #endif
duke@435 1403
duke@435 1404 if (op->cond() == lir_cond_always) {
duke@435 1405 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1406 __ jmp (*(op->label()));
duke@435 1407 } else {
duke@435 1408 Assembler::Condition acond = Assembler::zero;
duke@435 1409 if (op->code() == lir_cond_float_branch) {
duke@435 1410 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1411 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1412 switch(op->cond()) {
duke@435 1413 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1414 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1415 case lir_cond_less: acond = Assembler::below; break;
duke@435 1416 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1417 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1418 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1419 default: ShouldNotReachHere();
duke@435 1420 }
duke@435 1421 } else {
duke@435 1422 switch (op->cond()) {
duke@435 1423 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1424 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1425 case lir_cond_less: acond = Assembler::less; break;
duke@435 1426 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1427 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1428 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1429 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1430 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1431 default: ShouldNotReachHere();
duke@435 1432 }
duke@435 1433 }
duke@435 1434 __ jcc(acond,*(op->label()));
duke@435 1435 }
duke@435 1436 }
duke@435 1437
duke@435 1438 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1439 LIR_Opr src = op->in_opr();
duke@435 1440 LIR_Opr dest = op->result_opr();
duke@435 1441
duke@435 1442 switch (op->bytecode()) {
duke@435 1443 case Bytecodes::_i2l:
never@739 1444 #ifdef _LP64
never@739 1445 __ movl2ptr(dest->as_register_lo(), src->as_register());
never@739 1446 #else
duke@435 1447 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1448 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1449 __ sarl(dest->as_register_hi(), 31);
never@739 1450 #endif // LP64
duke@435 1451 break;
duke@435 1452
duke@435 1453 case Bytecodes::_l2i:
duke@435 1454 move_regs(src->as_register_lo(), dest->as_register());
duke@435 1455 break;
duke@435 1456
duke@435 1457 case Bytecodes::_i2b:
duke@435 1458 move_regs(src->as_register(), dest->as_register());
duke@435 1459 __ sign_extend_byte(dest->as_register());
duke@435 1460 break;
duke@435 1461
duke@435 1462 case Bytecodes::_i2c:
duke@435 1463 move_regs(src->as_register(), dest->as_register());
duke@435 1464 __ andl(dest->as_register(), 0xFFFF);
duke@435 1465 break;
duke@435 1466
duke@435 1467 case Bytecodes::_i2s:
duke@435 1468 move_regs(src->as_register(), dest->as_register());
duke@435 1469 __ sign_extend_short(dest->as_register());
duke@435 1470 break;
duke@435 1471
duke@435 1472
duke@435 1473 case Bytecodes::_f2d:
duke@435 1474 case Bytecodes::_d2f:
duke@435 1475 if (dest->is_single_xmm()) {
duke@435 1476 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1477 } else if (dest->is_double_xmm()) {
duke@435 1478 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1479 } else {
duke@435 1480 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1481 // do nothing (float result is rounded later through spilling)
duke@435 1482 }
duke@435 1483 break;
duke@435 1484
duke@435 1485 case Bytecodes::_i2f:
duke@435 1486 case Bytecodes::_i2d:
duke@435 1487 if (dest->is_single_xmm()) {
never@739 1488 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
duke@435 1489 } else if (dest->is_double_xmm()) {
never@739 1490 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
duke@435 1491 } else {
duke@435 1492 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1493 __ movl(Address(rsp, 0), src->as_register());
duke@435 1494 __ fild_s(Address(rsp, 0));
duke@435 1495 }
duke@435 1496 break;
duke@435 1497
duke@435 1498 case Bytecodes::_f2i:
duke@435 1499 case Bytecodes::_d2i:
duke@435 1500 if (src->is_single_xmm()) {
never@739 1501 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
duke@435 1502 } else if (src->is_double_xmm()) {
never@739 1503 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
duke@435 1504 } else {
duke@435 1505 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1506 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1507 __ fist_s(Address(rsp, 0));
duke@435 1508 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1509 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1510 }
duke@435 1511
duke@435 1512 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1513 assert(op->stub() != NULL, "stub required");
duke@435 1514 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1515 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1516 __ bind(*op->stub()->continuation());
duke@435 1517 break;
duke@435 1518
duke@435 1519 case Bytecodes::_l2f:
duke@435 1520 case Bytecodes::_l2d:
duke@435 1521 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1522 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1523
never@739 1524 __ movptr(Address(rsp, 0), src->as_register_lo());
never@739 1525 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
duke@435 1526 __ fild_d(Address(rsp, 0));
duke@435 1527 // float result is rounded later through spilling
duke@435 1528 break;
duke@435 1529
duke@435 1530 case Bytecodes::_f2l:
duke@435 1531 case Bytecodes::_d2l:
duke@435 1532 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1533 assert(src->fpu() == 0, "input must be on TOS");
never@739 1534 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
duke@435 1535
duke@435 1536 // instruction sequence too long to inline it here
duke@435 1537 {
duke@435 1538 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1539 }
duke@435 1540 break;
duke@435 1541
duke@435 1542 default: ShouldNotReachHere();
duke@435 1543 }
duke@435 1544 }
duke@435 1545
duke@435 1546 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1547 if (op->init_check()) {
duke@435 1548 __ cmpl(Address(op->klass()->as_register(),
duke@435 1549 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
duke@435 1550 instanceKlass::fully_initialized);
duke@435 1551 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1552 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1553 }
duke@435 1554 __ allocate_object(op->obj()->as_register(),
duke@435 1555 op->tmp1()->as_register(),
duke@435 1556 op->tmp2()->as_register(),
duke@435 1557 op->header_size(),
duke@435 1558 op->object_size(),
duke@435 1559 op->klass()->as_register(),
duke@435 1560 *op->stub()->entry());
duke@435 1561 __ bind(*op->stub()->continuation());
duke@435 1562 }
duke@435 1563
duke@435 1564 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 1565 if (UseSlowPath ||
duke@435 1566 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1567 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1568 __ jmp(*op->stub()->entry());
duke@435 1569 } else {
duke@435 1570 Register len = op->len()->as_register();
duke@435 1571 Register tmp1 = op->tmp1()->as_register();
duke@435 1572 Register tmp2 = op->tmp2()->as_register();
duke@435 1573 Register tmp3 = op->tmp3()->as_register();
duke@435 1574 if (len == tmp1) {
duke@435 1575 tmp1 = tmp3;
duke@435 1576 } else if (len == tmp2) {
duke@435 1577 tmp2 = tmp3;
duke@435 1578 } else if (len == tmp3) {
duke@435 1579 // everything is ok
duke@435 1580 } else {
never@739 1581 __ mov(tmp3, len);
duke@435 1582 }
duke@435 1583 __ allocate_array(op->obj()->as_register(),
duke@435 1584 len,
duke@435 1585 tmp1,
duke@435 1586 tmp2,
duke@435 1587 arrayOopDesc::header_size(op->type()),
duke@435 1588 array_element_size(op->type()),
duke@435 1589 op->klass()->as_register(),
duke@435 1590 *op->stub()->entry());
duke@435 1591 }
duke@435 1592 __ bind(*op->stub()->continuation());
duke@435 1593 }
duke@435 1594
duke@435 1595
duke@435 1596
duke@435 1597 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1598 LIR_Code code = op->code();
duke@435 1599 if (code == lir_store_check) {
duke@435 1600 Register value = op->object()->as_register();
duke@435 1601 Register array = op->array()->as_register();
duke@435 1602 Register k_RInfo = op->tmp1()->as_register();
duke@435 1603 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1604 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1605
duke@435 1606 CodeStub* stub = op->stub();
duke@435 1607 Label done;
never@739 1608 __ cmpptr(value, (int32_t)NULL_WORD);
duke@435 1609 __ jcc(Assembler::equal, done);
duke@435 1610 add_debug_info_for_null_check_here(op->info_for_exception());
never@739 1611 __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
never@739 1612 __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
duke@435 1613
duke@435 1614 // get instance klass
never@739 1615 __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
jrose@1079 1616 // perform the fast part of the checking logic
jrose@1079 1617 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
jrose@1079 1618 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1619 __ push(klass_RInfo);
never@739 1620 __ push(k_RInfo);
duke@435 1621 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1622 __ pop(klass_RInfo);
never@739 1623 __ pop(k_RInfo);
never@739 1624 // result is a boolean
duke@435 1625 __ cmpl(k_RInfo, 0);
duke@435 1626 __ jcc(Assembler::equal, *stub->entry());
duke@435 1627 __ bind(done);
duke@435 1628 } else if (op->code() == lir_checkcast) {
duke@435 1629 // we always need a stub for the failure case.
