src/share/vm/opto/callnode.hpp

Thu, 31 Jul 2014 19:59:36 +0200

author
roland
date
Thu, 31 Jul 2014 19:59:36 +0200
changeset 7003
69ea58782b1a
parent 6723
0bf37f737702
child 6876
710a3c8b516e
child 7041
411e30e5fbb8
permissions
-rw-r--r--

8054054: 8040121 is broken
Summary: C++ code pattern from 8040121 is incorrect
Reviewed-by: kvn

duke@435 1 /*
coleenp@5614 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_CALLNODE_HPP
stefank@2314 27
stefank@2314 28 #include "opto/connode.hpp"
stefank@2314 29 #include "opto/mulnode.hpp"
stefank@2314 30 #include "opto/multnode.hpp"
stefank@2314 31 #include "opto/opcodes.hpp"
stefank@2314 32 #include "opto/phaseX.hpp"
stefank@2314 33 #include "opto/type.hpp"
stefank@2314 34
duke@435 35 // Portions of code courtesy of Clifford Click
duke@435 36
duke@435 37 // Optimization - Graph Style
duke@435 38
duke@435 39 class Chaitin;
duke@435 40 class NamedCounter;
duke@435 41 class MultiNode;
duke@435 42 class SafePointNode;
duke@435 43 class CallNode;
duke@435 44 class CallJavaNode;
duke@435 45 class CallStaticJavaNode;
duke@435 46 class CallDynamicJavaNode;
duke@435 47 class CallRuntimeNode;
duke@435 48 class CallLeafNode;
duke@435 49 class CallLeafNoFPNode;
duke@435 50 class AllocateNode;
kvn@468 51 class AllocateArrayNode;
kvn@5110 52 class BoxLockNode;
duke@435 53 class LockNode;
duke@435 54 class UnlockNode;
duke@435 55 class JVMState;
duke@435 56 class OopMap;
duke@435 57 class State;
duke@435 58 class StartNode;
duke@435 59 class MachCallNode;
duke@435 60 class FastLockNode;
duke@435 61
duke@435 62 //------------------------------StartNode--------------------------------------
duke@435 63 // The method start node
duke@435 64 class StartNode : public MultiNode {
duke@435 65 virtual uint cmp( const Node &n ) const;
duke@435 66 virtual uint size_of() const; // Size is bigger
duke@435 67 public:
duke@435 68 const TypeTuple *_domain;
duke@435 69 StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
duke@435 70 init_class_id(Class_Start);
duke@435 71 init_req(0,this);
duke@435 72 init_req(1,root);
duke@435 73 }
duke@435 74 virtual int Opcode() const;
duke@435 75 virtual bool pinned() const { return true; };
duke@435 76 virtual const Type *bottom_type() const;
duke@435 77 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
duke@435 78 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 79 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 80 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
duke@435 81 virtual const RegMask &in_RegMask(uint) const;
duke@435 82 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 83 virtual uint ideal_reg() const { return 0; }
duke@435 84 #ifndef PRODUCT
duke@435 85 virtual void dump_spec(outputStream *st) const;
duke@435 86 #endif
duke@435 87 };
duke@435 88
duke@435 89 //------------------------------StartOSRNode-----------------------------------
duke@435 90 // The method start node for on stack replacement code
duke@435 91 class StartOSRNode : public StartNode {
duke@435 92 public:
duke@435 93 StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
duke@435 94 virtual int Opcode() const;
duke@435 95 static const TypeTuple *osr_domain();
duke@435 96 };
duke@435 97
duke@435 98
duke@435 99 //------------------------------ParmNode---------------------------------------
duke@435 100 // Incoming parameters
duke@435 101 class ParmNode : public ProjNode {
duke@435 102 static const char * const names[TypeFunc::Parms+1];
duke@435 103 public:
kvn@468 104 ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
kvn@468 105 init_class_id(Class_Parm);
kvn@468 106 }
duke@435 107 virtual int Opcode() const;
duke@435 108 virtual bool is_CFG() const { return (_con == TypeFunc::Control); }
duke@435 109 virtual uint ideal_reg() const;
duke@435 110 #ifndef PRODUCT
duke@435 111 virtual void dump_spec(outputStream *st) const;
duke@435 112 #endif
duke@435 113 };
duke@435 114
duke@435 115
duke@435 116 //------------------------------ReturnNode-------------------------------------
duke@435 117 // Return from subroutine node
duke@435 118 class ReturnNode : public Node {
duke@435 119 public:
duke@435 120 ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
duke@435 121 virtual int Opcode() const;
duke@435 122 virtual bool is_CFG() const { return true; }
duke@435 123 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
duke@435 124 virtual bool depends_only_on_test() const { return false; }
duke@435 125 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 126 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 127 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 128 virtual uint match_edge(uint idx) const;
duke@435 129 #ifndef PRODUCT
kvn@4478 130 virtual void dump_req(outputStream *st = tty) const;
duke@435 131 #endif
duke@435 132 };
duke@435 133
duke@435 134
duke@435 135 //------------------------------RethrowNode------------------------------------
duke@435 136 // Rethrow of exception at call site. Ends a procedure before rethrowing;
duke@435 137 // ends the current basic block like a ReturnNode. Restores registers and
duke@435 138 // unwinds stack. Rethrow happens in the caller's method.
duke@435 139 class RethrowNode : public Node {
duke@435 140 public:
duke@435 141 RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
duke@435 142 virtual int Opcode() const;
duke@435 143 virtual bool is_CFG() const { return true; }
duke@435 144 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
duke@435 145 virtual bool depends_only_on_test() const { return false; }
duke@435 146 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 147 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 148 virtual uint match_edge(uint idx) const;
duke@435 149 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 150 #ifndef PRODUCT
kvn@4478 151 virtual void dump_req(outputStream *st = tty) const;
duke@435 152 #endif
duke@435 153 };
duke@435 154
duke@435 155
duke@435 156 //------------------------------TailCallNode-----------------------------------
duke@435 157 // Pop stack frame and jump indirect
duke@435 158 class TailCallNode : public ReturnNode {
duke@435 159 public:
duke@435 160 TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
duke@435 161 : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
duke@435 162 init_req(TypeFunc::Parms, target);
duke@435 163 init_req(TypeFunc::Parms+1, moop);
duke@435 164 }
duke@435 165
duke@435 166 virtual int Opcode() const;
duke@435 167 virtual uint match_edge(uint idx) const;
duke@435 168 };
duke@435 169
duke@435 170 //------------------------------TailJumpNode-----------------------------------
duke@435 171 // Pop stack frame and jump indirect
duke@435 172 class TailJumpNode : public ReturnNode {
duke@435 173 public:
duke@435 174 TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
duke@435 175 : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
duke@435 176 init_req(TypeFunc::Parms, target);
duke@435 177 init_req(TypeFunc::Parms+1, ex_oop);
duke@435 178 }
duke@435 179
duke@435 180 virtual int Opcode() const;
duke@435 181 virtual uint match_edge(uint idx) const;
duke@435 182 };
duke@435 183
duke@435 184 //-------------------------------JVMState-------------------------------------
duke@435 185 // A linked list of JVMState nodes captures the whole interpreter state,
duke@435 186 // plus GC roots, for all active calls at some call site in this compilation
duke@435 187 // unit. (If there is no inlining, then the list has exactly one link.)
