src/share/vm/runtime/os.cpp

Wed, 17 Jul 2013 13:48:15 +0200

author
rbackman
date
Wed, 17 Jul 2013 13:48:15 +0200
changeset 5424
5e3b6f79d280
parent 5272
1f4355cee9a2
child 5585
f92b82d454fa
child 5612
d8e99408faad
child 6238
7ccce1a6fa4d
child 6457
94c202aa2646
permissions
-rw-r--r--

8020701: Avoid crashes in WatcherThread
Reviewed-by: acorn, dcubed, dsimms

duke@435 1 /*
rdurbin@4802 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/classLoader.hpp"
stefank@2314 27 #include "classfile/javaClasses.hpp"
stefank@2314 28 #include "classfile/systemDictionary.hpp"
stefank@2314 29 #include "classfile/vmSymbols.hpp"
stefank@2314 30 #include "code/icBuffer.hpp"
stefank@2314 31 #include "code/vtableStubs.hpp"
stefank@2314 32 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 33 #include "interpreter/interpreter.hpp"
stefank@2314 34 #include "memory/allocation.inline.hpp"
stefank@2314 35 #include "oops/oop.inline.hpp"
stefank@2314 36 #include "prims/jvm.h"
stefank@2314 37 #include "prims/jvm_misc.hpp"
stefank@2314 38 #include "prims/privilegedStack.hpp"
stefank@2314 39 #include "runtime/arguments.hpp"
stefank@2314 40 #include "runtime/frame.inline.hpp"
stefank@2314 41 #include "runtime/interfaceSupport.hpp"
stefank@2314 42 #include "runtime/java.hpp"
stefank@2314 43 #include "runtime/javaCalls.hpp"
stefank@2314 44 #include "runtime/mutexLocker.hpp"
stefank@2314 45 #include "runtime/os.hpp"
stefank@2314 46 #include "runtime/stubRoutines.hpp"
stefank@4299 47 #include "runtime/thread.inline.hpp"
stefank@2314 48 #include "services/attachListener.hpp"
zgu@3900 49 #include "services/memTracker.hpp"
stefank@2314 50 #include "services/threadService.hpp"
stefank@2314 51 #include "utilities/defaultStream.hpp"
stefank@2314 52 #include "utilities/events.hpp"
stefank@2314 53 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 54 # include "os_linux.inline.hpp"
stefank@2314 55 #endif
stefank@2314 56 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 57 # include "os_solaris.inline.hpp"
stefank@2314 58 #endif
stefank@2314 59 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 60 # include "os_windows.inline.hpp"
stefank@2314 61 #endif
never@3156 62 #ifdef TARGET_OS_FAMILY_bsd
never@3156 63 # include "os_bsd.inline.hpp"
never@3156 64 #endif
duke@435 65
duke@435 66 # include <signal.h>
duke@435 67
duke@435 68 OSThread* os::_starting_thread = NULL;
duke@435 69 address os::_polling_page = NULL;
duke@435 70 volatile int32_t* os::_mem_serialize_page = NULL;
duke@435 71 uintptr_t os::_serialize_page_mask = 0;
duke@435 72 long os::_rand_seed = 1;
duke@435 73 int os::_processor_count = 0;
duke@435 74 size_t os::_page_sizes[os::page_sizes_max];
duke@435 75
duke@435 76 #ifndef PRODUCT
kvn@2557 77 julong os::num_mallocs = 0; // # of calls to malloc/realloc
kvn@2557 78 julong os::alloc_bytes = 0; // # of bytes allocated
kvn@2557 79 julong os::num_frees = 0; // # of calls to free
kvn@2557 80 julong os::free_bytes = 0; // # of bytes freed
duke@435 81 #endif
duke@435 82
rdurbin@4802 83 static juint cur_malloc_words = 0; // current size for MallocMaxTestWords
rdurbin@4802 84
phh@3378 85 void os_init_globals() {
phh@3378 86 // Called from init_globals().
phh@3378 87 // See Threads::create_vm() in thread.cpp, and init.cpp.
phh@3378 88 os::init_globals();
phh@3378 89 }
phh@3378 90
duke@435 91 // Fill in buffer with current local time as an ISO-8601 string.
duke@435 92 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
duke@435 93 // Returns buffer, or NULL if it failed.
duke@435 94 // This would mostly be a call to
duke@435 95 // strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
duke@435 96 // except that on Windows the %z behaves badly, so we do it ourselves.
duke@435 97 // Also, people wanted milliseconds on there,
duke@435 98 // and strftime doesn't do milliseconds.
duke@435 99 char* os::iso8601_time(char* buffer, size_t buffer_length) {
duke@435 100 // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
duke@435 101 // 1 2
duke@435 102 // 12345678901234567890123456789
duke@435 103 static const char* iso8601_format =
duke@435 104 "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
duke@435 105 static const size_t needed_buffer = 29;
duke@435 106
duke@435 107 // Sanity check the arguments
duke@435 108 if (buffer == NULL) {
duke@435 109 assert(false, "NULL buffer");
duke@435 110 return NULL;
duke@435 111 }
duke@435 112 if (buffer_length < needed_buffer) {
duke@435 113 assert(false, "buffer_length too small");
duke@435 114 return NULL;
duke@435 115 }
duke@435 116 // Get the current time
sbohne@496 117 jlong milliseconds_since_19700101 = javaTimeMillis();
duke@435 118 const int milliseconds_per_microsecond = 1000;
duke@435 119 const time_t seconds_since_19700101 =
duke@435 120 milliseconds_since_19700101 / milliseconds_per_microsecond;
duke@435 121 const int milliseconds_after_second =
duke@435 122 milliseconds_since_19700101 % milliseconds_per_microsecond;
duke@435 123 // Convert the time value to a tm and timezone variable
ysr@983 124 struct tm time_struct;
ysr@983 125 if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
ysr@983 126 assert(false, "Failed localtime_pd");
duke@435 127 return NULL;
duke@435 128 }
never@3156 129 #if defined(_ALLBSD_SOURCE)
never@3156 130 const time_t zone = (time_t) time_struct.tm_gmtoff;
never@3156 131 #else
duke@435 132 const time_t zone = timezone;
never@3156 133 #endif
duke@435 134
duke@435 135 // If daylight savings time is in effect,
duke@435 136 // we are 1 hour East of our time zone
duke@435 137 const time_t seconds_per_minute = 60;
duke@435 138 const time_t minutes_per_hour = 60;
duke@435 139 const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
duke@435 140 time_t UTC_to_local = zone;
duke@435 141 if (time_struct.tm_isdst > 0) {
duke@435 142 UTC_to_local = UTC_to_local - seconds_per_hour;
duke@435 143 }
duke@435 144 // Compute the time zone offset.
ysr@983 145 // localtime_pd() sets timezone to the difference (in seconds)
duke@435 146 // between UTC and and local time.
duke@435 147 // ISO 8601 says we need the difference between local time and UTC,
ysr@983 148 // we change the sign of the localtime_pd() result.
duke@435 149 const time_t local_to_UTC = -(UTC_to_local);
duke@435 150 // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
duke@435 151 char sign_local_to_UTC = '+';
duke@435 152 time_t abs_local_to_UTC = local_to_UTC;
duke@435 153 if (local_to_UTC < 0) {
duke@435 154 sign_local_to_UTC = '-';
duke@435 155 abs_local_to_UTC = -(abs_local_to_UTC);
duke@435 156 }
duke@435 157 // Convert time zone offset seconds to hours and minutes.
duke@435 158 const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
duke@435 159 const time_t zone_min =
duke@435 160 ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
duke@435 161
duke@435 162 // Print an ISO 8601 date and time stamp into the buffer
duke@435 163 const int year = 1900 + time_struct.tm_year;
duke@435 164 const int month = 1 + time_struct.tm_mon;
duke@435 165 const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
duke@435 166 year,
duke@435 167 month,
duke@435 168 time_struct.tm_mday,
duke@435 169 time_struct.tm_hour,
duke@435 170 time_struct.tm_min,
duke@435 171 time_struct.tm_sec,
duke@435 172 milliseconds_after_second,
duke@435 173 sign_local_to_UTC,
duke@435 174 zone_hours,
duke@435 175 zone_min);
duke@435 176 if (printed == 0) {
duke@435 177 assert(false, "Failed jio_printf");
duke@435 178 return NULL;
duke@435 179 }
duke@435 180 return buffer;
duke@435 181 }
duke@435 182
duke@435 183 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
duke@435 184 #ifdef ASSERT
duke@435 185 if (!(!thread->is_Java_thread() ||
duke@435 186 Thread::current() == thread ||
duke@435 187 Threads_lock->owned_by_self()
duke@435 188 || thread->is_Compiler_thread()
duke@435 189 )) {
duke@435 190 assert(false, "possibility of dangling Thread pointer");
duke@435 191 }
duke@435 192 #endif
duke@435 193
duke@435 194 if (p >= MinPriority && p <= MaxPriority) {
duke@435 195 int priority = java_to_os_priority[p];
duke@435 196 return set_native_priority(thread, priority);
duke@435 197 } else {
duke@435 198 assert(false, "Should not happen");
duke@435 199 return OS_ERR;
duke@435 200 }
duke@435 201 }
duke@435 202
dholmes@4077 203 // The mapping from OS priority back to Java priority may be inexact because
dholmes@4077 204 // Java priorities can map M:1 with native priorities. If you want the definite
dholmes@4077 205 // Java priority then use JavaThread::java_priority()
duke@435 206 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
duke@435 207 int p;
duke@435 208 int os_prio;
duke@435 209 OSReturn ret = get_native_priority(thread, &os_prio);
duke@435 210 if (ret != OS_OK) return ret;
duke@435 211
dholmes@4077 212 if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
dholmes@4077 213 for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
dholmes@4077 214 } else {
dholmes@4077 215 // niceness values are in reverse order
dholmes@4077 216 for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
dholmes@4077 217 }
duke@435 218 priority = (ThreadPriority)p;
duke@435 219 return OS_OK;
duke@435 220 }
duke@435 221
duke@435 222
duke@435 223 // --------------------- sun.misc.Signal (optional) ---------------------
duke@435 224
duke@435 225
duke@435 226 // SIGBREAK is sent by the keyboard to query the VM state
duke@435 227 #ifndef SIGBREAK
duke@435 228 #define SIGBREAK SIGQUIT
duke@435 229 #endif
duke@435 230
duke@435 231 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
duke@435 232
duke@435 233
duke@435 234 static void signal_thread_entry(JavaThread* thread, TRAPS) {
duke@435 235 os::set_priority(thread, NearMaxPriority);
duke@435 236 while (true) {
duke@435 237 int sig;
duke@435 238 {
duke@435 239 // FIXME : Currently we have not decieded what should be the status
duke@435 240 // for this java thread blocked here. Once we decide about
duke@435 241 // that we should fix this.
duke@435 242 sig = os::signal_wait();
duke@435 243 }
duke@435 244 if (sig == os::sigexitnum_pd()) {
duke@435 245 // Terminate the signal thread
duke@435 246 return;
duke@435 247 }
duke@435 248
duke@435 249 switch (sig) {
duke@435 250 case SIGBREAK: {
duke@435 251 // Check if the signal is a trigger to start the Attach Listener - in that
duke@435 252 // case don't print stack traces.
duke@435 253 if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
duke@435 254 continue;
duke@435 255 }
duke@435 256 // Print stack traces
duke@435 257 // Any SIGBREAK operations added here should make sure to flush
duke@435 258 // the output stream (e.g. tty->flush()) after output. See 4803766.
duke@435 259 // Each module also prints an extra carriage return after its output.
duke@435 260 VM_PrintThreads op;
duke@435 261 VMThread::execute(&op);
duke@435 262 VM_PrintJNI jni_op;
duke@435 263 VMThread::execute(&jni_op);
duke@435 264 VM_FindDeadlocks op1(tty);
duke@435 265 VMThread::execute(&op1);
duke@435 266 Universe::print_heap_at_SIGBREAK();
duke@435 267 if (PrintClassHistogram) {
sla@5237 268 VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
duke@435 269 VMThread::execute(&op1);
duke@435 270 }
duke@435 271 if (JvmtiExport::should_post_data_dump()) {
duke@435 272 JvmtiExport::post_data_dump();
duke@435 273 }
duke@435 274 break;
duke@435 275 }
duke@435 276 default: {
duke@435 277 // Dispatch the signal to java
duke@435 278 HandleMark hm(THREAD);
coleenp@4037 279 Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
duke@435 280 KlassHandle klass (THREAD, k);
duke@435 281 if (klass.not_null()) {
duke@435 282 JavaValue result(T_VOID);
duke@435 283 JavaCallArguments args;
duke@435 284 args.push_int(sig);
duke@435 285 JavaCalls::call_static(
duke@435 286 &result,
duke@435 287 klass,
coleenp@2497 288 vmSymbols::dispatch_name(),
coleenp@2497 289 vmSymbols::int_void_signature(),
duke@435 290 &args,
duke@435 291 THREAD
duke@435 292 );
duke@435 293 }
duke@435 294 if (HAS_PENDING_EXCEPTION) {
duke@435 295 // tty is initialized early so we don't expect it to be null, but
duke@435 296 // if it is we can't risk doing an initialization that might
duke@435 297 // trigger additional out-of-memory conditions
duke@435 298 if (tty != NULL) {
duke@435 299 char klass_name[256];
duke@435 300 char tmp_sig_name[16];
duke@435 301 const char* sig_name = "UNKNOWN";
coleenp@4037 302 InstanceKlass::cast(PENDING_EXCEPTION->klass())->
duke@435 303 name()->as_klass_external_name(klass_name, 256);
duke@435 304 if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
duke@435 305 sig_name = tmp_sig_name;
duke@435 306 warning("Exception %s occurred dispatching signal %s to handler"
duke@435 307 "- the VM may need to be forcibly terminated",
duke@435 308 klass_name, sig_name );
duke@435 309 }
duke@435 310 CLEAR_PENDING_EXCEPTION;
duke@435 311 }
duke@435 312 }
duke@435 313 }
duke@435 314 }
duke@435 315 }
duke@435 316
duke@435 317
duke@435 318 void os::signal_init() {
duke@435 319 if (!ReduceSignalUsage) {
duke@435 320 // Setup JavaThread for processing signals
duke@435 321 EXCEPTION_MARK;
coleenp@4037 322 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
duke@435 323 instanceKlassHandle klass (THREAD, k);
duke@435 324 instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
duke@435 325
duke@435 326 const char thread_name[] = "Signal Dispatcher";
duke@435 327 Handle string = java_lang_String::create_from_str(thread_name, CHECK);
duke@435 328
duke@435 329 // Initialize thread_oop to put it into the system threadGroup
duke@435 330 Handle thread_group (THREAD, Universe::system_thread_group());
duke@435 331 JavaValue result(T_VOID);
duke@435 332 JavaCalls::call_special(&result, thread_oop,
duke@435 333 klass,
coleenp@2497 334 vmSymbols::object_initializer_name(),
coleenp@2497 335 vmSymbols::threadgroup_string_void_signature(),
duke@435 336 thread_group,
duke@435 337 string,
duke@435 338 CHECK);
duke@435 339
never@1577 340 KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
duke@435 341 JavaCalls::call_special(&result,
duke@435 342 thread_group,
duke@435 343 group,
coleenp@2497 344 vmSymbols::add_method_name(),
coleenp@2497 345 vmSymbols::thread_void_signature(),
duke@435 346 thread_oop, // ARG 1
duke@435 347 CHECK);
duke@435 348
duke@435 349 os::signal_init_pd();
duke@435 350
duke@435 351 { MutexLocker mu(Threads_lock);
duke@435 352 JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
duke@435 353
duke@435 354 // At this point it may be possible that no osthread was created for the
duke@435 355 // JavaThread due to lack of memory. We would have to throw an exception
duke@435 356 // in that case. However, since this must work and we do not allow
duke@435 357 // exceptions anyway, check and abort if this fails.
duke@435 358 if (signal_thread == NULL || signal_thread->osthread() == NULL) {
duke@435 359 vm_exit_during_initialization("java.lang.OutOfMemoryError",
duke@435 360 "unable to create new native thread");
duke@435 361 }
duke@435 362
duke@435 363 java_lang_Thread::set_thread(thread_oop(), signal_thread);
duke@435 364 java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
duke@435 365 java_lang_Thread::set_daemon(thread_oop());
duke@435 366
duke@435 367 signal_thread->set_threadObj(thread_oop());
duke@435 368 Threads::add(signal_thread);
duke@435 369 Thread::start(signal_thread);
duke@435 370 }
duke@435 371 // Handle ^BREAK
duke@435 372 os::signal(SIGBREAK, os::user_handler());
duke@435 373 }
duke@435 374 }
duke@435 375
duke@435 376
duke@435 377 void os::terminate_signal_thread() {
duke@435 378 if (!ReduceSignalUsage)
duke@435 379 signal_notify(sigexitnum_pd());
duke@435 380 }
duke@435 381
duke@435 382
duke@435 383 // --------------------- loading libraries ---------------------
duke@435 384
duke@435 385 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
duke@435 386 extern struct JavaVM_ main_vm;
duke@435 387
duke@435 388 static void* _native_java_library = NULL;
duke@435 389
duke@435 390 void* os::native_java_library() {
duke@435 391 if (_native_java_library == NULL) {
duke@435 392 char buffer[JVM_MAXPATHLEN];
duke@435 393 char ebuf[1024];
duke@435 394
kamg@677 395 // Try to load verify dll first. In 1.3 java dll depends on it and is not
kamg@677 396 // always able to find it when the loading executable is outside the JDK.
duke@435 397 // In order to keep working with 1.2 we ignore any loading errors.
bpittore@4261 398 if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
bpittore@4261 399 "verify")) {
bpittore@4261 400 dll_load(buffer, ebuf, sizeof(ebuf));
bpittore@4261 401 }
duke@435 402
duke@435 403 // Load java dll
bpittore@4261 404 if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
bpittore@4261 405 "java")) {
bpittore@4261 406 _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
bpittore@4261 407 }
duke@435 408 if (_native_java_library == NULL) {
duke@435 409 vm_exit_during_initialization("Unable to load native library", ebuf);
duke@435 410 }
never@3156 411
never@3156 412 #if defined(__OpenBSD__)
never@3156 413 // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
never@3156 414 // ignore errors
bpittore@4261 415 if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
bpittore@4261 416 "net")) {
bpittore@4261 417 dll_load(buffer, ebuf, sizeof(ebuf));
bpittore@4261 418 }
never@3156 419 #endif
kamg@677 420 }
kamg@677 421 static jboolean onLoaded = JNI_FALSE;
kamg@677 422 if (onLoaded) {
kamg@677 423 // We may have to wait to fire OnLoad until TLS is initialized.
kamg@677 424 if (ThreadLocalStorage::is_initialized()) {
kamg@677 425 // The JNI_OnLoad handling is normally done by method load in
kamg@677 426 // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
kamg@677 427 // explicitly so we have to check for JNI_OnLoad as well
kamg@677 428 const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
kamg@677 429 JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
kamg@677 430 JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
kamg@677 431 if (JNI_OnLoad != NULL) {
kamg@677 432 JavaThread* thread = JavaThread::current();
kamg@677 433 ThreadToNativeFromVM ttn(thread);
kamg@677 434 HandleMark hm(thread);
kamg@677 435 jint ver = (*JNI_OnLoad)(&main_vm, NULL);
kamg@677 436 onLoaded = JNI_TRUE;
kamg@677 437 if (!Threads::is_supported_jni_version_including_1_1(ver)) {
kamg@677 438 vm_exit_during_initialization("Unsupported JNI version");
kamg@677 439 }
duke@435 440 }
duke@435 441 }
duke@435 442 }
duke@435 443 return _native_java_library;
duke@435 444 }
duke@435 445
duke@435 446 // --------------------- heap allocation utilities ---------------------
duke@435 447
zgu@3900 448 char *os::strdup(const char *str, MEMFLAGS flags) {
duke@435 449 size_t size = strlen(str);
zgu@3900 450 char *dup_str = (char *)malloc(size + 1, flags);
duke@435 451 if (dup_str == NULL) return NULL;
duke@435 452 strcpy(dup_str, str);
duke@435 453 return dup_str;
duke@435 454 }
duke@435 455
duke@435 456
duke@435 457
duke@435 458 #ifdef ASSERT
duke@435 459 #define space_before (MallocCushion + sizeof(double))
duke@435 460 #define space_after MallocCushion
duke@435 461 #define size_addr_from_base(p) (size_t*)(p + space_before - sizeof(size_t))
duke@435 462 #define size_addr_from_obj(p) ((size_t*)p - 1)
duke@435 463 // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
duke@435 464 // NB: cannot be debug variable, because these aren't set from the command line until
duke@435 465 // *after* the first few allocs already happened
duke@435 466 #define MallocCushion 16
duke@435 467 #else
duke@435 468 #define space_before 0
duke@435 469 #define space_after 0
duke@435 470 #define size_addr_from_base(p) should not use w/o ASSERT
duke@435 471 #define size_addr_from_obj(p) should not use w/o ASSERT
duke@435 472 #define MallocCushion 0
duke@435 473 #endif
duke@435 474 #define paranoid 0 /* only set to 1 if you suspect checking code has bug */
duke@435 475
duke@435 476 #ifdef ASSERT
duke@435 477 inline size_t get_size(void* obj) {
duke@435 478 size_t size = *size_addr_from_obj(obj);
jcoomes@1845 479 if (size < 0) {
jcoomes@1845 480 fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
jcoomes@1845 481 SIZE_FORMAT ")", obj, size));
jcoomes@1845 482 }
duke@435 483 return size;
duke@435 484 }
duke@435 485
duke@435 486 u_char* find_cushion_backwards(u_char* start) {
duke@435 487 u_char* p = start;
duke@435 488 while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
duke@435 489 p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
duke@435 490 // ok, we have four consecutive marker bytes; find start
duke@435 491 u_char* q = p - 4;
duke@435 492 while (*q == badResourceValue) q--;
duke@435 493 return q + 1;
duke@435 494 }
duke@435 495
duke@435 496 u_char* find_cushion_forwards(u_char* start) {
duke@435 497 u_char* p = start;
duke@435 498 while (p[0] != badResourceValue || p[1] != badResourceValue ||
duke@435 499 p[2] != badResourceValue || p[3] != badResourceValue) p++;
duke@435 500 // ok, we have four consecutive marker bytes; find end of cushion
duke@435 501 u_char* q = p + 4;
duke@435 502 while (*q == badResourceValue) q++;
duke@435 503 return q - MallocCushion;
duke@435 504 }
duke@435 505
duke@435 506 void print_neighbor_blocks(void* ptr) {
duke@435 507 // find block allocated before ptr (not entirely crash-proof)
duke@435 508 if (MallocCushion < 4) {
duke@435 509 tty->print_cr("### cannot find previous block (MallocCushion < 4)");
duke@435 510 return;
duke@435 511 }
duke@435 512 u_char* start_of_this_block = (u_char*)ptr - space_before;
duke@435 513 u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
duke@435 514 // look for cushion in front of prev. block
duke@435 515 u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
duke@435 516 ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
duke@435 517 u_char* obj = start_of_prev_block + space_before;
duke@435 518 if (size <= 0 ) {
duke@435 519 // start is bad; mayhave been confused by OS data inbetween objects
duke@435 520 // search one more backwards
duke@435 521 start_of_prev_block = find_cushion_backwards(start_of_prev_block);
duke@435 522 size = *size_addr_from_base(start_of_prev_block);
duke@435 523 obj = start_of_prev_block + space_before;
duke@435 524 }
duke@435 525
duke@435 526 if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
kvn@2557 527 tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
duke@435 528 } else {
kvn@2557 529 tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
duke@435 530 }
duke@435 531
duke@435 532 // now find successor block
duke@435 533 u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
duke@435 534 start_of_next_block = find_cushion_forwards(start_of_next_block);
duke@435 535 u_char* next_obj = start_of_next_block + space_before;
duke@435 536 ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
duke@435 537 if (start_of_next_block[0] == badResourceValue &&
duke@435 538 start_of_next_block[1] == badResourceValue &&
duke@435 539 start_of_next_block[2] == badResourceValue &&
duke@435 540 start_of_next_block[3] == badResourceValue) {
kvn@2557 541 tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
duke@435 542 } else {
kvn@2557 543 tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
duke@435 544 }
duke@435 545 }
duke@435 546
duke@435 547
duke@435 548 void report_heap_error(void* memblock, void* bad, const char* where) {
kvn@2557 549 tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
kvn@2557 550 tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
duke@435 551 print_neighbor_blocks(memblock);
duke@435 552 fatal("memory stomping error");
duke@435 553 }
duke@435 554
duke@435 555 void verify_block(void* memblock) {
duke@435 556 size_t size = get_size(memblock);
duke@435 557 if (MallocCushion) {
duke@435 558 u_char* ptr = (u_char*)memblock - space_before;
duke@435 559 for (int i = 0; i < MallocCushion; i++) {
duke@435 560 if (ptr[i] != badResourceValue) {
duke@435 561 report_heap_error(memblock, ptr+i, "in front of");
duke@435 562 }
duke@435 563 }
duke@435 564 u_char* end = (u_char*)memblock + size + space_after;
duke@435 565 for (int j = -MallocCushion; j < 0; j++) {
duke@435 566 if (end[j] != badResourceValue) {
duke@435 567 report_heap_error(memblock, end+j, "after");
duke@435 568 }
duke@435 569 }
duke@435 570 }
duke@435 571 }
duke@435 572 #endif
duke@435 573
rdurbin@4802 574 //
rdurbin@4802 575 // This function supports testing of the malloc out of memory
rdurbin@4802 576 // condition without really running the system out of memory.
rdurbin@4802 577 //
rdurbin@4802 578 static u_char* testMalloc(size_t alloc_size) {
rdurbin@4808 579 assert(MallocMaxTestWords > 0, "sanity check");
rdurbin@4802 580
rdurbin@4808 581 if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
rdurbin@4802 582 return NULL;
rdurbin@4802 583 }
rdurbin@4802 584
rdurbin@4802 585 u_char* ptr = (u_char*)::malloc(alloc_size);
rdurbin@4802 586
rdurbin@4808 587 if (ptr != NULL) {
rdurbin@4802 588 Atomic::add(((jint) (alloc_size / BytesPerWord)),
rdurbin@4802 589 (volatile jint *) &cur_malloc_words);
rdurbin@4802 590 }
rdurbin@4802 591 return ptr;
rdurbin@4802 592 }
rdurbin@4802 593
zgu@3900 594 void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
kvn@2557 595 NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
kvn@2557 596 NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
duke@435 597
rbackman@5424 598 #ifdef ASSERT
rbackman@5424 599 // checking for the WatcherThread and crash_protection first
rbackman@5424 600 // since os::malloc can be called when the libjvm.{dll,so} is
rbackman@5424 601 // first loaded and we don't have a thread yet.
rbackman@5424 602 // try to find the thread after we see that the watcher thread
rbackman@5424 603 // exists and has crash protection.
rbackman@5424 604 WatcherThread *wt = WatcherThread::watcher_thread();
rbackman@5424 605 if (wt != NULL && wt->has_crash_protection()) {
rbackman@5424 606 Thread* thread = ThreadLocalStorage::get_thread_slow();
rbackman@5424 607 if (thread == wt) {
rbackman@5424 608 assert(!wt->has_crash_protection(),
rbackman@5424 609 "Can't malloc with crash protection from WatcherThread");
rbackman@5424 610 }
rbackman@5424 611 }
rbackman@5424 612 #endif
rbackman@5424 613
duke@435 614 if (size == 0) {
duke@435 615 // return a valid pointer if size is zero
duke@435 616 // if NULL is returned the calling functions assume out of memory.
duke@435 617 size = 1;
duke@435 618 }
rdurbin@4802 619
rdurbin@4802 620 const size_t alloc_size = size + space_before + space_after;
rdurbin@4802 621
rdurbin@4802 622 if (size > alloc_size) { // Check for rollover.
hseigel@4277 623 return NULL;
hseigel@4277 624 }
rdurbin@4802 625
duke@435 626 NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
rdurbin@4802 627
rdurbin@4802 628 u_char* ptr;
rdurbin@4802 629
rdurbin@4802 630 if (MallocMaxTestWords > 0) {
rdurbin@4802 631 ptr = testMalloc(alloc_size);
rdurbin@4802 632 } else {
rdurbin@4802 633 ptr = (u_char*)::malloc(alloc_size);
rdurbin@4802 634 }
zgu@3900 635
duke@435 636 #ifdef ASSERT
duke@435 637 if (ptr == NULL) return NULL;
duke@435 638 if (MallocCushion) {
duke@435 639 for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
duke@435 640 u_char* end = ptr + space_before + size;
duke@435 641 for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
duke@435 642 for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
duke@435 643 }
duke@435 644 // put size just before data
duke@435 645 *size_addr_from_base(ptr) = size;
duke@435 646 #endif
duke@435 647 u_char* memblock = ptr + space_before;
duke@435 648 if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
kvn@2557 649 tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
duke@435 650 breakpoint();
duke@435 651 }
duke@435 652 debug_only(if (paranoid) verify_block(memblock));
kvn@2557 653 if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
zgu@3900 654
zgu@3900 655 // we do not track MallocCushion memory
zgu@3900 656 MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
zgu@3900 657
duke@435 658 return memblock;
duke@435 659 }
duke@435 660
duke@435 661
zgu@3900 662 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
duke@435 663 #ifndef ASSERT
kvn@2557 664 NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
kvn@2557 665 NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
zgu@5272 666 MemTracker::Tracker tkr = MemTracker::get_realloc_tracker();
zgu@3900 667 void* ptr = ::realloc(memblock, size);
zgu@4193 668 if (ptr != NULL) {
zgu@5272 669 tkr.record((address)memblock, (address)ptr, size, memflags,
zgu@3900 670 caller == 0 ? CALLER_PC : caller);
zgu@5272 671 } else {
zgu@5272 672 tkr.discard();
zgu@3900 673 }
zgu@3900 674 return ptr;
duke@435 675 #else
duke@435 676 if (memblock == NULL) {
zgu@3900 677 return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
duke@435 678 }
duke@435 679 if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
kvn@2557 680 tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
duke@435 681 breakpoint();
duke@435 682 }
duke@435 683 verify_block(memblock);
duke@435 684 NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
duke@435 685 if (size == 0) return NULL;
duke@435 686 // always move the block
zgu@3900 687 void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
kvn@2557 688 if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
duke@435 689 // Copy to new memory if malloc didn't fail
duke@435 690 if ( ptr != NULL ) {
duke@435 691 memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
duke@435 692 if (paranoid) verify_block(ptr);
duke@435 693 if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
kvn@2557 694 tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
duke@435 695 breakpoint();
duke@435 696 }
duke@435 697 free(memblock);
duke@435 698 }
duke@435 699 return ptr;
duke@435 700 #endif
duke@435 701 }
duke@435 702
duke@435 703
zgu@3900 704 void os::free(void *memblock, MEMFLAGS memflags) {
kvn@2557 705 NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
duke@435 706 #ifdef ASSERT
duke@435 707 if (memblock == NULL) return;
duke@435 708 if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
kvn@2557 709 if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
duke@435 710 breakpoint();
duke@435 711 }
duke@435 712 verify_block(memblock);
duke@435 713 NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
duke@435 714 // Added by detlefs.
duke@435 715 if (MallocCushion) {
duke@435 716 u_char* ptr = (u_char*)memblock - space_before;
duke@435 717 for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
duke@435 718 guarantee(*p == badResourceValue,
duke@435 719 "Thing freed should be malloc result.");
duke@435 720 *p = (u_char)freeBlockPad;
duke@435 721 }
duke@435 722 size_t size = get_size(memblock);
kvn@2557 723 inc_stat_counter(&free_bytes, size);
duke@435 724 u_char* end = ptr + space_before + size;
duke@435 725 for (u_char* q = end; q < end + MallocCushion; q++) {
duke@435 726 guarantee(*q == badResourceValue,
duke@435 727 "Thing freed should be malloc result.");
duke@435 728 *q = (u_char)freeBlockPad;
duke@435 729 }
kvn@2557 730 if (PrintMalloc && tty != NULL)
coleenp@2615 731 fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
kvn@2557 732 } else if (PrintMalloc && tty != NULL) {
kvn@2557 733 // tty->print_cr("os::free %p", memblock);
coleenp@2615 734 fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
duke@435 735 }
duke@435 736 #endif
zgu@3900 737 MemTracker::record_free((address)memblock, memflags);
zgu@3900 738
duke@435 739 ::free((char*)memblock - space_before);
duke@435 740 }
duke@435 741
duke@435 742 void os::init_random(long initval) {
duke@435 743 _rand_seed = initval;
duke@435 744 }
duke@435 745
duke@435 746
duke@435 747 long os::random() {
duke@435 748 /* standard, well-known linear congruential random generator with
duke@435 749 * next_rand = (16807*seed) mod (2**31-1)
duke@435 750 * see
duke@435 751 * (1) "Random Number Generators: Good Ones Are Hard to Find",
duke@435 752 * S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
duke@435 753 * (2) "Two Fast Implementations of the 'Minimal Standard' Random
duke@435 754 * Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
duke@435 755 */
duke@435 756 const long a = 16807;
duke@435 757 const unsigned long m = 2147483647;
duke@435 758 const long q = m / a; assert(q == 127773, "weird math");
duke@435 759 const long r = m % a; assert(r == 2836, "weird math");
duke@435 760
duke@435 761 // compute az=2^31p+q
duke@435 762 unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
duke@435 763 unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
duke@435 764 lo += (hi & 0x7FFF) << 16;
duke@435 765
duke@435 766 // if q overflowed, ignore the overflow and increment q
duke@435 767 if (lo > m) {
duke@435 768 lo &= m;
duke@435 769 ++lo;
duke@435 770 }
duke@435 771 lo += hi >> 15;
duke@435 772
duke@435 773 // if (p+q) overflowed, ignore the overflow and increment (p+q)
duke@435 774 if (lo > m) {
duke@435 775 lo &= m;
duke@435 776 ++lo;
duke@435 777 }
duke@435 778 return (_rand_seed = lo);
duke@435 779 }
duke@435 780
duke@435 781 // The INITIALIZED state is distinguished from the SUSPENDED state because the
duke@435 782 // conditions in which a thread is first started are different from those in which
duke@435 783 // a suspension is resumed. These differences make it hard for us to apply the
duke@435 784 // tougher checks when starting threads that we want to do when resuming them.
duke@435 785 // However, when start_thread is called as a result of Thread.start, on a Java
duke@435 786 // thread, the operation is synchronized on the Java Thread object. So there
duke@435 787 // cannot be a race to start the thread and hence for the thread to exit while
duke@435 788 // we are working on it. Non-Java threads that start Java threads either have
duke@435 789 // to do so in a context in which races are impossible, or should do appropriate
duke@435 790 // locking.
duke@435 791
duke@435 792 void os::start_thread(Thread* thread) {
duke@435 793 // guard suspend/resume
duke@435 794 MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
duke@435 795 OSThread* osthread = thread->osthread();
duke@435 796 osthread->set_state(RUNNABLE);
duke@435 797 pd_start_thread(thread);
duke@435 798 }
duke@435 799
duke@435 800 //---------------------------------------------------------------------------
duke@435 801 // Helper functions for fatal error handler
duke@435 802
duke@435 803 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
duke@435 804 assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
duke@435 805
duke@435 806 int cols = 0;
duke@435 807 int cols_per_line = 0;
duke@435 808 switch (unitsize) {
duke@435 809 case 1: cols_per_line = 16; break;
duke@435 810 case 2: cols_per_line = 8; break;
duke@435 811 case 4: cols_per_line = 4; break;
duke@435 812 case 8: cols_per_line = 2; break;
duke@435 813 default: return;
duke@435 814 }
duke@435 815
duke@435 816 address p = start;
duke@435 817 st->print(PTR_FORMAT ": ", start);
duke@435 818 while (p < end) {
duke@435 819 switch (unitsize) {
duke@435 820 case 1: st->print("%02x", *(u1*)p); break;
duke@435 821 case 2: st->print("%04x", *(u2*)p); break;
duke@435 822 case 4: st->print("%08x", *(u4*)p); break;
duke@435 823 case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
duke@435 824 }
duke@435 825 p += unitsize;
duke@435 826 cols++;
duke@435 827 if (cols >= cols_per_line && p < end) {
duke@435 828 cols = 0;
duke@435 829 st->cr();
duke@435 830 st->print(PTR_FORMAT ": ", p);
duke@435 831 } else {
duke@435 832 st->print(" ");
duke@435 833 }
duke@435 834 }
duke@435 835 st->cr();
duke@435 836 }
duke@435 837
duke@435 838 void os::print_environment_variables(outputStream* st, const char** env_list,
duke@435 839 char* buffer, int len) {
duke@435 840 if (env_list) {
duke@435 841 st->print_cr("Environment Variables:");
duke@435 842
duke@435 843 for (int i = 0; env_list[i] != NULL; i++) {
duke@435 844 if (getenv(env_list[i], buffer, len)) {
duke@435 845 st->print(env_list[i]);
duke@435 846 st->print("=");
duke@435 847 st->print_cr(buffer);
duke@435 848 }
duke@435 849 }
duke@435 850 }
duke@435 851 }
duke@435 852
duke@435 853 void os::print_cpu_info(outputStream* st) {
duke@435 854 // cpu
duke@435 855 st->print("CPU:");
duke@435 856 st->print("total %d", os::processor_count());
duke@435 857 // It's not safe to query number of active processors after crash
duke@435 858 // st->print("(active %d)", os::active_processor_count());
duke@435 859 st->print(" %s", VM_Version::cpu_features());
duke@435 860 st->cr();
jcoomes@2997 861 pd_print_cpu_info(st);
duke@435 862 }
duke@435 863
duke@435 864 void os::print_date_and_time(outputStream *st) {
duke@435 865 time_t tloc;
duke@435 866 (void)time(&tloc);
duke@435 867 st->print("time: %s", ctime(&tloc)); // ctime adds newline.
duke@435 868
duke@435 869 double t = os::elapsedTime();
duke@435 870 // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
duke@435 871 // Linux. Must be a bug in glibc ? Workaround is to round "t" to int
duke@435 872 // before printf. We lost some precision, but who cares?
duke@435 873 st->print_cr("elapsed time: %d seconds", (int)t);
duke@435 874 }
duke@435 875
bobv@2036 876 // moved from debug.cpp (used to be find()) but still called from there
never@2262 877 // The verbose parameter is only set by the debug code in one case
never@2262 878 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
bobv@2036 879 address addr = (address)x;
bobv@2036 880 CodeBlob* b = CodeCache::find_blob_unsafe(addr);
bobv@2036 881 if (b != NULL) {
bobv@2036 882 if (b->is_buffer_blob()) {
bobv@2036 883 // the interpreter is generated into a buffer blob
bobv@2036 884 InterpreterCodelet* i = Interpreter::codelet_containing(addr);
bobv@2036 885 if (i != NULL) {
twisti@3969 886 st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
bobv@2036 887 i->print_on(st);
bobv@2036 888 return;
bobv@2036 889 }
bobv@2036 890 if (Interpreter::contains(addr)) {
bobv@2036 891 st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
bobv@2036 892 " (not bytecode specific)", addr);
bobv@2036 893 return;
bobv@2036 894 }
bobv@2036 895 //
bobv@2036 896 if (AdapterHandlerLibrary::contains(b)) {
twisti@3969 897 st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
bobv@2036 898 AdapterHandlerLibrary::print_handler_on(st, b);
bobv@2036 899 }
bobv@2036 900 // the stubroutines are generated into a buffer blob
bobv@2036 901 StubCodeDesc* d = StubCodeDesc::desc_for(addr);
bobv@2036 902 if (d != NULL) {
twisti@3969 903 st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
bobv@2036 904 d->print_on(st);
twisti@3969 905 st->cr();
bobv@2036 906 return;
bobv@2036 907 }
bobv@2036 908 if (StubRoutines::contains(addr)) {
bobv@2036 909 st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
bobv@2036 910 "stub routine", addr);
bobv@2036 911 return;
bobv@2036 912 }
bobv@2036 913 // the InlineCacheBuffer is using stubs generated into a buffer blob
bobv@2036 914 if (InlineCacheBuffer::contains(addr)) {
bobv@2036 915 st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
bobv@2036 916 return;
bobv@2036 917 }
bobv@2036 918 VtableStub* v = VtableStubs::stub_containing(addr);
bobv@2036 919 if (v != NULL) {
twisti@3969 920 st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
bobv@2036 921 v->print_on(st);
twisti@3969 922 st->cr();
bobv@2036 923 return;
bobv@2036 924 }
bobv@2036 925 }
twisti@3969 926 nmethod* nm = b->as_nmethod_or_null();
twisti@3969 927 if (nm != NULL) {
bobv@2036 928 ResourceMark rm;
twisti@3969 929 st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
twisti@3969 930 addr, (int)(addr - nm->entry_point()), nm);
twisti@3969 931 if (verbose) {
twisti@3969 932 st->print(" for ");
twisti@3969 933 nm->method()->print_value_on(st);
twisti@3969 934 }
stefank@4127 935 st->cr();
twisti@3969 936 nm->print_nmethod(verbose);
bobv@2036 937 return;
bobv@2036 938 }
twisti@3969 939 st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
bobv@2036 940 b->print_on(st);
bobv@2036 941 return;
bobv@2036 942 }
bobv@2036 943
bobv@2036 944 if (Universe::heap()->is_in(addr)) {
bobv@2036 945 HeapWord* p = Universe::heap()->block_start(addr);
bobv@2036 946 bool print = false;
bobv@2036 947 // If we couldn't find it it just may mean that heap wasn't parseable
bobv@2036 948 // See if we were just given an oop directly
bobv@2036 949 if (p != NULL && Universe::heap()->block_is_obj(p)) {
bobv@2036 950 print = true;
bobv@2036 951 } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
bobv@2036 952 p = (HeapWord*) addr;
bobv@2036 953 print = true;
bobv@2036 954 }
bobv@2036 955 if (print) {
stefank@4125 956 if (p == (HeapWord*) addr) {
stefank@4125 957 st->print_cr(INTPTR_FORMAT " is an oop", addr);
stefank@4125 958 } else {
stefank@4125 959 st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
stefank@4125 960 }
bobv@2036 961 oop(p)->print_on(st);
bobv@2036 962 return;
bobv@2036 963 }
bobv@2036 964 } else {
bobv@2036 965 if (Universe::heap()->is_in_reserved(addr)) {
bobv@2036 966 st->print_cr(INTPTR_FORMAT " is an unallocated location "
bobv@2036 967 "in the heap", addr);
bobv@2036 968 return;
bobv@2036 969 }
bobv@2036 970 }
bobv@2036 971 if (JNIHandles::is_global_handle((jobject) addr)) {
bobv@2036 972 st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
bobv@2036 973 return;
bobv@2036 974 }
bobv@2036 975 if (JNIHandles::is_weak_global_handle((jobject) addr)) {
bobv@2036 976 st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
bobv@2036 977 return;
bobv@2036 978 }
bobv@2036 979 #ifndef PRODUCT
bobv@2036 980 // we don't keep the block list in product mode
bobv@2036 981 if (JNIHandleBlock::any_contains((jobject) addr)) {
bobv@2036 982 st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
bobv@2036 983 return;
bobv@2036 984 }
bobv@2036 985 #endif
bobv@2036 986
bobv@2036 987 for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
bobv@2036 988 // Check for privilege stack
bobv@2036 989 if (thread->privileged_stack_top() != NULL &&
bobv@2036 990 thread->privileged_stack_top()->contains(addr)) {
bobv@2036 991 st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
bobv@2036 992 "for thread: " INTPTR_FORMAT, addr, thread);
never@2262 993 if (verbose) thread->print_on(st);
bobv@2036 994 return;
bobv@2036 995 }
bobv@2036 996 // If the addr is a java thread print information about that.
bobv@2036 997 if (addr == (address)thread) {
never@2262 998 if (verbose) {
never@2262 999 thread->print_on(st);
never@2262 1000 } else {
never@2262 1001 st->print_cr(INTPTR_FORMAT " is a thread", addr);
never@2262 1002 }
bobv@2036 1003 return;
bobv@2036 1004 }
bobv@2036 1005 // If the addr is in the stack region for this thread then report that
bobv@2036 1006 // and print thread info
bobv@2036 1007 if (thread->stack_base() >= addr &&
bobv@2036 1008 addr > (thread->stack_base() - thread->stack_size())) {
bobv@2036 1009 st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
bobv@2036 1010 INTPTR_FORMAT, addr, thread);
never@2262 1011 if (verbose) thread->print_on(st);
bobv@2036 1012 return;
bobv@2036 1013 }
bobv@2036 1014
bobv@2036 1015 }
coleenp@4037 1016
coleenp@4037 1017 #ifndef PRODUCT
coleenp@4037 1018 // Check if in metaspace.
coleenp@4037 1019 if (ClassLoaderDataGraph::contains((address)addr)) {
coleenp@4037 1020 // Use addr->print() from the debugger instead (not here)
coleenp@4037 1021 st->print_cr(INTPTR_FORMAT
coleenp@4037 1022 " is pointing into metadata", addr);
coleenp@4037 1023 return;
coleenp@4037 1024 }
coleenp@4037 1025 #endif
coleenp@4037 1026
bobv@2036 1027 // Try an OS specific find
bobv@2036 1028 if (os::find(addr, st)) {
bobv@2036 1029 return;
bobv@2036 1030 }
bobv@2036 1031
never@2262 1032 st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
bobv@2036 1033 }
duke@435 1034
duke@435 1035 // Looks like all platforms except IA64 can use the same function to check
duke@435 1036 // if C stack is walkable beyond current frame. The check for fp() is not
duke@435 1037 // necessary on Sparc, but it's harmless.
duke@435 1038 bool os::is_first_C_frame(frame* fr) {
morris@4535 1039 #if defined(IA64) && !defined(_WIN32)
morris@4535 1040 // On IA64 we have to check if the callers bsp is still valid
morris@4535 1041 // (i.e. within the register stack bounds).
morris@4535 1042 // Notice: this only works for threads created by the VM and only if
morris@4535 1043 // we walk the current stack!!! If we want to be able to walk
morris@4535 1044 // arbitrary other threads, we'll have to somehow store the thread
morris@4535 1045 // object in the frame.
morris@4535 1046 Thread *thread = Thread::current();
morris@4535 1047 if ((address)fr->fp() <=
morris@4535 1048 thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
morris@4535 1049 // This check is a little hacky, because on Linux the first C
morris@4535 1050 // frame's ('start_thread') register stack frame starts at
morris@4535 1051 // "register_stack_base + 0x48" while on HPUX, the first C frame's
morris@4535 1052 // ('__pthread_bound_body') register stack frame seems to really
morris@4535 1053 // start at "register_stack_base".
morris@4535 1054 return true;
morris@4535 1055 } else {
morris@4535 1056 return false;
morris@4535 1057 }
morris@4535 1058 #elif defined(IA64) && defined(_WIN32)
duke@435 1059 return true;
morris@4535 1060 #else
duke@435 1061 // Load up sp, fp, sender sp and sender fp, check for reasonable values.
duke@435 1062 // Check usp first, because if that's bad the other accessors may fault
duke@435 1063 // on some architectures. Ditto ufp second, etc.
duke@435 1064 uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
duke@435 1065 // sp on amd can be 32 bit aligned.
duke@435 1066 uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
duke@435 1067
duke@435 1068 uintptr_t usp = (uintptr_t)fr->sp();
duke@435 1069 if ((usp & sp_align_mask) != 0) return true;
duke@435 1070
duke@435 1071 uintptr_t ufp = (uintptr_t)fr->fp();
duke@435 1072 if ((ufp & fp_align_mask) != 0) return true;
duke@435 1073
duke@435 1074 uintptr_t old_sp = (uintptr_t)fr->sender_sp();
duke@435 1075 if ((old_sp & sp_align_mask) != 0) return true;
duke@435 1076 if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
duke@435 1077
duke@435 1078 uintptr_t old_fp = (uintptr_t)fr->link();
duke@435 1079 if ((old_fp & fp_align_mask) != 0) return true;
duke@435 1080 if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
duke@435 1081
duke@435 1082 // stack grows downwards; if old_fp is below current fp or if the stack
duke@435 1083 // frame is too large, either the stack is corrupted or fp is not saved
duke@435 1084 // on stack (i.e. on x86, ebp may be used as general register). The stack
duke@435 1085 // is not walkable beyond current frame.
duke@435 1086 if (old_fp < ufp) return true;
duke@435 1087 if (old_fp - ufp > 64 * K) return true;
duke@435 1088
duke@435 1089 return false;
morris@4535 1090 #endif
duke@435 1091 }
duke@435 1092
duke@435 1093 #ifdef ASSERT
duke@435 1094 extern "C" void test_random() {
duke@435 1095 const double m = 2147483647;
duke@435 1096 double mean = 0.0, variance = 0.0, t;
duke@435 1097 long reps = 10000;
duke@435 1098 unsigned long seed = 1;
duke@435 1099
duke@435 1100 tty->print_cr("seed %ld for %ld repeats...", seed, reps);
duke@435 1101 os::init_random(seed);
duke@435 1102 long num;
duke@435 1103 for (int k = 0; k < reps; k++) {
duke@435 1104 num = os::random();
duke@435 1105 double u = (double)num / m;
duke@435 1106 assert(u >= 0.0 && u <= 1.0, "bad random number!");
duke@435 1107
duke@435 1108 // calculate mean and variance of the random sequence
duke@435 1109 mean += u;
duke@435 1110 variance += (u*u);
duke@435 1111 }
duke@435 1112 mean /= reps;
duke@435 1113 variance /= (reps - 1);
duke@435 1114
duke@435 1115 assert(num == 1043618065, "bad seed");
duke@435 1116 tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
duke@435 1117 tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
duke@435 1118 const double eps = 0.0001;
duke@435 1119 t = fabsd(mean - 0.5018);
duke@435 1120 assert(t < eps, "bad mean");
duke@435 1121 t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
duke@435 1122 assert(t < eps, "bad variance");
duke@435 1123 }
duke@435 1124 #endif
duke@435 1125
duke@435 1126
duke@435 1127 // Set up the boot classpath.
duke@435 1128
duke@435 1129 char* os::format_boot_path(const char* format_string,
duke@435 1130 const char* home,
duke@435 1131 int home_len,
duke@435 1132 char fileSep,
duke@435 1133 char pathSep) {
duke@435 1134 assert((fileSep == '/' && pathSep == ':') ||
duke@435 1135 (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
duke@435 1136
duke@435 1137 // Scan the format string to determine the length of the actual
duke@435 1138 // boot classpath, and handle platform dependencies as well.
duke@435 1139 int formatted_path_len = 0;
duke@435 1140 const char* p;
duke@435 1141 for (p = format_string; *p != 0; ++p) {
duke@435 1142 if (*p == '%') formatted_path_len += home_len - 1;
duke@435 1143 ++formatted_path_len;
duke@435 1144 }
duke@435 1145
zgu@3900 1146 char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
duke@435 1147 if (formatted_path == NULL) {
duke@435 1148 return NULL;
duke@435 1149 }
duke@435 1150
duke@435 1151 // Create boot classpath from format, substituting separator chars and
duke@435 1152 // java home directory.
duke@435 1153 char* q = formatted_path;
duke@435 1154 for (p = format_string; *p != 0; ++p) {
duke@435 1155 switch (*p) {
duke@435 1156 case '%':
duke@435 1157 strcpy(q, home);
duke@435 1158 q += home_len;
duke@435 1159 break;
duke@435 1160 case '/':
duke@435 1161 *q++ = fileSep;
duke@435 1162 break;
duke@435 1163 case ':':
duke@435 1164 *q++ = pathSep;
duke@435 1165 break;
duke@435 1166 default:
duke@435 1167 *q++ = *p;
duke@435 1168 }
duke@435 1169 }
duke@435 1170 *q = '\0';
duke@435 1171
duke@435 1172 assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
duke@435 1173 return formatted_path;
duke@435 1174 }
duke@435 1175
duke@435 1176
duke@435 1177 bool os::set_boot_path(char fileSep, char pathSep) {
duke@435 1178 const char* home = Arguments::get_java_home();
duke@435 1179 int home_len = (int)strlen(home);
duke@435 1180
duke@435 1181 static const char* meta_index_dir_format = "%/lib/";
duke@435 1182 static const char* meta_index_format = "%/lib/meta-index";
duke@435 1183 char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
duke@435 1184 if (meta_index == NULL) return false;
duke@435 1185 char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
duke@435 1186 if (meta_index_dir == NULL) return false;
duke@435 1187 Arguments::set_meta_index_path(meta_index, meta_index_dir);
duke@435 1188
duke@435 1189 // Any modification to the JAR-file list, for the boot classpath must be
duke@435 1190 // aligned with install/install/make/common/Pack.gmk. Note: boot class
duke@435 1191 // path class JARs, are stripped for StackMapTable to reduce download size.
duke@435 1192 static const char classpath_format[] =
duke@435 1193 "%/lib/resources.jar:"
duke@435 1194 "%/lib/rt.jar:"
duke@435 1195 "%/lib/sunrsasign.jar:"
duke@435 1196 "%/lib/jsse.jar:"
duke@435 1197 "%/lib/jce.jar:"
duke@435 1198 "%/lib/charsets.jar:"
phh@3427 1199 "%/lib/jfr.jar:"
dcubed@3202 1200 #ifdef __APPLE__
dcubed@3202 1201 "%/lib/JObjC.jar:"
dcubed@3202 1202 #endif
duke@435 1203 "%/classes";
duke@435 1204 char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
duke@435 1205 if (sysclasspath == NULL) return false;
duke@435 1206 Arguments::set_sysclasspath(sysclasspath);
duke@435 1207
duke@435 1208 return true;
duke@435 1209 }
duke@435 1210
phh@1126 1211 /*
phh@1126 1212 * Splits a path, based on its separator, the number of
phh@1126 1213 * elements is returned back in n.
phh@1126 1214 * It is the callers responsibility to:
phh@1126 1215 * a> check the value of n, and n may be 0.
phh@1126 1216 * b> ignore any empty path elements
phh@1126 1217 * c> free up the data.
phh@1126 1218 */
phh@1126 1219 char** os::split_path(const char* path, int* n) {
phh@1126 1220 *n = 0;
phh@1126 1221 if (path == NULL || strlen(path) == 0) {
phh@1126 1222 return NULL;
phh@1126 1223 }
phh@1126 1224 const char psepchar = *os::path_separator();
zgu@3900 1225 char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
phh@1126 1226 if (inpath == NULL) {
phh@1126 1227 return NULL;
phh@1126 1228 }
bpittore@4261 1229 strcpy(inpath, path);
phh@1126 1230 int count = 1;
phh@1126 1231 char* p = strchr(inpath, psepchar);
phh@1126 1232 // Get a count of elements to allocate memory
phh@1126 1233 while (p != NULL) {
phh@1126 1234 count++;
phh@1126 1235 p++;
phh@1126 1236 p = strchr(p, psepchar);
phh@1126 1237 }
zgu@3900 1238 char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
phh@1126 1239 if (opath == NULL) {
phh@1126 1240 return NULL;
phh@1126 1241 }
phh@1126 1242
phh@1126 1243 // do the actual splitting
phh@1126 1244 p = inpath;
phh@1126 1245 for (int i = 0 ; i < count ; i++) {
phh@1126 1246 size_t len = strcspn(p, os::path_separator());
phh@1126 1247 if (len > JVM_MAXPATHLEN) {
phh@1126 1248 return NULL;
phh@1126 1249 }
phh@1126 1250 // allocate the string and add terminator storage
zgu@3900 1251 char* s = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
phh@1126 1252 if (s == NULL) {
phh@1126 1253 return NULL;
phh@1126 1254 }
phh@1126 1255 strncpy(s, p, len);
phh@1126 1256 s[len] = '\0';
phh@1126 1257 opath[i] = s;
phh@1126 1258 p += len + 1;
phh@1126 1259 }
zgu@3900 1260 FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
phh@1126 1261 *n = count;
phh@1126 1262 return opath;
phh@1126 1263 }
phh@1126 1264
duke@435 1265 void os::set_memory_serialize_page(address page) {
duke@435 1266 int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@435 1267 _mem_serialize_page = (volatile int32_t *)page;
duke@435 1268 // We initialize the serialization page shift count here
duke@435 1269 // We assume a cache line size of 64 bytes
duke@435 1270 assert(SerializePageShiftCount == count,
duke@435 1271 "thread size changed, fix SerializePageShiftCount constant");
duke@435 1272 set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
duke@435 1273 }
duke@435 1274
xlu@490 1275 static volatile intptr_t SerializePageLock = 0;
xlu@490 1276
duke@435 1277 // This method is called from signal handler when SIGSEGV occurs while the current
duke@435 1278 // thread tries to store to the "read-only" memory serialize page during state
duke@435 1279 // transition.
duke@435 1280 void os::block_on_serialize_page_trap() {
duke@435 1281 if (TraceSafepoint) {
duke@435 1282 tty->print_cr("Block until the serialize page permission restored");
duke@435 1283 }
xlu@490 1284 // When VMThread is holding the SerializePageLock during modifying the
duke@435 1285 // access permission of the memory serialize page, the following call
duke@435 1286 // will block until the permission of that page is restored to rw.
duke@435 1287 // Generally, it is unsafe to manipulate locks in signal handlers, but in
duke@435 1288 // this case, it's OK as the signal is synchronous and we know precisely when
xlu@490 1289 // it can occur.
xlu@490 1290 Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
xlu@490 1291 Thread::muxRelease(&SerializePageLock);
duke@435 1292 }
duke@435 1293
duke@435 1294 // Serialize all thread state variables
duke@435 1295 void os::serialize_thread_states() {
duke@435 1296 // On some platforms such as Solaris & Linux, the time duration of the page
duke@435 1297 // permission restoration is observed to be much longer than expected due to
duke@435 1298 // scheduler starvation problem etc. To avoid the long synchronization
xlu@490 1299 // time and expensive page trap spinning, 'SerializePageLock' is used to block
xlu@490 1300 // the mutator thread if such case is encountered. See bug 6546278 for details.
xlu@490 1301 Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
coleenp@672 1302 os::protect_memory((char *)os::get_memory_serialize_page(),
coleenp@912 1303 os::vm_page_size(), MEM_PROT_READ);
coleenp@912 1304 os::protect_memory((char *)os::get_memory_serialize_page(),
coleenp@912 1305 os::vm_page_size(), MEM_PROT_RW);
xlu@490 1306 Thread::muxRelease(&SerializePageLock);
duke@435 1307 }
duke@435 1308
duke@435 1309 // Returns true if the current stack pointer is above the stack shadow
duke@435 1310 // pages, false otherwise.
duke@435 1311
duke@435 1312 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
duke@435 1313 assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
duke@435 1314 address sp = current_stack_pointer();
duke@435 1315 // Check if we have StackShadowPages above the yellow zone. This parameter
twisti@1040 1316 // is dependent on the depth of the maximum VM call stack possible from
duke@435 1317 // the handler for stack overflow. 'instanceof' in the stack overflow
duke@435 1318 // handler or a println uses at least 8k stack of VM and native code
duke@435 1319 // respectively.
duke@435 1320 const int framesize_in_bytes =
duke@435 1321 Interpreter::size_top_interpreter_activation(method()) * wordSize;
duke@435 1322 int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
duke@435 1323 * vm_page_size()) + framesize_in_bytes;
duke@435 1324 // The very lower end of the stack
duke@435 1325 address stack_limit = thread->stack_base() - thread->stack_size();
duke@435 1326 return (sp > (stack_limit + reserved_area));
duke@435 1327 }
duke@435 1328
duke@435 1329 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
duke@435 1330 uint min_pages)
duke@435 1331 {
duke@435 1332 assert(min_pages > 0, "sanity");
duke@435 1333 if (UseLargePages) {
duke@435 1334 const size_t max_page_size = region_max_size / min_pages;
duke@435 1335
duke@435 1336 for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
duke@435 1337 const size_t sz = _page_sizes[i];
duke@435 1338 const size_t mask = sz - 1;
duke@435 1339 if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
duke@435 1340 // The largest page size with no fragmentation.
duke@435 1341 return sz;
duke@435 1342 }
duke@435 1343
duke@435 1344 if (sz <= max_page_size) {
duke@435 1345 // The largest page size that satisfies the min_pages requirement.
duke@435 1346 return sz;
duke@435 1347 }
duke@435 1348 }
duke@435 1349 }
duke@435 1350
duke@435 1351 return vm_page_size();
duke@435 1352 }
duke@435 1353
duke@435 1354 #ifndef PRODUCT
jcoomes@3057 1355 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
jcoomes@3057 1356 {
jcoomes@3057 1357 if (TracePageSizes) {
jcoomes@3057 1358 tty->print("%s: ", str);
jcoomes@3057 1359 for (int i = 0; i < count; ++i) {
jcoomes@3057 1360 tty->print(" " SIZE_FORMAT, page_sizes[i]);
jcoomes@3057 1361 }
jcoomes@3057 1362 tty->cr();
jcoomes@3057 1363 }
jcoomes@3057 1364 }
jcoomes@3057 1365
duke@435 1366 void os::trace_page_sizes(const char* str, const size_t region_min_size,
duke@435 1367 const size_t region_max_size, const size_t page_size,
duke@435 1368 const char* base, const size_t size)
duke@435 1369 {
duke@435 1370 if (TracePageSizes) {
duke@435 1371 tty->print_cr("%s: min=" SIZE_FORMAT " max=" SIZE_FORMAT
duke@435 1372 " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
duke@435 1373 " size=" SIZE_FORMAT,
duke@435 1374 str, region_min_size, region_max_size,
duke@435 1375 page_size, base, size);
duke@435 1376 }
duke@435 1377 }
duke@435 1378 #endif // #ifndef PRODUCT
duke@435 1379
duke@435 1380 // This is the working definition of a server class machine:
duke@435 1381 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
duke@435 1382 // because the graphics memory (?) sometimes masks physical memory.
duke@435 1383 // If you want to change the definition of a server class machine
duke@435 1384 // on some OS or platform, e.g., >=4GB on Windohs platforms,
duke@435 1385 // then you'll have to parameterize this method based on that state,
duke@435 1386 // as was done for logical processors here, or replicate and
duke@435 1387 // specialize this method for each platform. (Or fix os to have
duke@435 1388 // some inheritance structure and use subclassing. Sigh.)
duke@435 1389 // If you want some platform to always or never behave as a server
duke@435 1390 // class machine, change the setting of AlwaysActAsServerClassMachine
duke@435 1391 // and NeverActAsServerClassMachine in globals*.hpp.
duke@435 1392 bool os::is_server_class_machine() {
duke@435 1393 // First check for the early returns
duke@435 1394 if (NeverActAsServerClassMachine) {
duke@435 1395 return false;
duke@435 1396 }
duke@435 1397 if (AlwaysActAsServerClassMachine) {
duke@435 1398 return true;
duke@435 1399 }
duke@435 1400 // Then actually look at the machine
duke@435 1401 bool result = false;
duke@435 1402 const unsigned int server_processors = 2;
duke@435 1403 const julong server_memory = 2UL * G;
duke@435 1404 // We seem not to get our full complement of memory.
duke@435 1405 // We allow some part (1/8?) of the memory to be "missing",
duke@435 1406 // based on the sizes of DIMMs, and maybe graphics cards.
duke@435 1407 const julong missing_memory = 256UL * M;
duke@435 1408
duke@435 1409 /* Is this a server class machine? */
duke@435 1410 if ((os::active_processor_count() >= (int)server_processors) &&
duke@435 1411 (os::physical_memory() >= (server_memory - missing_memory))) {
duke@435 1412 const unsigned int logical_processors =
duke@435 1413 VM_Version::logical_processors_per_package();
duke@435 1414 if (logical_processors > 1) {
duke@435 1415 const unsigned int physical_packages =
duke@435 1416 os::active_processor_count() / logical_processors;
duke@435 1417 if (physical_packages > server_processors) {
duke@435 1418 result = true;
duke@435 1419 }
duke@435 1420 } else {
duke@435 1421 result = true;
duke@435 1422 }
duke@435 1423 }
duke@435 1424 return result;
duke@435 1425 }
dsamersoff@2751 1426
dsamersoff@2751 1427 // Read file line by line, if line is longer than bsize,
dsamersoff@2751 1428 // skip rest of line.
dsamersoff@2751 1429 int os::get_line_chars(int fd, char* buf, const size_t bsize){
dsamersoff@2751 1430 size_t sz, i = 0;
dsamersoff@2751 1431
dsamersoff@2751 1432 // read until EOF, EOL or buf is full
dsamersoff@3030 1433 while ((sz = (int) read(fd, &buf[i], 1)) == 1 && i < (bsize-2) && buf[i] != '\n') {
dsamersoff@2751 1434 ++i;
dsamersoff@2751 1435 }
dsamersoff@2751 1436
dsamersoff@2751 1437 if (buf[i] == '\n') {
dsamersoff@2751 1438 // EOL reached so ignore EOL character and return
dsamersoff@2751 1439
dsamersoff@2751 1440 buf[i] = 0;
dsamersoff@2751 1441 return (int) i;
dsamersoff@2751 1442 }
dsamersoff@2751 1443
dsamersoff@2751 1444 buf[i+1] = 0;
dsamersoff@2751 1445
dsamersoff@2751 1446 if (sz != 1) {
dsamersoff@2751 1447 // EOF reached. if we read chars before EOF return them and
dsamersoff@2751 1448 // return EOF on next call otherwise return EOF
dsamersoff@2751 1449
dsamersoff@2751 1450 return (i == 0) ? -1 : (int) i;
dsamersoff@2751 1451 }
dsamersoff@2751 1452
dsamersoff@2751 1453 // line is longer than size of buf, skip to EOL
dsamersoff@3030 1454 char ch;
dsamersoff@2751 1455 while (read(fd, &ch, 1) == 1 && ch != '\n') {
dsamersoff@2751 1456 // Do nothing
dsamersoff@2751 1457 }
dsamersoff@2751 1458
dsamersoff@2751 1459 // return initial part of line that fits in buf.
dsamersoff@2751 1460 // If we reached EOF, it will be returned on next call.
dsamersoff@2751 1461
dsamersoff@2751 1462 return (int) i;
dsamersoff@2751 1463 }
zgu@3900 1464
sla@5237 1465 void os::SuspendedThreadTask::run() {
sla@5237 1466 assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
sla@5237 1467 internal_do_task();
sla@5237 1468 _done = true;
sla@5237 1469 }
sla@5237 1470
zgu@3900 1471 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
zgu@3900 1472 return os::pd_create_stack_guard_pages(addr, bytes);
zgu@3900 1473 }
zgu@3900 1474
zgu@3900 1475 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
zgu@3900 1476 char* result = pd_reserve_memory(bytes, addr, alignment_hint);
zgu@4193 1477 if (result != NULL) {
zgu@5272 1478 MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
zgu@3900 1479 }
zgu@3900 1480
zgu@3900 1481 return result;
zgu@3900 1482 }
zgu@5053 1483
zgu@5053 1484 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
zgu@5053 1485 MEMFLAGS flags) {
zgu@5053 1486 char* result = pd_reserve_memory(bytes, addr, alignment_hint);
zgu@5053 1487 if (result != NULL) {
zgu@5272 1488 MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
zgu@5053 1489 MemTracker::record_virtual_memory_type((address)result, flags);
zgu@5053 1490 }
zgu@5053 1491
zgu@5053 1492 return result;
zgu@5053 1493 }
zgu@5053 1494
zgu@3900 1495 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
zgu@3900 1496 char* result = pd_attempt_reserve_memory_at(bytes, addr);
zgu@4193 1497 if (result != NULL) {
zgu@5272 1498 MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
zgu@3900 1499 }
zgu@3900 1500 return result;
zgu@3900 1501 }
zgu@3900 1502
zgu@3900 1503 void os::split_reserved_memory(char *base, size_t size,
zgu@3900 1504 size_t split, bool realloc) {
zgu@3900 1505 pd_split_reserved_memory(base, size, split, realloc);
zgu@3900 1506 }
zgu@3900 1507
zgu@3900 1508 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
zgu@3900 1509 bool res = pd_commit_memory(addr, bytes, executable);
zgu@4193 1510 if (res) {
zgu@3900 1511 MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
zgu@3900 1512 }
zgu@3900 1513 return res;
zgu@3900 1514 }
zgu@3900 1515
zgu@3900 1516 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
zgu@3900 1517 bool executable) {
zgu@3900 1518 bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
zgu@4193 1519 if (res) {
zgu@3900 1520 MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
zgu@3900 1521 }
zgu@3900 1522 return res;
zgu@3900 1523 }
zgu@3900 1524
dcubed@5255 1525 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
dcubed@5255 1526 const char* mesg) {
dcubed@5255 1527 pd_commit_memory_or_exit(addr, bytes, executable, mesg);
dcubed@5255 1528 MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
dcubed@5255 1529 }
dcubed@5255 1530
dcubed@5255 1531 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
dcubed@5255 1532 bool executable, const char* mesg) {
dcubed@5255 1533 os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
dcubed@5255 1534 MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
dcubed@5255 1535 }
dcubed@5255 1536
zgu@3900 1537 bool os::uncommit_memory(char* addr, size_t bytes) {
zgu@5272 1538 MemTracker::Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
zgu@3900 1539 bool res = pd_uncommit_memory(addr, bytes);
zgu@3900 1540 if (res) {
zgu@5272 1541 tkr.record((address)addr, bytes);
zgu@5272 1542 } else {
zgu@5272 1543 tkr.discard();
zgu@3900 1544 }
zgu@3900 1545 return res;
zgu@3900 1546 }
zgu@3900 1547
zgu@3900 1548 bool os::release_memory(char* addr, size_t bytes) {
zgu@5272 1549 MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
zgu@3900 1550 bool res = pd_release_memory(addr, bytes);
zgu@3900 1551 if (res) {
zgu@5272 1552 tkr.record((address)addr, bytes);
zgu@5272 1553 } else {
zgu@5272 1554 tkr.discard();
zgu@3900 1555 }
zgu@3900 1556 return res;
zgu@3900 1557 }
zgu@3900 1558
zgu@3900 1559
zgu@3900 1560 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
zgu@3900 1561 char *addr, size_t bytes, bool read_only,
zgu@3900 1562 bool allow_exec) {
zgu@3900 1563 char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
zgu@4193 1564 if (result != NULL) {
zgu@5272 1565 MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, mtNone, CALLER_PC);
zgu@3900 1566 }
zgu@3900 1567 return result;
zgu@3900 1568 }
zgu@3900 1569
zgu@3900 1570 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
zgu@3900 1571 char *addr, size_t bytes, bool read_only,
zgu@3900 1572 bool allow_exec) {
zgu@3900 1573 return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
zgu@3900 1574 read_only, allow_exec);
zgu@3900 1575 }
zgu@3900 1576
zgu@3900 1577 bool os::unmap_memory(char *addr, size_t bytes) {
zgu@5272 1578 MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
zgu@3900 1579 bool result = pd_unmap_memory(addr, bytes);
zgu@3900 1580 if (result) {
zgu@5272 1581 tkr.record((address)addr, bytes);
zgu@5272 1582 } else {
zgu@5272 1583 tkr.discard();
zgu@3900 1584 }
zgu@3900 1585 return result;
zgu@3900 1586 }
zgu@3900 1587
zgu@3900 1588 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
zgu@3900 1589 pd_free_memory(addr, bytes, alignment_hint);
zgu@3900 1590 }
zgu@3900 1591
zgu@3900 1592 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
zgu@3900 1593 pd_realign_memory(addr, bytes, alignment_hint);
zgu@3900 1594 }
zgu@3900 1595
sla@5237 1596 #ifndef TARGET_OS_FAMILY_windows
sla@5237 1597 /* try to switch state from state "from" to state "to"
sla@5237 1598 * returns the state set after the method is complete
sla@5237 1599 */
sla@5237 1600 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
sla@5237 1601 os::SuspendResume::State to)
sla@5237 1602 {
sla@5237 1603 os::SuspendResume::State result =
sla@5237 1604 (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
sla@5237 1605 if (result == from) {
sla@5237 1606 // success
sla@5237 1607 return to;
sla@5237 1608 }
sla@5237 1609 return result;
sla@5237 1610 }
sla@5237 1611 #endif

mercurial