src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Mon, 01 Feb 2010 17:35:05 -0700

author
dcubed
date
Mon, 01 Feb 2010 17:35:05 -0700
changeset 1648
6deeaebad47a
parent 1495
323bd24c6520
child 1651
7f8790caccb0
permissions
-rw-r--r--

6902182: 4/4 Starting with jdwp agent should not incur performance penalty
Summary: Rename can_post_exceptions support to can_post_on_exceptions. Add support for should_post_on_exceptions flag to permit per JavaThread optimizations.
Reviewed-by: never, kvn, dcubed
Contributed-by: tom.deneau@amd.com

     1 /*
     2  * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
    29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    30 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    31 // fast versions of NegF/NegD and AbsF/AbsD.
    33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    35   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    36   // of 128-bits operands for SSE instructions.
    37   jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
    38   // Store the value to a 128-bits operand.
    39   operand[0] = lo;
    40   operand[1] = hi;
    41   return operand;
    42 }
    44 // Buffer for 128-bits masks used by SSE instructions.
    45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    47 // Static initialization during VM startup.
    48 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    50 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    55 NEEDS_CLEANUP // remove this definitions ?
    56 const Register IC_Klass    = rax;   // where the IC klass is cached
    57 const Register SYNC_header = rax;   // synchronization header
    58 const Register SHIFT_count = rcx;   // where count for shift operations must be
    60 #define __ _masm->
    63 static void select_different_registers(Register preserve,
    64                                        Register extra,
    65                                        Register &tmp1,
    66                                        Register &tmp2) {
    67   if (tmp1 == preserve) {
    68     assert_different_registers(tmp1, tmp2, extra);
    69     tmp1 = extra;
    70   } else if (tmp2 == preserve) {
    71     assert_different_registers(tmp1, tmp2, extra);
    72     tmp2 = extra;
    73   }
    74   assert_different_registers(preserve, tmp1, tmp2);
    75 }
    79 static void select_different_registers(Register preserve,
    80                                        Register extra,
    81                                        Register &tmp1,
    82                                        Register &tmp2,
    83                                        Register &tmp3) {
    84   if (tmp1 == preserve) {
    85     assert_different_registers(tmp1, tmp2, tmp3, extra);
    86     tmp1 = extra;
    87   } else if (tmp2 == preserve) {
    88     assert_different_registers(tmp1, tmp2, tmp3, extra);
    89     tmp2 = extra;
    90   } else if (tmp3 == preserve) {
    91     assert_different_registers(tmp1, tmp2, tmp3, extra);
    92     tmp3 = extra;
    93   }
    94   assert_different_registers(preserve, tmp1, tmp2, tmp3);
    95 }
    99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   100   if (opr->is_constant()) {
   101     LIR_Const* constant = opr->as_constant_ptr();
   102     switch (constant->type()) {
   103       case T_INT: {
   104         return true;
   105       }
   107       default:
   108         return false;
   109     }
   110   }
   111   return false;
   112 }
   115 LIR_Opr LIR_Assembler::receiverOpr() {
   116   return FrameMap::receiver_opr;
   117 }
   119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   120   return receiverOpr();
   121 }
   123 LIR_Opr LIR_Assembler::osrBufferPointer() {
   124   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   125 }
   127 //--------------fpu register translations-----------------------
   130 address LIR_Assembler::float_constant(float f) {
   131   address const_addr = __ float_constant(f);
   132   if (const_addr == NULL) {
   133     bailout("const section overflow");
   134     return __ code()->consts()->start();
   135   } else {
   136     return const_addr;
   137   }
   138 }
   141 address LIR_Assembler::double_constant(double d) {
   142   address const_addr = __ double_constant(d);
   143   if (const_addr == NULL) {
   144     bailout("const section overflow");
   145     return __ code()->consts()->start();
   146   } else {
   147     return const_addr;
   148   }
   149 }
   152 void LIR_Assembler::set_24bit_FPU() {
   153   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   154 }
   156 void LIR_Assembler::reset_FPU() {
   157   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   158 }
   160 void LIR_Assembler::fpop() {
   161   __ fpop();
   162 }
   164 void LIR_Assembler::fxch(int i) {
   165   __ fxch(i);
   166 }
   168 void LIR_Assembler::fld(int i) {
   169   __ fld_s(i);
   170 }
   172 void LIR_Assembler::ffree(int i) {
   173   __ ffree(i);
   174 }
   176 void LIR_Assembler::breakpoint() {
   177   __ int3();
   178 }
   180 void LIR_Assembler::push(LIR_Opr opr) {
   181   if (opr->is_single_cpu()) {
   182     __ push_reg(opr->as_register());
   183   } else if (opr->is_double_cpu()) {
   184     NOT_LP64(__ push_reg(opr->as_register_hi()));
   185     __ push_reg(opr->as_register_lo());
   186   } else if (opr->is_stack()) {
   187     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   188   } else if (opr->is_constant()) {
   189     LIR_Const* const_opr = opr->as_constant_ptr();
   190     if (const_opr->type() == T_OBJECT) {
   191       __ push_oop(const_opr->as_jobject());
   192     } else if (const_opr->type() == T_INT) {
   193       __ push_jint(const_opr->as_jint());
   194     } else {
   195       ShouldNotReachHere();
   196     }
   198   } else {
   199     ShouldNotReachHere();
   200   }
   201 }
   203 void LIR_Assembler::pop(LIR_Opr opr) {
   204   if (opr->is_single_cpu()) {
   205     __ pop_reg(opr->as_register());
   206   } else {
   207     ShouldNotReachHere();
   208   }
   209 }
   211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   212   return addr->base()->is_illegal() && addr->index()->is_illegal();
   213 }
   215 //-------------------------------------------
   217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   218   return as_Address(addr, rscratch1);
   219 }
   221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   222   if (addr->base()->is_illegal()) {
   223     assert(addr->index()->is_illegal(), "must be illegal too");
   224     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   225     if (! __ reachable(laddr)) {
   226       __ movptr(tmp, laddr.addr());
   227       Address res(tmp, 0);
   228       return res;
   229     } else {
   230       return __ as_Address(laddr);
   231     }
   232   }
   234   Register base = addr->base()->as_pointer_register();
   236   if (addr->index()->is_illegal()) {
   237     return Address( base, addr->disp());
   238   } else if (addr->index()->is_cpu_register()) {
   239     Register index = addr->index()->as_pointer_register();
   240     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   241   } else if (addr->index()->is_constant()) {
   242     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   243     assert(Assembler::is_simm32(addr_offset), "must be");
   245     return Address(base, addr_offset);
   246   } else {
   247     Unimplemented();
   248     return Address();
   249   }
   250 }
   253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   254   Address base = as_Address(addr);
   255   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   256 }
   259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   260   return as_Address(addr);
   261 }
   264 void LIR_Assembler::osr_entry() {
   265   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   266   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   267   ValueStack* entry_state = osr_entry->state();
   268   int number_of_locks = entry_state->locks_size();
   270   // we jump here if osr happens with the interpreter
   271   // state set up to continue at the beginning of the
   272   // loop that triggered osr - in particular, we have
   273   // the following registers setup:
   274   //
   275   // rcx: osr buffer
   276   //
   278   // build frame
   279   ciMethod* m = compilation()->method();
   280   __ build_frame(initial_frame_size_in_bytes());
   282   // OSR buffer is
   283   //
   284   // locals[nlocals-1..0]
   285   // monitors[0..number_of_locks]
   286   //
   287   // locals is a direct copy of the interpreter frame so in the osr buffer
   288   // so first slot in the local array is the last local from the interpreter
   289   // and last slot is local[0] (receiver) from the interpreter
   290   //
   291   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   292   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   293   // in the interpreter frame (the method lock if a sync method)
   295   // Initialize monitors in the compiled activation.
   296   //   rcx: pointer to osr buffer
   297   //
   298   // All other registers are dead at this point and the locals will be
   299   // copied into place by code emitted in the IR.
   301   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   302   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   303     int monitor_offset = BytesPerWord * method()->max_locals() +
   304       (2 * BytesPerWord) * (number_of_locks - 1);
   305     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   306     // the OSR buffer using 2 word entries: first the lock and then
   307     // the oop.
   308     for (int i = 0; i < number_of_locks; i++) {
   309       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   310 #ifdef ASSERT
   311       // verify the interpreter's monitor has a non-null object
   312       {
   313         Label L;
   314         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
   315         __ jcc(Assembler::notZero, L);
   316         __ stop("locked object is NULL");
   317         __ bind(L);
   318       }
   319 #endif
   320       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
   321       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   322       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
   323       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   324     }
   325   }
   326 }
   329 // inline cache check; done before the frame is built.
   330 int LIR_Assembler::check_icache() {
   331   Register receiver = FrameMap::receiver_opr->as_register();
   332   Register ic_klass = IC_Klass;
   333   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   335   if (!VerifyOops) {
   336     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   337     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   338       __ nop();
   339     }
   340   }
   341   int offset = __ offset();
   342   __ inline_cache_check(receiver, IC_Klass);
   343   assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
   344   if (VerifyOops) {
   345     // force alignment after the cache check.
   346     // It's been verified to be aligned if !VerifyOops
   347     __ align(CodeEntryAlignment);
   348   }
   349   return offset;
   350 }
   353 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   354   jobject o = NULL;
   355   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   356   __ movoop(reg, o);
   357   patching_epilog(patch, lir_patch_normal, reg, info);
   358 }
   361 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
   362   if (exception->is_valid()) {
   363     // preserve exception
   364     // note: the monitor_exit runtime call is a leaf routine
   365     //       and cannot block => no GC can happen
   366     // The slow case (MonitorAccessStub) uses the first two stack slots
   367     // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
   368     __ movptr (Address(rsp, 2*wordSize), exception);
   369   }
   371   Register obj_reg  = obj_opr->as_register();
   372   Register lock_reg = lock_opr->as_register();
   374   // setup registers (lock_reg must be rax, for lock_object)
   375   assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
   376   Register hdr = lock_reg;
   377   assert(new_hdr == SYNC_header, "wrong register");
   378   lock_reg = new_hdr;
   379   // compute pointer to BasicLock
   380   Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
   381   __ lea(lock_reg, lock_addr);
   382   // unlock object
   383   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
   384   // _slow_case_stubs->append(slow_case);
   385   // temporary fix: must be created after exceptionhandler, therefore as call stub
   386   _slow_case_stubs->append(slow_case);
   387   if (UseFastLocking) {
   388     // try inlined fast unlocking first, revert to slow locking if it fails
   389     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   390     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   391     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   392   } else {
   393     // always do slow unlocking
   394     // note: the slow unlocking code could be inlined here, however if we use
   395     //       slow unlocking, speed doesn't matter anyway and this solution is
   396     //       simpler and requires less duplicated code - additionally, the
   397     //       slow unlocking code is the same in either case which simplifies
   398     //       debugging
   399     __ jmp(*slow_case->entry());
   400   }
   401   // done
   402   __ bind(*slow_case->continuation());
   404   if (exception->is_valid()) {
   405     // restore exception
   406     __ movptr (exception, Address(rsp, 2 * wordSize));
   407   }
   408 }
   410 // This specifies the rsp decrement needed to build the frame
   411 int LIR_Assembler::initial_frame_size_in_bytes() {
   412   // if rounding, must let FrameMap know!