duke@435 1630 CodeStub* stub = op->stub();
duke@435 1631 Register obj = op->object()->as_register();
duke@435 1632 Register k_RInfo = op->tmp1()->as_register();
duke@435 1633 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1634 Register dst = op->result_opr()->as_register();
duke@435 1635 ciKlass* k = op->klass();
duke@435 1636 Register Rtmp1 = noreg;
duke@435 1637
duke@435 1638 Label done;
duke@435 1639 if (obj == k_RInfo) {
duke@435 1640 k_RInfo = dst;
duke@435 1641 } else if (obj == klass_RInfo) {
duke@435 1642 klass_RInfo = dst;
duke@435 1643 }
duke@435 1644 if (k->is_loaded()) {
duke@435 1645 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
duke@435 1646 } else {
duke@435 1647 Rtmp1 = op->tmp3()->as_register();
duke@435 1648 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
duke@435 1649 }
duke@435 1650
duke@435 1651 assert_different_registers(obj, k_RInfo, klass_RInfo);
duke@435 1652 if (!k->is_loaded()) {
duke@435 1653 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
duke@435 1654 } else {
never@739 1655 #ifdef _LP64
jrose@1424 1656 __ movoop(k_RInfo, k->constant_encoding());
never@739 1657 #else
duke@435 1658 k_RInfo = noreg;
never@739 1659 #endif // _LP64
duke@435 1660 }
duke@435 1661 assert(obj != k_RInfo, "must be different");
never@739 1662 __ cmpptr(obj, (int32_t)NULL_WORD);
duke@435 1663 if (op->profiled_method() != NULL) {
duke@435 1664 ciMethod* method = op->profiled_method();
duke@435 1665 int bci = op->profiled_bci();
duke@435 1666
duke@435 1667 Label profile_done;
duke@435 1668 __ jcc(Assembler::notEqual, profile_done);
duke@435 1669 // Object is null; update methodDataOop
duke@435 1670 ciMethodData* md = method->method_data();
duke@435 1671 if (md == NULL) {
duke@435 1672 bailout("out of memory building methodDataOop");
duke@435 1673 return;
duke@435 1674 }
duke@435 1675 ciProfileData* data = md->bci_to_data(bci);
duke@435 1676 assert(data != NULL, "need data for checkcast");
duke@435 1677 assert(data->is_BitData(), "need BitData for checkcast");
duke@435 1678 Register mdo = klass_RInfo;
jrose@1424 1679 __ movoop(mdo, md->constant_encoding());
duke@435 1680 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
duke@435 1681 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
duke@435 1682 __ orl(data_addr, header_bits);
duke@435 1683 __ jmp(done);
duke@435 1684 __ bind(profile_done);
duke@435 1685 } else {
duke@435 1686 __ jcc(Assembler::equal, done);
duke@435 1687 }
duke@435 1688 __ verify_oop(obj);
duke@435 1689
duke@435 1690 if (op->fast_check()) {
duke@435 1691 // get object classo
duke@435 1692 // not a safepoint as obj null check happens earlier
duke@435 1693 if (k->is_loaded()) {
never@739 1694 #ifdef _LP64
never@739 1695 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
never@739 1696 #else
jrose@1424 1697 __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
never@739 1698 #endif // _LP64
duke@435 1699 } else {
never@739 1700 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1701
duke@435 1702 }
duke@435 1703 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 1704 __ bind(done);
duke@435 1705 } else {
duke@435 1706 // get object class
duke@435 1707 // not a safepoint as obj null check happens earlier
never@739 1708 __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1709 if (k->is_loaded()) {
duke@435 1710 // See if we get an immediate positive hit
never@739 1711 #ifdef _LP64
never@739 1712 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
never@739 1713 #else
jrose@1424 1714 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
never@739 1715 #endif // _LP64
duke@435 1716 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
duke@435 1717 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 1718 } else {
duke@435 1719 // See if we get an immediate positive hit
duke@435 1720 __ jcc(Assembler::equal, done);
duke@435 1721 // check for self
never@739 1722 #ifdef _LP64
never@739 1723 __ cmpptr(klass_RInfo, k_RInfo);
never@739 1724 #else
jrose@1424 1725 __ cmpoop(klass_RInfo, k->constant_encoding());
never@739 1726 #endif // _LP64
duke@435 1727 __ jcc(Assembler::equal, done);
duke@435 1728
never@739 1729 __ push(klass_RInfo);
never@739 1730 #ifdef _LP64
never@739 1731 __ push(k_RInfo);
never@739 1732 #else
jrose@1424 1733 __ pushoop(k->constant_encoding());
never@739 1734 #endif // _LP64
duke@435 1735 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1736 __ pop(klass_RInfo);
never@739 1737 __ pop(klass_RInfo);
never@739 1738 // result is a boolean
duke@435 1739 __ cmpl(klass_RInfo, 0);
duke@435 1740 __ jcc(Assembler::equal, *stub->entry());
duke@435 1741 }
duke@435 1742 __ bind(done);
duke@435 1743 } else {
jrose@1079 1744 // perform the fast part of the checking logic
jrose@1079 1745 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
jrose@1079 1746 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1747 __ push(klass_RInfo);
never@739 1748 __ push(k_RInfo);
duke@435 1749 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1750 __ pop(klass_RInfo);
never@739 1751 __ pop(k_RInfo);
never@739 1752 // result is a boolean
duke@435 1753 __ cmpl(k_RInfo, 0);
duke@435 1754 __ jcc(Assembler::equal, *stub->entry());
duke@435 1755 __ bind(done);
duke@435 1756 }
duke@435 1757
duke@435 1758 }
duke@435 1759 if (dst != obj) {
never@739 1760 __ mov(dst, obj);
duke@435 1761 }
duke@435 1762 } else if (code == lir_instanceof) {
duke@435 1763 Register obj = op->object()->as_register();
duke@435 1764 Register k_RInfo = op->tmp1()->as_register();
duke@435 1765 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1766 Register dst = op->result_opr()->as_register();
duke@435 1767 ciKlass* k = op->klass();
duke@435 1768
duke@435 1769 Label done;
duke@435 1770 Label zero;
duke@435 1771 Label one;
duke@435 1772 if (obj == k_RInfo) {
duke@435 1773 k_RInfo = klass_RInfo;
duke@435 1774 klass_RInfo = obj;
duke@435 1775 }
duke@435 1776 // patching may screw with our temporaries on sparc,
duke@435 1777 // so let's do it before loading the class
duke@435 1778 if (!k->is_loaded()) {
duke@435 1779 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
never@739 1780 } else {
jrose@1424 1781 LP64_ONLY(__ movoop(k_RInfo, k->constant_encoding()));
duke@435 1782 }
duke@435 1783 assert(obj != k_RInfo, "must be different");
duke@435 1784
duke@435 1785 __ verify_oop(obj);
duke@435 1786 if (op->fast_check()) {
never@739 1787 __ cmpptr(obj, (int32_t)NULL_WORD);
duke@435 1788 __ jcc(Assembler::equal, zero);
duke@435 1789 // get object class
duke@435 1790 // not a safepoint as obj null check happens earlier
never@739 1791 if (LP64_ONLY(false &&) k->is_loaded()) {
jrose@1424 1792 NOT_LP64(__ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()));
duke@435 1793 k_RInfo = noreg;
duke@435 1794 } else {
never@739 1795 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1796
duke@435 1797 }
duke@435 1798 __ jcc(Assembler::equal, one);
duke@435 1799 } else {
duke@435 1800 // get object class
duke@435 1801 // not a safepoint as obj null check happens earlier
never@739 1802 __ cmpptr(obj, (int32_t)NULL_WORD);
duke@435 1803 __ jcc(Assembler::equal, zero);
never@739 1804 __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
never@739 1805
never@739 1806 #ifndef _LP64
duke@435 1807 if (k->is_loaded()) {
duke@435 1808 // See if we get an immediate positive hit
jrose@1424 1809 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
duke@435 1810 __ jcc(Assembler::equal, one);
duke@435 1811 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
duke@435 1812 // check for self
jrose@1424 1813 __ cmpoop(klass_RInfo, k->constant_encoding());
duke@435 1814 __ jcc(Assembler::equal, one);
never@739 1815 __ push(klass_RInfo);
jrose@1424 1816 __ pushoop(k->constant_encoding());
duke@435 1817 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1818 __ pop(klass_RInfo);
never@739 1819 __ pop(dst);
duke@435 1820 __ jmp(done);
duke@435 1821 }
jrose@1079 1822 }
jrose@1079 1823 else // next block is unconditional if LP64:
never@739 1824 #endif // LP64
jrose@1079 1825 {
duke@435 1826 assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
duke@435 1827
jrose@1079 1828 // perform the fast part of the checking logic
jrose@1079 1829 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, dst, &one, &zero, NULL);
jrose@1079 1830 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1831 __ push(klass_RInfo);
never@739 1832 __ push(k_RInfo);
duke@435 1833 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1834 __ pop(klass_RInfo);
never@739 1835 __ pop(dst);
duke@435 1836 __ jmp(done);
duke@435 1837 }
duke@435 1838 }
duke@435 1839 __ bind(zero);
never@739 1840 __ xorptr(dst, dst);
duke@435 1841 __ jmp(done);
duke@435 1842 __ bind(one);
never@739 1843 __ movptr(dst, 1);
duke@435 1844 __ bind(done);
duke@435 1845 } else {
duke@435 1846 ShouldNotReachHere();
duke@435 1847 }
duke@435 1848
duke@435 1849 }
duke@435 1850
duke@435 1851
duke@435 1852 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
never@739 1853 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
duke@435 1854 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1855 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1856 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1857 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1858 Register addr = op->addr()->as_register();
duke@435 1859 if (os::is_MP()) {
duke@435 1860 __ lock();
duke@435 1861 }
never@739 1862 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
never@739 1863
never@739 1864 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
never@739 1865 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
never@739 1866 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
duke@435 1867 Register newval = op->new_value()->as_register();
duke@435 1868 Register cmpval = op->cmp_value()->as_register();
duke@435 1869 assert(cmpval == rax, "wrong register");
duke@435 1870 assert(newval != NULL, "new val must be register");
duke@435 1871 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1872 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1873 assert(newval != addr, "new value and addr must be in different registers");