duke@435 188 // This provides a way to map the optimized program back into the interpreter,
duke@435 189 // or to let the GC mark the stack.
duke@435 190 class JVMState : public ResourceObj {
never@3138 191 friend class VMStructs;
cfang@1335 192 public:
cfang@1335 193 typedef enum {
cfang@1335 194 Reexecute_Undefined = -1, // not defined -- will be translated into false later
cfang@1335 195 Reexecute_False = 0, // false -- do not reexecute
cfang@1335 196 Reexecute_True = 1 // true -- reexecute the bytecode
cfang@1335 197 } ReexecuteState; //Reexecute State
cfang@1335 198
duke@435 199 private:
duke@435 200 JVMState* _caller; // List pointer for forming scope chains
twisti@3969 201 uint _depth; // One more than caller depth, or one.
duke@435 202 uint _locoff; // Offset to locals in input edge mapping
duke@435 203 uint _stkoff; // Offset to stack in input edge mapping
duke@435 204 uint _monoff; // Offset to monitors in input edge mapping
kvn@498 205 uint _scloff; // Offset to fields of scalar objs in input edge mapping
duke@435 206 uint _endoff; // Offset to end of input edge mapping
duke@435 207 uint _sp; // Jave Expression Stack Pointer for this state
duke@435 208 int _bci; // Byte Code Index of this JVM point
cfang@1335 209 ReexecuteState _reexecute; // Whether this bytecode need to be re-executed
duke@435 210 ciMethod* _method; // Method Pointer
duke@435 211 SafePointNode* _map; // Map node associated with this scope
duke@435 212 public:
duke@435 213 friend class Compile;
cfang@1335 214 friend class PreserveReexecuteState;
duke@435 215
duke@435 216 // Because JVMState objects live over the entire lifetime of the
duke@435 217 // Compile object, they are allocated into the comp_arena, which
duke@435 218 // does not get resource marked or reset during the compile process
coleenp@5614 219 void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
duke@435 220 void operator delete( void * ) { } // fast deallocation
duke@435 221
duke@435 222 // Create a new JVMState, ready for abstract interpretation.
duke@435 223 JVMState(ciMethod* method, JVMState* caller);
duke@435 224 JVMState(int stack_size); // root state; has a null method
duke@435 225
duke@435 226 // Access functions for the JVM
twisti@3969 227 // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
twisti@3969 228 // \ locoff \ stkoff \ argoff \ monoff \ scloff \ endoff
duke@435 229 uint locoff() const { return _locoff; }
duke@435 230 uint stkoff() const { return _stkoff; }
duke@435 231 uint argoff() const { return _stkoff + _sp; }
duke@435 232 uint monoff() const { return _monoff; }
kvn@498 233 uint scloff() const { return _scloff; }
duke@435 234 uint endoff() const { return _endoff; }
duke@435 235 uint oopoff() const { return debug_end(); }
duke@435 236
twisti@3969 237 int loc_size() const { return stkoff() - locoff(); }
twisti@3969 238 int stk_size() const { return monoff() - stkoff(); }
twisti@3969 239 int mon_size() const { return scloff() - monoff(); }
twisti@3969 240 int scl_size() const { return endoff() - scloff(); }
duke@435 241
twisti@3969 242 bool is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
twisti@3969 243 bool is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
twisti@3969 244 bool is_mon(uint i) const { return monoff() <= i && i < scloff(); }
twisti@3969 245 bool is_scl(uint i) const { return scloff() <= i && i < endoff(); }
duke@435 246
cfang@1335 247 uint sp() const { return _sp; }
cfang@1335 248 int bci() const { return _bci; }
cfang@1335 249 bool should_reexecute() const { return _reexecute==Reexecute_True; }
cfang@1335 250 bool is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
cfang@1335 251 bool has_method() const { return _method != NULL; }
cfang@1335 252 ciMethod* method() const { assert(has_method(), ""); return _method; }
cfang@1335 253 JVMState* caller() const { return _caller; }
cfang@1335 254 SafePointNode* map() const { return _map; }
cfang@1335 255 uint depth() const { return _depth; }
cfang@1335 256 uint debug_start() const; // returns locoff of root caller
cfang@1335 257 uint debug_end() const; // returns endoff of self
cfang@1335 258 uint debug_size() const {
kvn@498 259 return loc_size() + sp() + mon_size() + scl_size();
kvn@498 260 }
duke@435 261 uint debug_depth() const; // returns sum of debug_size values at all depths
duke@435 262
duke@435 263 // Returns the JVM state at the desired depth (1 == root).
duke@435 264 JVMState* of_depth(int d) const;
duke@435 265
duke@435 266 // Tells if two JVM states have the same call chain (depth, methods, & bcis).