   414   // The frame_map records size in slots (32bit word)
   416   // subtract two words to account for return address and link
   417   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   418 }
   421 void LIR_Assembler::emit_exception_handler() {
   422   // if the last instruction is a call (typically to do a throw which
   423   // is coming at the end after block reordering) the return address
   424   // must still point into the code area in order to avoid assertion
   425   // failures when searching for the corresponding bci => add a nop
   426   // (was bug 5/14/1999 - gri)
   428   __ nop();
   430   // generate code for exception handler
   431   address handler_base = __ start_a_stub(exception_handler_size);
   432   if (handler_base == NULL) {
   433     // not enough space left for the handler
   434     bailout("exception handler overflow");
   435     return;
   436   }
   437 #ifdef ASSERT
   438   int offset = code_offset();
   439 #endif // ASSERT
   441   compilation()->offsets()->set_value(CodeOffsets::Exceptions, code_offset());
   443   // if the method does not have an exception handler, then there is
   444   // no reason to search for one
   445   if (compilation()->has_exception_handlers() || compilation()->env()->jvmti_can_post_on_exceptions()) {
   446     // the exception oop and pc are in rax, and rdx
   447     // no other registers need to be preserved, so invalidate them
   448     __ invalidate_registers(false, true, true, false, true, true);
   450     // check that there is really an exception
   451     __ verify_not_null_oop(rax);
   453     // search an exception handler (rax: exception oop, rdx: throwing pc)
   454     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
   456     // if the call returns here, then the exception handler for particular
   457     // exception doesn't exist -> unwind activation and forward exception to caller
   458   }
   460   // the exception oop is in rax,
   461   // no other registers need to be preserved, so invalidate them
   462   __ invalidate_registers(false, true, true, true, true, true);
   464   // check that there is really an exception
   465   __ verify_not_null_oop(rax);
   467   // unlock the receiver/klass if necessary
   468   // rax,: exception
   469   ciMethod* method = compilation()->method();
   470   if (method->is_synchronized() && GenerateSynchronizationCode) {
   471     monitorexit(FrameMap::rbx_oop_opr, FrameMap::rcx_opr, SYNC_header, 0, rax);
   472   }
   474   // unwind activation and forward exception to caller
   475   // rax,: exception
   476   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   478   assert(code_offset() - offset <= exception_handler_size, "overflow");
   480   __ end_a_stub();
   481 }
   483 void LIR_Assembler::emit_deopt_handler() {
   484   // if the last instruction is a call (typically to do a throw which
   485   // is coming at the end after block reordering) the return address
   486   // must still point into the code area in order to avoid assertion
   487   // failures when searching for the corresponding bci => add a nop
   488   // (was bug 5/14/1999 - gri)
   490   __ nop();
   492   // generate code for exception handler
   493   address handler_base = __ start_a_stub(deopt_handler_size);
   494   if (handler_base == NULL) {
   495     // not enough space left for the handler
   496     bailout("deopt handler overflow");
   497     return;
   498   }
   499 #ifdef ASSERT
   500   int offset = code_offset();
   501 #endif // ASSERT
   503   compilation()->offsets()->set_value(CodeOffsets::Deopt, code_offset());
   505   InternalAddress here(__ pc());
   506   __ pushptr(here.addr());
   508   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   510   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   512   __ end_a_stub();
   514 }
   517 // This is the fast version of java.lang.String.compare; it has not
   518 // OSR-entry and therefore, we generate a slow version for OSR's
   519 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   520   __ movptr (rbx, rcx); // receiver is in rcx
   521   __ movptr (rax, arg1->as_register());
   523   // Get addresses of first characters from both Strings
   524   __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   525   __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   526   __ lea    (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   529   // rbx, may be NULL
   530   add_debug_info_for_null_check_here(info);
   531   __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   532   __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   533   __ lea    (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   535   // compute minimum length (in rax) and difference of lengths (on top of stack)
   536   if (VM_Version::supports_cmov()) {
   537     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   538     __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   539     __ mov      (rcx, rbx);
   540     __ subptr   (rbx, rax); // subtract lengths
   541     __ push     (rbx);      // result
   542     __ cmov     (Assembler::lessEqual, rax, rcx);
   543   } else {
   544     Label L;
   545     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   546     __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
   547     __ mov      (rax, rbx);
   548     __ subptr   (rbx, rcx);
   549     __ push     (rbx);
   550     __ jcc      (Assembler::lessEqual, L);
   551     __ mov      (rax, rcx);
   552     __ bind (L);
   553   }
   554   // is minimum length 0?
   555   Label noLoop, haveResult;
   556   __ testptr (rax, rax);
   557   __ jcc (Assembler::zero, noLoop);
   559   // compare first characters
   560   __ load_unsigned_short(rcx, Address(rdi, 0));
   561   __ load_unsigned_short(rbx, Address(rsi, 0));
   562   __ subl(rcx, rbx);
   563   __ jcc(Assembler::notZero, haveResult);
   564   // starting loop
   565   __ decrement(rax); // we already tested index: skip one
   566   __ jcc(Assembler::zero, noLoop);
   568   // set rsi.edi to the end of the arrays (arrays have same length)
   569   // negate the index
   571   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   572   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   573   __ negptr(rax);
   575   // compare the strings in a loop
   577   Label loop;
   578   __ align(wordSize);
   579   __ bind(loop);
   580   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   581   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   582   __ subl(rcx, rbx);
   583   __ jcc(Assembler::notZero, haveResult);
   584   __ increment(rax);
   585   __ jcc(Assembler::notZero, loop);
   587   // strings are equal up to min length
   589   __ bind(noLoop);
   590   __ pop(rax);
   591   return_op(LIR_OprFact::illegalOpr);
   593   __ bind(haveResult);
   594   // leave instruction is going to discard the TOS value
   595   __ mov (rax, rcx); // result of call is in rax,
   596 }
   599 void LIR_Assembler::return_op(LIR_Opr result) {
   600   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   601   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   602     assert(result->fpu() == 0, "result must already be on TOS");
   603   }
   605   // Pop the stack before the safepoint code
   606   __ leave();
   608   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   610   // Note: we do not need to round double result; float result has the right precision
   611   // the poll sets the condition code, but no data registers
   612   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   613                               relocInfo::poll_return_type);
   615   // NOTE: the requires that the polling page be reachable else the reloc
   616   // goes to the movq that loads the address and not the faulting instruction
   617   // which breaks the signal handler code
   619   __ test32(rax, polling_page);
   621   __ ret(0);
   622 }
   625 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   626   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   627                               relocInfo::poll_type);
   629   if (info != NULL) {
   630     add_debug_info_for_branch(info);
   631   } else {
   632     ShouldNotReachHere();
   633   }
   635   int offset = __ offset();
   637   // NOTE: the requires that the polling page be reachable else the reloc
   638   // goes to the movq that loads the address and not the faulting instruction
   639   // which breaks the signal handler code
   641   __ test32(rax, polling_page);
   642   return offset;
   643 }
   646 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   647   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   648 }
   650 void LIR_Assembler::swap_reg(Register a, Register b) {
   651   __ xchgptr(a, b);
   652 }
   655 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   656   assert(src->is_constant(), "should not call otherwise");
   657   assert(dest->is_register(), "should not call otherwise");
   658   LIR_Const* c = src->as_constant_ptr();
   660   switch (c->type()) {
   661     case T_INT: {
   662       assert(patch_code == lir_patch_none, "no patching handled here");
   663       __ movl(dest->as_register(), c->as_jint());
   664       break;
   665     }
   667     case T_LONG: {
   668       assert(patch_code == lir_patch_none, "no patching handled here");
   669 #ifdef _LP64
   670       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   671 #else
   672       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   673       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   674 #endif // _LP64
   675       break;
   676     }
   678     case T_OBJECT: {
   679       if (patch_code != lir_patch_none) {
   680         jobject2reg_with_patching(dest->as_register(), info);
   681       } else {
   682         __ movoop(dest->as_register(), c->as_jobject());
   683       }
   684       break;
   685     }
   687     case T_FLOAT: {
   688       if (dest->is_single_xmm()) {
   689         if (c->is_zero_float()) {
   690           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   691         } else {
   692           __ movflt(dest->as_xmm_float_reg(),
   693                    InternalAddress(float_constant(c->as_jfloat())));
   694         }
   695       } else {
   696         assert(dest->is_single_fpu(), "must be");
   697         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   698         if (c->is_zero_float()) {
   699           __ fldz();
   700         } else if (c->is_one_float()) {
   701           __ fld1();
   702         } else {
   703           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   704         }
   705       }
   706       break;
   707     }
   709     case T_DOUBLE: {
   710       if (dest->is_double_xmm()) {
   711         if (c->is_zero_double()) {
   712           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   713         } else {
   714           __ movdbl(dest->as_xmm_double_reg(),
   715                     InternalAddress(double_constant(c->as_jdouble())));
   716         }
   717       } else {
   718         assert(dest->is_double_fpu(), "must be");
   719         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   720         if (c->is_zero_double()) {
   721           __ fldz();
   722         } else if (c->is_one_double()) {
   723           __ fld1();
   724         } else {
   725           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   726         }
   727       }
   728       break;
   729     }
   731     default:
   732       ShouldNotReachHere();
   733   }
   734 }
   736 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   737   assert(src->is_constant(), "should not call otherwise");
   738   assert(dest->is_stack(), "should not call otherwise");
   739   LIR_Const* c = src->as_constant_ptr();
   741   switch (c->type()) {
   742     case T_INT:  // fall through
   743     case T_FLOAT:
   744       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   745       break;
   747     case T_OBJECT:
   748       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   749       break;
   751     case T_LONG:  // fall through
   752     case T_DOUBLE:
   753 #ifdef _LP64
   754       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   755                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   756 #else
   757       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   758                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   759       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   760                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   761 #endif // _LP64
   762       break;
   764     default:
   765       ShouldNotReachHere();
   766   }
   767 }
   769 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
   770   assert(src->is_constant(), "should not call otherwise");
   771   assert(dest->is_address(), "should not call otherwise");
   772   LIR_Const* c = src->as_constant_ptr();
   773   LIR_Address* addr = dest->as_address_ptr();
   775   int null_check_here = code_offset();
   776   switch (type) {
   777     case T_INT:    // fall through
   778     case T_FLOAT:
   779       __ movl(as_Address(addr), c->as_jint_bits());
   780       break;
   782     case T_OBJECT:  // fall through
   783     case T_ARRAY:
   784       if (c->as_jobject() == NULL) {
   785         __ movptr(as_Address(addr), NULL_WORD);
   786       } else {
   787         if (is_literal_address(addr)) {
   788           ShouldNotReachHere();
   789           __ movoop(as_Address(addr, noreg), c->as_jobject());
   790         } else {
   791 #ifdef _LP64
   792           __ movoop(rscratch1, c->as_jobject());
   793           null_check_here = code_offset();
   794           __ movptr(as_Address_lo(addr), rscratch1);
   795 #else
   796           __ movoop(as_Address(addr), c->as_jobject());
   797 #endif
   798         }
   799       }
   800       break;
   802     case T_LONG:    // fall through
   803     case T_DOUBLE:
   804 #ifdef _LP64
   805       if (is_literal_address(addr)) {
   806         ShouldNotReachHere();
   807         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   808       } else {
   809         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   810         null_check_here = code_offset();
   811         __ movptr(as_Address_lo(addr), r10);
   812       }
   813 #else
   814       // Always reachable in 32bit so this doesn't produce useless move literal
   815       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   816       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   817 #endif // _LP64
   818       break;
   820     case T_BOOLEAN: // fall through
   821     case T_BYTE:
   822       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   823       break;
   825     case T_CHAR:    // fall through
   826     case T_SHORT:
   827       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   828       break;
   830     default:
   831       ShouldNotReachHere();
   832   };
   834   if (info != NULL) {
   835     add_debug_info_for_null_check(null_check_here, info);
   836   }
   837 }
   840 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   841   assert(src->is_register(), "should not call otherwise");
   842   assert(dest->is_register(), "should not call otherwise");
   844   // move between cpu-registers
   845   if (dest->is_single_cpu()) {
   846 #ifdef _LP64
   847     if (src->type() == T_LONG) {
   848       // Can do LONG -> OBJECT
   849       move_regs(src->as_register_lo(), dest->as_register());
   850       return;
   851     }
   852 #endif
   853     assert(src->is_single_cpu(), "must match");
   854     if (src->type() == T_OBJECT) {
   855       __ verify_oop(src->as_register());
   856     }
   857     move_regs(src->as_register(), dest->as_register());
   859   } else if (dest->is_double_cpu()) {
   860 #ifdef _LP64
   861     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   862       // Surprising to me but we can see move of a long to t_object
   863       __ verify_oop(src->as_register());
   864       move_regs(src->as_register(), dest->as_register_lo());
   865       return;
   866     }
   867 #endif
   868     assert(src->is_double_cpu(), "must match");
   869     Register f_lo = src->as_register_lo();
   870     Register f_hi = src->as_register_hi();
   871     Register t_lo = dest->as_register_lo();
   872     Register t_hi = dest->as_register_hi();
   873 #ifdef _LP64
   874     assert(f_hi == f_lo, "must be same");
   875     assert(t_hi == t_lo, "must be same");
   876     move_regs(f_lo, t_lo);
   877 #else
   878     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   881     if (f_lo == t_hi && f_hi == t_lo) {
   882       swap_reg(f_lo, f_hi);
   883     } else if (f_hi == t_lo) {
   884       assert(f_lo != t_hi, "overwriting register");
   885       move_regs(f_hi, t_hi);
   886       move_regs(f_lo, t_lo);
   887     } else {
   888       assert(f_hi != t_lo, "overwriting register");
   889       move_regs(f_lo, t_lo);
   890       move_regs(f_hi, t_hi);
