src/share/vm/utilities/globalDefinitions.hpp

Tue, 25 Mar 2014 17:07:36 -0700

author
kvn
date
Tue, 25 Mar 2014 17:07:36 -0700
changeset 6518
62c54fcc0a35
parent 6502
3514ee402842
parent 6429
606acabe7b5c
child 6678
7384f6a12fc1
permissions
-rw-r--r--

Merge

duke@435 1 /*
hseigel@4465 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@2314 26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@2314 27
dcubed@3202 28 #ifndef __STDC_FORMAT_MACROS
never@3156 29 #define __STDC_FORMAT_MACROS
dcubed@3202 30 #endif
never@3156 31
stefank@2314 32 #ifdef TARGET_COMPILER_gcc
stefank@2314 33 # include "utilities/globalDefinitions_gcc.hpp"
stefank@2314 34 #endif
stefank@2314 35 #ifdef TARGET_COMPILER_visCPP
stefank@2314 36 # include "utilities/globalDefinitions_visCPP.hpp"
stefank@2314 37 #endif
stefank@2314 38 #ifdef TARGET_COMPILER_sparcWorks
stefank@2314 39 # include "utilities/globalDefinitions_sparcWorks.hpp"
stefank@2314 40 #endif
goetz@6461 41 #ifdef TARGET_COMPILER_xlc
goetz@6461 42 # include "utilities/globalDefinitions_xlc.hpp"
goetz@6461 43 #endif
stefank@2314 44
stefank@2314 45 #include "utilities/macros.hpp"
stefank@2314 46
duke@435 47 // This file holds all globally used constants & types, class (forward)
duke@435 48 // declarations and a few frequently used utility functions.
duke@435 49
duke@435 50 //----------------------------------------------------------------------------------------------------
duke@435 51 // Constants
duke@435 52
duke@435 53 const int LogBytesPerShort = 1;
duke@435 54 const int LogBytesPerInt = 2;
duke@435 55 #ifdef _LP64
duke@435 56 const int LogBytesPerWord = 3;
duke@435 57 #else
duke@435 58 const int LogBytesPerWord = 2;
duke@435 59 #endif
duke@435 60 const int LogBytesPerLong = 3;
duke@435 61
duke@435 62 const int BytesPerShort = 1 << LogBytesPerShort;
duke@435 63 const int BytesPerInt = 1 << LogBytesPerInt;
duke@435 64 const int BytesPerWord = 1 << LogBytesPerWord;
duke@435 65 const int BytesPerLong = 1 << LogBytesPerLong;
duke@435 66
duke@435 67 const int LogBitsPerByte = 3;
duke@435 68 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
duke@435 69 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
duke@435 70 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
duke@435 71 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
duke@435 72
duke@435 73 const int BitsPerByte = 1 << LogBitsPerByte;
duke@435 74 const int BitsPerShort = 1 << LogBitsPerShort;
duke@435 75 const int BitsPerInt = 1 << LogBitsPerInt;
duke@435 76 const int BitsPerWord = 1 << LogBitsPerWord;
duke@435 77 const int BitsPerLong = 1 << LogBitsPerLong;
duke@435 78
duke@435 79 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
duke@435 80 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
duke@435 81
duke@435 82 const int WordsPerLong = 2; // Number of stack entries for longs
duke@435 83
coleenp@548 84 const int oopSize = sizeof(char*); // Full-width oop
coleenp@548 85 extern int heapOopSize; // Oop within a java object
duke@435 86 const int wordSize = sizeof(char*);
duke@435 87 const int longSize = sizeof(jlong);
duke@435 88 const int jintSize = sizeof(jint);
duke@435 89 const int size_tSize = sizeof(size_t);
duke@435 90
coleenp@548 91 const int BytesPerOop = BytesPerWord; // Full-width oop
duke@435 92
coleenp@548 93 extern int LogBytesPerHeapOop; // Oop within a java object
coleenp@548 94 extern int LogBitsPerHeapOop;
coleenp@548 95 extern int BytesPerHeapOop;
coleenp@548 96 extern int BitsPerHeapOop;
duke@435 97
kvn@1926 98 // Oop encoding heap max
kvn@1926 99 extern uint64_t OopEncodingHeapMax;
kvn@1926 100
duke@435 101 const int BitsPerJavaInteger = 32;
twisti@994 102 const int BitsPerJavaLong = 64;
duke@435 103 const int BitsPerSize_t = size_tSize * BitsPerByte;
duke@435 104
coleenp@548 105 // Size of a char[] needed to represent a jint as a string in decimal.
coleenp@548 106 const int jintAsStringSize = 12;
coleenp@548 107
duke@435 108 // In fact this should be
duke@435 109 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@435 110 // see os::set_memory_serialize_page()
duke@435 111 #ifdef _LP64
duke@435 112 const int SerializePageShiftCount = 4;
duke@435 113 #else
duke@435 114 const int SerializePageShiftCount = 3;
duke@435 115 #endif
duke@435 116
duke@435 117 // An opaque struct of heap-word width, so that HeapWord* can be a generic
duke@435 118 // pointer into the heap. We require that object sizes be measured in
duke@435 119 // units of heap words, so that that
duke@435 120 // HeapWord* hw;
duke@435 121 // hw += oop(hw)->foo();
duke@435 122 // works, where foo is a method (like size or scavenge) that returns the
duke@435 123 // object size.
duke@435 124 class HeapWord {
duke@435 125 friend class VMStructs;
jmasa@698 126 private:
duke@435 127 char* i;
jmasa@796 128 #ifndef PRODUCT
jmasa@698 129 public:
jmasa@698 130 char* value() { return i; }
jmasa@698 131 #endif
duke@435 132 };
duke@435 133
coleenp@4037 134 // Analogous opaque struct for metadata allocated from
coleenp@4037 135 // metaspaces.
coleenp@4037 136 class MetaWord {
coleenp@4037 137 friend class VMStructs;
coleenp@4037 138 private:
coleenp@4037 139 char* i;
coleenp@4037 140 };
coleenp@4037 141
duke@435 142 // HeapWordSize must be 2^LogHeapWordSize.
coleenp@548 143 const int HeapWordSize = sizeof(HeapWord);
duke@435 144 #ifdef _LP64
coleenp@548 145 const int LogHeapWordSize = 3;
duke@435 146 #else
coleenp@548 147 const int LogHeapWordSize = 2;
duke@435 148 #endif
coleenp@548 149 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
coleenp@548 150 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
duke@435 151
duke@435 152 // The larger HeapWordSize for 64bit requires larger heaps
duke@435 153 // for the same application running in 64bit. See bug 4967770.
duke@435 154 // The minimum alignment to a heap word size is done. Other
duke@435 155 // parts of the memory system may required additional alignment
duke@435 156 // and are responsible for those alignments.
duke@435 157 #ifdef _LP64
duke@435 158 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
duke@435 159 #else
duke@435 160 #define ScaleForWordSize(x) (x)
duke@435 161 #endif
duke@435 162
duke@435 163 // The minimum number of native machine words necessary to contain "byte_size"
duke@435 164 // bytes.