duke@435 267 bool same_calls_as(const JVMState* that) const;
duke@435 268
duke@435 269 // Monitors (monitors are stored as (boxNode, objNode) pairs
duke@435 270 enum { logMonitorEdges = 1 };
duke@435 271 int nof_monitors() const { return mon_size() >> logMonitorEdges; }
duke@435 272 int monitor_depth() const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
duke@435 273 int monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
duke@435 274 int monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
duke@435 275 bool is_monitor_box(uint off) const {
duke@435 276 assert(is_mon(off), "should be called only for monitor edge");
duke@435 277 return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
duke@435 278 }
duke@435 279 bool is_monitor_use(uint off) const { return (is_mon(off)
duke@435 280 && is_monitor_box(off))
duke@435 281 || (caller() && caller()->is_monitor_use(off)); }
duke@435 282
duke@435 283 // Initialization functions for the JVM
duke@435 284 void set_locoff(uint off) { _locoff = off; }
duke@435 285 void set_stkoff(uint off) { _stkoff = off; }
duke@435 286 void set_monoff(uint off) { _monoff = off; }
kvn@498 287 void set_scloff(uint off) { _scloff = off; }
duke@435 288 void set_endoff(uint off) { _endoff = off; }
kvn@498 289 void set_offsets(uint off) {
kvn@498 290 _locoff = _stkoff = _monoff = _scloff = _endoff = off;
kvn@498 291 }
duke@435 292 void set_map(SafePointNode *map) { _map = map; }
duke@435 293 void set_sp(uint sp) { _sp = sp; }
cfang@1335 294 // _reexecute is initialized to "undefined" for a new bci
cfang@1335 295 void set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
cfang@1335 296 void set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
duke@435 297
duke@435 298 // Miscellaneous utility functions
duke@435 299 JVMState* clone_deep(Compile* C) const; // recursively clones caller chain
duke@435 300 JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
kvn@5110 301 void set_map_deep(SafePointNode *map);// reset map for all callers
goetz@6499 302 void adapt_position(int delta); // Adapt offsets in in-array after adding an edge.
roland@6723 303 int interpreter_frame_size() const;
duke@435 304
duke@435 305 #ifndef PRODUCT
duke@435 306 void format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
duke@435 307 void dump_spec(outputStream *st) const;
duke@435 308 void dump_on(outputStream* st) const;
duke@435 309 void dump() const {
duke@435 310 dump_on(tty);
duke@435 311 }
duke@435 312 #endif
duke@435 313 };
duke@435 314
duke@435 315 //------------------------------SafePointNode----------------------------------
duke@435 316 // A SafePointNode is a subclass of a MultiNode for convenience (and
duke@435 317 // potential code sharing) only - conceptually it is independent of
duke@435 318 // the Node semantics.
duke@435 319 class SafePointNode : public MultiNode {
duke@435 320 virtual uint cmp( const Node &n ) const;
duke@435 321 virtual uint size_of() const; // Size is bigger
duke@435 322
duke@435 323 public:
duke@435 324 SafePointNode(uint edges, JVMState* jvms,
duke@435 325 // A plain safepoint advertises no memory effects (NULL):
duke@435 326 const TypePtr* adr_type = NULL)
duke@435 327 : MultiNode( edges ),
duke@435 328 _jvms(jvms),
duke@435 329 _oop_map(NULL),
duke@435 330 _adr_type(adr_type)
duke@435 331 {
duke@435 332 init_class_id(Class_SafePoint);
duke@435 333 }
duke@435 334
duke@435 335 OopMap* _oop_map; // Array of OopMap info (8-bit char) for GC
duke@435 336 JVMState* const _jvms; // Pointer to list of JVM State objects
duke@435 337 const TypePtr* _adr_type; // What type of memory does this node produce?
duke@435 338
duke@435 339 // Many calls take *all* of memory as input,
duke@435 340 // but some produce a limited subset of that memory as output.
duke@435 341 // The adr_type reports the call's behavior as a store, not a load.
duke@435 342
duke@435 343 virtual JVMState* jvms() const { return _jvms; }
duke@435 344 void set_jvms(JVMState* s) {
duke@435 345 *(JVMState**)&_jvms = s; // override const attribute in the accessor
duke@435 346 }
duke@435 347 OopMap *oop_map() const { return _oop_map; }
duke@435 348 void set_oop_map(OopMap *om) { _oop_map = om; }
duke@435 349
twisti@4313 350 private:
twisti@4313 351 void verify_input(JVMState* jvms, uint idx) const {
twisti@4313 352 assert(verify_jvms(jvms), "jvms must match");
twisti@4313 353 Node* n = in(idx);
twisti@4313 354 assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
twisti@4313 355 in(idx + 1)->is_top(), "2nd half of long/double");
twisti@4313 356 }
twisti@4313 357
twisti@4313 358 public:
duke@435 359 // Functionality from old debug nodes which has changed
duke@435 360 Node *local(JVMState* jvms, uint idx) const {
twisti@4313 361 verify_input(jvms, jvms->locoff() + idx);
duke@435 362 return in(jvms->locoff() + idx);
duke@435 363 }
duke@435 364 Node *stack(JVMState* jvms, uint idx) const {
twisti@4313 365 verify_input(jvms, jvms->stkoff() + idx);
duke@435 366 return in(jvms->stkoff() + idx);
duke@435 367 }
duke@435 368 Node *argument(JVMState* jvms, uint idx) const {
twisti@4313 369 verify_input(jvms, jvms->argoff() + idx);
duke@435 370 return in(jvms->argoff() + idx);
duke@435 371 }
duke@435 372 Node *monitor_box(JVMState* jvms, uint idx) const {
duke@435 373 assert(verify_jvms(jvms), "jvms must match");
duke@435 374 return in(jvms->monitor_box_offset(idx));
duke@435 375 }
duke@435 376 Node *monitor_obj(JVMState* jvms, uint idx) const {
duke@435 377 assert(verify_jvms(jvms), "jvms must match");
duke@435 378 return in(jvms->monitor_obj_offset(idx));
duke@435 379 }
duke@435 380
duke@435 381 void set_local(JVMState* jvms, uint idx, Node *c);
duke@435 382
duke@435 383 void set_stack(JVMState* jvms, uint idx, Node *c) {
duke@435 384 assert(verify_jvms(jvms), "jvms must match");
duke@435 385 set_req(jvms->stkoff() + idx, c);
duke@435 386 }
duke@435 387 void set_argument(JVMState* jvms, uint idx, Node *c) {
duke@435 388 assert(verify_jvms(jvms), "jvms must match");
duke@435 389 set_req(jvms->argoff() + idx, c);
duke@435 390 }
duke@435 391 void ensure_stack(JVMState* jvms, uint stk_size) {
duke@435 392 assert(verify_jvms(jvms), "jvms must match");
duke@435 393 int grow_by = (int)stk_size - (int)jvms->stk_size();
duke@435 394 if (grow_by > 0) grow_stack(jvms, grow_by);
duke@435 395 }
duke@435 396 void grow_stack(JVMState* jvms, uint grow_by);
duke@435 397 // Handle monitor stack
duke@435 398 void push_monitor( const FastLockNode *lock );
duke@435 399 void pop_monitor ();
duke@435 400 Node *peek_monitor_box() const;
duke@435 401 Node *peek_monitor_obj() const;
duke@435 402
duke@435 403 // Access functions for the JVM
duke@435 404 Node *control () const { return in(TypeFunc::Control ); }
duke@435 405 Node *i_o () const { return in(TypeFunc::I_O ); }
duke@435 406 Node *memory () const { return in(TypeFunc::Memory ); }
duke@435 407 Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
duke@435 408 Node *frameptr () const { return in(TypeFunc::FramePtr ); }
duke@435 409
duke@435 410 void set_control ( Node *c ) { set_req(TypeFunc::Control,c); }
duke@435 411 void set_i_o ( Node *c ) { set_req(TypeFunc::I_O ,c); }
duke@435 412 void set_memory ( Node *c ) { set_req(TypeFunc::Memory ,c); }
duke@435 413
duke@435 414 MergeMemNode* merged_memory() const {
duke@435 415 return in(TypeFunc::Memory)->as_MergeMem();
duke@435 416 }
duke@435 417
duke@435 418 // The parser marks useless maps as dead when it's done with them:
duke@435 419 bool is_killed() { return in(TypeFunc::Control) == NULL; }
duke@435 420
duke@435 421 // Exception states bubbling out of subgraphs such as inlined calls
duke@435 422 // are recorded here. (There might be more than one, hence the "next".)