   891     }
   892 #endif // LP64
   894     // special moves from fpu-register to xmm-register
   895     // necessary for method results
   896   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   897     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   898     __ fld_s(Address(rsp, 0));
   899   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   900     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   901     __ fld_d(Address(rsp, 0));
   902   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   903     __ fstp_s(Address(rsp, 0));
   904     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   905   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   906     __ fstp_d(Address(rsp, 0));
   907     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   909     // move between xmm-registers
   910   } else if (dest->is_single_xmm()) {
   911     assert(src->is_single_xmm(), "must match");
   912     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   913   } else if (dest->is_double_xmm()) {
   914     assert(src->is_double_xmm(), "must match");
   915     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   917     // move between fpu-registers (no instruction necessary because of fpu-stack)
   918   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   919     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   920     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   921   } else {
   922     ShouldNotReachHere();
   923   }
   924 }
   926 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   927   assert(src->is_register(), "should not call otherwise");
   928   assert(dest->is_stack(), "should not call otherwise");
   930   if (src->is_single_cpu()) {
   931     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   932     if (type == T_OBJECT || type == T_ARRAY) {
   933       __ verify_oop(src->as_register());
   934       __ movptr (dst, src->as_register());
   935     } else {
   936       __ movl (dst, src->as_register());
   937     }
   939   } else if (src->is_double_cpu()) {
   940     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   941     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   942     __ movptr (dstLO, src->as_register_lo());
   943     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   945   } else if (src->is_single_xmm()) {
   946     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   947     __ movflt(dst_addr, src->as_xmm_float_reg());
   949   } else if (src->is_double_xmm()) {
   950     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   951     __ movdbl(dst_addr, src->as_xmm_double_reg());
   953   } else if (src->is_single_fpu()) {
   954     assert(src->fpu_regnr() == 0, "argument must be on TOS");
   955     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   956     if (pop_fpu_stack)     __ fstp_s (dst_addr);
   957     else                   __ fst_s  (dst_addr);
   959   } else if (src->is_double_fpu()) {
   960     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   961     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   962     if (pop_fpu_stack)     __ fstp_d (dst_addr);
   963     else                   __ fst_d  (dst_addr);
   965   } else {
   966     ShouldNotReachHere();
   967   }
   968 }
   971 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
   972   LIR_Address* to_addr = dest->as_address_ptr();
   973   PatchingStub* patch = NULL;
   975   if (type == T_ARRAY || type == T_OBJECT) {
   976     __ verify_oop(src->as_register());
   977   }
   978   if (patch_code != lir_patch_none) {
   979     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
   980     Address toa = as_Address(to_addr);
   981     assert(toa.disp() != 0, "must have");
   982   }
   983   if (info != NULL) {
   984     add_debug_info_for_null_check_here(info);
   985   }
   987   switch (type) {
   988     case T_FLOAT: {
   989       if (src->is_single_xmm()) {
   990         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
   991       } else {
   992         assert(src->is_single_fpu(), "must be");
   993         assert(src->fpu_regnr() == 0, "argument must be on TOS");
   994         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
   995         else                    __ fst_s (as_Address(to_addr));
   996       }
   997       break;
   998     }
  1000     case T_DOUBLE: {
  1001       if (src->is_double_xmm()) {
  1002         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
  1003       } else {
  1004         assert(src->is_double_fpu(), "must be");
  1005         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
  1006         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
  1007         else                    __ fst_d (as_Address(to_addr));
  1009       break;
  1012     case T_ADDRESS: // fall through
  1013     case T_ARRAY:   // fall through
  1014     case T_OBJECT:  // fall through
  1015 #ifdef _LP64
  1016       __ movptr(as_Address(to_addr), src->as_register());
  1017       break;
  1018 #endif // _LP64
  1019     case T_INT:
  1020       __ movl(as_Address(to_addr), src->as_register());
  1021       break;
  1023     case T_LONG: {
  1024       Register from_lo = src->as_register_lo();
  1025       Register from_hi = src->as_register_hi();
  1026 #ifdef _LP64
  1027       __ movptr(as_Address_lo(to_addr), from_lo);
  1028 #else
  1029       Register base = to_addr->base()->as_register();
  1030       Register index = noreg;
  1031       if (to_addr->index()->is_register()) {
  1032         index = to_addr->index()->as_register();
  1034       if (base == from_lo || index == from_lo) {
  1035         assert(base != from_hi, "can't be");
  1036         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1037         __ movl(as_Address_hi(to_addr), from_hi);
  1038         if (patch != NULL) {
  1039           patching_epilog(patch, lir_patch_high, base, info);
  1040           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1041           patch_code = lir_patch_low;
  1043         __ movl(as_Address_lo(to_addr), from_lo);
  1044       } else {
  1045         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1046         __ movl(as_Address_lo(to_addr), from_lo);
  1047         if (patch != NULL) {
  1048           patching_epilog(patch, lir_patch_low, base, info);
  1049           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1050           patch_code = lir_patch_high;
  1052         __ movl(as_Address_hi(to_addr), from_hi);
  1054 #endif // _LP64
  1055       break;
  1058     case T_BYTE:    // fall through
  1059     case T_BOOLEAN: {
  1060       Register src_reg = src->as_register();
  1061       Address dst_addr = as_Address(to_addr);
  1062       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1063       __ movb(dst_addr, src_reg);
  1064       break;
  1067     case T_CHAR:    // fall through
  1068     case T_SHORT:
  1069       __ movw(as_Address(to_addr), src->as_register());
  1070       break;
  1072     default:
  1073       ShouldNotReachHere();
  1076   if (patch_code != lir_patch_none) {
  1077     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1082 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1083   assert(src->is_stack(), "should not call otherwise");
  1084   assert(dest->is_register(), "should not call otherwise");
  1086   if (dest->is_single_cpu()) {
  1087     if (type == T_ARRAY || type == T_OBJECT) {
  1088       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1089       __ verify_oop(dest->as_register());
  1090     } else {
  1091       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1094   } else if (dest->is_double_cpu()) {
  1095     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1096     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1097     __ movptr(dest->as_register_lo(), src_addr_LO);
  1098     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1100   } else if (dest->is_single_xmm()) {
  1101     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1102     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1104   } else if (dest->is_double_xmm()) {
  1105     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1106     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1108   } else if (dest->is_single_fpu()) {
  1109     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1110     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1111     __ fld_s(src_addr);
  1113   } else if (dest->is_double_fpu()) {
  1114     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1115     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1116     __ fld_d(src_addr);
  1118   } else {
  1119     ShouldNotReachHere();
  1124 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1125   if (src->is_single_stack()) {
  1126     if (type == T_OBJECT || type == T_ARRAY) {
  1127       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1128       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1129     } else {
  1130 #ifndef _LP64
  1131       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1132       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1133 #else
  1134       //no pushl on 64bits
  1135       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
  1136       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
  1137 #endif
  1140   } else if (src->is_double_stack()) {
  1141 #ifdef _LP64
  1142     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1143     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1144 #else
  1145     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1146     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1147     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1148     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1149     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1150 #endif // _LP64
  1152   } else {
  1153     ShouldNotReachHere();
  1158 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
  1159   assert(src->is_address(), "should not call otherwise");
  1160   assert(dest->is_register(), "should not call otherwise");
  1162   LIR_Address* addr = src->as_address_ptr();
  1163   Address from_addr = as_Address(addr);
  1165   switch (type) {
  1166     case T_BOOLEAN: // fall through
  1167     case T_BYTE:    // fall through
  1168     case T_CHAR:    // fall through
  1169     case T_SHORT:
  1170       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1171         // on pre P6 processors we may get partial register stalls
  1172         // so blow away the value of to_rinfo before loading a
  1173         // partial word into it.  Do it here so that it precedes
  1174         // the potential patch point below.
  1175         __ xorptr(dest->as_register(), dest->as_register());
  1177       break;
  1180   PatchingStub* patch = NULL;
  1181   if (patch_code != lir_patch_none) {
  1182     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1183     assert(from_addr.disp() != 0, "must have");
  1185   if (info != NULL) {
  1186     add_debug_info_for_null_check_here(info);
  1189   switch (type) {
  1190     case T_FLOAT: {
  1191       if (dest->is_single_xmm()) {
  1192         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1193       } else {
  1194         assert(dest->is_single_fpu(), "must be");
  1195         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1196         __ fld_s(from_addr);
  1198       break;
  1201     case T_DOUBLE: {
  1202       if (dest->is_double_xmm()) {
  1203         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1204       } else {
  1205         assert(dest->is_double_fpu(), "must be");
  1206         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1207         __ fld_d(from_addr);
  1209       break;
  1212     case T_ADDRESS: // fall through
  1213     case T_OBJECT:  // fall through
  1214     case T_ARRAY:   // fall through
  1215 #ifdef _LP64
  1216       __ movptr(dest->as_register(), from_addr);
  1217       break;
  1218 #endif // _L64
  1219     case T_INT:
  1220       // %%% could this be a movl? this is safer but longer instruction
  1221       __ movl2ptr(dest->as_register(), from_addr);
  1222       break;
  1224     case T_LONG: {
  1225       Register to_lo = dest->as_register_lo();
  1226       Register to_hi = dest->as_register_hi();
  1227 #ifdef _LP64
  1228       __ movptr(to_lo, as_Address_lo(addr));
  1229 #else
  1230       Register base = addr->base()->as_register();
  1231       Register index = noreg;
  1232       if (addr->index()->is_register()) {
  1233         index = addr->index()->as_register();
  1235       if ((base == to_lo && index == to_hi) ||
  1236           (base == to_hi && index == to_lo)) {
  1237         // addresses with 2 registers are only formed as a result of
  1238         // array access so this code will never have to deal with
  1239         // patches or null checks.
  1240         assert(info == NULL && patch == NULL, "must be");
  1241         __ lea(to_hi, as_Address(addr));
  1242         __ movl(to_lo, Address(to_hi, 0));
  1243         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1244       } else if (base == to_lo || index == to_lo) {
  1245         assert(base != to_hi, "can't be");
  1246         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1247         __ movl(to_hi, as_Address_hi(addr));
  1248         if (patch != NULL) {
  1249           patching_epilog(patch, lir_patch_high, base, info);
  1250           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1251           patch_code = lir_patch_low;
  1253         __ movl(to_lo, as_Address_lo(addr));
  1254       } else {
  1255         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1256         __ movl(to_lo, as_Address_lo(addr));
  1257         if (patch != NULL) {
  1258           patching_epilog(patch, lir_patch_low, base, info);
  1259           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1260           patch_code = lir_patch_high;
  1262         __ movl(to_hi, as_Address_hi(addr));
  1264 #endif // _LP64
  1265       break;
  1268     case T_BOOLEAN: // fall through
  1269     case T_BYTE: {
  1270       Register dest_reg = dest->as_register();
  1271       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1272       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1273         __ movsbl(dest_reg, from_addr);
  1274       } else {
  1275         __ movb(dest_reg, from_addr);
  1276         __ shll(dest_reg, 24);
  1277         __ sarl(dest_reg, 24);
  1279       // These are unsigned so the zero extension on 64bit is just what we need
  1280       break;
  1283     case T_CHAR: {
  1284       Register dest_reg = dest->as_register();
  1285       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1286       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1287         __ movzwl(dest_reg, from_addr);
  1288       } else {
  1289         __ movw(dest_reg, from_addr);
  1291       // This is unsigned so the zero extension on 64bit is just what we need
  1292       // __ movl2ptr(dest_reg, dest_reg);
  1293       break;
  1296     case T_SHORT: {
  1297       Register dest_reg = dest->as_register();
  1298       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1299         __ movswl(dest_reg, from_addr);
  1300       } else {
  1301         __ movw(dest_reg, from_addr);
  1302         __ shll(dest_reg, 16);
  1303         __ sarl(dest_reg, 16);
  1305       // Might not be needed in 64bit but certainly doesn't hurt (except for code size)
  1306       __ movl2ptr(dest_reg, dest_reg);
  1307       break;
  1310     default:
  1311       ShouldNotReachHere();
  1314   if (patch != NULL) {
  1315     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1318   if (type == T_ARRAY || type == T_OBJECT) {
  1319     __ verify_oop(dest->as_register());
  1324 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1325   LIR_Address* addr = src->as_address_ptr();
  1326   Address from_addr = as_Address(addr);
  1328   if (VM_Version::supports_sse()) {
  1329     switch (ReadPrefetchInstr) {
  1330       case 0:
  1331         __ prefetchnta(from_addr); break;
  1332       case 1:
  1333         __ prefetcht0(from_addr); break;
  1334       case 2:
  1335         __ prefetcht2(from_addr); break;
  1336       default:
  1337         ShouldNotReachHere(); break;
  1339   } else if (VM_Version::supports_3dnow()) {
  1340     __ prefetchr(from_addr);
  1345 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1346   LIR_Address* addr = src->as_address_ptr();
  1347   Address from_addr = as_Address(addr);
  1349   if (VM_Version::supports_sse()) {
  1350     switch (AllocatePrefetchInstr) {
  1351       case 0:
  1352         __ prefetchnta(from_addr); break;
  1353       case 1:
  1354         __ prefetcht0(from_addr); break;
  1355       case 2:
  1356         __ prefetcht2(from_addr); break;
  1357       case 3:
  1358         __ prefetchw(from_addr); break;
  1359       default:
  1360         ShouldNotReachHere(); break;
  1362   } else if (VM_Version::supports_3dnow()) {
  1363     __ prefetchw(from_addr);