duke@435 165 inline size_t heap_word_size(size_t byte_size) {
duke@435 166 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
duke@435 167 }
duke@435 168
duke@435 169
duke@435 170 const size_t K = 1024;
duke@435 171 const size_t M = K*K;
duke@435 172 const size_t G = M*K;
duke@435 173 const size_t HWperKB = K / sizeof(HeapWord);
duke@435 174
duke@435 175 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
duke@435 176 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
duke@435 177
duke@435 178 // Constants for converting from a base unit to milli-base units. For
duke@435 179 // example from seconds to milliseconds and microseconds
duke@435 180
duke@435 181 const int MILLIUNITS = 1000; // milli units per base unit
duke@435 182 const int MICROUNITS = 1000000; // micro units per base unit
duke@435 183 const int NANOUNITS = 1000000000; // nano units per base unit
duke@435 184
johnc@3339 185 const jlong NANOSECS_PER_SEC = CONST64(1000000000);
johnc@3339 186 const jint NANOSECS_PER_MILLISEC = 1000000;
johnc@3339 187
duke@435 188 inline const char* proper_unit_for_byte_size(size_t s) {
brutisso@3766 189 #ifdef _LP64
brutisso@3766 190 if (s >= 10*G) {
brutisso@3766 191 return "G";
brutisso@3766 192 }
brutisso@3766 193 #endif
duke@435 194 if (s >= 10*M) {
duke@435 195 return "M";
duke@435 196 } else if (s >= 10*K) {
duke@435 197 return "K";
duke@435 198 } else {
duke@435 199 return "B";
duke@435 200 }
duke@435 201 }
duke@435 202
brutisso@3762 203 template <class T>
brutisso@3762 204 inline T byte_size_in_proper_unit(T s) {
brutisso@3766 205 #ifdef _LP64
brutisso@3766 206 if (s >= 10*G) {
brutisso@3766 207 return (T)(s/G);
brutisso@3766 208 }
brutisso@3766 209 #endif
duke@435 210 if (s >= 10*M) {
brutisso@3762 211 return (T)(s/M);
duke@435 212 } else if (s >= 10*K) {
brutisso@3762 213 return (T)(s/K);
duke@435 214 } else {
duke@435 215 return s;
duke@435 216 }
duke@435 217 }
duke@435 218
duke@435 219 //----------------------------------------------------------------------------------------------------
duke@435 220 // VM type definitions
duke@435 221
duke@435 222 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
duke@435 223 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
duke@435 224
duke@435 225 typedef intptr_t intx;
duke@435 226 typedef uintptr_t uintx;
duke@435 227
duke@435 228 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
duke@435 229 const intx max_intx = (uintx)min_intx - 1;
duke@435 230 const uintx max_uintx = (uintx)-1;
duke@435 231
duke@435 232 // Table of values:
duke@435 233 // sizeof intx 4 8
duke@435 234 // min_intx 0x80000000 0x8000000000000000
duke@435 235 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
duke@435 236 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
duke@435 237
duke@435 238 typedef unsigned int uint; NEEDS_CLEANUP
duke@435 239
duke@435 240
duke@435 241 //----------------------------------------------------------------------------------------------------
duke@435 242 // Java type definitions
duke@435 243
duke@435 244 // All kinds of 'plain' byte addresses
duke@435 245 typedef signed char s_char;
duke@435 246 typedef unsigned char u_char;
duke@435 247 typedef u_char* address;
duke@435 248 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
duke@435 249 // except for some implementations of a C++
duke@435 250 // linkage pointer to function. Should never
duke@435 251 // need one of those to be placed in this
duke@435 252 // type anyway.
duke@435 253
duke@435 254 // Utility functions to "portably" (?) bit twiddle pointers
duke@435 255 // Where portable means keep ANSI C++ compilers quiet
duke@435 256
duke@435 257 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
duke@435 258 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
duke@435 259
duke@435 260 // Utility functions to "portably" make cast to/from function pointers.
duke@435 261
duke@435 262 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
duke@435 263 inline address_word castable_address(address x) { return address_word(x) ; }
duke@435 264 inline address_word castable_address(void* x) { return address_word(x) ; }
duke@435 265
duke@435 266 // Pointer subtraction.
duke@435 267 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
duke@435 268 // the range we might need to find differences from one end of the heap
duke@435 269 // to the other.
duke@435 270 // A typical use might be:
duke@435 271 // if (pointer_delta(end(), top()) >= size) {
duke@435 272 // // enough room for an object of size
duke@435 273 // ...
duke@435 274 // and then additions like
duke@435 275 // ... top() + size ...
duke@435 276 // are safe because we know that top() is at least size below end().
duke@435 277 inline size_t pointer_delta(const void* left,
duke@435 278 const void* right,
duke@435 279 size_t element_size) {
duke@435 280 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
duke@435 281 }
duke@435 282 // A version specialized for HeapWord*'s.
duke@435 283 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
duke@435 284 return pointer_delta(left, right, sizeof(HeapWord));
duke@435 285 }
coleenp@4037 286 // A version specialized for MetaWord*'s.
coleenp@4037 287 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
coleenp@4037 288 return pointer_delta(left, right, sizeof(MetaWord));
coleenp@4037 289 }
duke@435 290
duke@435 291 //
duke@435 292 // ANSI C++ does not allow casting from one pointer type to a function pointer
duke@435 293 // directly without at best a warning. This macro accomplishes it silently
duke@435 294 // In every case that is present at this point the value be cast is a pointer
duke@435 295 // to a C linkage function. In somecase the type used for the cast reflects
duke@435 296 // that linkage and a picky compiler would not complain. In other cases because
duke@435 297 // there is no convenient place to place a typedef with extern C linkage (i.e
duke@435 298 // a platform dependent header file) it doesn't. At this point no compiler seems
duke@435 299 // picky enough to catch these instances (which are few). It is possible that
duke@435 300 // using templates could fix these for all cases. This use of templates is likely
duke@435 301 // so far from the middle of the road that it is likely to be problematic in
duke@435 302 // many C++ compilers.
duke@435 303 //
duke@435 304 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
duke@435 305 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
duke@435 306
duke@435 307 // Unsigned byte types for os and stream.hpp
duke@435 308
duke@435 309 // Unsigned one, two, four and eigth byte quantities used for describing
duke@435 310 // the .class file format. See JVM book chapter 4.
duke@435 311
duke@435 312 typedef jubyte u1;
duke@435 313 typedef jushort u2;
duke@435 314 typedef juint u4;
duke@435 315 typedef julong u8;
duke@435 316
duke@435 317 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
duke@435 318 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
duke@435 319 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
duke@435 320 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
duke@435 321
phh@3427 322 typedef jbyte s1;
phh@3427 323 typedef jshort s2;
phh@3427 324 typedef jint s4;
phh@3427 325 typedef jlong s8;
phh@3427 326
duke@435 327 //----------------------------------------------------------------------------------------------------
duke@435 328 // JVM spec restrictions
duke@435 329
duke@435 330 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
duke@435 331
tschatzl@5862 332 // Default ProtectionDomainCacheSize values
tschatzl@5862 333
tschatzl@5862 334 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
duke@435 335
duke@435 336 //----------------------------------------------------------------------------------------------------
hseigel@4958 337 // Default and minimum StringTableSize values
hseigel@4277 338
hseigel@4958 339 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
tschatzl@5862 340 const int minimumStringTableSize = 1009;
hseigel@4277 341
kevinw@5850 342 const int defaultSymbolTableSize = 20011;
kevinw@5850 343 const int minimumSymbolTableSize = 1009;
kevinw@5850 344
hseigel@4277 345
hseigel@4277 346 //----------------------------------------------------------------------------------------------------
duke@435 347 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
duke@435 348 //
duke@435 349 // Determines whether on-the-fly class replacement and frame popping are enabled.