duke@435 423 // This feature is used only for safepoints which serve as "maps"
duke@435 424 // for JVM states during parsing, intrinsic expansion, etc.
duke@435 425 SafePointNode* next_exception() const;
duke@435 426 void set_next_exception(SafePointNode* n);
duke@435 427 bool has_exceptions() const { return next_exception() != NULL; }
duke@435 428
duke@435 429 // Standard Node stuff
duke@435 430 virtual int Opcode() const;
duke@435 431 virtual bool pinned() const { return true; }
duke@435 432 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 433 virtual const Type *bottom_type() const { return Type::CONTROL; }
duke@435 434 virtual const TypePtr *adr_type() const { return _adr_type; }
duke@435 435 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 436 virtual Node *Identity( PhaseTransform *phase );
duke@435 437 virtual uint ideal_reg() const { return 0; }
duke@435 438 virtual const RegMask &in_RegMask(uint) const;
duke@435 439 virtual const RegMask &out_RegMask() const;
duke@435 440 virtual uint match_edge(uint idx) const;
duke@435 441
duke@435 442 static bool needs_polling_address_input();
duke@435 443
duke@435 444 #ifndef PRODUCT
kvn@5110 445 virtual void dump_spec(outputStream *st) const;
duke@435 446 #endif
duke@435 447 };
duke@435 448
kvn@498 449 //------------------------------SafePointScalarObjectNode----------------------
kvn@498 450 // A SafePointScalarObjectNode represents the state of a scalarized object
kvn@498 451 // at a safepoint.
kvn@498 452
kvn@498 453 class SafePointScalarObjectNode: public TypeNode {
kvn@5626 454 uint _first_index; // First input edge relative index of a SafePoint node where
kvn@498 455 // states of the scalarized object fields are collected.
kvn@5626 456 // It is relative to the last (youngest) jvms->_scloff.
kvn@498 457 uint _n_fields; // Number of non-static fields of the scalarized object.
kvn@509 458 DEBUG_ONLY(AllocateNode* _alloc;)
kvn@3311 459
kvn@3311 460 virtual uint hash() const ; // { return NO_HASH; }
kvn@3311 461 virtual uint cmp( const Node &n ) const;
kvn@3311 462
kvn@5626 463 uint first_index() const { return _first_index; }
kvn@5626 464
kvn@498 465 public:
kvn@498 466 SafePointScalarObjectNode(const TypeOopPtr* tp,
kvn@498 467 #ifdef ASSERT
kvn@498 468 AllocateNode* alloc,
kvn@498 469 #endif
kvn@498 470 uint first_index, uint n_fields);
kvn@498 471 virtual int Opcode() const;
kvn@498 472 virtual uint ideal_reg() const;
kvn@498 473 virtual const RegMask &in_RegMask(uint) const;
kvn@498 474 virtual const RegMask &out_RegMask() const;
kvn@498 475 virtual uint match_edge(uint idx) const;
kvn@498 476
kvn@5626 477 uint first_index(JVMState* jvms) const {
kvn@5626 478 assert(jvms != NULL, "missed JVMS");
kvn@5626 479 return jvms->scloff() + _first_index;
kvn@5626 480 }
kvn@498 481 uint n_fields() const { return _n_fields; }
kvn@498 482
kvn@3311 483 #ifdef ASSERT
kvn@3311 484 AllocateNode* alloc() const { return _alloc; }
kvn@3311 485 #endif
kvn@1036 486
kvn@498 487 virtual uint size_of() const { return sizeof(*this); }
kvn@498 488
kvn@498 489 // Assumes that "this" is an argument to a safepoint node "s", and that
kvn@498 490 // "new_call" is being created to correspond to "s". But the difference
kvn@498 491 // between the start index of the jvmstates of "new_call" and "s" is
kvn@498 492 // "jvms_adj". Produce and return a SafePointScalarObjectNode that
kvn@498 493 // corresponds appropriately to "this" in "new_call". Assumes that
kvn@498 494 // "sosn_map" is a map, specific to the translation of "s" to "new_call",
kvn@498 495 // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
kvn@5626 496 SafePointScalarObjectNode* clone(Dict* sosn_map) const;
kvn@498 497
kvn@498 498 #ifndef PRODUCT
kvn@498 499 virtual void dump_spec(outputStream *st) const;
kvn@498 500 #endif
kvn@498 501 };
kvn@498 502
never@1515 503
never@1515 504 // Simple container for the outgoing projections of a call. Useful
never@1515 505 // for serious surgery on calls.