  1368 NEEDS_CLEANUP; // This could be static?
  1369 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1370   int elem_size = type2aelembytes(type);
  1371   switch (elem_size) {
  1372     case 1: return Address::times_1;
  1373     case 2: return Address::times_2;
  1374     case 4: return Address::times_4;
  1375     case 8: return Address::times_8;
  1377   ShouldNotReachHere();
  1378   return Address::no_scale;
  1382 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1383   switch (op->code()) {
  1384     case lir_idiv:
  1385     case lir_irem:
  1386       arithmetic_idiv(op->code(),
  1387                       op->in_opr1(),
  1388                       op->in_opr2(),
  1389                       op->in_opr3(),
  1390                       op->result_opr(),
  1391                       op->info());
  1392       break;
  1393     default:      ShouldNotReachHere(); break;
  1397 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1398 #ifdef ASSERT
  1399   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1400   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1401   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1402 #endif
  1404   if (op->cond() == lir_cond_always) {
  1405     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1406     __ jmp (*(op->label()));
  1407   } else {
  1408     Assembler::Condition acond = Assembler::zero;
  1409     if (op->code() == lir_cond_float_branch) {
  1410       assert(op->ublock() != NULL, "must have unordered successor");
  1411       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1412       switch(op->cond()) {
  1413         case lir_cond_equal:        acond = Assembler::equal;      break;
  1414         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1415         case lir_cond_less:         acond = Assembler::below;      break;
  1416         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1417         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1418         case lir_cond_greater:      acond = Assembler::above;      break;
  1419         default:                         ShouldNotReachHere();
  1421     } else {
  1422       switch (op->cond()) {
  1423         case lir_cond_equal:        acond = Assembler::equal;       break;
  1424         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1425         case lir_cond_less:         acond = Assembler::less;        break;
  1426         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1427         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1428         case lir_cond_greater:      acond = Assembler::greater;     break;
  1429         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1430         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1431         default:                         ShouldNotReachHere();
  1434     __ jcc(acond,*(op->label()));
  1438 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1439   LIR_Opr src  = op->in_opr();
  1440   LIR_Opr dest = op->result_opr();
  1442   switch (op->bytecode()) {
  1443     case Bytecodes::_i2l:
  1444 #ifdef _LP64
  1445       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1446 #else
  1447       move_regs(src->as_register(), dest->as_register_lo());
  1448       move_regs(src->as_register(), dest->as_register_hi());
  1449       __ sarl(dest->as_register_hi(), 31);
  1450 #endif // LP64
  1451       break;
  1453     case Bytecodes::_l2i:
  1454       move_regs(src->as_register_lo(), dest->as_register());
  1455       break;
  1457     case Bytecodes::_i2b:
  1458       move_regs(src->as_register(), dest->as_register());
  1459       __ sign_extend_byte(dest->as_register());
  1460       break;
  1462     case Bytecodes::_i2c:
  1463       move_regs(src->as_register(), dest->as_register());
  1464       __ andl(dest->as_register(), 0xFFFF);
  1465       break;
  1467     case Bytecodes::_i2s:
  1468       move_regs(src->as_register(), dest->as_register());
  1469       __ sign_extend_short(dest->as_register());
  1470       break;
  1473     case Bytecodes::_f2d:
  1474     case Bytecodes::_d2f:
  1475       if (dest->is_single_xmm()) {
  1476         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1477       } else if (dest->is_double_xmm()) {
  1478         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1479       } else {
  1480         assert(src->fpu() == dest->fpu(), "register must be equal");
  1481         // do nothing (float result is rounded later through spilling)
  1483       break;
  1485     case Bytecodes::_i2f:
  1486     case Bytecodes::_i2d:
  1487       if (dest->is_single_xmm()) {
  1488         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1489       } else if (dest->is_double_xmm()) {
  1490         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1491       } else {
  1492         assert(dest->fpu() == 0, "result must be on TOS");
  1493         __ movl(Address(rsp, 0), src->as_register());
  1494         __ fild_s(Address(rsp, 0));
  1496       break;
  1498     case Bytecodes::_f2i:
  1499     case Bytecodes::_d2i:
  1500       if (src->is_single_xmm()) {
  1501         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1502       } else if (src->is_double_xmm()) {
  1503         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1504       } else {
  1505         assert(src->fpu() == 0, "input must be on TOS");
  1506         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1507         __ fist_s(Address(rsp, 0));
  1508         __ movl(dest->as_register(), Address(rsp, 0));
  1509         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1512       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1513       assert(op->stub() != NULL, "stub required");
  1514       __ cmpl(dest->as_register(), 0x80000000);
  1515       __ jcc(Assembler::equal, *op->stub()->entry());
  1516       __ bind(*op->stub()->continuation());
  1517       break;
  1519     case Bytecodes::_l2f:
  1520     case Bytecodes::_l2d:
  1521       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1522       assert(dest->fpu() == 0, "result must be on TOS");
  1524       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1525       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1526       __ fild_d(Address(rsp, 0));
  1527       // float result is rounded later through spilling
  1528       break;
  1530     case Bytecodes::_f2l:
  1531     case Bytecodes::_d2l:
  1532       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1533       assert(src->fpu() == 0, "input must be on TOS");
  1534       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1536       // instruction sequence too long to inline it here
  1538         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1540       break;
  1542     default: ShouldNotReachHere();
  1546 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1547   if (op->init_check()) {
  1548     __ cmpl(Address(op->klass()->as_register(),
  1549                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
  1550             instanceKlass::fully_initialized);
  1551     add_debug_info_for_null_check_here(op->stub()->info());
  1552     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1554   __ allocate_object(op->obj()->as_register(),
  1555                      op->tmp1()->as_register(),
  1556                      op->tmp2()->as_register(),
  1557                      op->header_size(),
  1558                      op->object_size(),
  1559                      op->klass()->as_register(),
  1560                      *op->stub()->entry());
  1561   __ bind(*op->stub()->continuation());
  1564 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1565   if (UseSlowPath ||
  1566       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1567       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1568     __ jmp(*op->stub()->entry());
  1569   } else {
  1570     Register len =  op->len()->as_register();
  1571     Register tmp1 = op->tmp1()->as_register();
  1572     Register tmp2 = op->tmp2()->as_register();
  1573     Register tmp3 = op->tmp3()->as_register();
  1574     if (len == tmp1) {
  1575       tmp1 = tmp3;
  1576     } else if (len == tmp2) {
  1577       tmp2 = tmp3;
  1578     } else if (len == tmp3) {
  1579       // everything is ok
  1580     } else {
  1581       __ mov(tmp3, len);
  1583     __ allocate_array(op->obj()->as_register(),
  1584                       len,
  1585                       tmp1,
  1586                       tmp2,
  1587                       arrayOopDesc::header_size(op->type()),
  1588                       array_element_size(op->type()),
  1589                       op->klass()->as_register(),
  1590                       *op->stub()->entry());
  1592   __ bind(*op->stub()->continuation());
  1597 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1598   LIR_Code code = op->code();
  1599   if (code == lir_store_check) {
  1600     Register value = op->object()->as_register();
  1601     Register array = op->array()->as_register();
  1602     Register k_RInfo = op->tmp1()->as_register();
  1603     Register klass_RInfo = op->tmp2()->as_register();
  1604     Register Rtmp1 = op->tmp3()->as_register();
  1606     CodeStub* stub = op->stub();
  1607     Label done;
  1608     __ cmpptr(value, (int32_t)NULL_WORD);
  1609     __ jcc(Assembler::equal, done);
  1610     add_debug_info_for_null_check_here(op->info_for_exception());
  1611     __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
  1612     __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
  1614     // get instance klass
  1615     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
  1616     // perform the fast part of the checking logic
  1617     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
  1618     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1619     __ push(klass_RInfo);
  1620     __ push(k_RInfo);
  1621     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1622     __ pop(klass_RInfo);
  1623     __ pop(k_RInfo);
  1624     // result is a boolean
  1625     __ cmpl(k_RInfo, 0);
  1626     __ jcc(Assembler::equal, *stub->entry());
  1627     __ bind(done);
  1628   } else if (op->code() == lir_checkcast) {
  1629     // we always need a stub for the failure case.
  1630     CodeStub* stub = op->stub();
  1631     Register obj = op->object()->as_register();
  1632     Register k_RInfo = op->tmp1()->as_register();
  1633     Register klass_RInfo = op->tmp2()->as_register();
  1634     Register dst = op->result_opr()->as_register();
  1635     ciKlass* k = op->klass();
  1636     Register Rtmp1 = noreg;
  1638     Label done;
  1639     if (obj == k_RInfo) {
  1640       k_RInfo = dst;
  1641     } else if (obj == klass_RInfo) {
  1642       klass_RInfo = dst;
  1644     if (k->is_loaded()) {
  1645       select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1646     } else {
  1647       Rtmp1 = op->tmp3()->as_register();
  1648       select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1651     assert_different_registers(obj, k_RInfo, klass_RInfo);
  1652     if (!k->is_loaded()) {
  1653       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1654     } else {
  1655 #ifdef _LP64
  1656       __ movoop(k_RInfo, k->constant_encoding());
  1657 #else
  1658       k_RInfo = noreg;
  1659 #endif // _LP64
  1661     assert(obj != k_RInfo, "must be different");
  1662     __ cmpptr(obj, (int32_t)NULL_WORD);
  1663     if (op->profiled_method() != NULL) {
  1664       ciMethod* method = op->profiled_method();
  1665       int bci          = op->profiled_bci();
  1667       Label profile_done;
  1668       __ jcc(Assembler::notEqual, profile_done);
  1669       // Object is null; update methodDataOop
  1670       ciMethodData* md = method->method_data();
  1671       if (md == NULL) {
  1672         bailout("out of memory building methodDataOop");
  1673         return;
  1675       ciProfileData* data = md->bci_to_data(bci);
  1676       assert(data != NULL,       "need data for checkcast");
  1677       assert(data->is_BitData(), "need BitData for checkcast");
  1678       Register mdo  = klass_RInfo;
  1679       __ movoop(mdo, md->constant_encoding());
  1680       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1681       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1682       __ orl(data_addr, header_bits);
  1683       __ jmp(done);
  1684       __ bind(profile_done);
  1685     } else {
  1686       __ jcc(Assembler::equal, done);
  1688     __ verify_oop(obj);
  1690     if (op->fast_check()) {
  1691       // get object classo
  1692       // not a safepoint as obj null check happens earlier
  1693       if (k->is_loaded()) {
  1694 #ifdef _LP64
  1695         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1696 #else
  1697         __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
  1698 #endif // _LP64
  1699       } else {
  1700         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1703       __ jcc(Assembler::notEqual, *stub->entry());
  1704       __ bind(done);
  1705     } else {
  1706       // get object class
  1707       // not a safepoint as obj null check happens earlier
  1708       __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1709       if (k->is_loaded()) {
  1710         // See if we get an immediate positive hit
  1711 #ifdef _LP64
  1712         __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1713 #else
  1714         __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1715 #endif // _LP64
  1716         if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
  1717           __ jcc(Assembler::notEqual, *stub->entry());
  1718         } else {
  1719           // See if we get an immediate positive hit
  1720           __ jcc(Assembler::equal, done);
  1721           // check for self
  1722 #ifdef _LP64
  1723           __ cmpptr(klass_RInfo, k_RInfo);
  1724 #else
  1725           __ cmpoop(klass_RInfo, k->constant_encoding());
  1726 #endif // _LP64
  1727           __ jcc(Assembler::equal, done);
  1729           __ push(klass_RInfo);
  1730 #ifdef _LP64
  1731           __ push(k_RInfo);
  1732 #else
  1733           __ pushoop(k->constant_encoding());
  1734 #endif // _LP64
  1735           __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1736           __ pop(klass_RInfo);
  1737           __ pop(klass_RInfo);
  1738           // result is a boolean
  1739           __ cmpl(klass_RInfo, 0);
  1740           __ jcc(Assembler::equal, *stub->entry());
  1742         __ bind(done);
  1743       } else {
  1744         // perform the fast part of the checking logic
  1745         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
  1746         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1747         __ push(klass_RInfo);
  1748         __ push(k_RInfo);
  1749         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1750         __ pop(klass_RInfo);
  1751         __ pop(k_RInfo);
  1752         // result is a boolean
  1753         __ cmpl(k_RInfo, 0);
  1754         __ jcc(Assembler::equal, *stub->entry());
  1755         __ bind(done);
  1759     if (dst != obj) {
  1760       __ mov(dst, obj);
  1762   } else if (code == lir_instanceof) {
  1763     Register obj = op->object()->as_register();
  1764     Register k_RInfo = op->tmp1()->as_register();
  1765     Register klass_RInfo = op->tmp2()->as_register();
  1766     Register dst = op->result_opr()->as_register();
  1767     ciKlass* k = op->klass();
  1769     Label done;
