src/share/vm/memory/space.hpp

Tue, 25 Mar 2014 17:07:36 -0700

author
kvn
date
Tue, 25 Mar 2014 17:07:36 -0700
changeset 6518
62c54fcc0a35
parent 6503
a9becfeecd1b
child 6876
710a3c8b516e
child 6912
c49dcaf78a65
permissions
-rw-r--r--

Merge

duke@435 1 /*
mikael@6198 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_MEMORY_SPACE_HPP
stefank@2314 26 #define SHARE_VM_MEMORY_SPACE_HPP
stefank@2314 27
stefank@2314 28 #include "memory/allocation.hpp"
stefank@2314 29 #include "memory/blockOffsetTable.hpp"
stefank@2314 30 #include "memory/cardTableModRefBS.hpp"
stefank@2314 31 #include "memory/iterator.hpp"
stefank@2314 32 #include "memory/memRegion.hpp"
stefank@2314 33 #include "memory/watermark.hpp"
stefank@2314 34 #include "oops/markOop.hpp"
stefank@2314 35 #include "runtime/mutexLocker.hpp"
stefank@2314 36 #include "runtime/prefetch.hpp"
jprovino@4542 37 #include "utilities/macros.hpp"
stefank@2314 38 #include "utilities/workgroup.hpp"
stefank@2314 39 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 40 # include "os_linux.inline.hpp"
stefank@2314 41 #endif
stefank@2314 42 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 43 # include "os_solaris.inline.hpp"
stefank@2314 44 #endif
stefank@2314 45 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 46 # include "os_windows.inline.hpp"
stefank@2314 47 #endif
goetz@6461 48 #ifdef TARGET_OS_FAMILY_aix
goetz@6461 49 # include "os_aix.inline.hpp"
goetz@6461 50 #endif
never@3156 51 #ifdef TARGET_OS_FAMILY_bsd
never@3156 52 # include "os_bsd.inline.hpp"
never@3156 53 #endif
stefank@2314 54
duke@435 55 // A space is an abstraction for the "storage units" backing
duke@435 56 // up the generation abstraction. It includes specific
duke@435 57 // implementations for keeping track of free and used space,
duke@435 58 // for iterating over objects and free blocks, etc.
duke@435 59
duke@435 60 // Here's the Space hierarchy:
duke@435 61 //
duke@435 62 // - Space -- an asbtract base class describing a heap area
duke@435 63 // - CompactibleSpace -- a space supporting compaction
duke@435 64 // - CompactibleFreeListSpace -- (used for CMS generation)
duke@435 65 // - ContiguousSpace -- a compactible space in which all free space
duke@435 66 // is contiguous
duke@435 67 // - EdenSpace -- contiguous space used as nursery
duke@435 68 // - ConcEdenSpace -- contiguous space with a 'soft end safe' allocation
duke@435 69 // - OffsetTableContigSpace -- contiguous space with a block offset array
duke@435 70 // that allows "fast" block_start calls
duke@435 71 // - TenuredSpace -- (used for TenuredGeneration)
duke@435 72
duke@435 73 // Forward decls.
duke@435 74 class Space;
duke@435 75 class BlockOffsetArray;
duke@435 76 class BlockOffsetArrayContigSpace;
duke@435 77 class Generation;
duke@435 78 class CompactibleSpace;
duke@435 79 class BlockOffsetTable;
duke@435 80 class GenRemSet;
duke@435 81 class CardTableRS;
duke@435 82 class DirtyCardToOopClosure;
duke@435 83
duke@435 84 // An oop closure that is circumscribed by a filtering memory region.
coleenp@4037 85 class SpaceMemRegionOopsIterClosure: public ExtendedOopClosure {
coleenp@548 86 private:
coleenp@4037 87 ExtendedOopClosure* _cl;
coleenp@548 88 MemRegion _mr;
coleenp@548 89 protected:
coleenp@548 90 template <class T> void do_oop_work(T* p) {
coleenp@548 91 if (_mr.contains(p)) {
coleenp@548 92 _cl->do_oop(p);
duke@435 93 }
duke@435 94 }
coleenp@548 95 public:
coleenp@4037 96 SpaceMemRegionOopsIterClosure(ExtendedOopClosure* cl, MemRegion mr):
coleenp@548 97 _cl(cl), _mr(mr) {}
coleenp@548 98 virtual void do_oop(oop* p);
coleenp@548 99 virtual void do_oop(narrowOop* p);
coleenp@4037 100 virtual bool do_metadata() {
coleenp@4037 101 // _cl is of type ExtendedOopClosure instead of OopClosure, so that we can check this.
coleenp@4037 102 assert(!_cl->do_metadata(), "I've checked all call paths, this shouldn't happen.");
coleenp@4037 103 return false;
coleenp@4037 104 }
coleenp@4037 105 virtual void do_klass(Klass* k) { ShouldNotReachHere(); }
coleenp@4037 106 virtual void do_class_loader_data(ClassLoaderData* cld) { ShouldNotReachHere(); }
duke@435 107 };
duke@435 108
duke@435 109 // A Space describes a heap area. Class Space is an abstract
duke@435 110 // base class.
duke@435 111 //
duke@435 112 // Space supports allocation, size computation and GC support is provided.
duke@435 113 //
duke@435 114 // Invariant: bottom() and end() are on page_size boundaries and
duke@435 115 // bottom() <= top() <= end()
duke@435 116 // top() is inclusive and end() is exclusive.
duke@435 117
zgu@3900 118 class Space: public CHeapObj<mtGC> {
duke@435 119 friend class VMStructs;
duke@435 120 protected:
duke@435 121 HeapWord* _bottom;
duke@435 122 HeapWord* _end;
duke@435 123
duke@435 124 // Used in support of save_marks()
duke@435 125 HeapWord* _saved_mark_word;
duke@435 126
duke@435 127 MemRegionClosure* _preconsumptionDirtyCardClosure;
duke@435 128
duke@435 129 // A sequential tasks done structure. This supports
duke@435 130 // parallel GC, where we have threads dynamically
duke@435 131 // claiming sub-tasks from a larger parallel task.
duke@435 132 SequentialSubTasksDone _par_seq_tasks;
duke@435 133
duke@435 134 Space():
duke@435 135 _bottom(NULL), _end(NULL), _preconsumptionDirtyCardClosure(NULL) { }
duke@435 136
duke@435 137 public:
duke@435 138 // Accessors
duke@435 139 HeapWord* bottom() const { return _bottom; }
duke@435 140 HeapWord* end() const { return _end; }
duke@435 141 virtual void set_bottom(HeapWord* value) { _bottom = value; }
duke@435 142 virtual void set_end(HeapWord* value) { _end = value; }
duke@435 143
ysr@777 144 virtual HeapWord* saved_mark_word() const { return _saved_mark_word; }
ysr@1280 145
duke@435 146 void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
duke@435 147
duke@435 148 MemRegionClosure* preconsumptionDirtyCardClosure() const {
duke@435 149 return _preconsumptionDirtyCardClosure;
duke@435 150 }
duke@435 151 void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
duke@435 152 _preconsumptionDirtyCardClosure = cl;
duke@435 153 }
duke@435 154
duke@435 155 // Returns a subregion of the space containing all the objects in
duke@435 156 // the space.