never@1515 506 class CallProjections : public StackObj {
never@1515 507 public:
never@1515 508 Node* fallthrough_proj;
never@1515 509 Node* fallthrough_catchproj;
never@1515 510 Node* fallthrough_memproj;
never@1515 511 Node* fallthrough_ioproj;
never@1515 512 Node* catchall_catchproj;
never@1515 513 Node* catchall_memproj;
never@1515 514 Node* catchall_ioproj;
never@1515 515 Node* resproj;
never@1515 516 Node* exobj;
never@1515 517 };
never@1515 518
roland@4409 519 class CallGenerator;
never@1515 520
duke@435 521 //------------------------------CallNode---------------------------------------
duke@435 522 // Call nodes now subsume the function of debug nodes at callsites, so they
duke@435 523 // contain the functionality of a full scope chain of debug nodes.
duke@435 524 class CallNode : public SafePointNode {
never@3138 525 friend class VMStructs;
duke@435 526 public:
duke@435 527 const TypeFunc *_tf; // Function type
duke@435 528 address _entry_point; // Address of method being called
duke@435 529 float _cnt; // Estimate of number of times called
roland@4409 530 CallGenerator* _generator; // corresponding CallGenerator for some late inline calls
duke@435 531
duke@435 532 CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
duke@435 533 : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
duke@435 534 _tf(tf),
duke@435 535 _entry_point(addr),
roland@4409 536 _cnt(COUNT_UNKNOWN),
roland@4409 537 _generator(NULL)
duke@435 538 {
duke@435 539 init_class_id(Class_Call);
duke@435 540 }
duke@435 541
roland@4409 542 const TypeFunc* tf() const { return _tf; }
roland@4409 543 const address entry_point() const { return _entry_point; }
roland@4409 544 const float cnt() const { return _cnt; }
roland@4409 545 CallGenerator* generator() const { return _generator; }
duke@435 546
roland@4409 547 void set_tf(const TypeFunc* tf) { _tf = tf; }
roland@4409 548 void set_entry_point(address p) { _entry_point = p; }
roland@4409 549 void set_cnt(float c) { _cnt = c; }
roland@4409 550 void set_generator(CallGenerator* cg) { _generator = cg; }
duke@435 551
duke@435 552 virtual const Type *bottom_type() const;
duke@435 553 virtual const Type *Value( PhaseTransform *phase ) const;
roland@4409 554 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 555 virtual Node *Identity( PhaseTransform *phase ) { return this; }
duke@435 556 virtual uint cmp( const Node &n ) const;
duke@435 557 virtual uint size_of() const = 0;
duke@435 558 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
duke@435 559 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 560 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 561 // Are we guaranteed that this node is a safepoint? Not true for leaf calls and
duke@435 562 // for some macro nodes whose expansion does not have a safepoint on the fast path.
duke@435 563 virtual bool guaranteed_safepoint() { return true; }
goetz@6499 564 // For macro nodes, the JVMState gets modified during expansion. If calls
goetz@6499 565 // use MachConstantBase, it gets modified during matching. So when cloning
goetz@6499 566 // the node the JVMState must be cloned. Default is not to clone.
goetz@6499 567 virtual void clone_jvms(Compile* C) {
goetz@6499 568 if (C->needs_clone_jvms() && jvms() != NULL) {
goetz@6499 569 set_jvms(jvms()->clone_deep(C));
goetz@6499 570 jvms()->set_map_deep(this);
goetz@6499 571 }
goetz@6499 572 }
duke@435 573
kvn@500 574 // Returns true if the call may modify n
kvn@5110 575 virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
kvn@500 576 // Does this node have a use of n other than in debug information?
kvn@603 577 bool has_non_debug_use(Node *n);
kvn@500 578 // Returns the unique CheckCastPP of a call
kvn@500 579 // or result projection is there are several CheckCastPP
kvn@500 580 // or returns NULL if there is no one.
kvn@500 581 Node *result_cast();
kvn@3651 582 // Does this node returns pointer?
kvn@3651 583 bool returns_pointer() const {
kvn@3651 584 const TypeTuple *r = tf()->range();
kvn@3651 585 return (r->cnt() > TypeFunc::Parms &&
kvn@3651 586 r->field_at(TypeFunc::Parms)->isa_ptr());
kvn@3651 587 }
kvn@500 588
never@1515 589 // Collect all the interesting edges from a call for use in
never@1515 590 // replacing the call by something else. Used by macro expansion
never@1515 591 // and the late inlining support.
never@1515 592 void extract_projections(CallProjections* projs, bool separate_io_proj);
never@1515 593
duke@435 594 virtual uint match_edge(uint idx) const;
duke@435 595
duke@435 596 #ifndef PRODUCT
kvn@4478 597 virtual void dump_req(outputStream *st = tty) const;
duke@435 598 virtual void dump_spec(outputStream *st) const;
duke@435 599 #endif
duke@435 600 };
duke@435 601
never@1515 602
duke@435 603 //------------------------------CallJavaNode-----------------------------------
duke@435 604 // Make a static or dynamic subroutine call node using Java calling
duke@435 605 // convention. (The "Java" calling convention is the compiler's calling
duke@435 606 // convention, as opposed to the interpreter's or that of native C.)
duke@435 607 class CallJavaNode : public CallNode {
never@3138 608 friend class VMStructs;
duke@435 609 protected:
duke@435 610 virtual uint cmp( const Node &n ) const;
duke@435 611 virtual uint size_of() const; // Size is bigger
duke@435 612
duke@435 613 bool _optimized_virtual;
twisti@1572 614 bool _method_handle_invoke;
duke@435 615 ciMethod* _method; // Method being direct called
duke@435 616 public:
duke@435 617 const int _bci; // Byte Code Index of call byte code
duke@435 618 CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
duke@435 619 : CallNode(tf, addr, TypePtr::BOTTOM),
twisti@1572 620 _method(method), _bci(bci),
twisti@1572 621 _optimized_virtual(false),
twisti@1572 622 _method_handle_invoke(false)
duke@435 623 {
duke@435 624 init_class_id(Class_CallJava);
duke@435 625 }
duke@435 626
duke@435 627 virtual int Opcode() const;
duke@435 628 ciMethod* method() const { return _method; }
duke@435 629 void set_method(ciMethod *m) { _method = m; }
duke@435 630 void set_optimized_virtual(bool f) { _optimized_virtual = f; }
duke@435 631 bool is_optimized_virtual() const { return _optimized_virtual; }
twisti@1572 632 void set_method_handle_invoke(bool f) { _method_handle_invoke = f; }
twisti@1572 633 bool is_method_handle_invoke() const { return _method_handle_invoke; }
duke@435 634
duke@435 635 #ifndef PRODUCT
duke@435 636 virtual void dump_spec(outputStream *st) const;
duke@435 637 #endif
duke@435 638 };
duke@435 639
duke@435 640 //------------------------------CallStaticJavaNode-----------------------------
duke@435 641 // Make a direct subroutine call using Java calling convention (for static
duke@435 642 // calls and optimized virtual calls, plus calls to wrappers for run-time
duke@435 643 // routines); generates static stub.