duke@435 350
duke@435 351 #define HOTSWAP
duke@435 352
duke@435 353 //----------------------------------------------------------------------------------------------------
duke@435 354 // Object alignment, in units of HeapWords.
duke@435 355 //
duke@435 356 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
duke@435 357 // reference fields can be naturally aligned.
duke@435 358
kvn@1926 359 extern int MinObjAlignment;
kvn@1926 360 extern int MinObjAlignmentInBytes;
kvn@1926 361 extern int MinObjAlignmentInBytesMask;
duke@435 362
kvn@1926 363 extern int LogMinObjAlignment;
kvn@1926 364 extern int LogMinObjAlignmentInBytes;
coleenp@548 365
roland@4159 366 const int LogKlassAlignmentInBytes = 3;
roland@4159 367 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize;
roland@4159 368 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes;
roland@4159 369 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize;
roland@4159 370
roland@4159 371 // Klass encoding metaspace max size
roland@4159 372 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
roland@4159 373
duke@435 374 // Machine dependent stuff
duke@435 375
kvn@6429 376 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
kvn@6429 377 // Include Restricted Transactional Memory lock eliding optimization
kvn@6429 378 #define INCLUDE_RTM_OPT 1
kvn@6429 379 #define RTM_OPT_ONLY(code) code
kvn@6429 380 #else
kvn@6429 381 #define INCLUDE_RTM_OPT 0
kvn@6429 382 #define RTM_OPT_ONLY(code)
kvn@6429 383 #endif
kvn@6429 384 // States of Restricted Transactional Memory usage.
kvn@6429 385 enum RTMState {
kvn@6429 386 NoRTM = 0x2, // Don't use RTM
kvn@6429 387 UseRTM = 0x1, // Use RTM
kvn@6429 388 ProfileRTM = 0x0 // Use RTM with abort ratio calculation
kvn@6429 389 };
kvn@6429 390
stefank@2314 391 #ifdef TARGET_ARCH_x86
stefank@2314 392 # include "globalDefinitions_x86.hpp"
stefank@2314 393 #endif
stefank@2314 394 #ifdef TARGET_ARCH_sparc
stefank@2314 395 # include "globalDefinitions_sparc.hpp"
stefank@2314 396 #endif
stefank@2314 397 #ifdef TARGET_ARCH_zero
stefank@2314 398 # include "globalDefinitions_zero.hpp"
stefank@2314 399 #endif
bobv@2508 400 #ifdef TARGET_ARCH_arm
bobv@2508 401 # include "globalDefinitions_arm.hpp"
bobv@2508 402 #endif
bobv@2508 403 #ifdef TARGET_ARCH_ppc
bobv@2508 404 # include "globalDefinitions_ppc.hpp"
bobv@2508 405 #endif
stefank@2314 406
jprovino@5188 407 /*
jprovino@5402 408 * If a platform does not support native stack walking
jprovino@5188 409 * the platform specific globalDefinitions (above)
jprovino@5402 410 * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
jprovino@5188 411 */
jprovino@5402 412 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
jprovino@5402 413 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
jprovino@5188 414 #endif
duke@435 415
goetz@6502 416 // To assure the IRIW property on processors that are not multiple copy
goetz@6502 417 // atomic, sync instructions must be issued between volatile reads to
goetz@6502 418 // assure their ordering, instead of after volatile stores.
goetz@6502 419 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
goetz@6502 420 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
goetz@6502 421 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
goetz@6502 422 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
goetz@6502 423 #else
goetz@6502 424 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
goetz@6502 425 #endif
goetz@6502 426
duke@435 427 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
duke@435 428 // Note: this value must be a power of 2
duke@435 429
duke@435 430 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
duke@435 431
duke@435 432 // Signed variants of alignment helpers. There are two versions of each, a macro
duke@435 433 // for use in places like enum definitions that require compile-time constant
duke@435 434 // expressions and a function for all other places so as to get type checking.
duke@435 435
duke@435 436 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
duke@435 437
stefank@5578 438 inline bool is_size_aligned(size_t size, size_t alignment) {
stefank@5578 439 return align_size_up_(size, alignment) == size;
stefank@5578 440 }
stefank@5578 441
stefank@5578 442 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
stefank@5578 443 return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
stefank@5578 444 }
stefank@5578 445
duke@435 446 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
duke@435 447 return align_size_up_(size, alignment);
duke@435 448 }
duke@435 449
duke@435 450 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
duke@435 451
duke@435 452 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
duke@435 453 return align_size_down_(size, alignment);
duke@435 454 }
duke@435 455
stefank@5515 456 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
stefank@5515 457
stefank@5578 458 inline void* align_ptr_up(void* ptr, size_t alignment) {
stefank@5578 459 return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
stefank@5578 460 }
stefank@5578 461
stefank@5578 462 inline void* align_ptr_down(void* ptr, size_t alignment) {
stefank@5578 463 return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
stefank@5578 464 }
stefank@5578 465
duke@435 466 // Align objects by rounding up their size, in HeapWord units.
duke@435 467
duke@435 468 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
duke@435 469
duke@435 470 inline intptr_t align_object_size(intptr_t size) {
duke@435 471 return align_size_up(size, MinObjAlignment);
duke@435 472 }
duke@435 473
kvn@1926 474 inline bool is_object_aligned(intptr_t addr) {
kvn@1926 475 return addr == align_object_size(addr);
kvn@1926 476 }
kvn@1926 477
duke@435 478 // Pad out certain offsets to jlong alignment, in HeapWord units.
duke@435 479
duke@435 480 inline intptr_t align_object_offset(intptr_t offset) {
duke@435 481 return align_size_up(offset, HeapWordsPerLong);
duke@435 482 }
duke@435 483
stefank@5515 484 inline void* align_pointer_up(const void* addr, size_t size) {
stefank@5515 485 return (void*) align_size_up_((uintptr_t)addr, size);
stefank@5515 486 }
stefank@5515 487
jwilhelm@6083 488 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
jwilhelm@6083 489
jwilhelm@6083 490 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
jwilhelm@6083 491 size_t aligned_size = align_size_down_(size, alignment);
jwilhelm@6083 492 return aligned_size > 0 ? aligned_size : alignment;
jwilhelm@6083 493 }
jwilhelm@6083 494
mikael@4889 495 // Clamp an address to be within a specific page
mikael@4889 496 // 1. If addr is on the page it is returned as is
mikael@4889 497 // 2. If addr is above the page_address the start of the *next* page will be returned
mikael@4889 498 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
mikael@4889 499 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
mikael@4889 500 if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
mikael@4889 501 // address is in the specified page, just return it as is
mikael@4889 502 return addr;
mikael@4889 503 } else if (addr > page_address) {
mikael@4889 504 // address is above specified page, return start of next page
mikael@4889 505 return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
mikael@4889 506 } else {
mikael@4889 507 // address is below specified page, return start of page
mikael@4889 508 return (address)align_size_down(intptr_t(page_address), page_size);
mikael@4889 509 }
mikael@4889 510 }
mikael@4889 511
mikael@4889 512
jcoomes@2020 513 // The expected size in bytes of a cache line, used to pad data structures.