duke@435 1874 if (os::is_MP()) {
duke@435 1875 __ lock();
duke@435 1876 }
never@739 1877 if ( op->code() == lir_cas_obj) {
never@739 1878 __ cmpxchgptr(newval, Address(addr, 0));
never@739 1879 } else if (op->code() == lir_cas_int) {
never@739 1880 __ cmpxchgl(newval, Address(addr, 0));
never@739 1881 } else {
never@739 1882 LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
never@739 1883 }
never@739 1884 #ifdef _LP64
never@739 1885 } else if (op->code() == lir_cas_long) {
never@739 1886 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
never@739 1887 Register newval = op->new_value()->as_register_lo();
never@739 1888 Register cmpval = op->cmp_value()->as_register_lo();
never@739 1889 assert(cmpval == rax, "wrong register");
never@739 1890 assert(newval != NULL, "new val must be register");
never@739 1891 assert(cmpval != newval, "cmp and new values must be in different registers");
never@739 1892 assert(cmpval != addr, "cmp and addr must be in different registers");
never@739 1893 assert(newval != addr, "new value and addr must be in different registers");
never@739 1894 if (os::is_MP()) {
never@739 1895 __ lock();
never@739 1896 }
never@739 1897 __ cmpxchgq(newval, Address(addr, 0));
never@739 1898 #endif // _LP64
duke@435 1899 } else {
duke@435 1900 Unimplemented();
duke@435 1901 }
duke@435 1902 }
duke@435 1903
duke@435 1904
duke@435 1905 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
duke@435 1906 Assembler::Condition acond, ncond;
duke@435 1907 switch (condition) {
duke@435 1908 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 1909 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 1910 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 1911 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 1912 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 1913 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 1914 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 1915 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 1916 default: ShouldNotReachHere();
duke@435 1917 }
duke@435 1918
duke@435 1919 if (opr1->is_cpu_register()) {
duke@435 1920 reg2reg(opr1, result);
duke@435 1921 } else if (opr1->is_stack()) {
duke@435 1922 stack2reg(opr1, result, result->type());
duke@435 1923 } else if (opr1->is_constant()) {
duke@435 1924 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1925 } else {
duke@435 1926 ShouldNotReachHere();
duke@435 1927 }
duke@435 1928
duke@435 1929 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 1930 // optimized version that does not require a branch
duke@435 1931 if (opr2->is_single_cpu()) {
duke@435 1932 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
never@739 1933 __ cmov(ncond, result->as_register(), opr2->as_register());
duke@435 1934 } else if (opr2->is_double_cpu()) {
duke@435 1935 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 1936 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
never@739 1937 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
never@739 1938 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
duke@435 1939 } else if (opr2->is_single_stack()) {
duke@435 1940 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 1941 } else if (opr2->is_double_stack()) {
never@739 1942 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
never@739 1943 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
duke@435 1944 } else {
duke@435 1945 ShouldNotReachHere();
duke@435 1946 }
duke@435 1947
duke@435 1948 } else {
duke@435 1949 Label skip;
duke@435 1950 __ jcc (acond, skip);
duke@435 1951 if (opr2->is_cpu_register()) {
duke@435 1952 reg2reg(opr2, result);
duke@435 1953 } else if (opr2->is_stack()) {
duke@435 1954 stack2reg(opr2, result, result->type());
duke@435 1955 } else if (opr2->is_constant()) {
duke@435 1956 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 1957 } else {
duke@435 1958 ShouldNotReachHere();
duke@435 1959 }
duke@435 1960 __ bind(skip);
duke@435 1961 }
duke@435 1962 }
duke@435 1963
duke@435 1964
duke@435 1965 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 1966 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 1967
duke@435 1968 if (left->is_single_cpu()) {
duke@435 1969 assert(left == dest, "left and dest must be equal");
duke@435 1970 Register lreg = left->as_register();
duke@435 1971
duke@435 1972 if (right->is_single_cpu()) {
duke@435 1973 // cpu register - cpu register
duke@435 1974 Register rreg = right->as_register();
duke@435 1975 switch (code) {
duke@435 1976 case lir_add: __ addl (lreg, rreg); break;
duke@435 1977 case lir_sub: __ subl (lreg, rreg); break;
duke@435 1978 case lir_mul: __ imull(lreg, rreg); break;
duke@435 1979 default: ShouldNotReachHere();
duke@435 1980 }
duke@435 1981
duke@435 1982 } else if (right->is_stack()) {
duke@435 1983 // cpu register - stack
duke@435 1984 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 1985 switch (code) {
duke@435 1986 case lir_add: __ addl(lreg, raddr); break;
duke@435 1987 case lir_sub: __ subl(lreg, raddr); break;
duke@435 1988 default: ShouldNotReachHere();
duke@435 1989 }
duke@435 1990
duke@435 1991 } else if (right->is_constant()) {
duke@435 1992 // cpu register - constant
duke@435 1993 jint c = right->as_constant_ptr()->as_jint();
duke@435 1994 switch (code) {
duke@435 1995 case lir_add: {
duke@435 1996 __ increment(lreg, c);
duke@435 1997 break;
duke@435 1998 }
duke@435 1999 case lir_sub: {
duke@435 2000 __ decrement(lreg, c);
duke@435 2001 break;
duke@435 2002 }
duke@435 2003 default: ShouldNotReachHere();
duke@435 2004 }
duke@435 2005
duke@435 2006 } else {
duke@435 2007 ShouldNotReachHere();
duke@435 2008 }
duke@435 2009
duke@435 2010 } else if (left->is_double_cpu()) {
duke@435 2011 assert(left == dest, "left and dest must be equal");
duke@435 2012 Register lreg_lo = left->as_register_lo();
duke@435 2013 Register lreg_hi = left->as_register_hi();
duke@435 2014
duke@435 2015 if (right->is_double_cpu()) {
duke@435 2016 // cpu register - cpu register
duke@435 2017 Register rreg_lo = right->as_register_lo();
duke@435 2018 Register rreg_hi = right->as_register_hi();
never@739 2019 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
never@739 2020 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
duke@435 2021 switch (code) {
duke@435 2022 case lir_add:
never@739 2023 __ addptr(lreg_lo, rreg_lo);
never@739 2024 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
duke@435 2025 break;
duke@435 2026 case lir_sub:
never@739 2027 __ subptr(lreg_lo, rreg_lo);
never@739 2028 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
duke@435 2029 break;
duke@435 2030 case lir_mul:
never@739 2031 #ifdef _LP64
never@739 2032 __ imulq(lreg_lo, rreg_lo);
never@739 2033 #else
duke@435 2034 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 2035 __ imull(lreg_hi, rreg_lo);
duke@435 2036 __ imull(rreg_hi, lreg_lo);
duke@435 2037 __ addl (rreg_hi, lreg_hi);
duke@435 2038 __ mull (rreg_lo);
duke@435 2039 __ addl (lreg_hi, rreg_hi);
never@739 2040 #endif // _LP64
duke@435 2041 break;
duke@435 2042 default:
duke@435 2043 ShouldNotReachHere();
duke@435 2044 }
duke@435 2045
duke@435 2046 } else if (right->is_constant()) {
duke@435 2047 // cpu register - constant
never@739 2048 #ifdef _LP64
never@739 2049 jlong c = right->as_constant_ptr()->as_jlong_bits();
never@739 2050 __ movptr(r10, (intptr_t) c);
never@739 2051 switch (code) {
never@739 2052 case lir_add:
never@739 2053 __ addptr(lreg_lo, r10);
never@739 2054 break;
never@739 2055 case lir_sub:
never@739 2056 __ subptr(lreg_lo, r10);
never@739 2057 break;
never@739 2058 default:
never@739 2059 ShouldNotReachHere();
never@739 2060 }
never@739 2061 #else
duke@435 2062 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2063 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2064 switch (code) {
duke@435 2065 case lir_add:
never@739 2066 __ addptr(lreg_lo, c_lo);
duke@435 2067 __ adcl(lreg_hi, c_hi);
duke@435 2068 break;
duke@435 2069 case lir_sub:
never@739 2070 __ subptr(lreg_lo, c_lo);
duke@435 2071 __ sbbl(lreg_hi, c_hi);
duke@435 2072 break;
duke@435 2073 default:
duke@435 2074 ShouldNotReachHere();
duke@435 2075 }
never@739 2076 #endif // _LP64
duke@435 2077
duke@435 2078 } else {
duke@435 2079 ShouldNotReachHere();
duke@435 2080 }
duke@435 2081
duke@435 2082 } else if (left->is_single_xmm()) {
duke@435 2083 assert(left == dest, "left and dest must be equal");
duke@435 2084 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 2085
duke@435 2086 if (right->is_single_xmm()) {
duke@435 2087 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 2088 switch (code) {
duke@435 2089 case lir_add: __ addss(lreg, rreg); break;
duke@435 2090 case lir_sub: __ subss(lreg, rreg); break;
duke@435 2091 case lir_mul_strictfp: // fall through
duke@435 2092 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 2093 case lir_div_strictfp: // fall through
duke@435 2094 case lir_div: __ divss(lreg, rreg); break;
duke@435 2095 default: ShouldNotReachHere();
duke@435 2096 }
duke@435 2097 } else {
duke@435 2098 Address raddr;
duke@435 2099 if (right->is_single_stack()) {
duke@435 2100 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2101 } else if (right->is_constant()) {
duke@435 2102 // hack for now
duke@435 2103 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 2104 } else {
duke@435 2105 ShouldNotReachHere();
duke@435 2106 }
duke@435 2107 switch (code) {
duke@435 2108 case lir_add: __ addss(lreg, raddr); break;
duke@435 2109 case lir_sub: __ subss(lreg, raddr); break;
duke@435 2110 case lir_mul_strictfp: // fall through
duke@435 2111 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 2112 case lir_div_strictfp: // fall through
duke@435 2113 case lir_div: __ divss(lreg, raddr); break;
duke@435 2114 default: ShouldNotReachHere();
duke@435 2115 }
duke@435 2116 }
duke@435 2117
duke@435 2118 } else if (left->is_double_xmm()) {
duke@435 2119 assert(left == dest, "left and dest must be equal");
duke@435 2120
duke@435 2121 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 2122 if (right->is_double_xmm()) {
duke@435 2123 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 2124 switch (code) {
duke@435 2125 case lir_add: __ addsd(lreg, rreg); break;