duke@435 157 virtual MemRegion used_region() const { return MemRegion(bottom(), end()); }
duke@435 158
duke@435 159 // Returns a region that is guaranteed to contain (at least) all objects
duke@435 160 // allocated at the time of the last call to "save_marks". If the space
duke@435 161 // initializes its DirtyCardToOopClosure's specifying the "contig" option
duke@435 162 // (that is, if the space is contiguous), then this region must contain only
duke@435 163 // such objects: the memregion will be from the bottom of the region to the
duke@435 164 // saved mark. Otherwise, the "obj_allocated_since_save_marks" method of
duke@435 165 // the space must distiguish between objects in the region allocated before
duke@435 166 // and after the call to save marks.
duke@435 167 virtual MemRegion used_region_at_save_marks() const {
duke@435 168 return MemRegion(bottom(), saved_mark_word());
duke@435 169 }
duke@435 170
ysr@777 171 // Initialization.
ysr@777 172 // "initialize" should be called once on a space, before it is used for
ysr@777 173 // any purpose. The "mr" arguments gives the bounds of the space, and
ysr@777 174 // the "clear_space" argument should be true unless the memory in "mr" is
ysr@777 175 // known to be zeroed.
jmasa@698 176 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
ysr@777 177
ysr@777 178 // The "clear" method must be called on a region that may have
ysr@777 179 // had allocation performed in it, but is now to be considered empty.
jmasa@698 180 virtual void clear(bool mangle_space);
duke@435 181
duke@435 182 // For detecting GC bugs. Should only be called at GC boundaries, since
duke@435 183 // some unused space may be used as scratch space during GC's.
duke@435 184 // Default implementation does nothing. We also call this when expanding
duke@435 185 // a space to satisfy an allocation request. See bug #4668531
duke@435 186 virtual void mangle_unused_area() {}
jmasa@698 187 virtual void mangle_unused_area_complete() {}
duke@435 188 virtual void mangle_region(MemRegion mr) {}
duke@435 189
duke@435 190 // Testers
duke@435 191 bool is_empty() const { return used() == 0; }
duke@435 192 bool not_empty() const { return used() > 0; }
duke@435 193
duke@435 194 // Returns true iff the given the space contains the
duke@435 195 // given address as part of an allocated object. For
duke@435 196 // ceratin kinds of spaces, this might be a potentially
duke@435 197 // expensive operation. To prevent performance problems
duke@435 198 // on account of its inadvertent use in product jvm's,
duke@435 199 // we restrict its use to assertion checks only.
stefank@3335 200 virtual bool is_in(const void* p) const = 0;
duke@435 201
duke@435 202 // Returns true iff the given reserved memory of the space contains the
duke@435 203 // given address.
duke@435 204 bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
duke@435 205
duke@435 206 // Returns true iff the given block is not allocated.
duke@435 207 virtual bool is_free_block(const HeapWord* p) const = 0;
duke@435 208
duke@435 209 // Test whether p is double-aligned
duke@435 210 static bool is_aligned(void* p) {
duke@435 211 return ((intptr_t)p & (sizeof(double)-1)) == 0;
duke@435 212 }
duke@435 213
duke@435 214 // Size computations. Sizes are in bytes.
duke@435 215 size_t capacity() const { return byte_size(bottom(), end()); }
duke@435 216 virtual size_t used() const = 0;
duke@435 217 virtual size_t free() const = 0;
duke@435 218
duke@435 219 // Iterate over all the ref-containing fields of all objects in the
duke@435 220 // space, calling "cl.do_oop" on each. Fields in objects allocated by
duke@435 221 // applications of the closure are not included in the iteration.
coleenp@4037 222 virtual void oop_iterate(ExtendedOopClosure* cl);
duke@435 223
duke@435 224 // Same as above, restricted to the intersection of a memory region and
duke@435 225 // the space. Fields in objects allocated by applications of the closure
duke@435 226 // are not included in the iteration.
coleenp@4037 227 virtual void oop_iterate(MemRegion mr, ExtendedOopClosure* cl) = 0;
duke@435 228
duke@435 229 // Iterate over all objects in the space, calling "cl.do_object" on
duke@435 230 // each. Objects allocated by applications of the closure are not
duke@435 231 // included in the iteration.
duke@435 232 virtual void object_iterate(ObjectClosure* blk) = 0;
jmasa@952 233 // Similar to object_iterate() except only iterates over
jmasa@952 234 // objects whose internal references point to objects in the space.
jmasa@952 235 virtual void safe_object_iterate(ObjectClosure* blk) = 0;
duke@435 236
duke@435 237 // Iterate over all objects that intersect with mr, calling "cl->do_object"
duke@435 238 // on each. There is an exception to this: if this closure has already
duke@435 239 // been invoked on an object, it may skip such objects in some cases. This is
duke@435 240 // Most likely to happen in an "upwards" (ascending address) iteration of
duke@435 241 // MemRegions.
duke@435 242 virtual void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
duke@435 243
duke@435 244 // Iterate over as many initialized objects in the space as possible,
duke@435 245 // calling "cl.do_object_careful" on each. Return NULL if all objects
duke@435 246 // in the space (at the start of the iteration) were iterated over.
duke@435 247 // Return an address indicating the extent of the iteration in the
duke@435 248 // event that the iteration had to return because of finding an
duke@435 249 // uninitialized object in the space, or if the closure "cl"
duke@435 250 // signalled early termination.
duke@435 251 virtual HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
duke@435 252 virtual HeapWord* object_iterate_careful_m(MemRegion mr,
duke@435 253 ObjectClosureCareful* cl);
duke@435 254
duke@435 255 // Create and return a new dirty card to oop closure. Can be
duke@435 256 // overriden to return the appropriate type of closure
duke@435 257 // depending on the type of space in which the closure will
duke@435 258 // operate. ResourceArea allocated.
coleenp@4037 259 virtual DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
duke@435 260 CardTableModRefBS::PrecisionStyle precision,
duke@435 261 HeapWord* boundary = NULL);
duke@435 262
duke@435 263 // If "p" is in the space, returns the address of the start of the
duke@435 264 // "block" that contains "p". We say "block" instead of "object" since
duke@435 265 // some heaps may not pack objects densely; a chunk may either be an
duke@435 266 // object or a non-object. If "p" is not in the space, return NULL.
ysr@777 267 virtual HeapWord* block_start_const(const void* p) const = 0;
ysr@777 268
ysr@777 269 // The non-const version may have benevolent side effects on the data
ysr@777 270 // structure supporting these calls, possibly speeding up future calls.
ysr@777 271 // The default implementation, however, is simply to call the const
ysr@777 272 // version.
ysr@777 273 inline virtual HeapWord* block_start(const void* p);
duke@435 274
duke@435 275 // Requires "addr" to be the start of a chunk, and returns its size.
duke@435 276 // "addr + size" is required to be the start of a new chunk, or the end
duke@435 277 // of the active area of the heap.
duke@435 278 virtual size_t block_size(const HeapWord* addr) const = 0;
duke@435 279
duke@435 280 // Requires "addr" to be the start of a block, and returns "TRUE" iff
duke@435 281 // the block is an object.