jcoomes@2020 514 #define DEFAULT_CACHE_LINE_SIZE 64
jcoomes@2020 515
duke@435 516
duke@435 517 //----------------------------------------------------------------------------------------------------
duke@435 518 // Utility macros for compilers
duke@435 519 // used to silence compiler warnings
duke@435 520
duke@435 521 #define Unused_Variable(var) var
duke@435 522
duke@435 523
duke@435 524 //----------------------------------------------------------------------------------------------------
duke@435 525 // Miscellaneous
duke@435 526
duke@435 527 // 6302670 Eliminate Hotspot __fabsf dependency
duke@435 528 // All fabs() callers should call this function instead, which will implicitly
duke@435 529 // convert the operand to double, avoiding a dependency on __fabsf which
duke@435 530 // doesn't exist in early versions of Solaris 8.
duke@435 531 inline double fabsd(double value) {
duke@435 532 return fabs(value);
duke@435 533 }
duke@435 534
duke@435 535 inline jint low (jlong value) { return jint(value); }
duke@435 536 inline jint high(jlong value) { return jint(value >> 32); }
duke@435 537
duke@435 538 // the fancy casts are a hopefully portable way
duke@435 539 // to do unsigned 32 to 64 bit type conversion
duke@435 540 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
duke@435 541 *value |= (jlong)(julong)(juint)low; }
duke@435 542
duke@435 543 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
duke@435 544 *value |= (jlong)high << 32; }
duke@435 545
duke@435 546 inline jlong jlong_from(jint h, jint l) {
duke@435 547 jlong result = 0; // initialization to avoid warning
duke@435 548 set_high(&result, h);
duke@435 549 set_low(&result, l);
duke@435 550 return result;
duke@435 551 }
duke@435 552
duke@435 553 union jlong_accessor {
duke@435 554 jint words[2];
duke@435 555 jlong long_value;
duke@435 556 };
duke@435 557
coleenp@548 558 void basic_types_init(); // cannot define here; uses assert
duke@435 559
duke@435 560
duke@435 561 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 562 enum BasicType {
roland@4159 563 T_BOOLEAN = 4,
roland@4159 564 T_CHAR = 5,
roland@4159 565 T_FLOAT = 6,
roland@4159 566 T_DOUBLE = 7,
roland@4159 567 T_BYTE = 8,
roland@4159 568 T_SHORT = 9,
roland@4159 569 T_INT = 10,
roland@4159 570 T_LONG = 11,
roland@4159 571 T_OBJECT = 12,
roland@4159 572 T_ARRAY = 13,
roland@4159 573 T_VOID = 14,
roland@4159 574 T_ADDRESS = 15,
roland@4159 575 T_NARROWOOP = 16,
roland@4159 576 T_METADATA = 17,
roland@4159 577 T_NARROWKLASS = 18,
roland@4159 578 T_CONFLICT = 19, // for stack value type with conflicting contents
roland@4159 579 T_ILLEGAL = 99
duke@435 580 };
duke@435 581
kvn@464 582 inline bool is_java_primitive(BasicType t) {
kvn@464 583 return T_BOOLEAN <= t && t <= T_LONG;
kvn@464 584 }
kvn@464 585
jrose@1145 586 inline bool is_subword_type(BasicType t) {
jrose@1145 587 // these guys are processed exactly like T_INT in calling sequences:
jrose@1145 588 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
jrose@1145 589 }
jrose@1145 590
jrose@1145 591 inline bool is_signed_subword_type(BasicType t) {
jrose@1145 592 return (t == T_BYTE || t == T_SHORT);
jrose@1145 593 }
jrose@1145 594
duke@435 595 // Convert a char from a classfile signature to a BasicType
duke@435 596 inline BasicType char2type(char c) {
duke@435 597 switch( c ) {
duke@435 598 case 'B': return T_BYTE;
duke@435 599 case 'C': return T_CHAR;
duke@435 600 case 'D': return T_DOUBLE;
duke@435 601 case 'F': return T_FLOAT;
duke@435 602 case 'I': return T_INT;
duke@435 603 case 'J': return T_LONG;
duke@435 604 case 'S': return T_SHORT;
duke@435 605 case 'Z': return T_BOOLEAN;
duke@435 606 case 'V': return T_VOID;
duke@435 607 case 'L': return T_OBJECT;
duke@435 608 case '[': return T_ARRAY;
duke@435 609 }
duke@435 610 return T_ILLEGAL;
duke@435 611 }
duke@435 612
duke@435 613 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 614 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
duke@435 615 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
duke@435 616 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 617 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
duke@435 618 extern BasicType name2type(const char* name);
duke@435 619
duke@435 620 // Auxilary math routines
duke@435 621 // least common multiple
duke@435 622 extern size_t lcm(size_t a, size_t b);
duke@435 623
duke@435 624
duke@435 625 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 626 enum BasicTypeSize {
roland@4159 627 T_BOOLEAN_size = 1,
roland@4159 628 T_CHAR_size = 1,
roland@4159 629 T_FLOAT_size = 1,
roland@4159 630 T_DOUBLE_size = 2,
roland@4159 631 T_BYTE_size = 1,
roland@4159 632 T_SHORT_size = 1,
roland@4159 633 T_INT_size = 1,
roland@4159 634 T_LONG_size = 2,
roland@4159 635 T_OBJECT_size = 1,
roland@4159 636 T_ARRAY_size = 1,
roland@4159 637 T_NARROWOOP_size = 1,
roland@4159 638 T_NARROWKLASS_size = 1,
roland@4159 639 T_VOID_size = 0
duke@435 640 };
duke@435 641
duke@435 642
duke@435 643 // maps a BasicType to its instance field storage type:
duke@435 644 // all sub-word integral types are widened to T_INT
duke@435 645 extern BasicType type2field[T_CONFLICT+1];
duke@435 646 extern BasicType type2wfield[T_CONFLICT+1];
duke@435 647
duke@435 648
duke@435 649 // size in bytes
duke@435 650 enum ArrayElementSize {
roland@4159 651 T_BOOLEAN_aelem_bytes = 1,
roland@4159 652 T_CHAR_aelem_bytes = 2,
roland@4159 653 T_FLOAT_aelem_bytes = 4,
roland@4159 654 T_DOUBLE_aelem_bytes = 8,
roland@4159 655 T_BYTE_aelem_bytes = 1,
roland@4159 656 T_SHORT_aelem_bytes = 2,
roland@4159 657 T_INT_aelem_bytes = 4,
roland@4159 658 T_LONG_aelem_bytes = 8,
duke@435 659 #ifdef _LP64
roland@4159 660 T_OBJECT_aelem_bytes = 8,
roland@4159 661 T_ARRAY_aelem_bytes = 8,
duke@435 662 #else
roland@4159 663 T_OBJECT_aelem_bytes = 4,
roland@4159 664 T_ARRAY_aelem_bytes = 4,
duke@435 665 #endif
roland@4159 666 T_NARROWOOP_aelem_bytes = 4,
roland@4159 667 T_NARROWKLASS_aelem_bytes = 4,
roland@4159 668 T_VOID_aelem_bytes = 0
duke@435 669 };
duke@435 670
kvn@464 671 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
kvn@464 672 #ifdef ASSERT
kvn@464 673 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
kvn@464 674 #else
never@2118 675 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
kvn@464 676 #endif
duke@435 677
duke@435 678
duke@435 679 // JavaValue serves as a container for arbitrary Java values.