duke@435 2126 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 2127 case lir_mul_strictfp: // fall through
duke@435 2128 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 2129 case lir_div_strictfp: // fall through
duke@435 2130 case lir_div: __ divsd(lreg, rreg); break;
duke@435 2131 default: ShouldNotReachHere();
duke@435 2132 }
duke@435 2133 } else {
duke@435 2134 Address raddr;
duke@435 2135 if (right->is_double_stack()) {
duke@435 2136 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2137 } else if (right->is_constant()) {
duke@435 2138 // hack for now
duke@435 2139 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2140 } else {
duke@435 2141 ShouldNotReachHere();
duke@435 2142 }
duke@435 2143 switch (code) {
duke@435 2144 case lir_add: __ addsd(lreg, raddr); break;
duke@435 2145 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 2146 case lir_mul_strictfp: // fall through
duke@435 2147 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 2148 case lir_div_strictfp: // fall through
duke@435 2149 case lir_div: __ divsd(lreg, raddr); break;
duke@435 2150 default: ShouldNotReachHere();
duke@435 2151 }
duke@435 2152 }
duke@435 2153
duke@435 2154 } else if (left->is_single_fpu()) {
duke@435 2155 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 2156
duke@435 2157 if (right->is_single_fpu()) {
duke@435 2158 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 2159
duke@435 2160 } else {
duke@435 2161 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 2162 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 2163
duke@435 2164 Address raddr;
duke@435 2165 if (right->is_single_stack()) {
duke@435 2166 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2167 } else if (right->is_constant()) {
duke@435 2168 address const_addr = float_constant(right->as_jfloat());
duke@435 2169 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 2170 // hack for now
duke@435 2171 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 2172 } else {
duke@435 2173 ShouldNotReachHere();
duke@435 2174 }
duke@435 2175
duke@435 2176 switch (code) {
duke@435 2177 case lir_add: __ fadd_s(raddr); break;
duke@435 2178 case lir_sub: __ fsub_s(raddr); break;
duke@435 2179 case lir_mul_strictfp: // fall through
duke@435 2180 case lir_mul: __ fmul_s(raddr); break;
duke@435 2181 case lir_div_strictfp: // fall through
duke@435 2182 case lir_div: __ fdiv_s(raddr); break;
duke@435 2183 default: ShouldNotReachHere();
duke@435 2184 }
duke@435 2185 }
duke@435 2186
duke@435 2187 } else if (left->is_double_fpu()) {
duke@435 2188 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2189
duke@435 2190 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2191 // Double values require special handling for strictfp mul/div on x86
duke@435 2192 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2193 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2194 }
duke@435 2195
duke@435 2196 if (right->is_double_fpu()) {
duke@435 2197 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2198
duke@435 2199 } else {
duke@435 2200 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2201 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2202
duke@435 2203 Address raddr;
duke@435 2204 if (right->is_double_stack()) {
duke@435 2205 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2206 } else if (right->is_constant()) {
duke@435 2207 // hack for now
duke@435 2208 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2209 } else {
duke@435 2210 ShouldNotReachHere();
duke@435 2211 }
duke@435 2212
duke@435 2213 switch (code) {
duke@435 2214 case lir_add: __ fadd_d(raddr); break;
duke@435 2215 case lir_sub: __ fsub_d(raddr); break;
duke@435 2216 case lir_mul_strictfp: // fall through
duke@435 2217 case lir_mul: __ fmul_d(raddr); break;
duke@435 2218 case lir_div_strictfp: // fall through
duke@435 2219 case lir_div: __ fdiv_d(raddr); break;
duke@435 2220 default: ShouldNotReachHere();
duke@435 2221 }
duke@435 2222 }
duke@435 2223
duke@435 2224 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2225 // Double values require special handling for strictfp mul/div on x86
duke@435 2226 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2227 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2228 }
duke@435 2229
duke@435 2230 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2231 assert(left == dest, "left and dest must be equal");
duke@435 2232
duke@435 2233 Address laddr;
duke@435 2234 if (left->is_single_stack()) {
duke@435 2235 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2236 } else if (left->is_address()) {
duke@435 2237 laddr = as_Address(left->as_address_ptr());
duke@435 2238 } else {
duke@435 2239 ShouldNotReachHere();
duke@435 2240 }
duke@435 2241
duke@435 2242 if (right->is_single_cpu()) {
duke@435 2243 Register rreg = right->as_register();
duke@435 2244 switch (code) {
duke@435 2245 case lir_add: __ addl(laddr, rreg); break;
duke@435 2246 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2247 default: ShouldNotReachHere();
duke@435 2248 }
duke@435 2249 } else if (right->is_constant()) {
duke@435 2250 jint c = right->as_constant_ptr()->as_jint();
duke@435 2251 switch (code) {
duke@435 2252 case lir_add: {
never@739 2253 __ incrementl(laddr, c);
duke@435 2254 break;
duke@435 2255 }
duke@435 2256 case lir_sub: {
never@739 2257 __ decrementl(laddr, c);
duke@435 2258 break;
duke@435 2259 }
duke@435 2260 default: ShouldNotReachHere();
duke@435 2261 }
duke@435 2262 } else {
duke@435 2263 ShouldNotReachHere();
duke@435 2264 }
duke@435 2265
duke@435 2266 } else {
duke@435 2267 ShouldNotReachHere();
duke@435 2268 }
duke@435 2269 }
duke@435 2270
duke@435 2271 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2272 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2273 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2274 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2275
duke@435 2276 bool left_is_tos = (left_index == 0);
duke@435 2277 bool dest_is_tos = (dest_index == 0);
duke@435 2278 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2279
duke@435 2280 switch (code) {
duke@435 2281 case lir_add:
duke@435 2282 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2283 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2284 else __ fadda(non_tos_index);
duke@435 2285 break;
duke@435 2286
duke@435 2287 case lir_sub:
duke@435 2288 if (left_is_tos) {
duke@435 2289 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2290 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2291 else __ fsubra(non_tos_index);
duke@435 2292 } else {
duke@435 2293 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2294 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2295 else __ fsuba (non_tos_index);
duke@435 2296 }
duke@435 2297 break;
duke@435 2298
duke@435 2299 case lir_mul_strictfp: // fall through
duke@435 2300 case lir_mul:
duke@435 2301 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2302 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2303 else __ fmula(non_tos_index);
duke@435 2304 break;
duke@435 2305
duke@435 2306 case lir_div_strictfp: // fall through
duke@435 2307 case lir_div:
duke@435 2308 if (left_is_tos) {
duke@435 2309 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2310 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2311 else __ fdivra(non_tos_index);
duke@435 2312 } else {
duke@435 2313 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2314 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2315 else __ fdiva (non_tos_index);
duke@435 2316 }
duke@435 2317 break;
duke@435 2318
duke@435 2319 case lir_rem:
duke@435 2320 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2321 __ fremr(noreg);
duke@435 2322 break;
duke@435 2323
duke@435 2324 default:
duke@435 2325 ShouldNotReachHere();
duke@435 2326 }
duke@435 2327 }
duke@435 2328
duke@435 2329
duke@435 2330 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2331 if (value->is_double_xmm()) {
duke@435 2332 switch(code) {
duke@435 2333 case lir_abs :
duke@435 2334 {
duke@435 2335 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2336 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2337 }
duke@435 2338 __ andpd(dest->as_xmm_double_reg(),
duke@435 2339 ExternalAddress((address)double_signmask_pool));
duke@435 2340 }
duke@435 2341 break;
duke@435 2342
duke@435 2343 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2344 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2345 default : ShouldNotReachHere();
duke@435 2346 }
duke@435 2347
duke@435 2348 } else if (value->is_double_fpu()) {
duke@435 2349 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2350 switch(code) {
duke@435 2351 case lir_log : __ flog() ; break;
duke@435 2352 case lir_log10 : __ flog10() ; break;
duke@435 2353 case lir_abs : __ fabs() ; break;
duke@435 2354 case lir_sqrt : __ fsqrt(); break;
duke@435 2355 case lir_sin :
duke@435 2356 // Should consider not saving rbx, if not necessary
duke@435 2357 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2358 break;
duke@435 2359 case lir_cos :
duke@435 2360 // Should consider not saving rbx, if not necessary
duke@435 2361 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2362 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2363 break;
duke@435 2364 case lir_tan :
duke@435 2365 // Should consider not saving rbx, if not necessary
duke@435 2366 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2367 break;
duke@435 2368 default : ShouldNotReachHere();
duke@435 2369 }
duke@435 2370 } else {
duke@435 2371 Unimplemented();
duke@435 2372 }
duke@435 2373 }
duke@435 2374
duke@435 2375 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2376 // assert(left->destroys_register(), "check");
duke@435 2377 if (left->is_single_cpu()) {
duke@435 2378 Register reg = left->as_register();
duke@435 2379 if (right->is_constant()) {
duke@435 2380 int val = right->as_constant_ptr()->as_jint();
duke@435 2381 switch (code) {
duke@435 2382 case lir_logic_and: __ andl (reg, val); break;
duke@435 2383 case lir_logic_or: __ orl (reg, val); break;
duke@435 2384 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2385 default: ShouldNotReachHere();