  1770     Label zero;
  1771     Label one;
  1772     if (obj == k_RInfo) {
  1773       k_RInfo = klass_RInfo;
  1774       klass_RInfo = obj;
  1776     // patching may screw with our temporaries on sparc,
  1777     // so let's do it before loading the class
  1778     if (!k->is_loaded()) {
  1779       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1780     } else {
  1781       LP64_ONLY(__ movoop(k_RInfo, k->constant_encoding()));
  1783     assert(obj != k_RInfo, "must be different");
  1785     __ verify_oop(obj);
  1786     if (op->fast_check()) {
  1787       __ cmpptr(obj, (int32_t)NULL_WORD);
  1788       __ jcc(Assembler::equal, zero);
  1789       // get object class
  1790       // not a safepoint as obj null check happens earlier
  1791       if (LP64_ONLY(false &&) k->is_loaded()) {
  1792         NOT_LP64(__ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()));
  1793         k_RInfo = noreg;
  1794       } else {
  1795         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1798       __ jcc(Assembler::equal, one);
  1799     } else {
  1800       // get object class
  1801       // not a safepoint as obj null check happens earlier
  1802       __ cmpptr(obj, (int32_t)NULL_WORD);
  1803       __ jcc(Assembler::equal, zero);
  1804       __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1806 #ifndef _LP64
  1807       if (k->is_loaded()) {
  1808         // See if we get an immediate positive hit
  1809         __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1810         __ jcc(Assembler::equal, one);
  1811         if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
  1812           // check for self
  1813           __ cmpoop(klass_RInfo, k->constant_encoding());
  1814           __ jcc(Assembler::equal, one);
  1815           __ push(klass_RInfo);
  1816           __ pushoop(k->constant_encoding());
  1817           __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1818           __ pop(klass_RInfo);
  1819           __ pop(dst);
  1820           __ jmp(done);
  1823         else // next block is unconditional if LP64:
  1824 #endif // LP64
  1826         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
  1828         // perform the fast part of the checking logic
  1829         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, dst, &one, &zero, NULL);
  1830         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1831         __ push(klass_RInfo);
  1832         __ push(k_RInfo);
  1833         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1834         __ pop(klass_RInfo);
  1835         __ pop(dst);
  1836         __ jmp(done);
  1839     __ bind(zero);
  1840     __ xorptr(dst, dst);
  1841     __ jmp(done);
  1842     __ bind(one);
  1843     __ movptr(dst, 1);
  1844     __ bind(done);
  1845   } else {
  1846     ShouldNotReachHere();
  1852 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1853   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1854     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1855     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1856     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1857     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1858     Register addr = op->addr()->as_register();
  1859     if (os::is_MP()) {
  1860       __ lock();
  1862     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1864   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1865     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1866     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1867     Register newval = op->new_value()->as_register();
  1868     Register cmpval = op->cmp_value()->as_register();
  1869     assert(cmpval == rax, "wrong register");
  1870     assert(newval != NULL, "new val must be register");
  1871     assert(cmpval != newval, "cmp and new values must be in different registers");
  1872     assert(cmpval != addr, "cmp and addr must be in different registers");
  1873     assert(newval != addr, "new value and addr must be in different registers");
  1874     if (os::is_MP()) {
  1875       __ lock();
  1877     if ( op->code() == lir_cas_obj) {
  1878       __ cmpxchgptr(newval, Address(addr, 0));
  1879     } else if (op->code() == lir_cas_int) {
  1880       __ cmpxchgl(newval, Address(addr, 0));
  1881     } else {
  1882       LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
  1884 #ifdef _LP64
  1885   } else if (op->code() == lir_cas_long) {
  1886     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1887     Register newval = op->new_value()->as_register_lo();
  1888     Register cmpval = op->cmp_value()->as_register_lo();
  1889     assert(cmpval == rax, "wrong register");
  1890     assert(newval != NULL, "new val must be register");
  1891     assert(cmpval != newval, "cmp and new values must be in different registers");
  1892     assert(cmpval != addr, "cmp and addr must be in different registers");
  1893     assert(newval != addr, "new value and addr must be in different registers");
  1894     if (os::is_MP()) {
  1895       __ lock();
  1897     __ cmpxchgq(newval, Address(addr, 0));
  1898 #endif // _LP64
  1899   } else {
  1900     Unimplemented();
  1905 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
  1906   Assembler::Condition acond, ncond;
  1907   switch (condition) {
  1908     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  1909     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  1910     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  1911     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  1912     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  1913     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  1914     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  1915     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  1916     default:                    ShouldNotReachHere();
  1919   if (opr1->is_cpu_register()) {
  1920     reg2reg(opr1, result);
  1921   } else if (opr1->is_stack()) {
  1922     stack2reg(opr1, result, result->type());
  1923   } else if (opr1->is_constant()) {
  1924     const2reg(opr1, result, lir_patch_none, NULL);
  1925   } else {
  1926     ShouldNotReachHere();
  1929   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  1930     // optimized version that does not require a branch
  1931     if (opr2->is_single_cpu()) {
  1932       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  1933       __ cmov(ncond, result->as_register(), opr2->as_register());
  1934     } else if (opr2->is_double_cpu()) {
  1935       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  1936       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  1937       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  1938       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  1939     } else if (opr2->is_single_stack()) {
  1940       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  1941     } else if (opr2->is_double_stack()) {
  1942       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  1943       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  1944     } else {
  1945       ShouldNotReachHere();
  1948   } else {
  1949     Label skip;
  1950     __ jcc (acond, skip);
  1951     if (opr2->is_cpu_register()) {
  1952       reg2reg(opr2, result);
  1953     } else if (opr2->is_stack()) {
  1954       stack2reg(opr2, result, result->type());
  1955     } else if (opr2->is_constant()) {
  1956       const2reg(opr2, result, lir_patch_none, NULL);
  1957     } else {
  1958       ShouldNotReachHere();
  1960     __ bind(skip);
  1965 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1966   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  1968   if (left->is_single_cpu()) {
  1969     assert(left == dest, "left and dest must be equal");
  1970     Register lreg = left->as_register();
  1972     if (right->is_single_cpu()) {
  1973       // cpu register - cpu register
  1974       Register rreg = right->as_register();
  1975       switch (code) {
  1976         case lir_add: __ addl (lreg, rreg); break;
  1977         case lir_sub: __ subl (lreg, rreg); break;
  1978         case lir_mul: __ imull(lreg, rreg); break;
  1979         default:      ShouldNotReachHere();
  1982     } else if (right->is_stack()) {
  1983       // cpu register - stack
  1984       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  1985       switch (code) {
  1986         case lir_add: __ addl(lreg, raddr); break;
  1987         case lir_sub: __ subl(lreg, raddr); break;
  1988         default:      ShouldNotReachHere();
  1991     } else if (right->is_constant()) {
  1992       // cpu register - constant
  1993       jint c = right->as_constant_ptr()->as_jint();
  1994       switch (code) {
  1995         case lir_add: {
  1996           __ increment(lreg, c);
  1997           break;
  1999         case lir_sub: {
  2000           __ decrement(lreg, c);
  2001           break;
  2003         default: ShouldNotReachHere();
  2006     } else {
  2007       ShouldNotReachHere();
  2010   } else if (left->is_double_cpu()) {
  2011     assert(left == dest, "left and dest must be equal");
  2012     Register lreg_lo = left->as_register_lo();
  2013     Register lreg_hi = left->as_register_hi();
  2015     if (right->is_double_cpu()) {
  2016       // cpu register - cpu register
  2017       Register rreg_lo = right->as_register_lo();
  2018       Register rreg_hi = right->as_register_hi();
  2019       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2020       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2021       switch (code) {
  2022         case lir_add:
  2023           __ addptr(lreg_lo, rreg_lo);
  2024           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2025           break;
  2026         case lir_sub:
  2027           __ subptr(lreg_lo, rreg_lo);
  2028           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2029           break;
  2030         case lir_mul:
  2031 #ifdef _LP64
  2032           __ imulq(lreg_lo, rreg_lo);
  2033 #else
  2034           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2035           __ imull(lreg_hi, rreg_lo);
  2036           __ imull(rreg_hi, lreg_lo);
  2037           __ addl (rreg_hi, lreg_hi);
  2038           __ mull (rreg_lo);
  2039           __ addl (lreg_hi, rreg_hi);
  2040 #endif // _LP64
  2041           break;
  2042         default:
  2043           ShouldNotReachHere();
  2046     } else if (right->is_constant()) {
  2047       // cpu register - constant
  2048 #ifdef _LP64
  2049       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2050       __ movptr(r10, (intptr_t) c);
  2051       switch (code) {
  2052         case lir_add:
  2053           __ addptr(lreg_lo, r10);
  2054           break;
  2055         case lir_sub:
  2056           __ subptr(lreg_lo, r10);
  2057           break;
  2058         default:
  2059           ShouldNotReachHere();
  2061 #else
  2062       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2063       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2064       switch (code) {
  2065         case lir_add:
  2066           __ addptr(lreg_lo, c_lo);
  2067           __ adcl(lreg_hi, c_hi);
  2068           break;
  2069         case lir_sub:
  2070           __ subptr(lreg_lo, c_lo);
  2071           __ sbbl(lreg_hi, c_hi);
  2072           break;
  2073         default:
  2074           ShouldNotReachHere();
  2076 #endif // _LP64
  2078     } else {
  2079       ShouldNotReachHere();
  2082   } else if (left->is_single_xmm()) {
  2083     assert(left == dest, "left and dest must be equal");
  2084     XMMRegister lreg = left->as_xmm_float_reg();
  2086     if (right->is_single_xmm()) {
  2087       XMMRegister rreg = right->as_xmm_float_reg();
  2088       switch (code) {
  2089         case lir_add: __ addss(lreg, rreg);  break;
  2090         case lir_sub: __ subss(lreg, rreg);  break;
  2091         case lir_mul_strictfp: // fall through
  2092         case lir_mul: __ mulss(lreg, rreg);  break;
  2093         case lir_div_strictfp: // fall through
  2094         case lir_div: __ divss(lreg, rreg);  break;
  2095         default: ShouldNotReachHere();
  2097     } else {
  2098       Address raddr;
  2099       if (right->is_single_stack()) {
  2100         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2101       } else if (right->is_constant()) {
  2102         // hack for now
  2103         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2104       } else {
  2105         ShouldNotReachHere();
  2107       switch (code) {
  2108         case lir_add: __ addss(lreg, raddr);  break;
  2109         case lir_sub: __ subss(lreg, raddr);  break;
  2110         case lir_mul_strictfp: // fall through
  2111         case lir_mul: __ mulss(lreg, raddr);  break;
  2112         case lir_div_strictfp: // fall through
  2113         case lir_div: __ divss(lreg, raddr);  break;
  2114         default: ShouldNotReachHere();
  2118   } else if (left->is_double_xmm()) {
  2119     assert(left == dest, "left and dest must be equal");
  2121     XMMRegister lreg = left->as_xmm_double_reg();
  2122     if (right->is_double_xmm()) {
  2123       XMMRegister rreg = right->as_xmm_double_reg();
  2124       switch (code) {
  2125         case lir_add: __ addsd(lreg, rreg);  break;
  2126         case lir_sub: __ subsd(lreg, rreg);  break;
  2127         case lir_mul_strictfp: // fall through
  2128         case lir_mul: __ mulsd(lreg, rreg);  break;
  2129         case lir_div_strictfp: // fall through
  2130         case lir_div: __ divsd(lreg, rreg);  break;
  2131         default: ShouldNotReachHere();
  2133     } else {
  2134       Address raddr;
  2135       if (right->is_double_stack()) {
  2136         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2137       } else if (right->is_constant()) {
  2138         // hack for now
  2139         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2140       } else {
  2141         ShouldNotReachHere();
  2143       switch (code) {
  2144         case lir_add: __ addsd(lreg, raddr);  break;
  2145         case lir_sub: __ subsd(lreg, raddr);  break;
  2146         case lir_mul_strictfp: // fall through
  2147         case lir_mul: __ mulsd(lreg, raddr);  break;
  2148         case lir_div_strictfp: // fall through
  2149         case lir_div: __ divsd(lreg, raddr);  break;
  2150         default: ShouldNotReachHere();
  2154   } else if (left->is_single_fpu()) {
  2155     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2157     if (right->is_single_fpu()) {
  2158       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2160     } else {
  2161       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2162       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2164       Address raddr;
  2165       if (right->is_single_stack()) {
  2166         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2167       } else if (right->is_constant()) {
  2168         address const_addr = float_constant(right->as_jfloat());
  2169         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2170         // hack for now
  2171         raddr = __ as_Address(InternalAddress(const_addr));
  2172       } else {
  2173         ShouldNotReachHere();
  2176       switch (code) {
  2177         case lir_add: __ fadd_s(raddr); break;
  2178         case lir_sub: __ fsub_s(raddr); break;
  2179         case lir_mul_strictfp: // fall through
  2180         case lir_mul: __ fmul_s(raddr); break;