duke@435 644 class CallStaticJavaNode : public CallJavaNode {
duke@435 645 virtual uint cmp( const Node &n ) const;
duke@435 646 virtual uint size_of() const; // Size is bigger
duke@435 647 public:
kvn@5110 648 CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
duke@435 649 : CallJavaNode(tf, addr, method, bci), _name(NULL) {
duke@435 650 init_class_id(Class_CallStaticJava);
kvn@5110 651 if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
kvn@5110 652 init_flags(Flag_is_macro);
kvn@5110 653 C->add_macro_node(this);
kvn@5110 654 }
kvn@5110 655 _is_scalar_replaceable = false;
kvn@5110 656 _is_non_escaping = false;
duke@435 657 }
duke@435 658 CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
duke@435 659 const TypePtr* adr_type)
duke@435 660 : CallJavaNode(tf, addr, NULL, bci), _name(name) {
duke@435 661 init_class_id(Class_CallStaticJava);
duke@435 662 // This node calls a runtime stub, which often has narrow memory effects.
duke@435 663 _adr_type = adr_type;
kvn@5110 664 _is_scalar_replaceable = false;
kvn@5110 665 _is_non_escaping = false;
duke@435 666 }
kvn@5110 667 const char *_name; // Runtime wrapper name
kvn@5110 668
kvn@5110 669 // Result of Escape Analysis
kvn@5110 670 bool _is_scalar_replaceable;
kvn@5110 671 bool _is_non_escaping;
duke@435 672
duke@435 673 // If this is an uncommon trap, return the request code, else zero.
duke@435 674 int uncommon_trap_request() const;
duke@435 675 static int extract_uncommon_trap_request(const Node* call);
duke@435 676
kvn@5110 677 bool is_boxing_method() const {
kvn@5110 678 return is_macro() && (method() != NULL) && method()->is_boxing_method();
kvn@5110 679 }
kvn@5110 680 // Later inlining modifies the JVMState, so we need to clone it
kvn@5110 681 // when the call node is cloned (because it is macro node).
kvn@5110 682 virtual void clone_jvms(Compile* C) {
kvn@5110 683 if ((jvms() != NULL) && is_boxing_method()) {
kvn@5110 684 set_jvms(jvms()->clone_deep(C));
kvn@5110 685 jvms()->set_map_deep(this);
kvn@5110 686 }
kvn@5110 687 }
kvn@5110 688
duke@435 689 virtual int Opcode() const;
duke@435 690 #ifndef PRODUCT
duke@435 691 virtual void dump_spec(outputStream *st) const;
duke@435 692 #endif
duke@435 693 };
duke@435 694
duke@435 695 //------------------------------CallDynamicJavaNode----------------------------
duke@435 696 // Make a dispatched call using Java calling convention.
duke@435 697 class CallDynamicJavaNode : public CallJavaNode {
duke@435 698 virtual uint cmp( const Node &n ) const;
duke@435 699 virtual uint size_of() const; // Size is bigger
duke@435 700 public:
duke@435 701 CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
duke@435 702 init_class_id(Class_CallDynamicJava);
duke@435 703 }
duke@435 704
duke@435 705 int _vtable_index;
duke@435 706 virtual int Opcode() const;
duke@435 707 #ifndef PRODUCT
duke@435 708 virtual void dump_spec(outputStream *st) const;
duke@435 709 #endif
duke@435 710 };
duke@435 711
duke@435 712 //------------------------------CallRuntimeNode--------------------------------
duke@435 713 // Make a direct subroutine call node into compiled C++ code.
duke@435 714 class CallRuntimeNode : public CallNode {
duke@435 715 virtual uint cmp( const Node &n ) const;
duke@435 716 virtual uint size_of() const; // Size is bigger
duke@435 717 public:
duke@435 718 CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
duke@435 719 const TypePtr* adr_type)
duke@435 720 : CallNode(tf, addr, adr_type),
duke@435 721 _name(name)
duke@435 722 {
duke@435 723 init_class_id(Class_CallRuntime);
duke@435 724 }
duke@435 725
duke@435 726 const char *_name; // Printable name, if _method is NULL
duke@435 727 virtual int Opcode() const;
duke@435 728 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
duke@435 729
duke@435 730 #ifndef PRODUCT
duke@435 731 virtual void dump_spec(outputStream *st) const;
duke@435 732 #endif
duke@435 733 };
duke@435 734
duke@435 735 //------------------------------CallLeafNode-----------------------------------
duke@435 736 // Make a direct subroutine call node into compiled C++ code, without
duke@435 737 // safepoints
duke@435 738 class CallLeafNode : public CallRuntimeNode {
duke@435 739 public:
duke@435 740 CallLeafNode(const TypeFunc* tf, address addr, const char* name,
duke@435 741 const TypePtr* adr_type)
duke@435 742 : CallRuntimeNode(tf, addr, name, adr_type)
duke@435 743 {
duke@435 744 init_class_id(Class_CallLeaf);
duke@435 745 }
duke@435 746 virtual int Opcode() const;
duke@435 747 virtual bool guaranteed_safepoint() { return false; }
duke@435 748 #ifndef PRODUCT
duke@435 749 virtual void dump_spec(outputStream *st) const;
duke@435 750 #endif
duke@435 751 };
duke@435 752
duke@435 753 //------------------------------CallLeafNoFPNode-------------------------------
duke@435 754 // CallLeafNode, not using floating point or using it in the same manner as
duke@435 755 // the generated code
duke@435 756 class CallLeafNoFPNode : public CallLeafNode {
duke@435 757 public:
duke@435 758 CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
duke@435 759 const TypePtr* adr_type)
duke@435 760 : CallLeafNode(tf, addr, name, adr_type)
duke@435 761 {
duke@435 762 }
duke@435 763 virtual int Opcode() const;
duke@435 764 };
duke@435 765
duke@435 766
duke@435 767 //------------------------------Allocate---------------------------------------
duke@435 768 // High-level memory allocation
duke@435 769 //
duke@435 770 // AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
duke@435 771 // get expanded into a code sequence containing a call. Unlike other CallNodes,
duke@435 772 // they have 2 memory projections and 2 i_o projections (which are distinguished by
duke@435 773 // the _is_io_use flag in the projection.) This is needed when expanding the node in
duke@435 774 // order to differentiate the uses of the projection on the normal control path from
duke@435 775 // those on the exception return path.