duke@435 2386 }
duke@435 2387 } else if (right->is_stack()) {
duke@435 2388 // added support for stack operands
duke@435 2389 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2390 switch (code) {
duke@435 2391 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2392 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2393 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2394 default: ShouldNotReachHere();
duke@435 2395 }
duke@435 2396 } else {
duke@435 2397 Register rright = right->as_register();
duke@435 2398 switch (code) {
never@739 2399 case lir_logic_and: __ andptr (reg, rright); break;
never@739 2400 case lir_logic_or : __ orptr (reg, rright); break;
never@739 2401 case lir_logic_xor: __ xorptr (reg, rright); break;
duke@435 2402 default: ShouldNotReachHere();
duke@435 2403 }
duke@435 2404 }
duke@435 2405 move_regs(reg, dst->as_register());
duke@435 2406 } else {
duke@435 2407 Register l_lo = left->as_register_lo();
duke@435 2408 Register l_hi = left->as_register_hi();
duke@435 2409 if (right->is_constant()) {
never@739 2410 #ifdef _LP64
never@739 2411 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
never@739 2412 switch (code) {
never@739 2413 case lir_logic_and:
never@739 2414 __ andq(l_lo, rscratch1);
never@739 2415 break;
never@739 2416 case lir_logic_or:
never@739 2417 __ orq(l_lo, rscratch1);
never@739 2418 break;
never@739 2419 case lir_logic_xor:
never@739 2420 __ xorq(l_lo, rscratch1);
never@739 2421 break;
never@739 2422 default: ShouldNotReachHere();
never@739 2423 }
never@739 2424 #else
duke@435 2425 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2426 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2427 switch (code) {
duke@435 2428 case lir_logic_and:
duke@435 2429 __ andl(l_lo, r_lo);
duke@435 2430 __ andl(l_hi, r_hi);
duke@435 2431 break;
duke@435 2432 case lir_logic_or:
duke@435 2433 __ orl(l_lo, r_lo);
duke@435 2434 __ orl(l_hi, r_hi);
duke@435 2435 break;
duke@435 2436 case lir_logic_xor:
duke@435 2437 __ xorl(l_lo, r_lo);
duke@435 2438 __ xorl(l_hi, r_hi);
duke@435 2439 break;
duke@435 2440 default: ShouldNotReachHere();
duke@435 2441 }
never@739 2442 #endif // _LP64
duke@435 2443 } else {
duke@435 2444 Register r_lo = right->as_register_lo();
duke@435 2445 Register r_hi = right->as_register_hi();
duke@435 2446 assert(l_lo != r_hi, "overwriting registers");
duke@435 2447 switch (code) {
duke@435 2448 case lir_logic_and:
never@739 2449 __ andptr(l_lo, r_lo);
never@739 2450 NOT_LP64(__ andptr(l_hi, r_hi);)
duke@435 2451 break;
duke@435 2452 case lir_logic_or:
never@739 2453 __ orptr(l_lo, r_lo);
never@739 2454 NOT_LP64(__ orptr(l_hi, r_hi);)
duke@435 2455 break;
duke@435 2456 case lir_logic_xor:
never@739 2457 __ xorptr(l_lo, r_lo);
never@739 2458 NOT_LP64(__ xorptr(l_hi, r_hi);)
duke@435 2459 break;
duke@435 2460 default: ShouldNotReachHere();
duke@435 2461 }
duke@435 2462 }
duke@435 2463
duke@435 2464 Register dst_lo = dst->as_register_lo();
duke@435 2465 Register dst_hi = dst->as_register_hi();
duke@435 2466
never@739 2467 #ifdef _LP64
never@739 2468 move_regs(l_lo, dst_lo);
never@739 2469 #else
duke@435 2470 if (dst_lo == l_hi) {
duke@435 2471 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2472 move_regs(l_hi, dst_hi);
duke@435 2473 move_regs(l_lo, dst_lo);
duke@435 2474 } else {
duke@435 2475 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2476 move_regs(l_lo, dst_lo);
duke@435 2477 move_regs(l_hi, dst_hi);
duke@435 2478 }
never@739 2479 #endif // _LP64
duke@435 2480 }
duke@435 2481 }
duke@435 2482
duke@435 2483
duke@435 2484 // we assume that rax, and rdx can be overwritten
duke@435 2485 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2486
duke@435 2487 assert(left->is_single_cpu(), "left must be register");
duke@435 2488 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2489 assert(result->is_single_cpu(), "result must be register");
duke@435 2490
duke@435 2491 // assert(left->destroys_register(), "check");
duke@435 2492 // assert(right->destroys_register(), "check");
duke@435 2493
duke@435 2494 Register lreg = left->as_register();
duke@435 2495 Register dreg = result->as_register();
duke@435 2496
duke@435 2497 if (right->is_constant()) {
duke@435 2498 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2499 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2500 if (code == lir_idiv) {
duke@435 2501 assert(lreg == rax, "must be rax,");
duke@435 2502 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2503 __ cdql(); // sign extend into rdx:rax
duke@435 2504 if (divisor == 2) {
duke@435 2505 __ subl(lreg, rdx);
duke@435 2506 } else {
duke@435 2507 __ andl(rdx, divisor - 1);
duke@435 2508 __ addl(lreg, rdx);
duke@435 2509 }
duke@435 2510 __ sarl(lreg, log2_intptr(divisor));
duke@435 2511 move_regs(lreg, dreg);
duke@435 2512 } else if (code == lir_irem) {
duke@435 2513 Label done;
never@739 2514 __ mov(dreg, lreg);
duke@435 2515 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2516 __ jcc(Assembler::positive, done);
duke@435 2517 __ decrement(dreg);
duke@435 2518 __ orl(dreg, ~(divisor - 1));
duke@435 2519 __ increment(dreg);
duke@435 2520 __ bind(done);
duke@435 2521 } else {
duke@435 2522 ShouldNotReachHere();
duke@435 2523 }
duke@435 2524 } else {
duke@435 2525 Register rreg = right->as_register();
duke@435 2526 assert(lreg == rax, "left register must be rax,");
duke@435 2527 assert(rreg != rdx, "right register must not be rdx");
duke@435 2528 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2529
duke@435 2530 move_regs(lreg, rax);
duke@435 2531
duke@435 2532 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2533 add_debug_info_for_div0(idivl_offset, info);
duke@435 2534 if (code == lir_irem) {
duke@435 2535 move_regs(rdx, dreg); // result is in rdx
duke@435 2536 } else {
duke@435 2537 move_regs(rax, dreg);
duke@435 2538 }
duke@435 2539 }
duke@435 2540 }
duke@435 2541
duke@435 2542
duke@435 2543 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2544 if (opr1->is_single_cpu()) {
duke@435 2545 Register reg1 = opr1->as_register();
duke@435 2546 if (opr2->is_single_cpu()) {
duke@435 2547 // cpu register - cpu register
never@739 2548 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2549 __ cmpptr(reg1, opr2->as_register());
never@739 2550 } else {
never@739 2551 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
never@739 2552 __ cmpl(reg1, opr2->as_register());
never@739 2553 }
duke@435 2554 } else if (opr2->is_stack()) {
duke@435 2555 // cpu register - stack
never@739 2556 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2557 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2558 } else {
never@739 2559 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2560 }
duke@435 2561 } else if (opr2->is_constant()) {
duke@435 2562 // cpu register - constant
duke@435 2563 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2564 if (c->type() == T_INT) {
duke@435 2565 __ cmpl(reg1, c->as_jint());
never@739 2566 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2567 // In 64bit oops are single register
duke@435 2568 jobject o = c->as_jobject();
duke@435 2569 if (o == NULL) {
never@739 2570 __ cmpptr(reg1, (int32_t)NULL_WORD);
duke@435 2571 } else {
never@739 2572 #ifdef _LP64
never@739 2573 __ movoop(rscratch1, o);
never@739 2574 __ cmpptr(reg1, rscratch1);
never@739 2575 #else
duke@435 2576 __ cmpoop(reg1, c->as_jobject());
never@739 2577 #endif // _LP64
duke@435 2578 }
duke@435 2579 } else {
duke@435 2580 ShouldNotReachHere();
duke@435 2581 }
duke@435 2582 // cpu register - address
duke@435 2583 } else if (opr2->is_address()) {
duke@435 2584 if (op->info() != NULL) {
duke@435 2585 add_debug_info_for_null_check_here(op->info());
duke@435 2586 }
duke@435 2587 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2588 } else {
duke@435 2589 ShouldNotReachHere();
duke@435 2590 }
duke@435 2591
duke@435 2592 } else if(opr1->is_double_cpu()) {
duke@435 2593 Register xlo = opr1->as_register_lo();
duke@435 2594 Register xhi = opr1->as_register_hi();
duke@435 2595 if (opr2->is_double_cpu()) {
never@739 2596 #ifdef _LP64
never@739 2597 __ cmpptr(xlo, opr2->as_register_lo());
never@739 2598 #else
duke@435 2599 // cpu register - cpu register
duke@435 2600 Register ylo = opr2->as_register_lo();
duke@435 2601 Register yhi = opr2->as_register_hi();
duke@435 2602 __ subl(xlo, ylo);
duke@435 2603 __ sbbl(xhi, yhi);
duke@435 2604 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2605 __ orl(xhi, xlo);
duke@435 2606 }
never@739 2607 #endif // _LP64
duke@435 2608 } else if (opr2->is_constant()) {
duke@435 2609 // cpu register - constant 0
duke@435 2610 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
never@739 2611 #ifdef _LP64
never@739 2612 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
never@739 2613 #else
duke@435 2614 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2615 __ orl(xhi, xlo);
never@739 2616 #endif // _LP64
duke@435 2617 } else {
duke@435 2618 ShouldNotReachHere();
duke@435 2619 }
duke@435 2620
duke@435 2621 } else if (opr1->is_single_xmm()) {
duke@435 2622 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2623 if (opr2->is_single_xmm()) {
duke@435 2624 // xmm register - xmm register
duke@435 2625 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2626 } else if (opr2->is_stack()) {
duke@435 2627 // xmm register - stack
duke@435 2628 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2629 } else if (opr2->is_constant()) {
duke@435 2630 // xmm register - constant
duke@435 2631 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2632 } else if (opr2->is_address()) {
duke@435 2633 // xmm register - address
duke@435 2634 if (op->info() != NULL) {
duke@435 2635 add_debug_info_for_null_check_here(op->info());
duke@435 2636 }
duke@435 2637 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2638 } else {
duke@435 2639 ShouldNotReachHere();
duke@435 2640 }
duke@435 2641
duke@435 2642 } else if (opr1->is_double_xmm()) {
duke@435 2643 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2644 if (opr2->is_double_xmm()) {
duke@435 2645 // xmm register - xmm register
duke@435 2646 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2647 } else if (opr2->is_stack()) {