duke@435 680
duke@435 681 class JavaValue {
duke@435 682
duke@435 683 public:
duke@435 684 typedef union JavaCallValue {
duke@435 685 jfloat f;
duke@435 686 jdouble d;
duke@435 687 jint i;
duke@435 688 jlong l;
duke@435 689 jobject h;
duke@435 690 } JavaCallValue;
duke@435 691
duke@435 692 private:
duke@435 693 BasicType _type;
duke@435 694 JavaCallValue _value;
duke@435 695
duke@435 696 public:
duke@435 697 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
duke@435 698
duke@435 699 JavaValue(jfloat value) {
duke@435 700 _type = T_FLOAT;
duke@435 701 _value.f = value;
duke@435 702 }
duke@435 703
duke@435 704 JavaValue(jdouble value) {
duke@435 705 _type = T_DOUBLE;
duke@435 706 _value.d = value;
duke@435 707 }
duke@435 708
duke@435 709 jfloat get_jfloat() const { return _value.f; }
duke@435 710 jdouble get_jdouble() const { return _value.d; }
duke@435 711 jint get_jint() const { return _value.i; }
duke@435 712 jlong get_jlong() const { return _value.l; }
duke@435 713 jobject get_jobject() const { return _value.h; }
duke@435 714 JavaCallValue* get_value_addr() { return &_value; }
duke@435 715 BasicType get_type() const { return _type; }
duke@435 716
duke@435 717 void set_jfloat(jfloat f) { _value.f = f;}
duke@435 718 void set_jdouble(jdouble d) { _value.d = d;}
duke@435 719 void set_jint(jint i) { _value.i = i;}
duke@435 720 void set_jlong(jlong l) { _value.l = l;}
duke@435 721 void set_jobject(jobject h) { _value.h = h;}
duke@435 722 void set_type(BasicType t) { _type = t; }
duke@435 723
duke@435 724 jboolean get_jboolean() const { return (jboolean) (_value.i);}
duke@435 725 jbyte get_jbyte() const { return (jbyte) (_value.i);}
duke@435 726 jchar get_jchar() const { return (jchar) (_value.i);}
duke@435 727 jshort get_jshort() const { return (jshort) (_value.i);}
duke@435 728
duke@435 729 };
duke@435 730
duke@435 731
duke@435 732 #define STACK_BIAS 0
duke@435 733 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
duke@435 734 // in order to extend the reach of the stack pointer.
duke@435 735 #if defined(SPARC) && defined(_LP64)
duke@435 736 #undef STACK_BIAS
duke@435 737 #define STACK_BIAS 0x7ff
duke@435 738 #endif
duke@435 739
duke@435 740
duke@435 741 // TosState describes the top-of-stack state before and after the execution of
duke@435 742 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
duke@435 743 // registers. The TosState corresponds to the 'machine represention' of this cached
duke@435 744 // value. There's 4 states corresponding to the JAVA types int, long, float & double
duke@435 745 // as well as a 5th state in case the top-of-stack value is actually on the top
duke@435 746 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
duke@435 747 // state when it comes to machine representation but is used separately for (oop)
duke@435 748 // type specific operations (e.g. verification code).
duke@435 749
duke@435 750 enum TosState { // describes the tos cache contents
duke@435 751 btos = 0, // byte, bool tos cached
jrose@1161 752 ctos = 1, // char tos cached
jrose@1161 753 stos = 2, // short tos cached
duke@435 754 itos = 3, // int tos cached
duke@435 755 ltos = 4, // long tos cached
duke@435 756 ftos = 5, // float tos cached
duke@435 757 dtos = 6, // double tos cached
duke@435 758 atos = 7, // object cached
duke@435 759 vtos = 8, // tos not cached
duke@435 760 number_of_states,
duke@435 761 ilgl // illegal state: should not occur
duke@435 762 };
duke@435 763
duke@435 764
duke@435 765 inline TosState as_TosState(BasicType type) {
duke@435 766 switch (type) {
duke@435 767 case T_BYTE : return btos;
jrose@1161 768 case T_BOOLEAN: return btos; // FIXME: Add ztos
duke@435 769 case T_CHAR : return ctos;
duke@435 770 case T_SHORT : return stos;
duke@435 771 case T_INT : return itos;
duke@435 772 case T_LONG : return ltos;
duke@435 773 case T_FLOAT : return ftos;
duke@435 774 case T_DOUBLE : return dtos;
duke@435 775 case T_VOID : return vtos;
duke@435 776 case T_ARRAY : // fall through
duke@435 777 case T_OBJECT : return atos;
duke@435 778 }
duke@435 779 return ilgl;
duke@435 780 }
duke@435 781
jrose@1161 782 inline BasicType as_BasicType(TosState state) {
jrose@1161 783 switch (state) {
jrose@1161 784 //case ztos: return T_BOOLEAN;//FIXME
jrose@1161 785 case btos : return T_BYTE;
jrose@1161 786 case ctos : return T_CHAR;
jrose@1161 787 case stos : return T_SHORT;
jrose@1161 788 case itos : return T_INT;
jrose@1161 789 case ltos : return T_LONG;
jrose@1161 790 case ftos : return T_FLOAT;
jrose@1161 791 case dtos : return T_DOUBLE;
jrose@1161 792 case atos : return T_OBJECT;
jrose@1161 793 case vtos : return T_VOID;
jrose@1161 794 }
jrose@1161 795 return T_ILLEGAL;
jrose@1161 796 }
jrose@1161 797
duke@435 798
duke@435 799 // Helper function to convert BasicType info into TosState
duke@435 800 // Note: Cannot define here as it uses global constant at the time being.
duke@435 801 TosState as_TosState(BasicType type);
duke@435 802
duke@435 803
duke@435 804 // JavaThreadState keeps track of which part of the code a thread is executing in. This
duke@435 805 // information is needed by the safepoint code.
duke@435 806 //
duke@435 807 // There are 4 essential states:
duke@435 808 //
duke@435 809 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
duke@435 810 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
duke@435 811 // _thread_in_vm : Executing in the vm
duke@435 812 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
duke@435 813 //
duke@435 814 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
duke@435 815 // a transition from one state to another. These extra states makes it possible for the safepoint code to
duke@435 816 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
duke@435 817 //
duke@435 818 // Given a state, the xxx_trans state can always be found by adding 1.
duke@435 819 //
duke@435 820 enum JavaThreadState {
duke@435 821 _thread_uninitialized = 0, // should never happen (missing initialization)
duke@435 822 _thread_new = 2, // just starting up, i.e., in process of being initialized
duke@435 823 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
duke@435 824 _thread_in_native = 4, // running in native code
duke@435 825 _thread_in_native_trans = 5, // corresponding transition state
duke@435 826 _thread_in_vm = 6, // running in VM
duke@435 827 _thread_in_vm_trans = 7, // corresponding transition state
duke@435 828 _thread_in_Java = 8, // running in Java or in stub code
duke@435 829 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
duke@435 830 _thread_blocked = 10, // blocked in vm
duke@435 831 _thread_blocked_trans = 11, // corresponding transition state
duke@435 832 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
duke@435 833 };
duke@435 834
duke@435 835
duke@435 836 // Handy constants for deciding which compiler mode to use.