duke@435 282 virtual bool block_is_obj(const HeapWord* addr) const = 0;
duke@435 283
duke@435 284 // Requires "addr" to be the start of a block, and returns "TRUE" iff
duke@435 285 // the block is an object and the object is alive.
duke@435 286 virtual bool obj_is_alive(const HeapWord* addr) const;
duke@435 287
duke@435 288 // Allocation (return NULL if full). Assumes the caller has established
duke@435 289 // mutually exclusive access to the space.
duke@435 290 virtual HeapWord* allocate(size_t word_size) = 0;
duke@435 291
duke@435 292 // Allocation (return NULL if full). Enforces mutual exclusion internally.
duke@435 293 virtual HeapWord* par_allocate(size_t word_size) = 0;
duke@435 294
duke@435 295 // Returns true if this object has been allocated since a
duke@435 296 // generation's "save_marks" call.
duke@435 297 virtual bool obj_allocated_since_save_marks(const oop obj) const = 0;
duke@435 298
duke@435 299 // Mark-sweep-compact support: all spaces can update pointers to objects
duke@435 300 // moving as a part of compaction.
duke@435 301 virtual void adjust_pointers();
duke@435 302
duke@435 303 // PrintHeapAtGC support
duke@435 304 virtual void print() const;
duke@435 305 virtual void print_on(outputStream* st) const;
duke@435 306 virtual void print_short() const;
duke@435 307 virtual void print_short_on(outputStream* st) const;
duke@435 308
duke@435 309
duke@435 310 // Accessor for parallel sequential tasks.
duke@435 311 SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
duke@435 312
duke@435 313 // IF "this" is a ContiguousSpace, return it, else return NULL.
duke@435 314 virtual ContiguousSpace* toContiguousSpace() {
duke@435 315 return NULL;
duke@435 316 }
duke@435 317
duke@435 318 // Debugging
brutisso@3711 319 virtual void verify() const = 0;
duke@435 320 };
duke@435 321
duke@435 322 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
duke@435 323 // OopClosure to (the addresses of) all the ref-containing fields that could
duke@435 324 // be modified by virtue of the given MemRegion being dirty. (Note that
duke@435 325 // because of the imprecise nature of the write barrier, this may iterate
duke@435 326 // over oops beyond the region.)
duke@435 327 // This base type for dirty card to oop closures handles memory regions
duke@435 328 // in non-contiguous spaces with no boundaries, and should be sub-classed
duke@435 329 // to support other space types. See ContiguousDCTOC for a sub-class
duke@435 330 // that works with ContiguousSpaces.
duke@435 331
duke@435 332 class DirtyCardToOopClosure: public MemRegionClosureRO {
duke@435 333 protected:
coleenp@4037 334 ExtendedOopClosure* _cl;
duke@435 335 Space* _sp;
duke@435 336 CardTableModRefBS::PrecisionStyle _precision;
duke@435 337 HeapWord* _boundary; // If non-NULL, process only non-NULL oops
duke@435 338 // pointing below boundary.
ysr@777 339 HeapWord* _min_done; // ObjHeadPreciseArray precision requires
duke@435 340 // a downwards traversal; this is the
duke@435 341 // lowest location already done (or,
duke@435 342 // alternatively, the lowest address that
duke@435 343 // shouldn't be done again. NULL means infinity.)
duke@435 344 NOT_PRODUCT(HeapWord* _last_bottom;)
ysr@777 345 NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
duke@435 346
duke@435 347 // Get the actual top of the area on which the closure will
duke@435 348 // operate, given where the top is assumed to be (the end of the
duke@435 349 // memory region passed to do_MemRegion) and where the object
duke@435 350 // at the top is assumed to start. For example, an object may
duke@435 351 // start at the top but actually extend past the assumed top,
duke@435 352 // in which case the top becomes the end of the object.
duke@435 353 virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
duke@435 354
duke@435 355 // Walk the given memory region from bottom to (actual) top
duke@435 356 // looking for objects and applying the oop closure (_cl) to
duke@435 357 // them. The base implementation of this treats the area as
duke@435 358 // blocks, where a block may or may not be an object. Sub-
duke@435 359 // classes should override this to provide more accurate
duke@435 360 // or possibly more efficient walking.
duke@435 361 virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
duke@435 362
duke@435 363 public:
coleenp@4037 364 DirtyCardToOopClosure(Space* sp, ExtendedOopClosure* cl,
duke@435 365 CardTableModRefBS::PrecisionStyle precision,
duke@435 366 HeapWord* boundary) :
duke@435 367 _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
duke@435 368 _min_done(NULL) {
ysr@777 369 NOT_PRODUCT(_last_bottom = NULL);
ysr@777 370 NOT_PRODUCT(_last_explicit_min_done = NULL);
duke@435 371 }
duke@435 372
duke@435 373 void do_MemRegion(MemRegion mr);
duke@435 374
duke@435 375 void set_min_done(HeapWord* min_done) {
duke@435 376 _min_done = min_done;
ysr@777 377 NOT_PRODUCT(_last_explicit_min_done = _min_done);
duke@435 378 }
duke@435 379 #ifndef PRODUCT
duke@435 380 void set_last_bottom(HeapWord* last_bottom) {
duke@435 381 _last_bottom = last_bottom;
duke@435 382 }
duke@435 383 #endif
duke@435 384 };
duke@435 385
duke@435 386 // A structure to represent a point at which objects are being copied
duke@435 387 // during compaction.
duke@435 388 class CompactPoint : public StackObj {
duke@435 389 public:
duke@435 390 Generation* gen;
duke@435 391 CompactibleSpace* space;
duke@435 392 HeapWord* threshold;
duke@435 393 CompactPoint(Generation* _gen, CompactibleSpace* _space,
duke@435 394 HeapWord* _threshold) :
duke@435 395 gen(_gen), space(_space), threshold(_threshold) {}
duke@435 396 };
duke@435 397
duke@435 398
duke@435 399 // A space that supports compaction operations. This is usually, but not
duke@435 400 // necessarily, a space that is normally contiguous. But, for example, a
duke@435 401 // free-list-based space whose normal collection is a mark-sweep without
duke@435 402 // compaction could still support compaction in full GC's.
duke@435 403
duke@435 404 class CompactibleSpace: public Space {
duke@435 405 friend class VMStructs;
duke@435 406 friend class CompactibleFreeListSpace;
duke@435 407 private:
duke@435 408 HeapWord* _compaction_top;
duke@435 409 CompactibleSpace* _next_compaction_space;
duke@435 410
duke@435 411 public:
ysr@782 412 CompactibleSpace() :
ysr@782 413 _compaction_top(NULL), _next_compaction_space(NULL) {}
ysr@782 414
jmasa@698 415 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
tonyp@791 416 virtual void clear(bool mangle_space);
duke@435 417
duke@435 418 // Used temporarily during a compaction phase to hold the value
duke@435 419 // top should have when compaction is complete.
duke@435 420 HeapWord* compaction_top() const { return _compaction_top; }
duke@435 421
duke@435 422 void set_compaction_top(HeapWord* value) {
duke@435 423 assert(value == NULL || (value >= bottom() && value <= end()),
duke@435 424 "should point inside space");
duke@435 425 _compaction_top = value;
duke@435 426 }
duke@435 427
duke@435 428 // Perform operations on the space needed after a compaction
duke@435 429 // has been performed.