duke@435 2648 // xmm register - stack
duke@435 2649 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2650 } else if (opr2->is_constant()) {
duke@435 2651 // xmm register - constant
duke@435 2652 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2653 } else if (opr2->is_address()) {
duke@435 2654 // xmm register - address
duke@435 2655 if (op->info() != NULL) {
duke@435 2656 add_debug_info_for_null_check_here(op->info());
duke@435 2657 }
duke@435 2658 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2659 } else {
duke@435 2660 ShouldNotReachHere();
duke@435 2661 }
duke@435 2662
duke@435 2663 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2664 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2665 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2666 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2667
duke@435 2668 } else if (opr1->is_address() && opr2->is_constant()) {
never@739 2669 LIR_Const* c = opr2->as_constant_ptr();
never@739 2670 #ifdef _LP64
never@739 2671 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2672 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
never@739 2673 __ movoop(rscratch1, c->as_jobject());
never@739 2674 }
never@739 2675 #endif // LP64
duke@435 2676 if (op->info() != NULL) {
duke@435 2677 add_debug_info_for_null_check_here(op->info());
duke@435 2678 }
duke@435 2679 // special case: address - constant
duke@435 2680 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2681 if (c->type() == T_INT) {
duke@435 2682 __ cmpl(as_Address(addr), c->as_jint());
never@739 2683 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2684 #ifdef _LP64
never@739 2685 // %%% Make this explode if addr isn't reachable until we figure out a
never@739 2686 // better strategy by giving noreg as the temp for as_Address
never@739 2687 __ cmpptr(rscratch1, as_Address(addr, noreg));
never@739 2688 #else
duke@435 2689 __ cmpoop(as_Address(addr), c->as_jobject());
never@739 2690 #endif // _LP64
duke@435 2691 } else {
duke@435 2692 ShouldNotReachHere();
duke@435 2693 }
duke@435 2694
duke@435 2695 } else {
duke@435 2696 ShouldNotReachHere();
duke@435 2697 }
duke@435 2698 }
duke@435 2699
duke@435 2700 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2701 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2702 if (left->is_single_xmm()) {
duke@435 2703 assert(right->is_single_xmm(), "must match");
duke@435 2704 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2705 } else if (left->is_double_xmm()) {
duke@435 2706 assert(right->is_double_xmm(), "must match");
duke@435 2707 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2708
duke@435 2709 } else {
duke@435 2710 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2711 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2712
duke@435 2713 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2714 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2715 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2716 }
duke@435 2717 } else {
duke@435 2718 assert(code == lir_cmp_l2i, "check");
never@739 2719 #ifdef _LP64
never@739 2720 Register dest = dst->as_register();
never@739 2721 __ xorptr(dest, dest);
never@739 2722 Label high, done;
never@739 2723 __ cmpptr(left->as_register_lo(), right->as_register_lo());
never@739 2724 __ jcc(Assembler::equal, done);
never@739 2725 __ jcc(Assembler::greater, high);
never@739 2726 __ decrement(dest);
never@739 2727 __ jmp(done);
never@739 2728 __ bind(high);
never@739 2729 __ increment(dest);
never@739 2730
never@739 2731 __ bind(done);
never@739 2732
never@739 2733 #else
duke@435 2734 __ lcmp2int(left->as_register_hi(),
duke@435 2735 left->as_register_lo(),
duke@435 2736 right->as_register_hi(),
duke@435 2737 right->as_register_lo());
duke@435 2738 move_regs(left->as_register_hi(), dst->as_register());
never@739 2739 #endif // _LP64
duke@435 2740 }
duke@435 2741 }
duke@435 2742
duke@435 2743
duke@435 2744 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2745 if (os::is_MP()) {
duke@435 2746 // make sure that the displacement word of the call ends up word aligned
duke@435 2747 int offset = __ offset();
duke@435 2748 switch (code) {
duke@435 2749 case lir_static_call:
duke@435 2750 case lir_optvirtual_call:
duke@435 2751 offset += NativeCall::displacement_offset;
duke@435 2752 break;
duke@435 2753 case lir_icvirtual_call:
duke@435 2754 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2755 break;
duke@435 2756 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2757 default: ShouldNotReachHere();
duke@435 2758 }
duke@435 2759 while (offset++ % BytesPerWord != 0) {
duke@435 2760 __ nop();
duke@435 2761 }
duke@435 2762 }
duke@435 2763 }
duke@435 2764
duke@435 2765
duke@435 2766 void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) {
duke@435 2767 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2768 "must be aligned");
duke@435 2769 __ call(AddressLiteral(entry, rtype));
duke@435 2770 add_call_info(code_offset(), info);
duke@435 2771 }
duke@435 2772
duke@435 2773
duke@435 2774 void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) {
duke@435 2775 RelocationHolder rh = virtual_call_Relocation::spec(pc());
duke@435 2776 __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
duke@435 2777 assert(!os::is_MP() ||
duke@435 2778 (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2779 "must be aligned");
duke@435 2780 __ call(AddressLiteral(entry, rh));
duke@435 2781 add_call_info(code_offset(), info);
duke@435 2782 }
duke@435 2783
duke@435 2784
duke@435 2785 /* Currently, vtable-dispatch is only enabled for sparc platforms */
duke@435 2786 void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) {
duke@435 2787 ShouldNotReachHere();
duke@435 2788 }
duke@435 2789
duke@435 2790 void LIR_Assembler::emit_static_call_stub() {
duke@435 2791 address call_pc = __ pc();
duke@435 2792 address stub = __ start_a_stub(call_stub_size);
duke@435 2793 if (stub == NULL) {
duke@435 2794 bailout("static call stub overflow");
duke@435 2795 return;
duke@435 2796 }
duke@435 2797
duke@435 2798 int start = __ offset();
duke@435 2799 if (os::is_MP()) {
duke@435 2800 // make sure that the displacement word of the call ends up word aligned
duke@435 2801 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2802 while (offset++ % BytesPerWord != 0) {
duke@435 2803 __ nop();
duke@435 2804 }
duke@435 2805 }
duke@435 2806 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 2807 __ movoop(rbx, (jobject)NULL);
duke@435 2808 // must be set to -1 at code generation time
duke@435 2809 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
never@739 2810 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
never@739 2811 __ jump(RuntimeAddress(__ pc()));
duke@435 2812
duke@435 2813 assert(__ offset() - start <= call_stub_size, "stub too big")
duke@435 2814 __ end_a_stub();
duke@435 2815 }
duke@435 2816
duke@435 2817
duke@435 2818 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
duke@435 2819 assert(exceptionOop->as_register() == rax, "must match");
duke@435 2820 assert(unwind || exceptionPC->as_register() == rdx, "must match");
duke@435 2821
duke@435 2822 // exception object is not added to oop map by LinearScan
duke@435 2823 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2824 info->add_register_oop(exceptionOop);
duke@435 2825 Runtime1::StubID unwind_id;
duke@435 2826
duke@435 2827 if (!unwind) {
duke@435 2828 // get current pc information
duke@435 2829 // pc is only needed if the method has an exception handler, the unwind code does not need it.
duke@435 2830 int pc_for_athrow_offset = __ offset();
duke@435 2831 InternalAddress pc_for_athrow(__ pc());
duke@435 2832 __ lea(exceptionPC->as_register(), pc_for_athrow);
duke@435 2833 add_call_info(pc_for_athrow_offset, info); // for exception handler
duke@435 2834
duke@435 2835 __ verify_not_null_oop(rax);
duke@435 2836 // search an exception handler (rax: exception oop, rdx: throwing pc)
duke@435 2837 if (compilation()->has_fpu_code()) {
duke@435 2838 unwind_id = Runtime1::handle_exception_id;
duke@435 2839 } else {
duke@435 2840 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2841 }
duke@435 2842 } else {
duke@435 2843 unwind_id = Runtime1::unwind_exception_id;
duke@435 2844 }
duke@435 2845 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2846
duke@435 2847 // enough room for two byte trap
duke@435 2848 __ nop();
duke@435 2849 }
duke@435 2850
duke@435 2851
duke@435 2852 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2853
duke@435 2854 // optimized version for linear scan:
duke@435 2855 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 2856 // * left and dest must be equal
duke@435 2857 // * tmp must be unused
duke@435 2858 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 2859 assert(left == dest, "left and dest must be equal");
duke@435 2860 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 2861
duke@435 2862 if (left->is_single_cpu()) {
duke@435 2863 Register value = left->as_register();
duke@435 2864 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 2865
duke@435 2866 switch (code) {
duke@435 2867 case lir_shl: __ shll(value); break;
duke@435 2868 case lir_shr: __ sarl(value); break;
duke@435 2869 case lir_ushr: __ shrl(value); break;
duke@435 2870 default: ShouldNotReachHere();
duke@435 2871 }
duke@435 2872 } else if (left->is_double_cpu()) {
duke@435 2873 Register lo = left->as_register_lo();
duke@435 2874 Register hi = left->as_register_hi();
duke@435 2875 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
never@739 2876 #ifdef _LP64
never@739 2877 switch (code) {
never@739 2878 case lir_shl: __ shlptr(lo); break;
never@739 2879 case lir_shr: __ sarptr(lo); break;
never@739 2880 case lir_ushr: __ shrptr(lo); break;
never@739 2881 default: ShouldNotReachHere();
never@739 2882 }
never@739 2883 #else
duke@435 2884
duke@435 2885 switch (code) {
duke@435 2886 case lir_shl: __ lshl(hi, lo); break;
duke@435 2887 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 2888 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 2889 default: ShouldNotReachHere();
duke@435 2890 }
never@739 2891 #endif // LP64
duke@435 2892 } else {