duke@435 837 enum MethodCompilation {
duke@435 838 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation
duke@435 839 InvalidOSREntryBci = -2
duke@435 840 };
duke@435 841
duke@435 842 // Enumeration to distinguish tiers of compilation
duke@435 843 enum CompLevel {
iveresov@2138 844 CompLevel_any = -1,
iveresov@2138 845 CompLevel_all = -1,
iveresov@2138 846 CompLevel_none = 0, // Interpreter
iveresov@2138 847 CompLevel_simple = 1, // C1
iveresov@2138 848 CompLevel_limited_profile = 2, // C1, invocation & backedge counters
iveresov@2138 849 CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo
twisti@2729 850 CompLevel_full_optimization = 4, // C2 or Shark
duke@435 851
twisti@2729 852 #if defined(COMPILER2) || defined(SHARK)
iveresov@2138 853 CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered
iveresov@2138 854 #elif defined(COMPILER1)
iveresov@2138 855 CompLevel_highest_tier = CompLevel_simple, // pure C1
duke@435 856 #else
iveresov@2138 857 CompLevel_highest_tier = CompLevel_none,
iveresov@2138 858 #endif
iveresov@2138 859
iveresov@2138 860 #if defined(TIERED)
iveresov@2138 861 CompLevel_initial_compile = CompLevel_full_profile // tiered
iveresov@2138 862 #elif defined(COMPILER1)
iveresov@2138 863 CompLevel_initial_compile = CompLevel_simple // pure C1
twisti@2729 864 #elif defined(COMPILER2) || defined(SHARK)
iveresov@2138 865 CompLevel_initial_compile = CompLevel_full_optimization // pure C2
iveresov@2138 866 #else
iveresov@2138 867 CompLevel_initial_compile = CompLevel_none
iveresov@2138 868 #endif
duke@435 869 };
duke@435 870
iveresov@2138 871 inline bool is_c1_compile(int comp_level) {
iveresov@2138 872 return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
duke@435 873 }
iveresov@2138 874
iveresov@2138 875 inline bool is_c2_compile(int comp_level) {
duke@435 876 return comp_level == CompLevel_full_optimization;
duke@435 877 }
iveresov@2138 878
duke@435 879 inline bool is_highest_tier_compile(int comp_level) {
duke@435 880 return comp_level == CompLevel_highest_tier;
duke@435 881 }
duke@435 882
iignatyev@4908 883 inline bool is_compile(int comp_level) {
iignatyev@4908 884 return is_c1_compile(comp_level) || is_c2_compile(comp_level);
iignatyev@4908 885 }
iignatyev@4908 886
duke@435 887 //----------------------------------------------------------------------------------------------------
duke@435 888 // 'Forward' declarations of frequently used classes
duke@435 889 // (in order to reduce interface dependencies & reduce
duke@435 890 // number of unnecessary compilations after changes)
duke@435 891
duke@435 892 class symbolTable;
duke@435 893 class ClassFileStream;
duke@435 894
duke@435 895 class Event;
duke@435 896
duke@435 897 class Thread;
duke@435 898 class VMThread;
duke@435 899 class JavaThread;
duke@435 900 class Threads;
duke@435 901
duke@435 902 class VM_Operation;
duke@435 903 class VMOperationQueue;
duke@435 904
duke@435 905 class CodeBlob;
duke@435 906 class nmethod;
duke@435 907 class OSRAdapter;
duke@435 908 class I2CAdapter;
duke@435 909 class C2IAdapter;
duke@435 910 class CompiledIC;
duke@435 911 class relocInfo;
duke@435 912 class ScopeDesc;
duke@435 913 class PcDesc;
duke@435 914
duke@435 915 class Recompiler;
duke@435 916 class Recompilee;
duke@435 917 class RecompilationPolicy;
duke@435 918 class RFrame;
duke@435 919 class CompiledRFrame;
duke@435 920 class InterpretedRFrame;
duke@435 921
duke@435 922 class frame;
duke@435 923
duke@435 924 class vframe;
duke@435 925 class javaVFrame;
duke@435 926 class interpretedVFrame;
duke@435 927 class compiledVFrame;
duke@435 928 class deoptimizedVFrame;
duke@435 929 class externalVFrame;
duke@435 930 class entryVFrame;
duke@435 931
duke@435 932 class RegisterMap;
duke@435 933
duke@435 934 class Mutex;
duke@435 935 class Monitor;
duke@435 936 class BasicLock;
duke@435 937 class BasicObjectLock;
duke@435 938
duke@435 939 class PeriodicTask;
duke@435 940
duke@435 941 class JavaCallWrapper;
duke@435 942
duke@435 943 class oopDesc;
coleenp@4037 944 class metaDataOopDesc;
duke@435 945
duke@435 946 class NativeCall;
duke@435 947
duke@435 948 class zone;
duke@435 949
duke@435 950 class StubQueue;
duke@435 951
duke@435 952 class outputStream;
duke@435 953
duke@435 954 class ResourceArea;
duke@435 955
duke@435 956 class DebugInformationRecorder;
duke@435 957 class ScopeValue;
duke@435 958 class CompressedStream;
duke@435 959 class DebugInfoReadStream;
duke@435 960 class DebugInfoWriteStream;
duke@435 961 class LocationValue;
duke@435 962 class ConstantValue;
duke@435 963 class IllegalValue;
duke@435 964
duke@435 965 class PrivilegedElement;
duke@435 966 class MonitorArray;
duke@435 967
duke@435 968 class MonitorInfo;
duke@435 969
duke@435 970 class OffsetClosure;
duke@435 971 class OopMapCache;
duke@435 972 class InterpreterOopMap;
duke@435 973 class OopMapCacheEntry;
duke@435 974 class OSThread;
duke@435 975
duke@435 976 typedef int (*OSThreadStartFunc)(void*);
duke@435 977
duke@435 978 class Space;
duke@435 979
duke@435 980 class JavaValue;
duke@435 981 class methodHandle;
duke@435 982 class JavaCallArguments;
duke@435 983
duke@435 984 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
duke@435 985
duke@435 986 extern void basic_fatal(const char* msg);
duke@435 987
duke@435 988
duke@435 989 //----------------------------------------------------------------------------------------------------
duke@435 990 // Special constants for debugging
duke@435 991
duke@435 992 const jint badInt = -3; // generic "bad int" value
duke@435 993 const long badAddressVal = -2; // generic "bad address" value
duke@435 994 const long badOopVal = -1; // generic "bad oop" value
duke@435 995 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
duke@435 996 const int badHandleValue = 0xBC; // value used to zap vm handle area
duke@435 997 const int badResourceValue = 0xAB; // value used to zap resource area
duke@435 998 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
duke@435 999 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
duke@435 1000 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
duke@435 1001 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
coleenp@4037 1002 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC
duke@435 1003 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
duke@435 1004 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
duke@435 1005
duke@435 1006
duke@435 1007 // (These must be implemented as #defines because C++ compilers are
duke@435 1008 // not obligated to inline non-integral constants!)