duke@435 430 virtual void reset_after_compaction() {}
duke@435 431
duke@435 432 // Returns the next space (in the current generation) to be compacted in
duke@435 433 // the global compaction order. Also is used to select the next
duke@435 434 // space into which to compact.
duke@435 435
duke@435 436 virtual CompactibleSpace* next_compaction_space() const {
duke@435 437 return _next_compaction_space;
duke@435 438 }
duke@435 439
duke@435 440 void set_next_compaction_space(CompactibleSpace* csp) {
duke@435 441 _next_compaction_space = csp;
duke@435 442 }
duke@435 443
duke@435 444 // MarkSweep support phase2
duke@435 445
duke@435 446 // Start the process of compaction of the current space: compute
duke@435 447 // post-compaction addresses, and insert forwarding pointers. The fields
duke@435 448 // "cp->gen" and "cp->compaction_space" are the generation and space into
duke@435 449 // which we are currently compacting. This call updates "cp" as necessary,
duke@435 450 // and leaves the "compaction_top" of the final value of
duke@435 451 // "cp->compaction_space" up-to-date. Offset tables may be updated in
duke@435 452 // this phase as if the final copy had occurred; if so, "cp->threshold"
duke@435 453 // indicates when the next such action should be taken.
duke@435 454 virtual void prepare_for_compaction(CompactPoint* cp);
duke@435 455 // MarkSweep support phase3
duke@435 456 virtual void adjust_pointers();
duke@435 457 // MarkSweep support phase4
duke@435 458 virtual void compact();
duke@435 459
duke@435 460 // The maximum percentage of objects that can be dead in the compacted
duke@435 461 // live part of a compacted space ("deadwood" support.)
jcoomes@873 462 virtual size_t allowed_dead_ratio() const { return 0; };
duke@435 463
duke@435 464 // Some contiguous spaces may maintain some data structures that should
duke@435 465 // be updated whenever an allocation crosses a boundary. This function
duke@435 466 // returns the first such boundary.
duke@435 467 // (The default implementation returns the end of the space, so the
duke@435 468 // boundary is never crossed.)
duke@435 469 virtual HeapWord* initialize_threshold() { return end(); }
duke@435 470
duke@435 471 // "q" is an object of the given "size" that should be forwarded;
duke@435 472 // "cp" names the generation ("gen") and containing "this" (which must
duke@435 473 // also equal "cp->space"). "compact_top" is where in "this" the
duke@435 474 // next object should be forwarded to. If there is room in "this" for
duke@435 475 // the object, insert an appropriate forwarding pointer in "q".
duke@435 476 // If not, go to the next compaction space (there must
duke@435 477 // be one, since compaction must succeed -- we go to the first space of
duke@435 478 // the previous generation if necessary, updating "cp"), reset compact_top
duke@435 479 // and then forward. In either case, returns the new value of "compact_top".
duke@435 480 // If the forwarding crosses "cp->threshold", invokes the "cross_threhold"
duke@435 481 // function of the then-current compaction space, and updates "cp->threshold
duke@435 482 // accordingly".
duke@435 483 virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
duke@435 484 HeapWord* compact_top);
duke@435 485
duke@435 486 // Return a size with adjusments as required of the space.
duke@435 487 virtual size_t adjust_object_size_v(size_t size) const { return size; }
duke@435 488
duke@435 489 protected:
duke@435 490 // Used during compaction.
duke@435 491 HeapWord* _first_dead;
duke@435 492 HeapWord* _end_of_live;
duke@435 493
duke@435 494 // Minimum size of a free block.
duke@435 495 virtual size_t minimum_free_block_size() const = 0;
duke@435 496
duke@435 497 // This the function is invoked when an allocation of an object covering
duke@435 498 // "start" to "end occurs crosses the threshold; returns the next
duke@435 499 // threshold. (The default implementation does nothing.)
duke@435 500 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
duke@435 501 return end();
duke@435 502 }
duke@435 503
duke@435 504 // Requires "allowed_deadspace_words > 0", that "q" is the start of a
duke@435 505 // free block of the given "word_len", and that "q", were it an object,
duke@435 506 // would not move if forwared. If the size allows, fill the free
duke@435 507 // block with an object, to prevent excessive compaction. Returns "true"
duke@435 508 // iff the free region was made deadspace, and modifies
duke@435 509 // "allowed_deadspace_words" to reflect the number of available deadspace
duke@435 510 // words remaining after this operation.
duke@435 511 bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
duke@435 512 size_t word_len);
duke@435 513 };
duke@435 514
duke@435 515 #define SCAN_AND_FORWARD(cp,scan_limit,block_is_obj,block_size) { \
duke@435 516 /* Compute the new addresses for the live objects and store it in the mark \
duke@435 517 * Used by universe::mark_sweep_phase2() \
duke@435 518 */ \
duke@435 519 HeapWord* compact_top; /* This is where we are currently compacting to. */ \
duke@435 520 \
duke@435 521 /* We're sure to be here before any objects are compacted into this \
duke@435 522 * space, so this is a good time to initialize this: \
duke@435 523 */ \
duke@435 524 set_compaction_top(bottom()); \
duke@435 525 \
duke@435 526 if (cp->space == NULL) { \
duke@435 527 assert(cp->gen != NULL, "need a generation"); \
duke@435 528 assert(cp->threshold == NULL, "just checking"); \
duke@435 529 assert(cp->gen->first_compaction_space() == this, "just checking"); \
duke@435 530 cp->space = cp->gen->first_compaction_space(); \
duke@435 531 compact_top = cp->space->bottom(); \
duke@435 532 cp->space->set_compaction_top(compact_top); \
duke@435 533 cp->threshold = cp->space->initialize_threshold(); \
duke@435 534 } else { \
duke@435 535 compact_top = cp->space->compaction_top(); \
duke@435 536 } \
duke@435 537 \
duke@435 538 /* We allow some amount of garbage towards the bottom of the space, so \
duke@435 539 * we don't start compacting before there is a significant gain to be made.\
duke@435 540 * Occasionally, we want to ensure a full compaction, which is determined \
duke@435 541 * by the MarkSweepAlwaysCompactCount parameter. \
duke@435 542 */ \
tschatzl@5119 543 uint invocations = MarkSweep::total_invocations(); \
tschatzl@5119 544 bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0); \