duke@435 2893 ShouldNotReachHere();
duke@435 2894 }
duke@435 2895 }
duke@435 2896
duke@435 2897
duke@435 2898 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2899 if (dest->is_single_cpu()) {
duke@435 2900 // first move left into dest so that left is not destroyed by the shift
duke@435 2901 Register value = dest->as_register();
duke@435 2902 count = count & 0x1F; // Java spec
duke@435 2903
duke@435 2904 move_regs(left->as_register(), value);
duke@435 2905 switch (code) {
duke@435 2906 case lir_shl: __ shll(value, count); break;
duke@435 2907 case lir_shr: __ sarl(value, count); break;
duke@435 2908 case lir_ushr: __ shrl(value, count); break;
duke@435 2909 default: ShouldNotReachHere();
duke@435 2910 }
duke@435 2911 } else if (dest->is_double_cpu()) {
never@739 2912 #ifndef _LP64
duke@435 2913 Unimplemented();
never@739 2914 #else
never@739 2915 // first move left into dest so that left is not destroyed by the shift
never@739 2916 Register value = dest->as_register_lo();
never@739 2917 count = count & 0x1F; // Java spec
never@739 2918
never@739 2919 move_regs(left->as_register_lo(), value);
never@739 2920 switch (code) {
never@739 2921 case lir_shl: __ shlptr(value, count); break;
never@739 2922 case lir_shr: __ sarptr(value, count); break;
never@739 2923 case lir_ushr: __ shrptr(value, count); break;
never@739 2924 default: ShouldNotReachHere();
never@739 2925 }
never@739 2926 #endif // _LP64
duke@435 2927 } else {
duke@435 2928 ShouldNotReachHere();
duke@435 2929 }
duke@435 2930 }
duke@435 2931
duke@435 2932
duke@435 2933 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 2934 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2935 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2936 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 2937 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 2938 }
duke@435 2939
duke@435 2940
duke@435 2941 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 2942 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2943 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2944 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 2945 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 2946 }
duke@435 2947
duke@435 2948
duke@435 2949 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 2950 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2951 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2952 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 2953 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 2954 }
duke@435 2955
duke@435 2956
duke@435 2957 // This code replaces a call to arraycopy; no exception may
duke@435 2958 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 2959 // activation frame; we could save some checks if this would not be the case
duke@435 2960 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 2961 ciArrayKlass* default_type = op->expected_type();
duke@435 2962 Register src = op->src()->as_register();
duke@435 2963 Register dst = op->dst()->as_register();
duke@435 2964 Register src_pos = op->src_pos()->as_register();
duke@435 2965 Register dst_pos = op->dst_pos()->as_register();
duke@435 2966 Register length = op->length()->as_register();
duke@435 2967 Register tmp = op->tmp()->as_register();
duke@435 2968
duke@435 2969 CodeStub* stub = op->stub();
duke@435 2970 int flags = op->flags();
duke@435 2971 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 2972 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 2973
duke@435 2974 // if we don't know anything or it's an object array, just go through the generic arraycopy
duke@435 2975 if (default_type == NULL) {
duke@435 2976 Label done;
duke@435 2977 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 2978 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 2979 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 2980 // For the moment until C1 gets the new register allocator I just force all the
duke@435 2981 // args to the right place (except the register args) and then on the back side
duke@435 2982 // reload the register args properly if we go slow path. Yuck
duke@435 2983
duke@435 2984 // These are proper for the calling convention
duke@435 2985
duke@435 2986 store_parameter(length, 2);
duke@435 2987 store_parameter(dst_pos, 1);
duke@435 2988 store_parameter(dst, 0);
duke@435 2989
duke@435 2990 // these are just temporary placements until we need to reload
duke@435 2991 store_parameter(src_pos, 3);
duke@435 2992 store_parameter(src, 4);
never@739 2993 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
never@739 2994
never@739 2995 address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
duke@435 2996
duke@435 2997 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
never@739 2998 #ifdef _LP64
never@739 2999 // The arguments are in java calling convention so we can trivially shift them to C
never@739 3000 // convention
never@739 3001 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3002 __ mov(c_rarg0, j_rarg0);
never@739 3003 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3004 __ mov(c_rarg1, j_rarg1);
never@739 3005 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
never@739 3006 __ mov(c_rarg2, j_rarg2);
never@739 3007 assert_different_registers(c_rarg3, j_rarg4);
never@739 3008 __ mov(c_rarg3, j_rarg3);
never@739 3009 #ifdef _WIN64
never@739 3010 // Allocate abi space for args but be sure to keep stack aligned
never@739 3011 __ subptr(rsp, 6*wordSize);
never@739 3012 store_parameter(j_rarg4, 4);
never@739 3013 __ call(RuntimeAddress(entry));
never@739 3014 __ addptr(rsp, 6*wordSize);
never@739 3015 #else
never@739 3016 __ mov(c_rarg4, j_rarg4);
never@739 3017 __ call(RuntimeAddress(entry));
never@739 3018 #endif // _WIN64
never@739 3019 #else
never@739 3020 __ push(length);
never@739 3021 __ push(dst_pos);
never@739 3022 __ push(dst);
never@739 3023 __ push(src_pos);
never@739 3024 __ push(src);
duke@435 3025 __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
duke@435 3026
never@739 3027 #endif // _LP64
never@739 3028
duke@435 3029 __ cmpl(rax, 0);
duke@435 3030 __ jcc(Assembler::equal, *stub->continuation());
duke@435 3031
duke@435 3032 // Reload values from the stack so they are where the stub
duke@435 3033 // expects them.
never@739 3034 __ movptr (dst, Address(rsp, 0*BytesPerWord));
never@739 3035 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
never@739 3036 __ movptr (length, Address(rsp, 2*BytesPerWord));
never@739 3037 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
never@739 3038 __ movptr (src, Address(rsp, 4*BytesPerWord));
duke@435 3039 __ jmp(*stub->entry());
duke@435 3040
duke@435 3041 __ bind(*stub->continuation());
duke@435 3042 return;
duke@435 3043 }
duke@435 3044
duke@435 3045 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 3046
kvn@464 3047 int elem_size = type2aelembytes(basic_type);
duke@435 3048 int shift_amount;
duke@435 3049 Address::ScaleFactor scale;
duke@435 3050
duke@435 3051 switch (elem_size) {
duke@435 3052 case 1 :
duke@435 3053 shift_amount = 0;
duke@435 3054 scale = Address::times_1;
duke@435 3055 break;
duke@435 3056 case 2 :
duke@435 3057 shift_amount = 1;
duke@435 3058 scale = Address::times_2;
duke@435 3059 break;
duke@435 3060 case 4 :
duke@435 3061 shift_amount = 2;
duke@435 3062 scale = Address::times_4;
duke@435 3063 break;
duke@435 3064 case 8 :
duke@435 3065 shift_amount = 3;
duke@435 3066 scale = Address::times_8;
duke@435 3067 break;
duke@435 3068 default:
duke@435 3069 ShouldNotReachHere();
duke@435 3070 }
duke@435 3071
duke@435 3072 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 3073 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 3074 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 3075 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 3076
never@739 3077 // length and pos's are all sign extended at this point on 64bit
never@739 3078
duke@435 3079 // test for NULL
duke@435 3080 if (flags & LIR_OpArrayCopy::src_null_check) {
never@739 3081 __ testptr(src, src);
duke@435 3082 __ jcc(Assembler::zero, *stub->entry());
duke@435 3083 }
duke@435 3084 if (flags & LIR_OpArrayCopy::dst_null_check) {
never@739 3085 __ testptr(dst, dst);
duke@435 3086 __ jcc(Assembler::zero, *stub->entry());
duke@435 3087 }
duke@435 3088
duke@435 3089 // check if negative
duke@435 3090 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 3091 __ testl(src_pos, src_pos);
duke@435 3092 __ jcc(Assembler::less, *stub->entry());
duke@435 3093 }
duke@435 3094 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 3095 __ testl(dst_pos, dst_pos);
duke@435 3096 __ jcc(Assembler::less, *stub->entry());
duke@435 3097 }
duke@435 3098 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 3099 __ testl(length, length);
duke@435 3100 __ jcc(Assembler::less, *stub->entry());
duke@435 3101 }
duke@435 3102
duke@435 3103 if (flags & LIR_OpArrayCopy::src_range_check) {
never@739 3104 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 3105 __ cmpl(tmp, src_length_addr);
duke@435 3106 __ jcc(Assembler::above, *stub->entry());
duke@435 3107 }
duke@435 3108 if (flags & LIR_OpArrayCopy::dst_range_check) {
never@739 3109 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 3110 __ cmpl(tmp, dst_length_addr);
duke@435 3111 __ jcc(Assembler::above, *stub->entry());
duke@435 3112 }
duke@435 3113
duke@435 3114 if (flags & LIR_OpArrayCopy::type_check) {
never@739 3115 __ movptr(tmp, src_klass_addr);
never@739 3116 __ cmpptr(tmp, dst_klass_addr);
duke@435 3117 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 3118 }
duke@435 3119
duke@435 3120 #ifdef ASSERT
duke@435 3121 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 3122 // Sanity check the known type with the incoming class. For the
duke@435 3123 // primitive case the types must match exactly with src.klass and
duke@435 3124 // dst.klass each exactly matching the default type. For the
duke@435 3125 // object array case, if no type check is needed then either the
duke@435 3126 // dst type is exactly the expected type and the src type is a
duke@435 3127 // subtype which we can't check or src is the same array as dst
duke@435 3128 // but not necessarily exactly of type default_type.