duke@435 776 //
duke@435 777 class AllocateNode : public CallNode {
duke@435 778 public:
duke@435 779 enum {
duke@435 780 // Output:
duke@435 781 RawAddress = TypeFunc::Parms, // the newly-allocated raw address
duke@435 782 // Inputs:
duke@435 783 AllocSize = TypeFunc::Parms, // size (in bytes) of the new object
duke@435 784 KlassNode, // type (maybe dynamic) of the obj.
duke@435 785 InitialTest, // slow-path test (may be constant)
duke@435 786 ALength, // array length (or TOP if none)
duke@435 787 ParmLimit
duke@435 788 };
duke@435 789
kvn@5110 790 static const TypeFunc* alloc_type(const Type* t) {
duke@435 791 const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
duke@435 792 fields[AllocSize] = TypeInt::POS;
duke@435 793 fields[KlassNode] = TypeInstPtr::NOTNULL;
duke@435 794 fields[InitialTest] = TypeInt::BOOL;
kvn@5110 795 fields[ALength] = t; // length (can be a bad length)
duke@435 796
duke@435 797 const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
duke@435 798
duke@435 799 // create result type (range)
duke@435 800 fields = TypeTuple::fields(1);
duke@435 801 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 802
duke@435 803 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 804
duke@435 805 return TypeFunc::make(domain, range);
duke@435 806 }
duke@435 807
kvn@5110 808 // Result of Escape Analysis
kvn@5110 809 bool _is_scalar_replaceable;
kvn@5110 810 bool _is_non_escaping;
kvn@474 811
duke@435 812 virtual uint size_of() const; // Size is bigger
duke@435 813 AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
duke@435 814 Node *size, Node *klass_node, Node *initial_test);
duke@435 815 // Expansion modifies the JVMState, so we need to clone it
kvn@5110 816 virtual void clone_jvms(Compile* C) {
kvn@5110 817 if (jvms() != NULL) {
kvn@5110 818 set_jvms(jvms()->clone_deep(C));
kvn@5110 819 jvms()->set_map_deep(this);
kvn@5110 820 }
duke@435 821 }
duke@435 822 virtual int Opcode() const;
duke@435 823 virtual uint ideal_reg() const { return Op_RegP; }
duke@435 824 virtual bool guaranteed_safepoint() { return false; }
duke@435 825
kvn@500 826 // allocations do not modify their arguments
kvn@5110 827 virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
kvn@500 828
duke@435 829 // Pattern-match a possible usage of AllocateNode.
duke@435 830 // Return null if no allocation is recognized.
duke@435 831 // The operand is the pointer produced by the (possible) allocation.
duke@435 832 // It must be a projection of the Allocate or its subsequent CastPP.
duke@435 833 // (Note: This function is defined in file graphKit.cpp, near
duke@435 834 // GraphKit::new_instance/new_array, whose output it recognizes.)
duke@435 835 // The 'ptr' may not have an offset unless the 'offset' argument is given.
duke@435 836 static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
duke@435 837
duke@435 838 // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
duke@435 839 // an offset, which is reported back to the caller.
duke@435 840 // (Note: AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
duke@435 841 static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
duke@435 842 intptr_t& offset);
duke@435 843
duke@435 844 // Dig the klass operand out of a (possible) allocation site.
duke@435 845 static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
duke@435 846 AllocateNode* allo = Ideal_allocation(ptr, phase);
duke@435 847 return (allo == NULL) ? NULL : allo->in(KlassNode);
duke@435 848 }
duke@435 849
duke@435 850 // Conservatively small estimate of offset of first non-header byte.
duke@435 851 int minimum_header_size() {
coleenp@548 852 return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
coleenp@548 853 instanceOopDesc::base_offset_in_bytes();
duke@435 854 }
duke@435 855
duke@435 856 // Return the corresponding initialization barrier (or null if none).
duke@435 857 // Walks out edges to find it...
duke@435 858 // (Note: Both InitializeNode::allocation and AllocateNode::initialization
duke@435 859 // are defined in graphKit.cpp, which sets up the bidirectional relation.)
duke@435 860 InitializeNode* initialization();
duke@435 861
duke@435 862 // Convenience for initialization->maybe_set_complete(phase)
duke@435 863 bool maybe_set_complete(PhaseGVN* phase);
duke@435 864 };
duke@435 865
duke@435 866 //------------------------------AllocateArray---------------------------------
duke@435 867 //
duke@435 868 // High-level array allocation
duke@435 869 //
duke@435 870 class AllocateArrayNode : public AllocateNode {
duke@435 871 public:
duke@435 872 AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
duke@435 873 Node* size, Node* klass_node, Node* initial_test,
duke@435 874 Node* count_val
duke@435 875 )
duke@435 876 : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
duke@435 877 initial_test)
duke@435 878 {
duke@435 879 init_class_id(Class_AllocateArray);
duke@435 880 set_req(AllocateNode::ALength, count_val);
duke@435 881 }
duke@435 882 virtual int Opcode() const;
kvn@1139 883 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 884
rasbold@801 885 // Dig the length operand out of a array allocation site.
rasbold@801 886 Node* Ideal_length() {
rasbold@801 887 return in(AllocateNode::ALength);
rasbold@801 888 }
rasbold@801 889
rasbold@801 890 // Dig the length operand out of a array allocation site and narrow the
rasbold@801 891 // type with a CastII, if necesssary
rasbold@801 892 Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
rasbold@801 893
duke@435 894 // Pattern-match a possible usage of AllocateArrayNode.
duke@435 895 // Return null if no allocation is recognized.