duke@435 545 \
duke@435 546 size_t allowed_deadspace = 0; \
duke@435 547 if (skip_dead) { \
jcoomes@873 548 const size_t ratio = allowed_dead_ratio(); \
duke@435 549 allowed_deadspace = (capacity() * ratio / 100) / HeapWordSize; \
duke@435 550 } \
duke@435 551 \
duke@435 552 HeapWord* q = bottom(); \
duke@435 553 HeapWord* t = scan_limit(); \
duke@435 554 \
duke@435 555 HeapWord* end_of_live= q; /* One byte beyond the last byte of the last \
duke@435 556 live object. */ \
duke@435 557 HeapWord* first_dead = end();/* The first dead object. */ \
duke@435 558 LiveRange* liveRange = NULL; /* The current live range, recorded in the \
duke@435 559 first header of preceding free area. */ \
duke@435 560 _first_dead = first_dead; \
duke@435 561 \
duke@435 562 const intx interval = PrefetchScanIntervalInBytes; \
duke@435 563 \
duke@435 564 while (q < t) { \
duke@435 565 assert(!block_is_obj(q) || \
duke@435 566 oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() || \
duke@435 567 oop(q)->mark()->has_bias_pattern(), \
duke@435 568 "these are the only valid states during a mark sweep"); \
duke@435 569 if (block_is_obj(q) && oop(q)->is_gc_marked()) { \
duke@435 570 /* prefetch beyond q */ \
duke@435 571 Prefetch::write(q, interval); \
ysr@777 572 size_t size = block_size(q); \
duke@435 573 compact_top = cp->space->forward(oop(q), size, cp, compact_top); \
duke@435 574 q += size; \
duke@435 575 end_of_live = q; \
duke@435 576 } else { \
duke@435 577 /* run over all the contiguous dead objects */ \
duke@435 578 HeapWord* end = q; \
duke@435 579 do { \
duke@435 580 /* prefetch beyond end */ \
duke@435 581 Prefetch::write(end, interval); \
duke@435 582 end += block_size(end); \
duke@435 583 } while (end < t && (!block_is_obj(end) || !oop(end)->is_gc_marked()));\
duke@435 584 \
duke@435 585 /* see if we might want to pretend this object is alive so that \
duke@435 586 * we don't have to compact quite as often. \
duke@435 587 */ \
duke@435 588 if (allowed_deadspace > 0 && q == compact_top) { \
duke@435 589 size_t sz = pointer_delta(end, q); \
duke@435 590 if (insert_deadspace(allowed_deadspace, q, sz)) { \
duke@435 591 compact_top = cp->space->forward(oop(q), sz, cp, compact_top); \
duke@435 592 q = end; \
duke@435 593 end_of_live = end; \
duke@435 594 continue; \
duke@435 595 } \
duke@435 596 } \
duke@435 597 \
duke@435 598 /* otherwise, it really is a free region. */ \
duke@435 599 \
duke@435 600 /* for the previous LiveRange, record the end of the live objects. */ \
duke@435 601 if (liveRange) { \
duke@435 602 liveRange->set_end(q); \
duke@435 603 } \
duke@435 604 \
duke@435 605 /* record the current LiveRange object. \
duke@435 606 * liveRange->start() is overlaid on the mark word. \
duke@435 607 */ \
duke@435 608 liveRange = (LiveRange*)q; \
duke@435 609 liveRange->set_start(end); \
duke@435 610 liveRange->set_end(end); \
duke@435 611 \
duke@435 612 /* see if this is the first dead region. */ \
duke@435 613 if (q < first_dead) { \
duke@435 614 first_dead = q; \
duke@435 615 } \
duke@435 616 \
duke@435 617 /* move on to the next object */ \
duke@435 618 q = end; \
duke@435 619 } \
duke@435 620 } \
duke@435 621 \
duke@435 622 assert(q == t, "just checking"); \
duke@435 623 if (liveRange != NULL) { \
duke@435 624 liveRange->set_end(q); \
duke@435 625 } \
duke@435 626 _end_of_live = end_of_live; \
duke@435 627 if (end_of_live < first_dead) { \
duke@435 628 first_dead = end_of_live; \
duke@435 629 } \
duke@435 630 _first_dead = first_dead; \
duke@435 631 \
duke@435 632 /* save the compaction_top of the compaction space. */ \
duke@435 633 cp->space->set_compaction_top(compact_top); \
duke@435 634 }
duke@435 635
ysr@777 636 #define SCAN_AND_ADJUST_POINTERS(adjust_obj_size) { \
ysr@777 637 /* adjust all the interior pointers to point at the new locations of objects \
ysr@777 638 * Used by MarkSweep::mark_sweep_phase3() */ \
duke@435 639 \
ysr@777 640 HeapWord* q = bottom(); \
ysr@777 641 HeapWord* t = _end_of_live; /* Established by "prepare_for_compaction". */ \
duke@435 642 \
ysr@777 643 assert(_first_dead <= _end_of_live, "Stands to reason, no?"); \
duke@435 644 \
ysr@777 645 if (q < t && _first_dead > q && \
duke@435 646 !oop(q)->is_gc_marked()) { \
duke@435 647 /* we have a chunk of the space which hasn't moved and we've \
duke@435 648 * reinitialized the mark word during the previous pass, so we can't \
ysr@777 649 * use is_gc_marked for the traversal. */ \
duke@435 650 HeapWord* end = _first_dead; \
duke@435 651 \
ysr@777 652 while (q < end) { \
ysr@777 653 /* I originally tried to conjoin "block_start(q) == q" to the \
ysr@777 654 * assertion below, but that doesn't work, because you can't \
ysr@777 655 * accurately traverse previous objects to get to the current one \
coleenp@4037 656 * after their pointers have been \
ysr@777 657 * updated, until the actual compaction is done. dld, 4/00 */ \
ysr@777 658 assert(block_is_obj(q), \
ysr@777 659 "should be at block boundaries, and should be looking at objs"); \
duke@435 660 \
ysr@777 661 /* point all the oops to the new location */ \
ysr@777 662 size_t size = oop(q)->adjust_pointers(); \
ysr@777 663 size = adjust_obj_size(size); \
duke@435 664 \
coleenp@548 665 q += size; \
ysr@777 666 } \
duke@435 667 \
ysr@777 668 if (_first_dead == t) { \
ysr@777 669 q = t; \
ysr@777 670 } else { \
ysr@777 671 /* $$$ This is funky. Using this to read the previously written \
ysr@777 672 * LiveRange. See also use below. */ \
duke@435 673 q = (HeapWord*)oop(_first_dead)->mark()->decode_pointer(); \
ysr@777 674 } \
ysr@777 675 } \
duke@435 676 \
duke@435 677 const intx interval = PrefetchScanIntervalInBytes; \
duke@435 678 \
ysr@777 679 debug_only(HeapWord* prev_q = NULL); \
ysr@777 680 while (q < t) { \
ysr@777 681 /* prefetch beyond q */ \
duke@435 682 Prefetch::write(q, interval); \
ysr@777 683 if (oop(q)->is_gc_marked()) { \
ysr@777 684 /* q is alive */ \
ysr@777 685 /* point all the oops to the new location */ \
ysr@777 686 size_t size = oop(q)->adjust_pointers(); \
ysr@777 687 size = adjust_obj_size(size); \
ysr@777 688 debug_only(prev_q = q); \
duke@435 689 q += size; \
tonyp@791 690 } else { \
tonyp@791 691 /* q is not a live object, so its mark should point at the next \
tonyp@791 692 * live object */ \
tonyp@791 693 debug_only(prev_q = q); \
tonyp@791 694 q = (HeapWord*) oop(q)->mark()->decode_pointer(); \