  2181         case lir_div_strictfp: // fall through
  2182         case lir_div: __ fdiv_s(raddr); break;
  2183         default:      ShouldNotReachHere();
  2187   } else if (left->is_double_fpu()) {
  2188     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2190     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2191       // Double values require special handling for strictfp mul/div on x86
  2192       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2193       __ fmulp(left->fpu_regnrLo() + 1);
  2196     if (right->is_double_fpu()) {
  2197       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2199     } else {
  2200       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2201       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2203       Address raddr;
  2204       if (right->is_double_stack()) {
  2205         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2206       } else if (right->is_constant()) {
  2207         // hack for now
  2208         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2209       } else {
  2210         ShouldNotReachHere();
  2213       switch (code) {
  2214         case lir_add: __ fadd_d(raddr); break;
  2215         case lir_sub: __ fsub_d(raddr); break;
  2216         case lir_mul_strictfp: // fall through
  2217         case lir_mul: __ fmul_d(raddr); break;
  2218         case lir_div_strictfp: // fall through
  2219         case lir_div: __ fdiv_d(raddr); break;
  2220         default: ShouldNotReachHere();
  2224     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2225       // Double values require special handling for strictfp mul/div on x86
  2226       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2227       __ fmulp(dest->fpu_regnrLo() + 1);
  2230   } else if (left->is_single_stack() || left->is_address()) {
  2231     assert(left == dest, "left and dest must be equal");
  2233     Address laddr;
  2234     if (left->is_single_stack()) {
  2235       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2236     } else if (left->is_address()) {
  2237       laddr = as_Address(left->as_address_ptr());
  2238     } else {
  2239       ShouldNotReachHere();
  2242     if (right->is_single_cpu()) {
  2243       Register rreg = right->as_register();
  2244       switch (code) {
  2245         case lir_add: __ addl(laddr, rreg); break;
  2246         case lir_sub: __ subl(laddr, rreg); break;
  2247         default:      ShouldNotReachHere();
  2249     } else if (right->is_constant()) {
  2250       jint c = right->as_constant_ptr()->as_jint();
  2251       switch (code) {
  2252         case lir_add: {
  2253           __ incrementl(laddr, c);
  2254           break;
  2256         case lir_sub: {
  2257           __ decrementl(laddr, c);
  2258           break;
  2260         default: ShouldNotReachHere();
  2262     } else {
  2263       ShouldNotReachHere();
  2266   } else {
  2267     ShouldNotReachHere();
  2271 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2272   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2273   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2274   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2276   bool left_is_tos = (left_index == 0);
  2277   bool dest_is_tos = (dest_index == 0);
  2278   int non_tos_index = (left_is_tos ? right_index : left_index);
  2280   switch (code) {
  2281     case lir_add:
  2282       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2283       else if (dest_is_tos)    __ fadd (non_tos_index);
  2284       else                     __ fadda(non_tos_index);
  2285       break;
  2287     case lir_sub:
  2288       if (left_is_tos) {
  2289         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2290         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2291         else                   __ fsubra(non_tos_index);
  2292       } else {
  2293         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2294         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2295         else                   __ fsuba (non_tos_index);
  2297       break;
  2299     case lir_mul_strictfp: // fall through
  2300     case lir_mul:
  2301       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2302       else if (dest_is_tos)    __ fmul (non_tos_index);
  2303       else                     __ fmula(non_tos_index);
  2304       break;
  2306     case lir_div_strictfp: // fall through
  2307     case lir_div:
  2308       if (left_is_tos) {
  2309         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2310         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2311         else                   __ fdivra(non_tos_index);
  2312       } else {
  2313         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2314         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2315         else                   __ fdiva (non_tos_index);
  2317       break;
  2319     case lir_rem:
  2320       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2321       __ fremr(noreg);
  2322       break;
  2324     default:
  2325       ShouldNotReachHere();
  2330 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2331   if (value->is_double_xmm()) {
  2332     switch(code) {
  2333       case lir_abs :
  2335           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2336             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2338           __ andpd(dest->as_xmm_double_reg(),
  2339                     ExternalAddress((address)double_signmask_pool));
  2341         break;
  2343       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2344       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2345       default      : ShouldNotReachHere();
  2348   } else if (value->is_double_fpu()) {
  2349     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2350     switch(code) {
  2351       case lir_log   : __ flog() ; break;
  2352       case lir_log10 : __ flog10() ; break;
  2353       case lir_abs   : __ fabs() ; break;
  2354       case lir_sqrt  : __ fsqrt(); break;
  2355       case lir_sin   :
  2356         // Should consider not saving rbx, if not necessary
  2357         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2358         break;
  2359       case lir_cos :
  2360         // Should consider not saving rbx, if not necessary
  2361         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2362         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2363         break;
  2364       case lir_tan :
  2365         // Should consider not saving rbx, if not necessary
  2366         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2367         break;
  2368       default      : ShouldNotReachHere();
  2370   } else {
  2371     Unimplemented();
  2375 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2376   // assert(left->destroys_register(), "check");
  2377   if (left->is_single_cpu()) {
  2378     Register reg = left->as_register();
  2379     if (right->is_constant()) {
  2380       int val = right->as_constant_ptr()->as_jint();
  2381       switch (code) {
  2382         case lir_logic_and: __ andl (reg, val); break;
  2383         case lir_logic_or:  __ orl  (reg, val); break;
  2384         case lir_logic_xor: __ xorl (reg, val); break;
  2385         default: ShouldNotReachHere();
  2387     } else if (right->is_stack()) {
  2388       // added support for stack operands
  2389       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2390       switch (code) {
  2391         case lir_logic_and: __ andl (reg, raddr); break;
  2392         case lir_logic_or:  __ orl  (reg, raddr); break;
  2393         case lir_logic_xor: __ xorl (reg, raddr); break;
  2394         default: ShouldNotReachHere();
  2396     } else {
  2397       Register rright = right->as_register();
  2398       switch (code) {
  2399         case lir_logic_and: __ andptr (reg, rright); break;
  2400         case lir_logic_or : __ orptr  (reg, rright); break;
  2401         case lir_logic_xor: __ xorptr (reg, rright); break;
  2402         default: ShouldNotReachHere();
  2405     move_regs(reg, dst->as_register());
  2406   } else {
  2407     Register l_lo = left->as_register_lo();
  2408     Register l_hi = left->as_register_hi();
  2409     if (right->is_constant()) {
  2410 #ifdef _LP64
  2411       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2412       switch (code) {
  2413         case lir_logic_and:
  2414           __ andq(l_lo, rscratch1);
  2415           break;
  2416         case lir_logic_or:
  2417           __ orq(l_lo, rscratch1);
  2418           break;
  2419         case lir_logic_xor:
  2420           __ xorq(l_lo, rscratch1);
  2421           break;
  2422         default: ShouldNotReachHere();
  2424 #else
  2425       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2426       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2427       switch (code) {
  2428         case lir_logic_and:
  2429           __ andl(l_lo, r_lo);
  2430           __ andl(l_hi, r_hi);
  2431           break;
  2432         case lir_logic_or:
  2433           __ orl(l_lo, r_lo);
  2434           __ orl(l_hi, r_hi);
  2435           break;
  2436         case lir_logic_xor:
  2437           __ xorl(l_lo, r_lo);
  2438           __ xorl(l_hi, r_hi);
  2439           break;
  2440         default: ShouldNotReachHere();
  2442 #endif // _LP64
  2443     } else {
  2444       Register r_lo = right->as_register_lo();
  2445       Register r_hi = right->as_register_hi();
  2446       assert(l_lo != r_hi, "overwriting registers");
  2447       switch (code) {
  2448         case lir_logic_and:
  2449           __ andptr(l_lo, r_lo);
  2450           NOT_LP64(__ andptr(l_hi, r_hi);)
  2451           break;
  2452         case lir_logic_or:
  2453           __ orptr(l_lo, r_lo);
  2454           NOT_LP64(__ orptr(l_hi, r_hi);)
  2455           break;
  2456         case lir_logic_xor:
  2457           __ xorptr(l_lo, r_lo);
  2458           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2459           break;
  2460         default: ShouldNotReachHere();
  2464     Register dst_lo = dst->as_register_lo();
  2465     Register dst_hi = dst->as_register_hi();
  2467 #ifdef _LP64
  2468     move_regs(l_lo, dst_lo);
  2469 #else
  2470     if (dst_lo == l_hi) {
  2471       assert(dst_hi != l_lo, "overwriting registers");
  2472       move_regs(l_hi, dst_hi);
  2473       move_regs(l_lo, dst_lo);
  2474     } else {
  2475       assert(dst_lo != l_hi, "overwriting registers");
  2476       move_regs(l_lo, dst_lo);
  2477       move_regs(l_hi, dst_hi);
  2479 #endif // _LP64
  2484 // we assume that rax, and rdx can be overwritten
  2485 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2487   assert(left->is_single_cpu(),   "left must be register");
  2488   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2489   assert(result->is_single_cpu(), "result must be register");
  2491   //  assert(left->destroys_register(), "check");
  2492   //  assert(right->destroys_register(), "check");
  2494   Register lreg = left->as_register();
  2495   Register dreg = result->as_register();
  2497   if (right->is_constant()) {
  2498     int divisor = right->as_constant_ptr()->as_jint();
  2499     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2500     if (code == lir_idiv) {
  2501       assert(lreg == rax, "must be rax,");
  2502       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2503       __ cdql(); // sign extend into rdx:rax
  2504       if (divisor == 2) {
  2505         __ subl(lreg, rdx);
  2506       } else {
  2507         __ andl(rdx, divisor - 1);
  2508         __ addl(lreg, rdx);
  2510       __ sarl(lreg, log2_intptr(divisor));
  2511       move_regs(lreg, dreg);
  2512     } else if (code == lir_irem) {
  2513       Label done;
  2514       __ mov(dreg, lreg);
  2515       __ andl(dreg, 0x80000000 | (divisor - 1));
  2516       __ jcc(Assembler::positive, done);
  2517       __ decrement(dreg);
  2518       __ orl(dreg, ~(divisor - 1));
  2519       __ increment(dreg);
  2520       __ bind(done);
  2521     } else {
  2522       ShouldNotReachHere();
  2524   } else {
  2525     Register rreg = right->as_register();
  2526     assert(lreg == rax, "left register must be rax,");
  2527     assert(rreg != rdx, "right register must not be rdx");
  2528     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2530     move_regs(lreg, rax);
  2532     int idivl_offset = __ corrected_idivl(rreg);
  2533     add_debug_info_for_div0(idivl_offset, info);
  2534     if (code == lir_irem) {
  2535       move_regs(rdx, dreg); // result is in rdx
  2536     } else {
  2537       move_regs(rax, dreg);
  2543 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2544   if (opr1->is_single_cpu()) {
  2545     Register reg1 = opr1->as_register();
  2546     if (opr2->is_single_cpu()) {
  2547       // cpu register - cpu register
  2548       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2549         __ cmpptr(reg1, opr2->as_register());
  2550       } else {
  2551         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2552         __ cmpl(reg1, opr2->as_register());
  2554     } else if (opr2->is_stack()) {
  2555       // cpu register - stack
  2556       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2557         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2558       } else {
  2559         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2561     } else if (opr2->is_constant()) {
  2562       // cpu register - constant
  2563       LIR_Const* c = opr2->as_constant_ptr();
  2564       if (c->type() == T_INT) {
  2565         __ cmpl(reg1, c->as_jint());
  2566       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2567         // In 64bit oops are single register
  2568         jobject o = c->as_jobject();
  2569         if (o == NULL) {
  2570           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2571         } else {
  2572 #ifdef _LP64
  2573           __ movoop(rscratch1, o);
  2574           __ cmpptr(reg1, rscratch1);
  2575 #else
  2576           __ cmpoop(reg1, c->as_jobject());
  2577 #endif // _LP64
  2579       } else {
  2580         ShouldNotReachHere();
  2582       // cpu register - address
  2583     } else if (opr2->is_address()) {
  2584       if (op->info() != NULL) {
  2585         add_debug_info_for_null_check_here(op->info());
  2587       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2588     } else {
  2589       ShouldNotReachHere();
  2592   } else if(opr1->is_double_cpu()) {
  2593     Register xlo = opr1->as_register_lo();
  2594     Register xhi = opr1->as_register_hi();
  2595     if (opr2->is_double_cpu()) {
  2596 #ifdef _LP64
  2597       __ cmpptr(xlo, opr2->as_register_lo());
  2598 #else
  2599       // cpu register - cpu register
  2600       Register ylo = opr2->as_register_lo();
  2601       Register yhi = opr2->as_register_hi();
  2602       __ subl(xlo, ylo);
  2603       __ sbbl(xhi, yhi);
  2604       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2605         __ orl(xhi, xlo);
  2607 #endif // _LP64
  2608     } else if (opr2->is_constant()) {
  2609       // cpu register - constant 0
  2610       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2611 #ifdef _LP64
  2612       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2613 #else
  2614       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2615       __ orl(xhi, xlo);
  2616 #endif // _LP64
  2617     } else {