duke@435 896 static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
duke@435 897 AllocateNode* allo = Ideal_allocation(ptr, phase);
duke@435 898 return (allo == NULL || !allo->is_AllocateArray())
duke@435 899 ? NULL : allo->as_AllocateArray();
duke@435 900 }
duke@435 901 };
duke@435 902
duke@435 903 //------------------------------AbstractLockNode-----------------------------------
duke@435 904 class AbstractLockNode: public CallNode {
duke@435 905 private:
kvn@3406 906 enum {
kvn@3406 907 Regular = 0, // Normal lock
kvn@3406 908 NonEscObj, // Lock is used for non escaping object
kvn@3406 909 Coarsened, // Lock was coarsened
kvn@3406 910 Nested // Nested lock
kvn@3406 911 } _kind;
duke@435 912 #ifndef PRODUCT
duke@435 913 NamedCounter* _counter;
duke@435 914 #endif
duke@435 915
duke@435 916 protected:
duke@435 917 // helper functions for lock elimination
duke@435 918 //
duke@435 919
duke@435 920 bool find_matching_unlock(const Node* ctrl, LockNode* lock,
duke@435 921 GrowableArray<AbstractLockNode*> &lock_ops);
duke@435 922 bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
duke@435 923 GrowableArray<AbstractLockNode*> &lock_ops);
duke@435 924 bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
duke@435 925 GrowableArray<AbstractLockNode*> &lock_ops);
duke@435 926 LockNode *find_matching_lock(UnlockNode* unlock);
duke@435 927
kvn@3406 928 // Update the counter to indicate that this lock was eliminated.
kvn@3406 929 void set_eliminated_lock_counter() PRODUCT_RETURN;
duke@435 930
duke@435 931 public:
duke@435 932 AbstractLockNode(const TypeFunc *tf)
duke@435 933 : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
kvn@3406 934 _kind(Regular)
duke@435 935 {
duke@435 936 #ifndef PRODUCT
duke@435 937 _counter = NULL;
duke@435 938 #endif
duke@435 939 }
duke@435 940 virtual int Opcode() const = 0;
duke@435 941 Node * obj_node() const {return in(TypeFunc::Parms + 0); }
duke@435 942 Node * box_node() const {return in(TypeFunc::Parms + 1); }
duke@435 943 Node * fastlock_node() const {return in(TypeFunc::Parms + 2); }
kvn@3406 944 void set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
kvn@3406 945
duke@435 946 const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
duke@435 947
duke@435 948 virtual uint size_of() const { return sizeof(*this); }
duke@435 949
kvn@3406 950 bool is_eliminated() const { return (_kind != Regular); }
kvn@3406 951 bool is_non_esc_obj() const { return (_kind == NonEscObj); }
kvn@3406 952 bool is_coarsened() const { return (_kind == Coarsened); }
kvn@3406 953 bool is_nested() const { return (_kind == Nested); }
duke@435 954
kvn@3406 955 void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
kvn@3406 956 void set_coarsened() { _kind = Coarsened; set_eliminated_lock_counter(); }
kvn@3406 957 void set_nested() { _kind = Nested; set_eliminated_lock_counter(); }
kvn@895 958
kvn@500 959 // locking does not modify its arguments
kvn@5110 960 virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
kvn@500 961
duke@435 962 #ifndef PRODUCT
duke@435 963 void create_lock_counter(JVMState* s);
duke@435 964 NamedCounter* counter() const { return _counter; }
duke@435 965 #endif
duke@435 966 };
duke@435 967
duke@435 968 //------------------------------Lock---------------------------------------
duke@435 969 // High-level lock operation
duke@435 970 //
duke@435 971 // This is a subclass of CallNode because it is a macro node which gets expanded
duke@435 972 // into a code sequence containing a call. This node takes 3 "parameters":
duke@435 973 // 0 - object to lock
duke@435 974 // 1 - a BoxLockNode
duke@435 975 // 2 - a FastLockNode
duke@435 976 //
duke@435 977 class LockNode : public AbstractLockNode {
duke@435 978 public:
duke@435 979
duke@435 980 static const TypeFunc *lock_type() {
duke@435 981 // create input type (domain)
duke@435 982 const Type **fields = TypeTuple::fields(3);
duke@435 983 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 984 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 985 fields[TypeFunc::Parms+2] = TypeInt::BOOL; // FastLock
duke@435 986 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
duke@435 987
duke@435 988 // create result type (range)
duke@435 989 fields = TypeTuple::fields(0);
duke@435 990
duke@435 991 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 992
duke@435 993 return TypeFunc::make(domain,range);
duke@435 994 }
duke@435 995
duke@435 996 virtual int Opcode() const;
duke@435 997 virtual uint size_of() const; // Size is bigger
duke@435 998 LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
duke@435 999 init_class_id(Class_Lock);
duke@435 1000 init_flags(Flag_is_macro);
duke@435 1001 C->add_macro_node(this);
duke@435 1002 }
duke@435 1003 virtual bool guaranteed_safepoint() { return false; }
duke@435 1004
duke@435 1005 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 1006 // Expansion modifies the JVMState, so we need to clone it
kvn@5110 1007 virtual void clone_jvms(Compile* C) {
kvn@5110 1008 if (jvms() != NULL) {
kvn@5110 1009 set_jvms(jvms()->clone_deep(C));
kvn@5110 1010 jvms()->set_map_deep(this);
kvn@5110 1011 }
duke@435 1012 }
kvn@3406 1013
kvn@3406 1014 bool is_nested_lock_region(); // Is this Lock nested?
duke@435 1015 };
duke@435 1016
duke@435 1017 //------------------------------Unlock---------------------------------------
duke@435 1018 // High-level unlock operation
duke@435 1019 class UnlockNode : public AbstractLockNode {
duke@435 1020 public:
duke@435 1021 virtual int Opcode() const;
duke@435 1022 virtual uint size_of() const; // Size is bigger
duke@435 1023 UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
duke@435 1024 init_class_id(Class_Unlock);
duke@435 1025 init_flags(Flag_is_macro);
duke@435 1026 C->add_macro_node(this);
duke@435 1027 }
duke@435 1028 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 1029 // unlock is never a safepoint
duke@435 1030 virtual bool guaranteed_safepoint() { return false; }
duke@435 1031 };
stefank@2314 1032
stefank@2314 1033 #endif // SHARE_VM_OPTO_CALLNODE_HPP

mercurial