duke@435 3129 Label known_ok, halt;
jrose@1424 3130 __ movoop(tmp, default_type->constant_encoding());
duke@435 3131 if (basic_type != T_OBJECT) {
never@739 3132 __ cmpptr(tmp, dst_klass_addr);
duke@435 3133 __ jcc(Assembler::notEqual, halt);
never@739 3134 __ cmpptr(tmp, src_klass_addr);
duke@435 3135 __ jcc(Assembler::equal, known_ok);
duke@435 3136 } else {
never@739 3137 __ cmpptr(tmp, dst_klass_addr);
duke@435 3138 __ jcc(Assembler::equal, known_ok);
never@739 3139 __ cmpptr(src, dst);
duke@435 3140 __ jcc(Assembler::equal, known_ok);
duke@435 3141 }
duke@435 3142 __ bind(halt);
duke@435 3143 __ stop("incorrect type information in arraycopy");
duke@435 3144 __ bind(known_ok);
duke@435 3145 }
duke@435 3146 #endif
duke@435 3147
never@739 3148 if (shift_amount > 0 && basic_type != T_OBJECT) {
never@739 3149 __ shlptr(length, shift_amount);
never@739 3150 }
never@739 3151
never@739 3152 #ifdef _LP64
never@739 3153 assert_different_registers(c_rarg0, dst, dst_pos, length);
roland@1495 3154 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
never@739 3155 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3156 assert_different_registers(c_rarg1, length);
roland@1495 3157 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
never@739 3158 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3159 __ mov(c_rarg2, length);
never@739 3160
never@739 3161 #else
never@739 3162 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3163 store_parameter(tmp, 0);
never@739 3164 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3165 store_parameter(tmp, 1);
duke@435 3166 store_parameter(length, 2);
never@739 3167 #endif // _LP64
duke@435 3168 if (basic_type == T_OBJECT) {
duke@435 3169 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
duke@435 3170 } else {
duke@435 3171 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
duke@435 3172 }
duke@435 3173
duke@435 3174 __ bind(*stub->continuation());
duke@435 3175 }
duke@435 3176
duke@435 3177
duke@435 3178 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 3179 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 3180 Register hdr = op->hdr_opr()->as_register();
duke@435 3181 Register lock = op->lock_opr()->as_register();
duke@435 3182 if (!UseFastLocking) {
duke@435 3183 __ jmp(*op->stub()->entry());
duke@435 3184 } else if (op->code() == lir_lock) {
duke@435 3185 Register scratch = noreg;
duke@435 3186 if (UseBiasedLocking) {
duke@435 3187 scratch = op->scratch_opr()->as_register();
duke@435 3188 }
duke@435 3189 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3190 // add debug info for NullPointerException only if one is possible
duke@435 3191 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 3192 if (op->info() != NULL) {
duke@435 3193 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 3194 }
duke@435 3195 // done
duke@435 3196 } else if (op->code() == lir_unlock) {
duke@435 3197 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3198 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 3199 } else {
duke@435 3200 Unimplemented();
duke@435 3201 }
duke@435 3202 __ bind(*op->stub()->continuation());
duke@435 3203 }
duke@435 3204
duke@435 3205
duke@435 3206 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3207 ciMethod* method = op->profiled_method();
duke@435 3208 int bci = op->profiled_bci();
duke@435 3209
duke@435 3210 // Update counter for all call types
duke@435 3211 ciMethodData* md = method->method_data();
duke@435 3212 if (md == NULL) {
duke@435 3213 bailout("out of memory building methodDataOop");
duke@435 3214 return;
duke@435 3215 }
duke@435 3216 ciProfileData* data = md->bci_to_data(bci);
duke@435 3217 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3218 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 3219 Register mdo = op->mdo()->as_register();
jrose@1424 3220 __ movoop(mdo, md->constant_encoding());
duke@435 3221 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 3222 __ addl(counter_addr, DataLayout::counter_increment);
duke@435 3223 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 3224 // Perform additional virtual call profiling for invokevirtual and
duke@435 3225 // invokeinterface bytecodes
duke@435 3226 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
duke@435 3227 Tier1ProfileVirtualCalls) {
duke@435 3228 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3229 Register recv = op->recv()->as_register();
duke@435 3230 assert_different_registers(mdo, recv);
duke@435 3231 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3232 ciKlass* known_klass = op->known_holder();
duke@435 3233 if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3234 // We know the type that will be seen at this call site; we can
duke@435 3235 // statically update the methodDataOop rather than needing to do
duke@435 3236 // dynamic tests on the receiver type
duke@435 3237
duke@435 3238 // NOTE: we should probably put a lock around this search to
duke@435 3239 // avoid collisions by concurrent compilations
duke@435 3240 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3241 uint i;
duke@435 3242 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3243 ciKlass* receiver = vc_data->receiver(i);
duke@435 3244 if (known_klass->equals(receiver)) {
duke@435 3245 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 3246 __ addl(data_addr, DataLayout::counter_increment);
duke@435 3247 return;
duke@435 3248 }
duke@435 3249 }
duke@435 3250
duke@435 3251 // Receiver type not found in profile data; select an empty slot
duke@435 3252
duke@435 3253 // Note that this is less efficient than it should be because it
duke@435 3254 // always does a write to the receiver part of the
duke@435 3255 // VirtualCallData rather than just the first time
duke@435 3256 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3257 ciKlass* receiver = vc_data->receiver(i);
duke@435 3258 if (receiver == NULL) {
duke@435 3259 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
jrose@1424 3260 __ movoop(recv_addr, known_klass->constant_encoding());
duke@435 3261 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 3262 __ addl(data_addr, DataLayout::counter_increment);
duke@435 3263 return;
duke@435 3264 }
duke@435 3265 }
duke@435 3266 } else {
never@739 3267 __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
duke@435 3268 Label update_done;
duke@435 3269 uint i;
duke@435 3270 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3271 Label next_test;
duke@435 3272 // See if the receiver is receiver[n].
never@739 3273 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
duke@435 3274 __ jcc(Assembler::notEqual, next_test);
duke@435 3275 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 3276 __ addl(data_addr, DataLayout::counter_increment);
duke@435 3277 __ jmp(update_done);
duke@435 3278 __ bind(next_test);
duke@435 3279 }
duke@435 3280
duke@435 3281 // Didn't find receiver; find next empty slot and fill it in
duke@435 3282 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3283 Label next_test;
duke@435 3284 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
never@739 3285 __ cmpptr(recv_addr, (int32_t)NULL_WORD);
duke@435 3286 __ jcc(Assembler::notEqual, next_test);
never@739 3287 __ movptr(recv_addr, recv);
duke@435 3288 __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
duke@435 3289 if (i < (VirtualCallData::row_limit() - 1)) {
duke@435 3290 __ jmp(update_done);
duke@435 3291 }
duke@435 3292 __ bind(next_test);
duke@435 3293 }
duke@435 3294
duke@435 3295 __ bind(update_done);
duke@435 3296 }
duke@435 3297 }
duke@435 3298 }
duke@435 3299
duke@435 3300
duke@435 3301 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 3302 Unimplemented();
duke@435 3303 }
duke@435 3304
duke@435 3305
duke@435 3306 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
never@739 3307 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 3308 }
duke@435 3309
duke@435 3310
duke@435 3311 void LIR_Assembler::align_backward_branch_target() {
duke@435 3312 __ align(BytesPerWord);
duke@435 3313 }
duke@435 3314
duke@435 3315
duke@435 3316 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3317 if (left->is_single_cpu()) {
duke@435 3318 __ negl(left->as_register());
duke@435 3319 move_regs(left->as_register(), dest->as_register());
duke@435 3320
duke@435 3321 } else if (left->is_double_cpu()) {
duke@435 3322 Register lo = left->as_register_lo();
never@739 3323 #ifdef _LP64
never@739 3324 Register dst = dest->as_register_lo();
never@739 3325 __ movptr(dst, lo);
never@739 3326 __ negptr(dst);
never@739 3327 #else
duke@435 3328 Register hi = left->as_register_hi();
duke@435 3329 __ lneg(hi, lo);
duke@435 3330 if (dest->as_register_lo() == hi) {
duke@435 3331 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3332 move_regs(hi, dest->as_register_hi());
duke@435 3333 move_regs(lo, dest->as_register_lo());
duke@435 3334 } else {
duke@435 3335 move_regs(lo, dest->as_register_lo());
duke@435 3336 move_regs(hi, dest->as_register_hi());
duke@435 3337 }
never@739 3338 #endif // _LP64
duke@435 3339
duke@435 3340 } else if (dest->is_single_xmm()) {
duke@435 3341 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3342 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3343 }
duke@435 3344 __ xorps(dest->as_xmm_float_reg(),
duke@435 3345 ExternalAddress((address)float_signflip_pool));
duke@435 3346
duke@435 3347 } else if (dest->is_double_xmm()) {
duke@435 3348 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3349 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3350 }
duke@435 3351 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3352 ExternalAddress((address)double_signflip_pool));
duke@435 3353
duke@435 3354 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3355 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3356 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3357 __ fchs();
duke@435 3358
duke@435 3359 } else {
duke@435 3360 ShouldNotReachHere();
duke@435 3361 }
duke@435 3362 }
duke@435 3363
duke@435 3364
duke@435 3365 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3366 assert(addr->is_address() && dest->is_register(), "check");
never@739 3367 Register reg;
never@739 3368 reg = dest->as_pointer_register();
never@739 3369 __ lea(reg, as_Address(addr->as_address_ptr()));
duke@435 3370 }
duke@435 3371
duke@435 3372
duke@435 3373
duke@435 3374 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3375 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3376 __ call(RuntimeAddress(dest));
duke@435 3377 if (info != NULL) {
duke@435 3378 add_call_info_here(info);
duke@435 3379 }
duke@435 3380 }
duke@435 3381
duke@435 3382
duke@435 3383 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3384 assert(type == T_LONG, "only for volatile long fields");
duke@435 3385
duke@435 3386 if (info != NULL) {
duke@435 3387 add_debug_info_for_null_check_here(info);
duke@435 3388 }
duke@435 3389
duke@435 3390 if (src->is_double_xmm()) {
duke@435 3391 if (dest->is_double_cpu()) {
never@739 3392 #ifdef _LP64
never@739 3393 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
never@739 3394 #else
never@739 3395 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3396 __ psrlq(src->as_xmm_double_reg(), 32);
never@739 3397 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
never@739 3398 #endif // _LP64
duke@435 3399 } else if (dest->is_double_stack()) {
duke@435 3400 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3401 } else if (dest->is_address()) {
duke@435 3402 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3403 } else {
duke@435 3404 ShouldNotReachHere();
duke@435 3405 }
duke@435 3406
duke@435 3407 } else if (dest->is_double_xmm()) {
duke@435 3408 if (src->is_double_stack()) {
duke@435 3409 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3410 } else if (src->is_address()) {
duke@435 3411 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3412 } else {
duke@435 3413 ShouldNotReachHere();
duke@435 3414 }
duke@435 3415
duke@435 3416 } else if (src->is_double_fpu()) {
duke@435 3417 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3418 if (dest->is_double_stack()) {
duke@435 3419 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3420 } else if (dest->is_address()) {
duke@435 3421 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3422 } else {
duke@435 3423 ShouldNotReachHere();
duke@435 3424 }
duke@435 3425
duke@435 3426 } else if (dest->is_double_fpu()) {
duke@435 3427 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3428 if (src->is_double_stack()) {
duke@435 3429 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3430 } else if (src->is_address()) {
duke@435 3431 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3432 } else {
duke@435 3433 ShouldNotReachHere();
duke@435 3434 }
duke@435 3435 } else {
duke@435 3436 ShouldNotReachHere();
duke@435 3437 }
duke@435 3438 }
duke@435 3439
duke@435 3440
duke@435 3441 void LIR_Assembler::membar() {
never@739 3442 // QQQ sparc TSO uses this,
never@739 3443 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
duke@435 3444 }
duke@435 3445
duke@435 3446 void LIR_Assembler::membar_acquire() {
duke@435 3447 // No x86 machines currently require load fences
duke@435 3448 // __ load_fence();
duke@435 3449 }
duke@435 3450
duke@435 3451 void LIR_Assembler::membar_release() {
duke@435 3452 // No x86 machines currently require store fences
duke@435 3453 // __ store_fence();
duke@435 3454 }
duke@435 3455
duke@435 3456 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3457 assert(result_reg->is_register(), "check");
never@739 3458 #ifdef _LP64
never@739 3459 // __ get_thread(result_reg->as_register_lo());
never@739 3460 __ mov(result_reg->as_register(), r15_thread);
never@739 3461 #else
duke@435 3462 __ get_thread(result_reg->as_register());
never@739 3463 #endif // _LP64
duke@435 3464 }
duke@435 3465
duke@435 3466
duke@435 3467 void LIR_Assembler::peephole(LIR_List*) {
duke@435 3468 // do nothing for now
duke@435 3469 }
duke@435 3470
duke@435 3471
duke@435 3472 #undef __

mercurial