  2618       ShouldNotReachHere();
  2621   } else if (opr1->is_single_xmm()) {
  2622     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2623     if (opr2->is_single_xmm()) {
  2624       // xmm register - xmm register
  2625       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2626     } else if (opr2->is_stack()) {
  2627       // xmm register - stack
  2628       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2629     } else if (opr2->is_constant()) {
  2630       // xmm register - constant
  2631       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2632     } else if (opr2->is_address()) {
  2633       // xmm register - address
  2634       if (op->info() != NULL) {
  2635         add_debug_info_for_null_check_here(op->info());
  2637       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2638     } else {
  2639       ShouldNotReachHere();
  2642   } else if (opr1->is_double_xmm()) {
  2643     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2644     if (opr2->is_double_xmm()) {
  2645       // xmm register - xmm register
  2646       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2647     } else if (opr2->is_stack()) {
  2648       // xmm register - stack
  2649       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2650     } else if (opr2->is_constant()) {
  2651       // xmm register - constant
  2652       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2653     } else if (opr2->is_address()) {
  2654       // xmm register - address
  2655       if (op->info() != NULL) {
  2656         add_debug_info_for_null_check_here(op->info());
  2658       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2659     } else {
  2660       ShouldNotReachHere();
  2663   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2664     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2665     assert(opr2->is_fpu_register(), "both must be registers");
  2666     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2668   } else if (opr1->is_address() && opr2->is_constant()) {
  2669     LIR_Const* c = opr2->as_constant_ptr();
  2670 #ifdef _LP64
  2671     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2672       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2673       __ movoop(rscratch1, c->as_jobject());
  2675 #endif // LP64
  2676     if (op->info() != NULL) {
  2677       add_debug_info_for_null_check_here(op->info());
  2679     // special case: address - constant
  2680     LIR_Address* addr = opr1->as_address_ptr();
  2681     if (c->type() == T_INT) {
  2682       __ cmpl(as_Address(addr), c->as_jint());
  2683     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2684 #ifdef _LP64
  2685       // %%% Make this explode if addr isn't reachable until we figure out a
  2686       // better strategy by giving noreg as the temp for as_Address
  2687       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2688 #else
  2689       __ cmpoop(as_Address(addr), c->as_jobject());
  2690 #endif // _LP64
  2691     } else {
  2692       ShouldNotReachHere();
  2695   } else {
  2696     ShouldNotReachHere();
  2700 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2701   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2702     if (left->is_single_xmm()) {
  2703       assert(right->is_single_xmm(), "must match");
  2704       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2705     } else if (left->is_double_xmm()) {
  2706       assert(right->is_double_xmm(), "must match");
  2707       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2709     } else {
  2710       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2711       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2713       assert(left->fpu() == 0, "left must be on TOS");
  2714       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2715                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2717   } else {
  2718     assert(code == lir_cmp_l2i, "check");
  2719 #ifdef _LP64
  2720       Register dest = dst->as_register();
  2721       __ xorptr(dest, dest);
  2722       Label high, done;
  2723       __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2724       __ jcc(Assembler::equal, done);
  2725       __ jcc(Assembler::greater, high);
  2726       __ decrement(dest);
  2727       __ jmp(done);
  2728       __ bind(high);
  2729       __ increment(dest);
  2731       __ bind(done);
  2733 #else
  2734     __ lcmp2int(left->as_register_hi(),
  2735                 left->as_register_lo(),
  2736                 right->as_register_hi(),
  2737                 right->as_register_lo());
  2738     move_regs(left->as_register_hi(), dst->as_register());
  2739 #endif // _LP64
  2744 void LIR_Assembler::align_call(LIR_Code code) {
  2745   if (os::is_MP()) {
  2746     // make sure that the displacement word of the call ends up word aligned
  2747     int offset = __ offset();
  2748     switch (code) {
  2749       case lir_static_call:
  2750       case lir_optvirtual_call:
  2751         offset += NativeCall::displacement_offset;
  2752         break;
  2753       case lir_icvirtual_call:
  2754         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2755       break;
  2756       case lir_virtual_call:  // currently, sparc-specific for niagara
  2757       default: ShouldNotReachHere();
  2759     while (offset++ % BytesPerWord != 0) {
  2760       __ nop();
  2766 void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) {
  2767   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2768          "must be aligned");
  2769   __ call(AddressLiteral(entry, rtype));
  2770   add_call_info(code_offset(), info);
  2774 void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) {
  2775   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  2776   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
  2777   assert(!os::is_MP() ||
  2778          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2779          "must be aligned");
  2780   __ call(AddressLiteral(entry, rh));
  2781   add_call_info(code_offset(), info);
  2785 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2786 void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) {
  2787   ShouldNotReachHere();
  2790 void LIR_Assembler::emit_static_call_stub() {
  2791   address call_pc = __ pc();
  2792   address stub = __ start_a_stub(call_stub_size);
  2793   if (stub == NULL) {
  2794     bailout("static call stub overflow");
  2795     return;
  2798   int start = __ offset();
  2799   if (os::is_MP()) {
  2800     // make sure that the displacement word of the call ends up word aligned
  2801     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2802     while (offset++ % BytesPerWord != 0) {
  2803       __ nop();
  2806   __ relocate(static_stub_Relocation::spec(call_pc));
  2807   __ movoop(rbx, (jobject)NULL);
  2808   // must be set to -1 at code generation time
  2809   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2810   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2811   __ jump(RuntimeAddress(__ pc()));
  2813   assert(__ offset() - start <= call_stub_size, "stub too big")
  2814   __ end_a_stub();
  2818 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
  2819   assert(exceptionOop->as_register() == rax, "must match");
  2820   assert(unwind || exceptionPC->as_register() == rdx, "must match");
  2822   // exception object is not added to oop map by LinearScan
  2823   // (LinearScan assumes that no oops are in fixed registers)
  2824   info->add_register_oop(exceptionOop);
  2825   Runtime1::StubID unwind_id;
  2827   if (!unwind) {
  2828     // get current pc information
  2829     // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2830     int pc_for_athrow_offset = __ offset();
  2831     InternalAddress pc_for_athrow(__ pc());
  2832     __ lea(exceptionPC->as_register(), pc_for_athrow);
  2833     add_call_info(pc_for_athrow_offset, info); // for exception handler
  2835     __ verify_not_null_oop(rax);
  2836     // search an exception handler (rax: exception oop, rdx: throwing pc)
  2837     if (compilation()->has_fpu_code()) {
  2838       unwind_id = Runtime1::handle_exception_id;
  2839     } else {
  2840       unwind_id = Runtime1::handle_exception_nofpu_id;
  2842   } else {
  2843     unwind_id = Runtime1::unwind_exception_id;
  2845   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2847   // enough room for two byte trap
  2848   __ nop();
  2852 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2854   // optimized version for linear scan:
  2855   // * count must be already in ECX (guaranteed by LinearScan)
  2856   // * left and dest must be equal
  2857   // * tmp must be unused
  2858   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  2859   assert(left == dest, "left and dest must be equal");
  2860   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  2862   if (left->is_single_cpu()) {
  2863     Register value = left->as_register();
  2864     assert(value != SHIFT_count, "left cannot be ECX");
  2866     switch (code) {
  2867       case lir_shl:  __ shll(value); break;
  2868       case lir_shr:  __ sarl(value); break;
  2869       case lir_ushr: __ shrl(value); break;
  2870       default: ShouldNotReachHere();
  2872   } else if (left->is_double_cpu()) {
  2873     Register lo = left->as_register_lo();
  2874     Register hi = left->as_register_hi();
  2875     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  2876 #ifdef _LP64
  2877     switch (code) {
  2878       case lir_shl:  __ shlptr(lo);        break;
  2879       case lir_shr:  __ sarptr(lo);        break;
  2880       case lir_ushr: __ shrptr(lo);        break;
  2881       default: ShouldNotReachHere();
  2883 #else
  2885     switch (code) {
  2886       case lir_shl:  __ lshl(hi, lo);        break;
  2887       case lir_shr:  __ lshr(hi, lo, true);  break;
  2888       case lir_ushr: __ lshr(hi, lo, false); break;
  2889       default: ShouldNotReachHere();
  2891 #endif // LP64
  2892   } else {
  2893     ShouldNotReachHere();
  2898 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2899   if (dest->is_single_cpu()) {
  2900     // first move left into dest so that left is not destroyed by the shift
  2901     Register value = dest->as_register();
  2902     count = count & 0x1F; // Java spec
  2904     move_regs(left->as_register(), value);
  2905     switch (code) {
  2906       case lir_shl:  __ shll(value, count); break;
  2907       case lir_shr:  __ sarl(value, count); break;
  2908       case lir_ushr: __ shrl(value, count); break;
  2909       default: ShouldNotReachHere();
  2911   } else if (dest->is_double_cpu()) {
  2912 #ifndef _LP64
  2913     Unimplemented();
  2914 #else
  2915     // first move left into dest so that left is not destroyed by the shift
  2916     Register value = dest->as_register_lo();
  2917     count = count & 0x1F; // Java spec
  2919     move_regs(left->as_register_lo(), value);
  2920     switch (code) {
  2921       case lir_shl:  __ shlptr(value, count); break;
  2922       case lir_shr:  __ sarptr(value, count); break;
  2923       case lir_ushr: __ shrptr(value, count); break;
  2924       default: ShouldNotReachHere();
  2926 #endif // _LP64
  2927   } else {
  2928     ShouldNotReachHere();
  2933 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  2934   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2935   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2936   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2937   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  2941 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  2942   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2943   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2944   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2945   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  2949 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  2950   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2951   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2952   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2953   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  2957 // This code replaces a call to arraycopy; no exception may
  2958 // be thrown in this code, they must be thrown in the System.arraycopy
  2959 // activation frame; we could save some checks if this would not be the case
  2960 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2961   ciArrayKlass* default_type = op->expected_type();
  2962   Register src = op->src()->as_register();
  2963   Register dst = op->dst()->as_register();
  2964   Register src_pos = op->src_pos()->as_register();
  2965   Register dst_pos = op->dst_pos()->as_register();
  2966   Register length  = op->length()->as_register();
  2967   Register tmp = op->tmp()->as_register();
  2969   CodeStub* stub = op->stub();
  2970   int flags = op->flags();
  2971   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2972   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2974   // if we don't know anything or it's an object array, just go through the generic arraycopy
  2975   if (default_type == NULL) {
  2976     Label done;
  2977     // save outgoing arguments on stack in case call to System.arraycopy is needed
  2978     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  2979     // for interpreter calling conventions. Now we have to do it in new style conventions.
  2980     // For the moment until C1 gets the new register allocator I just force all the
  2981     // args to the right place (except the register args) and then on the back side
  2982     // reload the register args properly if we go slow path. Yuck
  2984     // These are proper for the calling convention
  2986     store_parameter(length, 2);
  2987     store_parameter(dst_pos, 1);
  2988     store_parameter(dst, 0);
  2990     // these are just temporary placements until we need to reload
  2991     store_parameter(src_pos, 3);
  2992     store_parameter(src, 4);
  2993     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  2995     address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  2997     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  2998 #ifdef _LP64
  2999     // The arguments are in java calling convention so we can trivially shift them to C
  3000     // convention
  3001     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3002     __ mov(c_rarg0, j_rarg0);
  3003     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3004     __ mov(c_rarg1, j_rarg1);
  3005     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  3006     __ mov(c_rarg2, j_rarg2);
  3007     assert_different_registers(c_rarg3, j_rarg4);
  3008     __ mov(c_rarg3, j_rarg3);
  3009 #ifdef _WIN64
  3010     // Allocate abi space for args but be sure to keep stack aligned
  3011     __ subptr(rsp, 6*wordSize);
  3012     store_parameter(j_rarg4, 4);
  3013     __ call(RuntimeAddress(entry));
  3014     __ addptr(rsp, 6*wordSize);
  3015 #else
  3016     __ mov(c_rarg4, j_rarg4);
  3017     __ call(RuntimeAddress(entry));
  3018 #endif // _WIN64
  3019 #else
  3020     __ push(length);
  3021     __ push(dst_pos);
  3022     __ push(dst);
  3023     __ push(src_pos);
  3024     __ push(src);
  3025     __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
  3027 #endif // _LP64
  3029     __ cmpl(rax, 0);
  3030     __ jcc(Assembler::equal, *stub->continuation());
  3032     // Reload values from the stack so they are where the stub
  3033     // expects them.
  3034     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3035     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3036     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3037     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3038     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3039     __ jmp(*stub->entry());
  3041     __ bind(*stub->continuation());
  3042     return;
  3045   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3047   int elem_size = type2aelembytes(basic_type);
  3048   int shift_amount;
  3049   Address::ScaleFactor scale;
  3051   switch (elem_size) {
  3052     case 1 :
  3053       shift_amount = 0;
  3054       scale = Address::times_1;
  3055       break;
  3056     case 2 :
  3057       shift_amount = 1;
  3058       scale = Address::times_2;
  3059       break;
  3060     case 4 :
  3061       shift_amount = 2;
  3062       scale = Address::times_4;
  3063       break;
  3064     case 8 :
  3065       shift_amount = 3;
  3066       scale = Address::times_8;
  3067       break;
  3068     default:
  3069       ShouldNotReachHere();
  3072   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3073   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3074   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3075   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3077   // length and pos's are all sign extended at this point on 64bit
  3079   // test for NULL
  3080   if (flags & LIR_OpArrayCopy::src_null_check) {
  3081     __ testptr(src, src);
  3082     __ jcc(Assembler::zero, *stub->entry());
  3084   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3085     __ testptr(dst, dst);
  3086     __ jcc(Assembler::zero, *stub->entry());
  3089   // check if negative
  3090   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3091     __ testl(src_pos, src_pos);
  3092     __ jcc(Assembler::less, *stub->entry());
  3094   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3095     __ testl(dst_pos, dst_pos);
  3096     __ jcc(Assembler::less, *stub->entry());
  3098   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3099     __ testl(length, length);
  3100     __ jcc(Assembler::less, *stub->entry());
  3103   if (flags & LIR_OpArrayCopy::src_range_check) {
  3104     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3105     __ cmpl(tmp, src_length_addr);
  3106     __ jcc(Assembler::above, *stub->entry());
  3108   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3109     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3110     __ cmpl(tmp, dst_length_addr);
  3111     __ jcc(Assembler::above, *stub->entry());
  3114   if (flags & LIR_OpArrayCopy::type_check) {
  3115     __ movptr(tmp, src_klass_addr);
  3116     __ cmpptr(tmp, dst_klass_addr);
  3117     __ jcc(Assembler::notEqual, *stub->entry());
  3120 #ifdef ASSERT
  3121   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3122     // Sanity check the known type with the incoming class.  For the
  3123     // primitive case the types must match exactly with src.klass and
  3124     // dst.klass each exactly matching the default type.  For the
  3125     // object array case, if no type check is needed then either the
  3126     // dst type is exactly the expected type and the src type is a
  3127     // subtype which we can't check or src is the same array as dst
  3128     // but not necessarily exactly of type default_type.
  3129     Label known_ok, halt;
  3130     __ movoop(tmp, default_type->constant_encoding());
  3131     if (basic_type != T_OBJECT) {
  3132       __ cmpptr(tmp, dst_klass_addr);
  3133       __ jcc(Assembler::notEqual, halt);
  3134       __ cmpptr(tmp, src_klass_addr);
  3135       __ jcc(Assembler::equal, known_ok);
  3136     } else {
  3137       __ cmpptr(tmp, dst_klass_addr);
  3138       __ jcc(Assembler::equal, known_ok);
  3139       __ cmpptr(src, dst);
  3140       __ jcc(Assembler::equal, known_ok);
  3142     __ bind(halt);
  3143     __ stop("incorrect type information in arraycopy");
  3144     __ bind(known_ok);
  3146 #endif
  3148   if (shift_amount > 0 && basic_type != T_OBJECT) {
  3149     __ shlptr(length, shift_amount);
  3152 #ifdef _LP64
  3153   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3154   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
  3155   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3156   assert_different_registers(c_rarg1, length);
  3157   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
  3158   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3159   __ mov(c_rarg2, length);
  3161 #else
  3162   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3163   store_parameter(tmp, 0);
  3164   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3165   store_parameter(tmp, 1);
  3166   store_parameter(length, 2);
  3167 #endif // _LP64
  3168   if (basic_type == T_OBJECT) {
  3169     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
  3170   } else {
  3171     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
  3174   __ bind(*stub->continuation());
  3178 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3179   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3180   Register hdr = op->hdr_opr()->as_register();
  3181   Register lock = op->lock_opr()->as_register();
  3182   if (!UseFastLocking) {
  3183     __ jmp(*op->stub()->entry());
  3184   } else if (op->code() == lir_lock) {
  3185     Register scratch = noreg;
  3186     if (UseBiasedLocking) {
  3187       scratch = op->scratch_opr()->as_register();
  3189     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3190     // add debug info for NullPointerException only if one is possible
  3191     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3192     if (op->info() != NULL) {
  3193       add_debug_info_for_null_check(null_check_offset, op->info());
  3195     // done
  3196   } else if (op->code() == lir_unlock) {
  3197     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3198     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3199   } else {
  3200     Unimplemented();
  3202   __ bind(*op->stub()->continuation());
  3206 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3207   ciMethod* method = op->profiled_method();
  3208   int bci          = op->profiled_bci();
  3210   // Update counter for all call types
  3211   ciMethodData* md = method->method_data();
  3212   if (md == NULL) {
  3213     bailout("out of memory building methodDataOop");
  3214     return;
  3216   ciProfileData* data = md->bci_to_data(bci);
  3217   assert(data->is_CounterData(), "need CounterData for calls");
  3218   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3219   Register mdo  = op->mdo()->as_register();
  3220   __ movoop(mdo, md->constant_encoding());
  3221   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3222   __ addl(counter_addr, DataLayout::counter_increment);
  3223   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3224   // Perform additional virtual call profiling for invokevirtual and
  3225   // invokeinterface bytecodes
  3226   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3227       Tier1ProfileVirtualCalls) {
  3228     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3229     Register recv = op->recv()->as_register();
  3230     assert_different_registers(mdo, recv);
  3231     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3232     ciKlass* known_klass = op->known_holder();
  3233     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3234       // We know the type that will be seen at this call site; we can
  3235       // statically update the methodDataOop rather than needing to do
  3236       // dynamic tests on the receiver type
  3238       // NOTE: we should probably put a lock around this search to
  3239       // avoid collisions by concurrent compilations
  3240       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3241       uint i;
  3242       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3243         ciKlass* receiver = vc_data->receiver(i);
  3244         if (known_klass->equals(receiver)) {
  3245           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3246           __ addl(data_addr, DataLayout::counter_increment);
  3247           return;
  3251       // Receiver type not found in profile data; select an empty slot
  3253       // Note that this is less efficient than it should be because it
  3254       // always does a write to the receiver part of the
  3255       // VirtualCallData rather than just the first time
  3256       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3257         ciKlass* receiver = vc_data->receiver(i);
  3258         if (receiver == NULL) {
  3259           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3260           __ movoop(recv_addr, known_klass->constant_encoding());
  3261           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3262           __ addl(data_addr, DataLayout::counter_increment);
  3263           return;
  3266     } else {
  3267       __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
  3268       Label update_done;
  3269       uint i;
  3270       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3271         Label next_test;
  3272         // See if the receiver is receiver[n].
  3273         __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
  3274         __ jcc(Assembler::notEqual, next_test);
  3275         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3276         __ addl(data_addr, DataLayout::counter_increment);
  3277         __ jmp(update_done);
  3278         __ bind(next_test);
  3281       // Didn't find receiver; find next empty slot and fill it in
  3282       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3283         Label next_test;
  3284         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3285         __ cmpptr(recv_addr, (int32_t)NULL_WORD);
  3286         __ jcc(Assembler::notEqual, next_test);
  3287         __ movptr(recv_addr, recv);
  3288         __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
  3289         if (i < (VirtualCallData::row_limit() - 1)) {
  3290           __ jmp(update_done);
  3292         __ bind(next_test);
  3295       __ bind(update_done);
  3301 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3302   Unimplemented();
  3306 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3307   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3311 void LIR_Assembler::align_backward_branch_target() {
  3312   __ align(BytesPerWord);
  3316 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3317   if (left->is_single_cpu()) {
  3318     __ negl(left->as_register());
  3319     move_regs(left->as_register(), dest->as_register());
  3321   } else if (left->is_double_cpu()) {
  3322     Register lo = left->as_register_lo();
  3323 #ifdef _LP64
  3324     Register dst = dest->as_register_lo();
  3325     __ movptr(dst, lo);
  3326     __ negptr(dst);
  3327 #else
  3328     Register hi = left->as_register_hi();
  3329     __ lneg(hi, lo);
  3330     if (dest->as_register_lo() == hi) {
  3331       assert(dest->as_register_hi() != lo, "destroying register");
  3332       move_regs(hi, dest->as_register_hi());
  3333       move_regs(lo, dest->as_register_lo());
  3334     } else {
  3335       move_regs(lo, dest->as_register_lo());
  3336       move_regs(hi, dest->as_register_hi());
  3338 #endif // _LP64
  3340   } else if (dest->is_single_xmm()) {
  3341     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3342       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3344     __ xorps(dest->as_xmm_float_reg(),
  3345              ExternalAddress((address)float_signflip_pool));
  3347   } else if (dest->is_double_xmm()) {
  3348     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3349       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3351     __ xorpd(dest->as_xmm_double_reg(),
  3352              ExternalAddress((address)double_signflip_pool));
  3354   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3355     assert(left->fpu() == 0, "arg must be on TOS");
  3356     assert(dest->fpu() == 0, "dest must be TOS");
  3357     __ fchs();
  3359   } else {
  3360     ShouldNotReachHere();
  3365 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3366   assert(addr->is_address() && dest->is_register(), "check");
  3367   Register reg;
  3368   reg = dest->as_pointer_register();
  3369   __ lea(reg, as_Address(addr->as_address_ptr()));
  3374 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3375   assert(!tmp->is_valid(), "don't need temporary");
  3376   __ call(RuntimeAddress(dest));
  3377   if (info != NULL) {
  3378     add_call_info_here(info);
  3383 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3384   assert(type == T_LONG, "only for volatile long fields");
  3386   if (info != NULL) {
  3387     add_debug_info_for_null_check_here(info);
  3390   if (src->is_double_xmm()) {
  3391     if (dest->is_double_cpu()) {
  3392 #ifdef _LP64
  3393       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3394 #else
  3395       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3396       __ psrlq(src->as_xmm_double_reg(), 32);
  3397       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3398 #endif // _LP64
  3399     } else if (dest->is_double_stack()) {
  3400       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3401     } else if (dest->is_address()) {
  3402       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3403     } else {
  3404       ShouldNotReachHere();
  3407   } else if (dest->is_double_xmm()) {
  3408     if (src->is_double_stack()) {
  3409       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3410     } else if (src->is_address()) {
  3411       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3412     } else {
  3413       ShouldNotReachHere();
  3416   } else if (src->is_double_fpu()) {
  3417     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3418     if (dest->is_double_stack()) {
  3419       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3420     } else if (dest->is_address()) {
  3421       __ fistp_d(as_Address(dest->as_address_ptr()));
  3422     } else {
  3423       ShouldNotReachHere();
  3426   } else if (dest->is_double_fpu()) {
  3427     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3428     if (src->is_double_stack()) {
  3429       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3430     } else if (src->is_address()) {
  3431       __ fild_d(as_Address(src->as_address_ptr()));
  3432     } else {
  3433       ShouldNotReachHere();
  3435   } else {
  3436     ShouldNotReachHere();
  3441 void LIR_Assembler::membar() {
  3442   // QQQ sparc TSO uses this,
  3443   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3446 void LIR_Assembler::membar_acquire() {
  3447   // No x86 machines currently require load fences
  3448   // __ load_fence();
  3451 void LIR_Assembler::membar_release() {
  3452   // No x86 machines currently require store fences
  3453   // __ store_fence();
  3456 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3457   assert(result_reg->is_register(), "check");
  3458 #ifdef _LP64
  3459   // __ get_thread(result_reg->as_register_lo());
  3460   __ mov(result_reg->as_register(), r15_thread);
  3461 #else
  3462   __ get_thread(result_reg->as_register());
  3463 #endif // _LP64
  3467 void LIR_Assembler::peephole(LIR_List*) {
  3468   // do nothing for now
  3472 #undef __

mercurial