duke@435 1009 #define badAddress ((address)::badAddressVal)
hseigel@5784 1010 #define badOop (cast_to_oop(::badOopVal))
duke@435 1011 #define badHeapWord (::badHeapWordVal)
hseigel@5784 1012 #define badJNIHandle (cast_to_oop(::badJNIHandleVal))
duke@435 1013
jcoomes@1746 1014 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
jcoomes@1746 1015 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
duke@435 1016
duke@435 1017 //----------------------------------------------------------------------------------------------------
duke@435 1018 // Utility functions for bitfield manipulations
duke@435 1019
duke@435 1020 const intptr_t AllBits = ~0; // all bits set in a word
duke@435 1021 const intptr_t NoBits = 0; // no bits set in a word
duke@435 1022 const jlong NoLongBits = 0; // no bits set in a long
duke@435 1023 const intptr_t OneBit = 1; // only right_most bit set in a word
duke@435 1024
duke@435 1025 // get a word with the n.th or the right-most or left-most n bits set
duke@435 1026 // (note: #define used only so that they can be used in enum constant definitions)
duke@435 1027 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
duke@435 1028 #define right_n_bits(n) (nth_bit(n) - 1)
duke@435 1029 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
duke@435 1030
duke@435 1031 // bit-operations using a mask m
duke@435 1032 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
duke@435 1033 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
duke@435 1034 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
duke@435 1035 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
duke@435 1036 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
duke@435 1037
duke@435 1038 // bit-operations using the n.th bit
duke@435 1039 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
duke@435 1040 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
duke@435 1041 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
duke@435 1042
duke@435 1043 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
duke@435 1044 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
duke@435 1045 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
duke@435 1046 }
duke@435 1047
duke@435 1048
duke@435 1049 //----------------------------------------------------------------------------------------------------
duke@435 1050 // Utility functions for integers
duke@435 1051
duke@435 1052 // Avoid use of global min/max macros which may cause unwanted double
duke@435 1053 // evaluation of arguments.
duke@435 1054 #ifdef max
duke@435 1055 #undef max
duke@435 1056 #endif
duke@435 1057
duke@435 1058 #ifdef min
duke@435 1059 #undef min
duke@435 1060 #endif
duke@435 1061
duke@435 1062 #define max(a,b) Do_not_use_max_use_MAX2_instead
duke@435 1063 #define min(a,b) Do_not_use_min_use_MIN2_instead
duke@435 1064
duke@435 1065 // It is necessary to use templates here. Having normal overloaded
duke@435 1066 // functions does not work because it is necessary to provide both 32-
duke@435 1067 // and 64-bit overloaded functions, which does not work, and having
duke@435 1068 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
duke@435 1069 // will be even more error-prone than macros.
duke@435 1070 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
duke@435 1071 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
duke@435 1072 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
duke@435 1073 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
duke@435 1074 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
duke@435 1075 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
duke@435 1076
duke@435 1077 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
duke@435 1078
duke@435 1079 // true if x is a power of 2, false otherwise
duke@435 1080 inline bool is_power_of_2(intptr_t x) {
duke@435 1081 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
duke@435 1082 }
duke@435 1083
duke@435 1084 // long version of is_power_of_2
duke@435 1085 inline bool is_power_of_2_long(jlong x) {
duke@435 1086 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
duke@435 1087 }
duke@435 1088
duke@435 1089 //* largest i such that 2^i <= x
duke@435 1090 // A negative value of 'x' will return '31'
duke@435 1091 inline int log2_intptr(intptr_t x) {
duke@435 1092 int i = -1;
duke@435 1093 uintptr_t p = 1;
duke@435 1094 while (p != 0 && p <= (uintptr_t)x) {
duke@435 1095 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 1096 i++; p *= 2;
duke@435 1097 }
duke@435 1098 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 1099 // (if p = 0 then overflow occurred and i = 31)
duke@435 1100 return i;
duke@435 1101 }
duke@435 1102
duke@435 1103 //* largest i such that 2^i <= x
duke@435 1104 // A negative value of 'x' will return '63'
duke@435 1105 inline int log2_long(jlong x) {
duke@435 1106 int i = -1;
duke@435 1107 julong p = 1;
duke@435 1108 while (p != 0 && p <= (julong)x) {
duke@435 1109 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 1110 i++; p *= 2;
duke@435 1111 }
duke@435 1112 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 1113 // (if p = 0 then overflow occurred and i = 63)
duke@435 1114 return i;
duke@435 1115 }
duke@435 1116
duke@435 1117 //* the argument must be exactly a power of 2
duke@435 1118 inline int exact_log2(intptr_t x) {
duke@435 1119 #ifdef ASSERT
duke@435 1120 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
duke@435 1121 #endif
duke@435 1122 return log2_intptr(x);
duke@435 1123 }
duke@435 1124
twisti@1003 1125 //* the argument must be exactly a power of 2
twisti@1003 1126 inline int exact_log2_long(jlong x) {
twisti@1003 1127 #ifdef ASSERT
twisti@1003 1128 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
twisti@1003 1129 #endif
twisti@1003 1130 return log2_long(x);
twisti@1003 1131 }
twisti@1003 1132
duke@435 1133
duke@435 1134 // returns integer round-up to the nearest multiple of s (s must be a power of two)
duke@435 1135 inline intptr_t round_to(intptr_t x, uintx s) {
duke@435 1136 #ifdef ASSERT
duke@435 1137 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 1138 #endif
duke@435 1139 const uintx m = s - 1;
duke@435 1140 return mask_bits(x + m, ~m);
duke@435 1141 }
duke@435 1142
duke@435 1143 // returns integer round-down to the nearest multiple of s (s must be a power of two)
duke@435 1144 inline intptr_t round_down(intptr_t x, uintx s) {
duke@435 1145 #ifdef ASSERT
duke@435 1146 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 1147 #endif
duke@435 1148 const uintx m = s - 1;
duke@435 1149 return mask_bits(x, ~m);
duke@435 1150 }
duke@435 1151
duke@435 1152
duke@435 1153 inline bool is_odd (intx x) { return x & 1; }
duke@435 1154 inline bool is_even(intx x) { return !is_odd(x); }
duke@435 1155
duke@435 1156 // "to" should be greater than "from."
duke@435 1157 inline intx byte_size(void* from, void* to) {
duke@435 1158 return (address)to - (address)from;
duke@435 1159 }
duke@435 1160
duke@435 1161 //----------------------------------------------------------------------------------------------------
duke@435 1162 // Avoid non-portable casts with these routines (DEPRECATED)
duke@435 1163
duke@435 1164 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
duke@435 1165 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
duke@435 1166
duke@435 1167 // Given sequence of four bytes, build into a 32-bit word
duke@435 1168 // following the conventions used in class files.
duke@435 1169 // On the 386, this could be realized with a simple address cast.
duke@435 1170 //
duke@435 1171
duke@435 1172 // This routine takes eight bytes:
duke@435 1173 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@2144 1174 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 ))
twisti@2144 1175 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 ))
twisti@2144 1176 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 ))
twisti@2144 1177 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 ))
twisti@2144 1178 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 ))
twisti@2144 1179 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 ))
twisti@2144 1180 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 ))
twisti@2144 1181 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 ));
duke@435 1182 }
duke@435 1183
duke@435 1184 // This routine takes four bytes:
duke@435 1185 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
twisti@2144 1186 return (( u4(c1) << 24 ) & 0xff000000)
twisti@2144 1187 | (( u4(c2) << 16 ) & 0x00ff0000)
twisti@2144 1188 | (( u4(c3) << 8 ) & 0x0000ff00)
twisti@2144 1189 | (( u4(c4) << 0 ) & 0x000000ff);
duke@435 1190 }
duke@435 1191
duke@435 1192 // And this one works if the four bytes are contiguous in memory:
duke@435 1193 inline u4 build_u4_from( u1* p ) {
duke@435 1194 return build_u4_from( p[0], p[1], p[2], p[3] );
duke@435 1195 }
duke@435 1196
duke@435 1197 // Ditto for two-byte ints:
duke@435 1198 inline u2 build_u2_from( u1 c1, u1 c2 ) {
twisti@2144 1199 return u2((( u2(c1) << 8 ) & 0xff00)
twisti@2144 1200 | (( u2(c2) << 0 ) & 0x00ff));
duke@435 1201 }
duke@435 1202
duke@435 1203 // And this one works if the two bytes are contiguous in memory:
duke@435 1204 inline u2 build_u2_from( u1* p ) {
duke@435 1205 return build_u2_from( p[0], p[1] );
duke@435 1206 }
duke@435 1207
duke@435 1208 // Ditto for floats:
duke@435 1209 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@435 1210 u4 u = build_u4_from( c1, c2, c3, c4 );
duke@435 1211 return *(jfloat*)&u;
duke@435 1212 }
duke@435 1213
duke@435 1214 inline jfloat build_float_from( u1* p ) {
duke@435 1215 u4 u = build_u4_from( p );
duke@435 1216 return *(jfloat*)&u;
duke@435 1217 }
duke@435 1218
duke@435 1219
duke@435 1220 // now (64-bit) longs
duke@435 1221
duke@435 1222 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@2144 1223 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ))
twisti@2144 1224 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ))
twisti@2144 1225 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ))
twisti@2144 1226 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ))
twisti@2144 1227 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ))
twisti@2144 1228 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ))
twisti@2144 1229 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ))
twisti@2144 1230 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ));
duke@435 1231 }
duke@435 1232
duke@435 1233 inline jlong build_long_from( u1* p ) {
duke@435 1234 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
duke@435 1235 }
duke@435 1236
duke@435 1237
duke@435 1238 // Doubles, too!