tonyp@791 695 assert(q > prev_q, "we should be moving forward through memory"); \
tonyp@791 696 } \
tonyp@791 697 } \
duke@435 698 \
tonyp@791 699 assert(q == t, "just checking"); \
duke@435 700 }
duke@435 701
tonyp@791 702 #define SCAN_AND_COMPACT(obj_size) { \
duke@435 703 /* Copy all live objects to their new location \
tonyp@791 704 * Used by MarkSweep::mark_sweep_phase4() */ \
duke@435 705 \
tonyp@791 706 HeapWord* q = bottom(); \
tonyp@791 707 HeapWord* const t = _end_of_live; \
tonyp@791 708 debug_only(HeapWord* prev_q = NULL); \
duke@435 709 \
tonyp@791 710 if (q < t && _first_dead > q && \
duke@435 711 !oop(q)->is_gc_marked()) { \
tonyp@791 712 debug_only( \
coleenp@548 713 /* we have a chunk of the space which hasn't moved and we've reinitialized \
coleenp@548 714 * the mark word during the previous pass, so we can't use is_gc_marked for \
coleenp@548 715 * the traversal. */ \
tonyp@791 716 HeapWord* const end = _first_dead; \
tonyp@791 717 \
tonyp@791 718 while (q < end) { \
coleenp@548 719 size_t size = obj_size(q); \
coleenp@548 720 assert(!oop(q)->is_gc_marked(), \
coleenp@548 721 "should be unmarked (special dense prefix handling)"); \
tonyp@791 722 debug_only(prev_q = q); \
coleenp@548 723 q += size; \
tonyp@791 724 } \
tonyp@791 725 ) /* debug_only */ \
duke@435 726 \
tonyp@791 727 if (_first_dead == t) { \
tonyp@791 728 q = t; \
tonyp@791 729 } else { \
tonyp@791 730 /* $$$ Funky */ \
tonyp@791 731 q = (HeapWord*) oop(_first_dead)->mark()->decode_pointer(); \
tonyp@791 732 } \
tonyp@791 733 } \
tonyp@791 734 \
tonyp@791 735 const intx scan_interval = PrefetchScanIntervalInBytes; \
tonyp@791 736 const intx copy_interval = PrefetchCopyIntervalInBytes; \
tonyp@791 737 while (q < t) { \
tonyp@791 738 if (!oop(q)->is_gc_marked()) { \
tonyp@791 739 /* mark is pointer to next marked oop */ \
tonyp@791 740 debug_only(prev_q = q); \
tonyp@791 741 q = (HeapWord*) oop(q)->mark()->decode_pointer(); \
tonyp@791 742 assert(q > prev_q, "we should be moving forward through memory"); \
tonyp@791 743 } else { \
tonyp@791 744 /* prefetch beyond q */ \
duke@435 745 Prefetch::read(q, scan_interval); \
duke@435 746 \
duke@435 747 /* size and destination */ \
duke@435 748 size_t size = obj_size(q); \
duke@435 749 HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee(); \
duke@435 750 \
tonyp@791 751 /* prefetch beyond compaction_top */ \
duke@435 752 Prefetch::write(compaction_top, copy_interval); \
duke@435 753 \
tonyp@791 754 /* copy object and reinit its mark */ \
tonyp@791 755 assert(q != compaction_top, "everything in this pass should be moving"); \
tonyp@791 756 Copy::aligned_conjoint_words(q, compaction_top, size); \
tonyp@791 757 oop(compaction_top)->init_mark(); \
tonyp@791 758 assert(oop(compaction_top)->klass() != NULL, "should have a class"); \
duke@435 759 \
tonyp@791 760 debug_only(prev_q = q); \
duke@435 761 q += size; \
tonyp@791 762 } \
tonyp@791 763 } \
duke@435 764 \
ysr@777 765 /* Let's remember if we were empty before we did the compaction. */ \
ysr@777 766 bool was_empty = used_region().is_empty(); \
duke@435 767 /* Reset space after compaction is complete */ \
tonyp@791 768 reset_after_compaction(); \
duke@435 769 /* We do this clear, below, since it has overloaded meanings for some */ \
duke@435 770 /* space subtypes. For example, OffsetTableContigSpace's that were */ \
duke@435 771 /* compacted into will have had their offset table thresholds updated */ \
duke@435 772 /* continuously, but those that weren't need to have their thresholds */ \
duke@435 773 /* re-initialized. Also mangles unused area for debugging. */ \
ysr@777 774 if (used_region().is_empty()) { \
tonyp@791 775 if (!was_empty) clear(SpaceDecorator::Mangle); \
duke@435 776 } else { \
duke@435 777 if (ZapUnusedHeapArea) mangle_unused_area(); \
duke@435 778 } \
duke@435 779 }
duke@435 780
jmasa@698 781 class GenSpaceMangler;
jmasa@698 782
duke@435 783 // A space in which the free area is contiguous. It therefore supports
duke@435 784 // faster allocation, and compaction.
duke@435 785 class ContiguousSpace: public CompactibleSpace {
duke@435 786 friend class OneContigSpaceCardGeneration;
duke@435 787 friend class VMStructs;
duke@435 788 protected:
duke@435 789 HeapWord* _top;
duke@435 790 HeapWord* _concurrent_iteration_safe_limit;
jmasa@698 791 // A helper for mangling the unused area of the space in debug builds.
jmasa@698 792 GenSpaceMangler* _mangler;
jmasa@698 793
jmasa@698 794 GenSpaceMangler* mangler() { return _mangler; }
duke@435 795
duke@435 796 // Allocation helpers (return NULL if full).
duke@435 797 inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
duke@435 798 inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
duke@435 799
duke@435 800 public:
jmasa@698 801 ContiguousSpace();
jmasa@698 802 ~ContiguousSpace();
jmasa@698 803
jmasa@698 804 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
tonyp@791 805 virtual void clear(bool mangle_space);
duke@435 806
duke@435 807 // Accessors
duke@435 808 HeapWord* top() const { return _top; }
duke@435 809 void set_top(HeapWord* value) { _top = value; }
duke@435 810
ysr@777 811 virtual void set_saved_mark() { _saved_mark_word = top(); }
ysr@777 812 void reset_saved_mark() { _saved_mark_word = bottom(); }
duke@435 813
duke@435 814 WaterMark bottom_mark() { return WaterMark(this, bottom()); }
duke@435 815 WaterMark top_mark() { return WaterMark(this, top()); }
duke@435 816 WaterMark saved_mark() { return WaterMark(this, saved_mark_word()); }
duke@435 817 bool saved_mark_at_top() const { return saved_mark_word() == top(); }
duke@435 818
jmasa@698 819 // In debug mode mangle (write it with a particular bit
jmasa@698 820 // pattern) the unused part of a space.
jmasa@698 821
jmasa@698 822 // Used to save the an address in a space for later use during mangling.
jmasa@698 823 void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
jmasa@698 824 // Used to save the space's current top for later use during mangling.
jmasa@698 825 void set_top_for_allocations() PRODUCT_RETURN;
jmasa@698 826
jmasa@698 827 // Mangle regions in the space from the current top up to the
jmasa@698 828 // previously mangled part of the space.
jmasa@698 829 void mangle_unused_area() PRODUCT_RETURN;
jmasa@698 830 // Mangle [top, end)
jmasa@698 831 void mangle_unused_area_complete() PRODUCT_RETURN;
jmasa@698 832 // Mangle the given MemRegion.
jmasa@698 833 void mangle_region(MemRegion mr) PRODUCT_RETURN;
jmasa@698 834
jmasa@698 835 // Do some sparse checking on the area that should have been mangled.
jmasa@698 836 void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
jmasa@698 837 // Check the complete area that should have been mangled.
jmasa@698 838 // This code may be NULL depending on the macro DEBUG_MANGLING.
jmasa@698 839 void check_mangled_unused_area_complete() PRODUCT_RETURN;
duke@435 840
duke@435 841 // Size computations: sizes in bytes.
duke@435 842 size_t capacity() const { return byte_size(bottom(), end()); }
duke@435 843 size_t used() const { return byte_size(bottom(), top()); }
duke@435 844 size_t free() const { return byte_size(top(), end()); }
duke@435 845
duke@435 846 // Override from space.
duke@435 847 bool is_in(const void* p) const;
duke@435 848
duke@435 849 virtual bool is_free_block(const HeapWord* p) const;
duke@435 850
duke@435 851 // In a contiguous space we have a more obvious bound on what parts
duke@435 852 // contain objects.
duke@435 853 MemRegion used_region() const { return MemRegion(bottom(), top()); }
duke@435 854
duke@435 855 MemRegion used_region_at_save_marks() const {
duke@435 856 return MemRegion(bottom(), saved_mark_word());
duke@435 857 }
duke@435 858
duke@435 859 // Allocation (return NULL if full)
duke@435 860 virtual HeapWord* allocate(size_t word_size);
duke@435 861 virtual HeapWord* par_allocate(size_t word_size);
duke@435 862
duke@435 863 virtual bool obj_allocated_since_save_marks(const oop obj) const {
duke@435 864 return (HeapWord*)obj >= saved_mark_word();
duke@435 865 }
duke@435 866
duke@435 867 // Iteration
coleenp@4037 868 void oop_iterate(ExtendedOopClosure* cl);
coleenp@4037 869 void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
duke@435 870 void object_iterate(ObjectClosure* blk);
jmasa@952 871 // For contiguous spaces this method will iterate safely over objects
jmasa@952 872 // in the space (i.e., between bottom and top) when at a safepoint.
jmasa@952 873 void safe_object_iterate(ObjectClosure* blk);
duke@435 874 void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
duke@435 875 // iterates on objects up to the safe limit
duke@435 876 HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
stefank@3751 877 HeapWord* concurrent_iteration_safe_limit() {
stefank@3751 878 assert(_concurrent_iteration_safe_limit <= top(),
stefank@3751 879 "_concurrent_iteration_safe_limit update missed");
stefank@3751 880 return _concurrent_iteration_safe_limit;
stefank@3751 881 }
duke@435 882 // changes the safe limit, all objects from bottom() to the new
duke@435 883 // limit should be properly initialized
stefank@3751 884 void set_concurrent_iteration_safe_limit(HeapWord* new_limit) {
stefank@3751 885 assert(new_limit <= top(), "uninitialized objects in the safe range");
stefank@3751 886 _concurrent_iteration_safe_limit = new_limit;
stefank@3751 887 }
duke@435 888
coleenp@4037 889
jprovino@4542 890 #if INCLUDE_ALL_GCS
duke@435 891 // In support of parallel oop_iterate.
duke@435 892 #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix) \
duke@435 893 void par_oop_iterate(MemRegion mr, OopClosureType* blk);
duke@435 894
duke@435 895 ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
duke@435 896 #undef ContigSpace_PAR_OOP_ITERATE_DECL
jprovino@4542 897 #endif // INCLUDE_ALL_GCS
duke@435 898
duke@435 899 // Compaction support
duke@435 900 virtual void reset_after_compaction() {
duke@435 901 assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
duke@435 902 set_top(compaction_top());
duke@435 903 // set new iteration safe limit
duke@435 904 set_concurrent_iteration_safe_limit(compaction_top());
duke@435 905 }
duke@435 906 virtual size_t minimum_free_block_size() const { return 0; }
duke@435 907
duke@435 908 // Override.
coleenp@4037 909 DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
duke@435 910 CardTableModRefBS::PrecisionStyle precision,
duke@435 911 HeapWord* boundary = NULL);
duke@435 912
duke@435 913 // Apply "blk->do_oop" to the addresses of all reference fields in objects
duke@435 914 // starting with the _saved_mark_word, which was noted during a generation's
duke@435 915 // save_marks and is required to denote the head of an object.
duke@435 916 // Fields in objects allocated by applications of the closure
duke@435 917 // *are* included in the iteration.
duke@435 918 // Updates _saved_mark_word to point to just after the last object
duke@435 919 // iterated over.
duke@435 920 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
duke@435 921 void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
duke@435 922
duke@435 923 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
duke@435 924 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
duke@435 925
duke@435 926 // Same as object_iterate, but starting from "mark", which is required
duke@435 927 // to denote the start of an object. Objects allocated by
duke@435 928 // applications of the closure *are* included in the iteration.
duke@435 929 virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk);
duke@435 930
duke@435 931 // Very inefficient implementation.
ysr@777 932 virtual HeapWord* block_start_const(const void* p) const;
duke@435 933 size_t block_size(const HeapWord* p) const;
duke@435 934 // If a block is in the allocated area, it is an object.
duke@435 935 bool block_is_obj(const HeapWord* p) const { return p < top(); }
duke@435 936
duke@435 937 // Addresses for inlined allocation
duke@435 938 HeapWord** top_addr() { return &_top; }
duke@435 939 HeapWord** end_addr() { return &_end; }
duke@435 940
duke@435 941 // Overrides for more efficient compaction support.
duke@435 942 void prepare_for_compaction(CompactPoint* cp);
duke@435 943
duke@435 944 // PrintHeapAtGC support.
duke@435 945 virtual void print_on(outputStream* st) const;
duke@435 946
duke@435 947 // Checked dynamic downcasts.
duke@435 948 virtual ContiguousSpace* toContiguousSpace() {
duke@435 949 return this;
duke@435 950 }
duke@435 951
duke@435 952 // Debugging
brutisso@3711 953 virtual void verify() const;
duke@435 954
duke@435 955 // Used to increase collection frequency. "factor" of 0 means entire
duke@435 956 // space.
duke@435 957 void allocate_temporary_filler(int factor);
duke@435 958
duke@435 959 };
duke@435 960
duke@435 961
duke@435 962 // A dirty card to oop closure that does filtering.
duke@435 963 // It knows how to filter out objects that are outside of the _boundary.
duke@435 964 class Filtering_DCTOC : public DirtyCardToOopClosure {
duke@435 965 protected:
duke@435 966 // Override.
duke@435 967 void walk_mem_region(MemRegion mr,
duke@435 968 HeapWord* bottom, HeapWord* top);
duke@435 969
duke@435 970 // Walk the given memory region, from bottom to top, applying
duke@435 971 // the given oop closure to (possibly) all objects found. The
duke@435 972 // given oop closure may or may not be the same as the oop
duke@435 973 // closure with which this closure was created, as it may
duke@435 974 // be a filtering closure which makes use of the _boundary.
duke@435 975 // We offer two signatures, so the FilteringClosure static type is
duke@435 976 // apparent.
duke@435 977 virtual void walk_mem_region_with_cl(MemRegion mr,
duke@435 978 HeapWord* bottom, HeapWord* top,
coleenp@4037 979 ExtendedOopClosure* cl) = 0;
duke@435 980 virtual void walk_mem_region_with_cl(MemRegion mr,
duke@435 981 HeapWord* bottom, HeapWord* top,
duke@435 982 FilteringClosure* cl) = 0;
duke@435 983
duke@435 984 public:
coleenp@4037 985 Filtering_DCTOC(Space* sp, ExtendedOopClosure* cl,
duke@435 986 CardTableModRefBS::PrecisionStyle precision,
duke@435 987 HeapWord* boundary) :
duke@435 988 DirtyCardToOopClosure(sp, cl, precision, boundary) {}
duke@435 989 };
duke@435 990
duke@435 991 // A dirty card to oop closure for contiguous spaces
duke@435 992 // (ContiguousSpace and sub-classes).
duke@435 993 // It is a FilteringClosure, as defined above, and it knows:
duke@435 994 //
duke@435 995 // 1. That the actual top of any area in a memory region
duke@435 996 // contained by the space is bounded by the end of the contiguous
duke@435 997 // region of the space.
duke@435 998 // 2. That the space is really made up of objects and not just
duke@435 999 // blocks.
duke@435 1000
duke@435 1001 class ContiguousSpaceDCTOC : public Filtering_DCTOC {
duke@435 1002 protected:
duke@435 1003 // Overrides.
duke@435 1004 HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
duke@435 1005
duke@435 1006 virtual void walk_mem_region_with_cl(MemRegion mr,
duke@435 1007 HeapWord* bottom, HeapWord* top,
coleenp@4037 1008 ExtendedOopClosure* cl);
duke@435 1009 virtual void walk_mem_region_with_cl(MemRegion mr,
duke@435 1010 HeapWord* bottom, HeapWord* top,
duke@435 1011 FilteringClosure* cl);
duke@435 1012
duke@435 1013 public:
coleenp@4037 1014 ContiguousSpaceDCTOC(ContiguousSpace* sp, ExtendedOopClosure* cl,
duke@435 1015 CardTableModRefBS::PrecisionStyle precision,
duke@435 1016 HeapWord* boundary) :
duke@435 1017 Filtering_DCTOC(sp, cl, precision, boundary)
duke@435 1018 {}
duke@435 1019 };
duke@435 1020
duke@435 1021
duke@435 1022 // Class EdenSpace describes eden-space in new generation.
duke@435 1023
duke@435 1024 class DefNewGeneration;
duke@435 1025
duke@435 1026 class EdenSpace : public ContiguousSpace {
duke@435 1027 friend class VMStructs;
duke@435 1028 private:
duke@435 1029 DefNewGeneration* _gen;
duke@435 1030
duke@435 1031 // _soft_end is used as a soft limit on allocation. As soft limits are
duke@435 1032 // reached, the slow-path allocation code can invoke other actions and then
duke@435 1033 // adjust _soft_end up to a new soft limit or to end().
duke@435 1034 HeapWord* _soft_end;
duke@435 1035
duke@435 1036 public:
ysr@782 1037 EdenSpace(DefNewGeneration* gen) :
ysr@782 1038 _gen(gen), _soft_end(NULL) {}
duke@435 1039
duke@435 1040 // Get/set just the 'soft' limit.
duke@435 1041 HeapWord* soft_end() { return _soft_end; }
duke@435 1042 HeapWord** soft_end_addr() { return &_soft_end; }
duke@435 1043 void set_soft_end(HeapWord* value) { _soft_end = value; }
duke@435 1044
duke@435 1045 // Override.
jmasa@698 1046 void clear(bool mangle_space);
duke@435 1047
duke@435 1048 // Set both the 'hard' and 'soft' limits (_end and _soft_end).
duke@435 1049 void set_end(HeapWord* value) {
duke@435 1050 set_soft_end(value);
duke@435 1051 ContiguousSpace::set_end(value);
duke@435 1052 }
duke@435 1053
duke@435 1054 // Allocation (return NULL if full)
duke@435 1055 HeapWord* allocate(size_t word_size);
duke@435 1056 HeapWord* par_allocate(size_t word_size);
duke@435 1057 };
duke@435 1058
duke@435 1059 // Class ConcEdenSpace extends EdenSpace for the sake of safe
duke@435 1060 // allocation while soft-end is being modified concurrently
duke@435 1061
duke@435 1062 class ConcEdenSpace : public EdenSpace {
duke@435 1063 public:
duke@435 1064 ConcEdenSpace(DefNewGeneration* gen) : EdenSpace(gen) { }
duke@435 1065
duke@435 1066 // Allocation (return NULL if full)
duke@435 1067 HeapWord* par_allocate(size_t word_size);
duke@435 1068 };
duke@435 1069
duke@435 1070
duke@435 1071 // A ContigSpace that Supports an efficient "block_start" operation via
duke@435 1072 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
duke@435 1073 // other spaces.) This is the abstract base class for old generation
coleenp@4037 1074 // (tenured) spaces.
duke@435 1075
duke@435 1076 class OffsetTableContigSpace: public ContiguousSpace {
duke@435 1077 friend class VMStructs;
duke@435 1078 protected:
duke@435 1079 BlockOffsetArrayContigSpace _offsets;
duke@435 1080 Mutex _par_alloc_lock;
duke@435 1081
duke@435 1082 public:
duke@435 1083 // Constructor
duke@435 1084 OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
duke@435 1085 MemRegion mr);
duke@435 1086
duke@435 1087 void set_bottom(HeapWord* value);
duke@435 1088 void set_end(HeapWord* value);
duke@435 1089
jmasa@698 1090 void clear(bool mangle_space);
duke@435 1091
ysr@777 1092 inline HeapWord* block_start_const(const void* p) const;
duke@435 1093
duke@435 1094 // Add offset table update.
duke@435 1095 virtual inline HeapWord* allocate(size_t word_size);
duke@435 1096 inline HeapWord* par_allocate(size_t word_size);
duke@435 1097
duke@435 1098 // MarkSweep support phase3
duke@435 1099 virtual HeapWord* initialize_threshold();
duke@435 1100 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
duke@435 1101
duke@435 1102 virtual void print_on(outputStream* st) const;
duke@435 1103
duke@435 1104 // Debugging
brutisso@3711 1105 void verify() const;
duke@435 1106 };
duke@435 1107
duke@435 1108
duke@435 1109 // Class TenuredSpace is used by TenuredGeneration
duke@435 1110
duke@435 1111 class TenuredSpace: public OffsetTableContigSpace {
duke@435 1112 friend class VMStructs;
duke@435 1113 protected:
duke@435 1114 // Mark sweep support
jcoomes@873 1115 size_t allowed_dead_ratio() const;
duke@435 1116 public:
duke@435 1117 // Constructor
duke@435 1118 TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
duke@435 1119 MemRegion mr) :
duke@435 1120 OffsetTableContigSpace(sharedOffsetArray, mr) {}
duke@435 1121 };
stefank@2314 1122 #endif // SHARE_VM_MEMORY_SPACE_HPP

mercurial