duke@435 1239 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@435 1240 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
duke@435 1241 return *(jdouble*)&u;
duke@435 1242 }
duke@435 1243
duke@435 1244 inline jdouble build_double_from( u1* p ) {
duke@435 1245 jlong u = build_long_from( p );
duke@435 1246 return *(jdouble*)&u;
duke@435 1247 }
duke@435 1248
duke@435 1249
duke@435 1250 // Portable routines to go the other way:
duke@435 1251
duke@435 1252 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
duke@435 1253 c1 = u1(x >> 8);
duke@435 1254 c2 = u1(x);
duke@435 1255 }
duke@435 1256
duke@435 1257 inline void explode_short_to( u2 x, u1* p ) {
duke@435 1258 explode_short_to( x, p[0], p[1]);
duke@435 1259 }
duke@435 1260
duke@435 1261 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
duke@435 1262 c1 = u1(x >> 24);
duke@435 1263 c2 = u1(x >> 16);
duke@435 1264 c3 = u1(x >> 8);
duke@435 1265 c4 = u1(x);
duke@435 1266 }
duke@435 1267
duke@435 1268 inline void explode_int_to( u4 x, u1* p ) {
duke@435 1269 explode_int_to( x, p[0], p[1], p[2], p[3]);
duke@435 1270 }
duke@435 1271
duke@435 1272
duke@435 1273 // Pack and extract shorts to/from ints:
duke@435 1274
duke@435 1275 inline int extract_low_short_from_int(jint x) {
duke@435 1276 return x & 0xffff;
duke@435 1277 }
duke@435 1278
duke@435 1279 inline int extract_high_short_from_int(jint x) {
duke@435 1280 return (x >> 16) & 0xffff;
duke@435 1281 }
duke@435 1282
duke@435 1283 inline int build_int_from_shorts( jushort low, jushort high ) {
duke@435 1284 return ((int)((unsigned int)high << 16) | (unsigned int)low);
duke@435 1285 }
duke@435 1286
duke@435 1287 // Printf-style formatters for fixed- and variable-width types as pointers and
never@3156 1288 // integers. These are derived from the definitions in inttypes.h. If the platform
never@3156 1289 // doesn't provide appropriate definitions, they should be provided in
never@3156 1290 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
duke@435 1291
tonyp@2643 1292 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
tonyp@2472 1293
duke@435 1294 // Format 32-bit quantities.
never@3156 1295 #define INT32_FORMAT "%" PRId32
never@3156 1296 #define UINT32_FORMAT "%" PRIu32
never@3156 1297 #define INT32_FORMAT_W(width) "%" #width PRId32
never@3156 1298 #define UINT32_FORMAT_W(width) "%" #width PRIu32
duke@435 1299
never@3156 1300 #define PTR32_FORMAT "0x%08" PRIx32
duke@435 1301
duke@435 1302 // Format 64-bit quantities.
never@3156 1303 #define INT64_FORMAT "%" PRId64
never@3156 1304 #define UINT64_FORMAT "%" PRIu64
never@3156 1305 #define INT64_FORMAT_W(width) "%" #width PRId64
never@3156 1306 #define UINT64_FORMAT_W(width) "%" #width PRIu64
duke@435 1307
never@3156 1308 #define PTR64_FORMAT "0x%016" PRIx64
duke@435 1309
hseigel@4465 1310 // Format jlong, if necessary
hseigel@4465 1311 #ifndef JLONG_FORMAT
hseigel@4465 1312 #define JLONG_FORMAT INT64_FORMAT
hseigel@4465 1313 #endif
hseigel@4465 1314 #ifndef JULONG_FORMAT
hseigel@4465 1315 #define JULONG_FORMAT UINT64_FORMAT
hseigel@4465 1316 #endif
hseigel@4465 1317
never@3156 1318 // Format pointers which change size between 32- and 64-bit.
duke@435 1319 #ifdef _LP64
never@3156 1320 #define INTPTR_FORMAT "0x%016" PRIxPTR
never@3156 1321 #define PTR_FORMAT "0x%016" PRIxPTR
duke@435 1322 #else // !_LP64
never@3156 1323 #define INTPTR_FORMAT "0x%08" PRIxPTR
never@3156 1324 #define PTR_FORMAT "0x%08" PRIxPTR
duke@435 1325 #endif // _LP64
duke@435 1326
never@3156 1327 #define SSIZE_FORMAT "%" PRIdPTR
never@3156 1328 #define SIZE_FORMAT "%" PRIuPTR
never@3156 1329 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
never@3156 1330 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR
never@3156 1331
never@3156 1332 #define INTX_FORMAT "%" PRIdPTR
never@3156 1333 #define UINTX_FORMAT "%" PRIuPTR
never@3156 1334 #define INTX_FORMAT_W(width) "%" #width PRIdPTR
never@3156 1335 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
never@3156 1336
duke@435 1337
duke@435 1338 // Enable zap-a-lot if in debug version.
duke@435 1339
duke@435 1340 # ifdef ASSERT
duke@435 1341 # ifdef COMPILER2
duke@435 1342 # define ENABLE_ZAP_DEAD_LOCALS
duke@435 1343 #endif /* COMPILER2 */
duke@435 1344 # endif /* ASSERT */
duke@435 1345
duke@435 1346 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
stefank@2314 1347
coleenp@4295 1348 // Dereference vptr
coleenp@4295 1349 // All C++ compilers that we know of have the vtbl pointer in the first
coleenp@4295 1350 // word. If there are exceptions, this function needs to be made compiler
coleenp@4295 1351 // specific.
coleenp@4295 1352 static inline void* dereference_vptr(void* addr) {
coleenp@4295 1353 return *(void**)addr;
coleenp@4295 1354 }
coleenp@4295 1355
mikael@4889 1356
mikael@4889 1357 #ifndef PRODUCT
mikael@4889 1358
mikael@4889 1359 // For unit testing only
mikael@4889 1360 class GlobalDefinitions {
mikael@4889 1361 public:
mikael@4889 1362 static void test_globals();
mikael@4889 1363 };
mikael@4889 1364
mikael@4889 1365 #endif // PRODUCT
mikael@4889 1366
stefank@2314 1367 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial