src/share/vm/runtime/os.cpp

Fri, 19 Oct 2012 21:40:07 -0400

author
zgu
date
Fri, 19 Oct 2012 21:40:07 -0400
changeset 4193
716c64bda5ba
parent 4127
87ac5c0a404d
child 4261
6cb0d32b828b
child 4277
e4f764ddb06a
permissions
-rw-r--r--

7199092: NMT: NMT needs to deal overlapped virtual memory ranges
Summary: Enhanced virtual memory tracking to track committed regions as well as reserved regions, so NMT now can generate virtual memory map.
Reviewed-by: acorn, coleenp

duke@435 1 /*
coleenp@4037 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/classLoader.hpp"
stefank@2314 27 #include "classfile/javaClasses.hpp"
stefank@2314 28 #include "classfile/systemDictionary.hpp"
stefank@2314 29 #include "classfile/vmSymbols.hpp"
stefank@2314 30 #include "code/icBuffer.hpp"
stefank@2314 31 #include "code/vtableStubs.hpp"
stefank@2314 32 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 33 #include "interpreter/interpreter.hpp"
stefank@2314 34 #include "memory/allocation.inline.hpp"
stefank@2314 35 #include "oops/oop.inline.hpp"
stefank@2314 36 #include "prims/jvm.h"
stefank@2314 37 #include "prims/jvm_misc.hpp"
stefank@2314 38 #include "prims/privilegedStack.hpp"
stefank@2314 39 #include "runtime/arguments.hpp"
stefank@2314 40 #include "runtime/frame.inline.hpp"
stefank@2314 41 #include "runtime/interfaceSupport.hpp"
stefank@2314 42 #include "runtime/java.hpp"
stefank@2314 43 #include "runtime/javaCalls.hpp"
stefank@2314 44 #include "runtime/mutexLocker.hpp"
stefank@2314 45 #include "runtime/os.hpp"
stefank@2314 46 #include "runtime/stubRoutines.hpp"
stefank@2314 47 #include "services/attachListener.hpp"
zgu@3900 48 #include "services/memTracker.hpp"
stefank@2314 49 #include "services/threadService.hpp"
stefank@2314 50 #include "utilities/defaultStream.hpp"
stefank@2314 51 #include "utilities/events.hpp"
stefank@2314 52 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 53 # include "os_linux.inline.hpp"
stefank@2314 54 # include "thread_linux.inline.hpp"
stefank@2314 55 #endif
stefank@2314 56 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 57 # include "os_solaris.inline.hpp"
stefank@2314 58 # include "thread_solaris.inline.hpp"
stefank@2314 59 #endif
stefank@2314 60 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 61 # include "os_windows.inline.hpp"
stefank@2314 62 # include "thread_windows.inline.hpp"
stefank@2314 63 #endif
never@3156 64 #ifdef TARGET_OS_FAMILY_bsd
never@3156 65 # include "os_bsd.inline.hpp"
never@3156 66 # include "thread_bsd.inline.hpp"
never@3156 67 #endif
duke@435 68
duke@435 69 # include <signal.h>
duke@435 70
duke@435 71 OSThread* os::_starting_thread = NULL;
duke@435 72 address os::_polling_page = NULL;
duke@435 73 volatile int32_t* os::_mem_serialize_page = NULL;
duke@435 74 uintptr_t os::_serialize_page_mask = 0;
duke@435 75 long os::_rand_seed = 1;
duke@435 76 int os::_processor_count = 0;
duke@435 77 size_t os::_page_sizes[os::page_sizes_max];
duke@435 78
duke@435 79 #ifndef PRODUCT
kvn@2557 80 julong os::num_mallocs = 0; // # of calls to malloc/realloc
kvn@2557 81 julong os::alloc_bytes = 0; // # of bytes allocated
kvn@2557 82 julong os::num_frees = 0; // # of calls to free
kvn@2557 83 julong os::free_bytes = 0; // # of bytes freed
duke@435 84 #endif
duke@435 85
phh@3378 86 void os_init_globals() {
phh@3378 87 // Called from init_globals().
phh@3378 88 // See Threads::create_vm() in thread.cpp, and init.cpp.
phh@3378 89 os::init_globals();
phh@3378 90 }
phh@3378 91
duke@435 92 // Fill in buffer with current local time as an ISO-8601 string.
duke@435 93 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
duke@435 94 // Returns buffer, or NULL if it failed.
duke@435 95 // This would mostly be a call to
duke@435 96 // strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
duke@435 97 // except that on Windows the %z behaves badly, so we do it ourselves.
duke@435 98 // Also, people wanted milliseconds on there,
duke@435 99 // and strftime doesn't do milliseconds.
duke@435 100 char* os::iso8601_time(char* buffer, size_t buffer_length) {
duke@435 101 // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
duke@435 102 // 1 2
duke@435 103 // 12345678901234567890123456789
duke@435 104 static const char* iso8601_format =
duke@435 105 "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
duke@435 106 static const size_t needed_buffer = 29;
duke@435 107
duke@435 108 // Sanity check the arguments
duke@435 109 if (buffer == NULL) {
duke@435 110 assert(false, "NULL buffer");
duke@435 111 return NULL;
duke@435 112 }
duke@435 113 if (buffer_length < needed_buffer) {
duke@435 114 assert(false, "buffer_length too small");
duke@435 115 return NULL;
duke@435 116 }
duke@435 117 // Get the current time
sbohne@496 118 jlong milliseconds_since_19700101 = javaTimeMillis();
duke@435 119 const int milliseconds_per_microsecond = 1000;
duke@435 120 const time_t seconds_since_19700101 =
duke@435 121 milliseconds_since_19700101 / milliseconds_per_microsecond;
duke@435 122 const int milliseconds_after_second =
duke@435 123 milliseconds_since_19700101 % milliseconds_per_microsecond;
duke@435 124 // Convert the time value to a tm and timezone variable
ysr@983 125 struct tm time_struct;
ysr@983 126 if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
ysr@983 127 assert(false, "Failed localtime_pd");
duke@435 128 return NULL;
duke@435 129 }
never@3156 130 #if defined(_ALLBSD_SOURCE)
never@3156 131 const time_t zone = (time_t) time_struct.tm_gmtoff;
never@3156 132 #else
duke@435 133 const time_t zone = timezone;
never@3156 134 #endif
duke@435 135
duke@435 136 // If daylight savings time is in effect,
duke@435 137 // we are 1 hour East of our time zone
duke@435 138 const time_t seconds_per_minute = 60;
duke@435 139 const time_t minutes_per_hour = 60;
duke@435 140 const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
duke@435 141 time_t UTC_to_local = zone;
duke@435 142 if (time_struct.tm_isdst > 0) {
duke@435 143 UTC_to_local = UTC_to_local - seconds_per_hour;
duke@435 144 }
duke@435 145 // Compute the time zone offset.
ysr@983 146 // localtime_pd() sets timezone to the difference (in seconds)
duke@435 147 // between UTC and and local time.
duke@435 148 // ISO 8601 says we need the difference between local time and UTC,
ysr@983 149 // we change the sign of the localtime_pd() result.
duke@435 150 const time_t local_to_UTC = -(UTC_to_local);
duke@435 151 // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
duke@435 152 char sign_local_to_UTC = '+';
duke@435 153 time_t abs_local_to_UTC = local_to_UTC;
duke@435 154 if (local_to_UTC < 0) {
duke@435 155 sign_local_to_UTC = '-';
duke@435 156 abs_local_to_UTC = -(abs_local_to_UTC);
duke@435 157 }
duke@435 158 // Convert time zone offset seconds to hours and minutes.
duke@435 159 const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
duke@435 160 const time_t zone_min =
duke@435 161 ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
duke@435 162
duke@435 163 // Print an ISO 8601 date and time stamp into the buffer
duke@435 164 const int year = 1900 + time_struct.tm_year;
duke@435 165 const int month = 1 + time_struct.tm_mon;
duke@435 166 const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
duke@435 167 year,
duke@435 168 month,
duke@435 169 time_struct.tm_mday,
duke@435 170 time_struct.tm_hour,
duke@435 171 time_struct.tm_min,
duke@435 172 time_struct.tm_sec,
duke@435 173 milliseconds_after_second,
duke@435 174 sign_local_to_UTC,
duke@435 175 zone_hours,
duke@435 176 zone_min);
duke@435 177 if (printed == 0) {
duke@435 178 assert(false, "Failed jio_printf");
duke@435 179 return NULL;
duke@435 180 }
duke@435 181 return buffer;
duke@435 182 }
duke@435 183
duke@435 184 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
duke@435 185 #ifdef ASSERT
duke@435 186 if (!(!thread->is_Java_thread() ||
duke@435 187 Thread::current() == thread ||
duke@435 188 Threads_lock->owned_by_self()
duke@435 189 || thread->is_Compiler_thread()
duke@435 190 )) {
duke@435 191 assert(false, "possibility of dangling Thread pointer");
duke@435 192 }
duke@435 193 #endif
duke@435 194
duke@435 195 if (p >= MinPriority && p <= MaxPriority) {
duke@435 196 int priority = java_to_os_priority[p];
duke@435 197 return set_native_priority(thread, priority);
duke@435 198 } else {
duke@435 199 assert(false, "Should not happen");
duke@435 200 return OS_ERR;
duke@435 201 }
duke@435 202 }
duke@435 203
dholmes@4077 204 // The mapping from OS priority back to Java priority may be inexact because
dholmes@4077 205 // Java priorities can map M:1 with native priorities. If you want the definite
dholmes@4077 206 // Java priority then use JavaThread::java_priority()
duke@435 207 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
duke@435 208 int p;
duke@435 209 int os_prio;
duke@435 210 OSReturn ret = get_native_priority(thread, &os_prio);
duke@435 211 if (ret != OS_OK) return ret;
duke@435 212
dholmes@4077 213 if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
dholmes@4077 214 for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
dholmes@4077 215 } else {
dholmes@4077 216 // niceness values are in reverse order
dholmes@4077 217 for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
dholmes@4077 218 }
duke@435 219 priority = (ThreadPriority)p;
duke@435 220 return OS_OK;
duke@435 221 }
duke@435 222
duke@435 223
duke@435 224 // --------------------- sun.misc.Signal (optional) ---------------------
duke@435 225
duke@435 226
duke@435 227 // SIGBREAK is sent by the keyboard to query the VM state
duke@435 228 #ifndef SIGBREAK
duke@435 229 #define SIGBREAK SIGQUIT
duke@435 230 #endif
duke@435 231
duke@435 232 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
duke@435 233
duke@435 234
duke@435 235 static void signal_thread_entry(JavaThread* thread, TRAPS) {
duke@435 236 os::set_priority(thread, NearMaxPriority);
duke@435 237 while (true) {
duke@435 238 int sig;
duke@435 239 {
duke@435 240 // FIXME : Currently we have not decieded what should be the status
duke@435 241 // for this java thread blocked here. Once we decide about
duke@435 242 // that we should fix this.
duke@435 243 sig = os::signal_wait();
duke@435 244 }
duke@435 245 if (sig == os::sigexitnum_pd()) {
duke@435 246 // Terminate the signal thread
duke@435 247 return;
duke@435 248 }
duke@435 249
duke@435 250 switch (sig) {
duke@435 251 case SIGBREAK: {
duke@435 252 // Check if the signal is a trigger to start the Attach Listener - in that
duke@435 253 // case don't print stack traces.
duke@435 254 if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
duke@435 255 continue;
duke@435 256 }
duke@435 257 // Print stack traces
duke@435 258 // Any SIGBREAK operations added here should make sure to flush
duke@435 259 // the output stream (e.g. tty->flush()) after output. See 4803766.
duke@435 260 // Each module also prints an extra carriage return after its output.
duke@435 261 VM_PrintThreads op;
duke@435 262 VMThread::execute(&op);
duke@435 263 VM_PrintJNI jni_op;
duke@435 264 VMThread::execute(&jni_op);
duke@435 265 VM_FindDeadlocks op1(tty);
duke@435 266 VMThread::execute(&op1);
duke@435 267 Universe::print_heap_at_SIGBREAK();
duke@435 268 if (PrintClassHistogram) {
ysr@1050 269 VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */,
ysr@1050 270 true /* need_prologue */);
duke@435 271 VMThread::execute(&op1);
duke@435 272 }
duke@435 273 if (JvmtiExport::should_post_data_dump()) {
duke@435 274 JvmtiExport::post_data_dump();
duke@435 275 }
duke@435 276 break;
duke@435 277 }
duke@435 278 default: {
duke@435 279 // Dispatch the signal to java
duke@435 280 HandleMark hm(THREAD);
coleenp@4037 281 Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
duke@435 282 KlassHandle klass (THREAD, k);
duke@435 283 if (klass.not_null()) {
duke@435 284 JavaValue result(T_VOID);
duke@435 285 JavaCallArguments args;
duke@435 286 args.push_int(sig);
duke@435 287 JavaCalls::call_static(
duke@435 288 &result,
duke@435 289 klass,
coleenp@2497 290 vmSymbols::dispatch_name(),
coleenp@2497 291 vmSymbols::int_void_signature(),
duke@435 292 &args,
duke@435 293 THREAD
duke@435 294 );
duke@435 295 }
duke@435 296 if (HAS_PENDING_EXCEPTION) {
duke@435 297 // tty is initialized early so we don't expect it to be null, but
duke@435 298 // if it is we can't risk doing an initialization that might
duke@435 299 // trigger additional out-of-memory conditions
duke@435 300 if (tty != NULL) {
duke@435 301 char klass_name[256];
duke@435 302 char tmp_sig_name[16];
duke@435 303 const char* sig_name = "UNKNOWN";
coleenp@4037 304 InstanceKlass::cast(PENDING_EXCEPTION->klass())->
duke@435 305 name()->as_klass_external_name(klass_name, 256);
duke@435 306 if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
duke@435 307 sig_name = tmp_sig_name;
duke@435 308 warning("Exception %s occurred dispatching signal %s to handler"
duke@435 309 "- the VM may need to be forcibly terminated",
duke@435 310 klass_name, sig_name );
duke@435 311 }
duke@435 312 CLEAR_PENDING_EXCEPTION;
duke@435 313 }
duke@435 314 }
duke@435 315 }
duke@435 316 }
duke@435 317 }
duke@435 318
duke@435 319
duke@435 320 void os::signal_init() {
duke@435 321 if (!ReduceSignalUsage) {
duke@435 322 // Setup JavaThread for processing signals
duke@435 323 EXCEPTION_MARK;
coleenp@4037 324 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
duke@435 325 instanceKlassHandle klass (THREAD, k);
duke@435 326 instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
duke@435 327
duke@435 328 const char thread_name[] = "Signal Dispatcher";
duke@435 329 Handle string = java_lang_String::create_from_str(thread_name, CHECK);
duke@435 330
duke@435 331 // Initialize thread_oop to put it into the system threadGroup
duke@435 332 Handle thread_group (THREAD, Universe::system_thread_group());
duke@435 333 JavaValue result(T_VOID);
duke@435 334 JavaCalls::call_special(&result, thread_oop,
duke@435 335 klass,
coleenp@2497 336 vmSymbols::object_initializer_name(),
coleenp@2497 337 vmSymbols::threadgroup_string_void_signature(),
duke@435 338 thread_group,
duke@435 339 string,
duke@435 340 CHECK);
duke@435 341
never@1577 342 KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
duke@435 343 JavaCalls::call_special(&result,
duke@435 344 thread_group,
duke@435 345 group,
coleenp@2497 346 vmSymbols::add_method_name(),
coleenp@2497 347 vmSymbols::thread_void_signature(),
duke@435 348 thread_oop, // ARG 1
duke@435 349 CHECK);
duke@435 350
duke@435 351 os::signal_init_pd();
duke@435 352
duke@435 353 { MutexLocker mu(Threads_lock);
duke@435 354 JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
duke@435 355
duke@435 356 // At this point it may be possible that no osthread was created for the
duke@435 357 // JavaThread due to lack of memory. We would have to throw an exception
duke@435 358 // in that case. However, since this must work and we do not allow
duke@435 359 // exceptions anyway, check and abort if this fails.
duke@435 360 if (signal_thread == NULL || signal_thread->osthread() == NULL) {
duke@435 361 vm_exit_during_initialization("java.lang.OutOfMemoryError",
duke@435 362 "unable to create new native thread");
duke@435 363 }
duke@435 364
duke@435 365 java_lang_Thread::set_thread(thread_oop(), signal_thread);
duke@435 366 java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
duke@435 367 java_lang_Thread::set_daemon(thread_oop());
duke@435 368
duke@435 369 signal_thread->set_threadObj(thread_oop());
duke@435 370 Threads::add(signal_thread);
duke@435 371 Thread::start(signal_thread);
duke@435 372 }
duke@435 373 // Handle ^BREAK
duke@435 374 os::signal(SIGBREAK, os::user_handler());
duke@435 375 }
duke@435 376 }
duke@435 377
duke@435 378
duke@435 379 void os::terminate_signal_thread() {
duke@435 380 if (!ReduceSignalUsage)
duke@435 381 signal_notify(sigexitnum_pd());
duke@435 382 }
duke@435 383
duke@435 384
duke@435 385 // --------------------- loading libraries ---------------------
duke@435 386
duke@435 387 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
duke@435 388 extern struct JavaVM_ main_vm;
duke@435 389
duke@435 390 static void* _native_java_library = NULL;
duke@435 391
duke@435 392 void* os::native_java_library() {
duke@435 393 if (_native_java_library == NULL) {
duke@435 394 char buffer[JVM_MAXPATHLEN];
duke@435 395 char ebuf[1024];
duke@435 396
kamg@677 397 // Try to load verify dll first. In 1.3 java dll depends on it and is not
kamg@677 398 // always able to find it when the loading executable is outside the JDK.
duke@435 399 // In order to keep working with 1.2 we ignore any loading errors.
kamg@677 400 dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "verify");
kamg@677 401 dll_load(buffer, ebuf, sizeof(ebuf));
duke@435 402
duke@435 403 // Load java dll
kamg@677 404 dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "java");
kamg@677 405 _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
duke@435 406 if (_native_java_library == NULL) {
duke@435 407 vm_exit_during_initialization("Unable to load native library", ebuf);
duke@435 408 }
never@3156 409
never@3156 410 #if defined(__OpenBSD__)
never@3156 411 // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
never@3156 412 // ignore errors
never@3156 413 dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "net");
never@3156 414 dll_load(buffer, ebuf, sizeof(ebuf));
never@3156 415 #endif
kamg@677 416 }
kamg@677 417 static jboolean onLoaded = JNI_FALSE;
kamg@677 418 if (onLoaded) {
kamg@677 419 // We may have to wait to fire OnLoad until TLS is initialized.
kamg@677 420 if (ThreadLocalStorage::is_initialized()) {
kamg@677 421 // The JNI_OnLoad handling is normally done by method load in
kamg@677 422 // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
kamg@677 423 // explicitly so we have to check for JNI_OnLoad as well
kamg@677 424 const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
kamg@677 425 JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
kamg@677 426 JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
kamg@677 427 if (JNI_OnLoad != NULL) {
kamg@677 428 JavaThread* thread = JavaThread::current();
kamg@677 429 ThreadToNativeFromVM ttn(thread);
kamg@677 430 HandleMark hm(thread);
kamg@677 431 jint ver = (*JNI_OnLoad)(&main_vm, NULL);
kamg@677 432 onLoaded = JNI_TRUE;
kamg@677 433 if (!Threads::is_supported_jni_version_including_1_1(ver)) {
kamg@677 434 vm_exit_during_initialization("Unsupported JNI version");
kamg@677 435 }
duke@435 436 }
duke@435 437 }
duke@435 438 }
duke@435 439 return _native_java_library;
duke@435 440 }
duke@435 441
duke@435 442 // --------------------- heap allocation utilities ---------------------
duke@435 443
zgu@3900 444 char *os::strdup(const char *str, MEMFLAGS flags) {
duke@435 445 size_t size = strlen(str);
zgu@3900 446 char *dup_str = (char *)malloc(size + 1, flags);
duke@435 447 if (dup_str == NULL) return NULL;
duke@435 448 strcpy(dup_str, str);
duke@435 449 return dup_str;
duke@435 450 }
duke@435 451
duke@435 452
duke@435 453
duke@435 454 #ifdef ASSERT
duke@435 455 #define space_before (MallocCushion + sizeof(double))
duke@435 456 #define space_after MallocCushion
duke@435 457 #define size_addr_from_base(p) (size_t*)(p + space_before - sizeof(size_t))
duke@435 458 #define size_addr_from_obj(p) ((size_t*)p - 1)
duke@435 459 // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
duke@435 460 // NB: cannot be debug variable, because these aren't set from the command line until
duke@435 461 // *after* the first few allocs already happened
duke@435 462 #define MallocCushion 16
duke@435 463 #else
duke@435 464 #define space_before 0
duke@435 465 #define space_after 0
duke@435 466 #define size_addr_from_base(p) should not use w/o ASSERT
duke@435 467 #define size_addr_from_obj(p) should not use w/o ASSERT
duke@435 468 #define MallocCushion 0
duke@435 469 #endif
duke@435 470 #define paranoid 0 /* only set to 1 if you suspect checking code has bug */
duke@435 471
duke@435 472 #ifdef ASSERT
duke@435 473 inline size_t get_size(void* obj) {
duke@435 474 size_t size = *size_addr_from_obj(obj);
jcoomes@1845 475 if (size < 0) {
jcoomes@1845 476 fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
jcoomes@1845 477 SIZE_FORMAT ")", obj, size));
jcoomes@1845 478 }
duke@435 479 return size;
duke@435 480 }
duke@435 481
duke@435 482 u_char* find_cushion_backwards(u_char* start) {
duke@435 483 u_char* p = start;
duke@435 484 while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
duke@435 485 p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
duke@435 486 // ok, we have four consecutive marker bytes; find start
duke@435 487 u_char* q = p - 4;
duke@435 488 while (*q == badResourceValue) q--;
duke@435 489 return q + 1;
duke@435 490 }
duke@435 491
duke@435 492 u_char* find_cushion_forwards(u_char* start) {
duke@435 493 u_char* p = start;
duke@435 494 while (p[0] != badResourceValue || p[1] != badResourceValue ||
duke@435 495 p[2] != badResourceValue || p[3] != badResourceValue) p++;
duke@435 496 // ok, we have four consecutive marker bytes; find end of cushion
duke@435 497 u_char* q = p + 4;
duke@435 498 while (*q == badResourceValue) q++;
duke@435 499 return q - MallocCushion;
duke@435 500 }
duke@435 501
duke@435 502 void print_neighbor_blocks(void* ptr) {
duke@435 503 // find block allocated before ptr (not entirely crash-proof)
duke@435 504 if (MallocCushion < 4) {
duke@435 505 tty->print_cr("### cannot find previous block (MallocCushion < 4)");
duke@435 506 return;
duke@435 507 }
duke@435 508 u_char* start_of_this_block = (u_char*)ptr - space_before;
duke@435 509 u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
duke@435 510 // look for cushion in front of prev. block
duke@435 511 u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
duke@435 512 ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
duke@435 513 u_char* obj = start_of_prev_block + space_before;
duke@435 514 if (size <= 0 ) {
duke@435 515 // start is bad; mayhave been confused by OS data inbetween objects
duke@435 516 // search one more backwards
duke@435 517 start_of_prev_block = find_cushion_backwards(start_of_prev_block);
duke@435 518 size = *size_addr_from_base(start_of_prev_block);
duke@435 519 obj = start_of_prev_block + space_before;
duke@435 520 }
duke@435 521
duke@435 522 if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
kvn@2557 523 tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
duke@435 524 } else {
kvn@2557 525 tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
duke@435 526 }
duke@435 527
duke@435 528 // now find successor block
duke@435 529 u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
duke@435 530 start_of_next_block = find_cushion_forwards(start_of_next_block);
duke@435 531 u_char* next_obj = start_of_next_block + space_before;
duke@435 532 ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
duke@435 533 if (start_of_next_block[0] == badResourceValue &&
duke@435 534 start_of_next_block[1] == badResourceValue &&
duke@435 535 start_of_next_block[2] == badResourceValue &&
duke@435 536 start_of_next_block[3] == badResourceValue) {
kvn@2557 537 tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
duke@435 538 } else {
kvn@2557 539 tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
duke@435 540 }
duke@435 541 }
duke@435 542
duke@435 543
duke@435 544 void report_heap_error(void* memblock, void* bad, const char* where) {
kvn@2557 545 tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
kvn@2557 546 tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
duke@435 547 print_neighbor_blocks(memblock);
duke@435 548 fatal("memory stomping error");
duke@435 549 }
duke@435 550
duke@435 551 void verify_block(void* memblock) {
duke@435 552 size_t size = get_size(memblock);
duke@435 553 if (MallocCushion) {
duke@435 554 u_char* ptr = (u_char*)memblock - space_before;
duke@435 555 for (int i = 0; i < MallocCushion; i++) {
duke@435 556 if (ptr[i] != badResourceValue) {
duke@435 557 report_heap_error(memblock, ptr+i, "in front of");
duke@435 558 }
duke@435 559 }
duke@435 560 u_char* end = (u_char*)memblock + size + space_after;
duke@435 561 for (int j = -MallocCushion; j < 0; j++) {
duke@435 562 if (end[j] != badResourceValue) {
duke@435 563 report_heap_error(memblock, end+j, "after");
duke@435 564 }
duke@435 565 }
duke@435 566 }
duke@435 567 }
duke@435 568 #endif
duke@435 569
zgu@3900 570 void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
kvn@2557 571 NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
kvn@2557 572 NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
duke@435 573
duke@435 574 if (size == 0) {
duke@435 575 // return a valid pointer if size is zero
duke@435 576 // if NULL is returned the calling functions assume out of memory.
duke@435 577 size = 1;
duke@435 578 }
duke@435 579
duke@435 580 NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
duke@435 581 u_char* ptr = (u_char*)::malloc(size + space_before + space_after);
zgu@3900 582
duke@435 583 #ifdef ASSERT
duke@435 584 if (ptr == NULL) return NULL;
duke@435 585 if (MallocCushion) {
duke@435 586 for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
duke@435 587 u_char* end = ptr + space_before + size;
duke@435 588 for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
duke@435 589 for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
duke@435 590 }
duke@435 591 // put size just before data
duke@435 592 *size_addr_from_base(ptr) = size;
duke@435 593 #endif
duke@435 594 u_char* memblock = ptr + space_before;
duke@435 595 if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
kvn@2557 596 tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
duke@435 597 breakpoint();
duke@435 598 }
duke@435 599 debug_only(if (paranoid) verify_block(memblock));
kvn@2557 600 if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
zgu@3900 601
zgu@3900 602 // we do not track MallocCushion memory
zgu@3900 603 MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
zgu@3900 604
duke@435 605 return memblock;
duke@435 606 }
duke@435 607
duke@435 608
zgu@3900 609 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
duke@435 610 #ifndef ASSERT
kvn@2557 611 NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
kvn@2557 612 NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
zgu@3900 613 void* ptr = ::realloc(memblock, size);
zgu@4193 614 if (ptr != NULL) {
zgu@3900 615 MemTracker::record_realloc((address)memblock, (address)ptr, size, memflags,
zgu@3900 616 caller == 0 ? CALLER_PC : caller);
zgu@3900 617 }
zgu@3900 618 return ptr;
duke@435 619 #else
duke@435 620 if (memblock == NULL) {
zgu@3900 621 return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
duke@435 622 }
duke@435 623 if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
kvn@2557 624 tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
duke@435 625 breakpoint();
duke@435 626 }
duke@435 627 verify_block(memblock);
duke@435 628 NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
duke@435 629 if (size == 0) return NULL;
duke@435 630 // always move the block
zgu@3900 631 void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
kvn@2557 632 if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
duke@435 633 // Copy to new memory if malloc didn't fail
duke@435 634 if ( ptr != NULL ) {
duke@435 635 memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
duke@435 636 if (paranoid) verify_block(ptr);
duke@435 637 if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
kvn@2557 638 tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
duke@435 639 breakpoint();
duke@435 640 }
duke@435 641 free(memblock);
duke@435 642 }
duke@435 643 return ptr;
duke@435 644 #endif
duke@435 645 }
duke@435 646
duke@435 647
zgu@3900 648 void os::free(void *memblock, MEMFLAGS memflags) {
kvn@2557 649 NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
duke@435 650 #ifdef ASSERT
duke@435 651 if (memblock == NULL) return;
duke@435 652 if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
kvn@2557 653 if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
duke@435 654 breakpoint();
duke@435 655 }
duke@435 656 verify_block(memblock);
duke@435 657 NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
duke@435 658 // Added by detlefs.
duke@435 659 if (MallocCushion) {
duke@435 660 u_char* ptr = (u_char*)memblock - space_before;
duke@435 661 for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
duke@435 662 guarantee(*p == badResourceValue,
duke@435 663 "Thing freed should be malloc result.");
duke@435 664 *p = (u_char)freeBlockPad;
duke@435 665 }
duke@435 666 size_t size = get_size(memblock);
kvn@2557 667 inc_stat_counter(&free_bytes, size);
duke@435 668 u_char* end = ptr + space_before + size;
duke@435 669 for (u_char* q = end; q < end + MallocCushion; q++) {
duke@435 670 guarantee(*q == badResourceValue,
duke@435 671 "Thing freed should be malloc result.");
duke@435 672 *q = (u_char)freeBlockPad;
duke@435 673 }
kvn@2557 674 if (PrintMalloc && tty != NULL)
coleenp@2615 675 fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
kvn@2557 676 } else if (PrintMalloc && tty != NULL) {
kvn@2557 677 // tty->print_cr("os::free %p", memblock);
coleenp@2615 678 fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
duke@435 679 }
duke@435 680 #endif
zgu@3900 681 MemTracker::record_free((address)memblock, memflags);
zgu@3900 682
duke@435 683 ::free((char*)memblock - space_before);
duke@435 684 }
duke@435 685
duke@435 686 void os::init_random(long initval) {
duke@435 687 _rand_seed = initval;
duke@435 688 }
duke@435 689
duke@435 690
duke@435 691 long os::random() {
duke@435 692 /* standard, well-known linear congruential random generator with
duke@435 693 * next_rand = (16807*seed) mod (2**31-1)
duke@435 694 * see
duke@435 695 * (1) "Random Number Generators: Good Ones Are Hard to Find",
duke@435 696 * S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
duke@435 697 * (2) "Two Fast Implementations of the 'Minimal Standard' Random
duke@435 698 * Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
duke@435 699 */
duke@435 700 const long a = 16807;
duke@435 701 const unsigned long m = 2147483647;
duke@435 702 const long q = m / a; assert(q == 127773, "weird math");
duke@435 703 const long r = m % a; assert(r == 2836, "weird math");
duke@435 704
duke@435 705 // compute az=2^31p+q
duke@435 706 unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
duke@435 707 unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
duke@435 708 lo += (hi & 0x7FFF) << 16;
duke@435 709
duke@435 710 // if q overflowed, ignore the overflow and increment q
duke@435 711 if (lo > m) {
duke@435 712 lo &= m;
duke@435 713 ++lo;
duke@435 714 }
duke@435 715 lo += hi >> 15;
duke@435 716
duke@435 717 // if (p+q) overflowed, ignore the overflow and increment (p+q)
duke@435 718 if (lo > m) {
duke@435 719 lo &= m;
duke@435 720 ++lo;
duke@435 721 }
duke@435 722 return (_rand_seed = lo);
duke@435 723 }
duke@435 724
duke@435 725 // The INITIALIZED state is distinguished from the SUSPENDED state because the
duke@435 726 // conditions in which a thread is first started are different from those in which
duke@435 727 // a suspension is resumed. These differences make it hard for us to apply the
duke@435 728 // tougher checks when starting threads that we want to do when resuming them.
duke@435 729 // However, when start_thread is called as a result of Thread.start, on a Java
duke@435 730 // thread, the operation is synchronized on the Java Thread object. So there
duke@435 731 // cannot be a race to start the thread and hence for the thread to exit while
duke@435 732 // we are working on it. Non-Java threads that start Java threads either have
duke@435 733 // to do so in a context in which races are impossible, or should do appropriate
duke@435 734 // locking.
duke@435 735
duke@435 736 void os::start_thread(Thread* thread) {
duke@435 737 // guard suspend/resume
duke@435 738 MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
duke@435 739 OSThread* osthread = thread->osthread();
duke@435 740 osthread->set_state(RUNNABLE);
duke@435 741 pd_start_thread(thread);
duke@435 742 }
duke@435 743
duke@435 744 //---------------------------------------------------------------------------
duke@435 745 // Helper functions for fatal error handler
duke@435 746
duke@435 747 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
duke@435 748 assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
duke@435 749
duke@435 750 int cols = 0;
duke@435 751 int cols_per_line = 0;
duke@435 752 switch (unitsize) {
duke@435 753 case 1: cols_per_line = 16; break;
duke@435 754 case 2: cols_per_line = 8; break;
duke@435 755 case 4: cols_per_line = 4; break;
duke@435 756 case 8: cols_per_line = 2; break;
duke@435 757 default: return;
duke@435 758 }
duke@435 759
duke@435 760 address p = start;
duke@435 761 st->print(PTR_FORMAT ": ", start);
duke@435 762 while (p < end) {
duke@435 763 switch (unitsize) {
duke@435 764 case 1: st->print("%02x", *(u1*)p); break;
duke@435 765 case 2: st->print("%04x", *(u2*)p); break;
duke@435 766 case 4: st->print("%08x", *(u4*)p); break;
duke@435 767 case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
duke@435 768 }
duke@435 769 p += unitsize;
duke@435 770 cols++;
duke@435 771 if (cols >= cols_per_line && p < end) {
duke@435 772 cols = 0;
duke@435 773 st->cr();
duke@435 774 st->print(PTR_FORMAT ": ", p);
duke@435 775 } else {
duke@435 776 st->print(" ");
duke@435 777 }
duke@435 778 }
duke@435 779 st->cr();
duke@435 780 }
duke@435 781
duke@435 782 void os::print_environment_variables(outputStream* st, const char** env_list,
duke@435 783 char* buffer, int len) {
duke@435 784 if (env_list) {
duke@435 785 st->print_cr("Environment Variables:");
duke@435 786
duke@435 787 for (int i = 0; env_list[i] != NULL; i++) {
duke@435 788 if (getenv(env_list[i], buffer, len)) {
duke@435 789 st->print(env_list[i]);
duke@435 790 st->print("=");
duke@435 791 st->print_cr(buffer);
duke@435 792 }
duke@435 793 }
duke@435 794 }
duke@435 795 }
duke@435 796
duke@435 797 void os::print_cpu_info(outputStream* st) {
duke@435 798 // cpu
duke@435 799 st->print("CPU:");
duke@435 800 st->print("total %d", os::processor_count());
duke@435 801 // It's not safe to query number of active processors after crash
duke@435 802 // st->print("(active %d)", os::active_processor_count());
duke@435 803 st->print(" %s", VM_Version::cpu_features());
duke@435 804 st->cr();
jcoomes@2997 805 pd_print_cpu_info(st);
duke@435 806 }
duke@435 807
duke@435 808 void os::print_date_and_time(outputStream *st) {
duke@435 809 time_t tloc;
duke@435 810 (void)time(&tloc);
duke@435 811 st->print("time: %s", ctime(&tloc)); // ctime adds newline.
duke@435 812
duke@435 813 double t = os::elapsedTime();
duke@435 814 // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
duke@435 815 // Linux. Must be a bug in glibc ? Workaround is to round "t" to int
duke@435 816 // before printf. We lost some precision, but who cares?
duke@435 817 st->print_cr("elapsed time: %d seconds", (int)t);
duke@435 818 }
duke@435 819
bobv@2036 820 // moved from debug.cpp (used to be find()) but still called from there
never@2262 821 // The verbose parameter is only set by the debug code in one case
never@2262 822 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
bobv@2036 823 address addr = (address)x;
bobv@2036 824 CodeBlob* b = CodeCache::find_blob_unsafe(addr);
bobv@2036 825 if (b != NULL) {
bobv@2036 826 if (b->is_buffer_blob()) {
bobv@2036 827 // the interpreter is generated into a buffer blob
bobv@2036 828 InterpreterCodelet* i = Interpreter::codelet_containing(addr);
bobv@2036 829 if (i != NULL) {
twisti@3969 830 st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
bobv@2036 831 i->print_on(st);
bobv@2036 832 return;
bobv@2036 833 }
bobv@2036 834 if (Interpreter::contains(addr)) {
bobv@2036 835 st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
bobv@2036 836 " (not bytecode specific)", addr);
bobv@2036 837 return;
bobv@2036 838 }
bobv@2036 839 //
bobv@2036 840 if (AdapterHandlerLibrary::contains(b)) {
twisti@3969 841 st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
bobv@2036 842 AdapterHandlerLibrary::print_handler_on(st, b);
bobv@2036 843 }
bobv@2036 844 // the stubroutines are generated into a buffer blob
bobv@2036 845 StubCodeDesc* d = StubCodeDesc::desc_for(addr);
bobv@2036 846 if (d != NULL) {
twisti@3969 847 st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
bobv@2036 848 d->print_on(st);
twisti@3969 849 st->cr();
bobv@2036 850 return;
bobv@2036 851 }
bobv@2036 852 if (StubRoutines::contains(addr)) {
bobv@2036 853 st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
bobv@2036 854 "stub routine", addr);
bobv@2036 855 return;
bobv@2036 856 }
bobv@2036 857 // the InlineCacheBuffer is using stubs generated into a buffer blob
bobv@2036 858 if (InlineCacheBuffer::contains(addr)) {
bobv@2036 859 st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
bobv@2036 860 return;
bobv@2036 861 }
bobv@2036 862 VtableStub* v = VtableStubs::stub_containing(addr);
bobv@2036 863 if (v != NULL) {
twisti@3969 864 st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
bobv@2036 865 v->print_on(st);
twisti@3969 866 st->cr();
bobv@2036 867 return;
bobv@2036 868 }
bobv@2036 869 }
twisti@3969 870 nmethod* nm = b->as_nmethod_or_null();
twisti@3969 871 if (nm != NULL) {
bobv@2036 872 ResourceMark rm;
twisti@3969 873 st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
twisti@3969 874 addr, (int)(addr - nm->entry_point()), nm);
twisti@3969 875 if (verbose) {
twisti@3969 876 st->print(" for ");
twisti@3969 877 nm->method()->print_value_on(st);
twisti@3969 878 }
stefank@4127 879 st->cr();
twisti@3969 880 nm->print_nmethod(verbose);
bobv@2036 881 return;
bobv@2036 882 }
twisti@3969 883 st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
bobv@2036 884 b->print_on(st);
bobv@2036 885 return;
bobv@2036 886 }
bobv@2036 887
bobv@2036 888 if (Universe::heap()->is_in(addr)) {
bobv@2036 889 HeapWord* p = Universe::heap()->block_start(addr);
bobv@2036 890 bool print = false;
bobv@2036 891 // If we couldn't find it it just may mean that heap wasn't parseable
bobv@2036 892 // See if we were just given an oop directly
bobv@2036 893 if (p != NULL && Universe::heap()->block_is_obj(p)) {
bobv@2036 894 print = true;
bobv@2036 895 } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
bobv@2036 896 p = (HeapWord*) addr;
bobv@2036 897 print = true;
bobv@2036 898 }
bobv@2036 899 if (print) {
stefank@4125 900 if (p == (HeapWord*) addr) {
stefank@4125 901 st->print_cr(INTPTR_FORMAT " is an oop", addr);
stefank@4125 902 } else {
stefank@4125 903 st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
stefank@4125 904 }
bobv@2036 905 oop(p)->print_on(st);
bobv@2036 906 return;
bobv@2036 907 }
bobv@2036 908 } else {
bobv@2036 909 if (Universe::heap()->is_in_reserved(addr)) {
bobv@2036 910 st->print_cr(INTPTR_FORMAT " is an unallocated location "
bobv@2036 911 "in the heap", addr);
bobv@2036 912 return;
bobv@2036 913 }
bobv@2036 914 }
bobv@2036 915 if (JNIHandles::is_global_handle((jobject) addr)) {
bobv@2036 916 st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
bobv@2036 917 return;
bobv@2036 918 }
bobv@2036 919 if (JNIHandles::is_weak_global_handle((jobject) addr)) {
bobv@2036 920 st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
bobv@2036 921 return;
bobv@2036 922 }
bobv@2036 923 #ifndef PRODUCT
bobv@2036 924 // we don't keep the block list in product mode
bobv@2036 925 if (JNIHandleBlock::any_contains((jobject) addr)) {
bobv@2036 926 st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
bobv@2036 927 return;
bobv@2036 928 }
bobv@2036 929 #endif
bobv@2036 930
bobv@2036 931 for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
bobv@2036 932 // Check for privilege stack
bobv@2036 933 if (thread->privileged_stack_top() != NULL &&
bobv@2036 934 thread->privileged_stack_top()->contains(addr)) {
bobv@2036 935 st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
bobv@2036 936 "for thread: " INTPTR_FORMAT, addr, thread);
never@2262 937 if (verbose) thread->print_on(st);
bobv@2036 938 return;
bobv@2036 939 }
bobv@2036 940 // If the addr is a java thread print information about that.
bobv@2036 941 if (addr == (address)thread) {
never@2262 942 if (verbose) {
never@2262 943 thread->print_on(st);
never@2262 944 } else {
never@2262 945 st->print_cr(INTPTR_FORMAT " is a thread", addr);
never@2262 946 }
bobv@2036 947 return;
bobv@2036 948 }
bobv@2036 949 // If the addr is in the stack region for this thread then report that
bobv@2036 950 // and print thread info
bobv@2036 951 if (thread->stack_base() >= addr &&
bobv@2036 952 addr > (thread->stack_base() - thread->stack_size())) {
bobv@2036 953 st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
bobv@2036 954 INTPTR_FORMAT, addr, thread);
never@2262 955 if (verbose) thread->print_on(st);
bobv@2036 956 return;
bobv@2036 957 }
bobv@2036 958
bobv@2036 959 }
coleenp@4037 960
coleenp@4037 961 #ifndef PRODUCT
coleenp@4037 962 // Check if in metaspace.
coleenp@4037 963 if (ClassLoaderDataGraph::contains((address)addr)) {
coleenp@4037 964 // Use addr->print() from the debugger instead (not here)
coleenp@4037 965 st->print_cr(INTPTR_FORMAT
coleenp@4037 966 " is pointing into metadata", addr);
coleenp@4037 967 return;
coleenp@4037 968 }
coleenp@4037 969 #endif
coleenp@4037 970
bobv@2036 971 // Try an OS specific find
bobv@2036 972 if (os::find(addr, st)) {
bobv@2036 973 return;
bobv@2036 974 }
bobv@2036 975
never@2262 976 st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
bobv@2036 977 }
duke@435 978
duke@435 979 // Looks like all platforms except IA64 can use the same function to check
duke@435 980 // if C stack is walkable beyond current frame. The check for fp() is not
duke@435 981 // necessary on Sparc, but it's harmless.
duke@435 982 bool os::is_first_C_frame(frame* fr) {
duke@435 983 #ifdef IA64
duke@435 984 // In order to walk native frames on Itanium, we need to access the unwind
duke@435 985 // table, which is inside ELF. We don't want to parse ELF after fatal error,
duke@435 986 // so return true for IA64. If we need to support C stack walking on IA64,
duke@435 987 // this function needs to be moved to CPU specific files, as fp() on IA64
duke@435 988 // is register stack, which grows towards higher memory address.
duke@435 989 return true;
duke@435 990 #endif
duke@435 991
duke@435 992 // Load up sp, fp, sender sp and sender fp, check for reasonable values.
duke@435 993 // Check usp first, because if that's bad the other accessors may fault
duke@435 994 // on some architectures. Ditto ufp second, etc.
duke@435 995 uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
duke@435 996 // sp on amd can be 32 bit aligned.
duke@435 997 uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
duke@435 998
duke@435 999 uintptr_t usp = (uintptr_t)fr->sp();
duke@435 1000 if ((usp & sp_align_mask) != 0) return true;
duke@435 1001
duke@435 1002 uintptr_t ufp = (uintptr_t)fr->fp();
duke@435 1003 if ((ufp & fp_align_mask) != 0) return true;
duke@435 1004
duke@435 1005 uintptr_t old_sp = (uintptr_t)fr->sender_sp();
duke@435 1006 if ((old_sp & sp_align_mask) != 0) return true;
duke@435 1007 if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
duke@435 1008
duke@435 1009 uintptr_t old_fp = (uintptr_t)fr->link();
duke@435 1010 if ((old_fp & fp_align_mask) != 0) return true;
duke@435 1011 if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
duke@435 1012
duke@435 1013 // stack grows downwards; if old_fp is below current fp or if the stack
duke@435 1014 // frame is too large, either the stack is corrupted or fp is not saved
duke@435 1015 // on stack (i.e. on x86, ebp may be used as general register). The stack
duke@435 1016 // is not walkable beyond current frame.
duke@435 1017 if (old_fp < ufp) return true;
duke@435 1018 if (old_fp - ufp > 64 * K) return true;
duke@435 1019
duke@435 1020 return false;
duke@435 1021 }
duke@435 1022
duke@435 1023 #ifdef ASSERT
duke@435 1024 extern "C" void test_random() {
duke@435 1025 const double m = 2147483647;
duke@435 1026 double mean = 0.0, variance = 0.0, t;
duke@435 1027 long reps = 10000;
duke@435 1028 unsigned long seed = 1;
duke@435 1029
duke@435 1030 tty->print_cr("seed %ld for %ld repeats...", seed, reps);
duke@435 1031 os::init_random(seed);
duke@435 1032 long num;
duke@435 1033 for (int k = 0; k < reps; k++) {
duke@435 1034 num = os::random();
duke@435 1035 double u = (double)num / m;
duke@435 1036 assert(u >= 0.0 && u <= 1.0, "bad random number!");
duke@435 1037
duke@435 1038 // calculate mean and variance of the random sequence
duke@435 1039 mean += u;
duke@435 1040 variance += (u*u);
duke@435 1041 }
duke@435 1042 mean /= reps;
duke@435 1043 variance /= (reps - 1);
duke@435 1044
duke@435 1045 assert(num == 1043618065, "bad seed");
duke@435 1046 tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
duke@435 1047 tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
duke@435 1048 const double eps = 0.0001;
duke@435 1049 t = fabsd(mean - 0.5018);
duke@435 1050 assert(t < eps, "bad mean");
duke@435 1051 t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
duke@435 1052 assert(t < eps, "bad variance");
duke@435 1053 }
duke@435 1054 #endif
duke@435 1055
duke@435 1056
duke@435 1057 // Set up the boot classpath.
duke@435 1058
duke@435 1059 char* os::format_boot_path(const char* format_string,
duke@435 1060 const char* home,
duke@435 1061 int home_len,
duke@435 1062 char fileSep,
duke@435 1063 char pathSep) {
duke@435 1064 assert((fileSep == '/' && pathSep == ':') ||
duke@435 1065 (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
duke@435 1066
duke@435 1067 // Scan the format string to determine the length of the actual
duke@435 1068 // boot classpath, and handle platform dependencies as well.
duke@435 1069 int formatted_path_len = 0;
duke@435 1070 const char* p;
duke@435 1071 for (p = format_string; *p != 0; ++p) {
duke@435 1072 if (*p == '%') formatted_path_len += home_len - 1;
duke@435 1073 ++formatted_path_len;
duke@435 1074 }
duke@435 1075
zgu@3900 1076 char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
duke@435 1077 if (formatted_path == NULL) {
duke@435 1078 return NULL;
duke@435 1079 }
duke@435 1080
duke@435 1081 // Create boot classpath from format, substituting separator chars and
duke@435 1082 // java home directory.
duke@435 1083 char* q = formatted_path;
duke@435 1084 for (p = format_string; *p != 0; ++p) {
duke@435 1085 switch (*p) {
duke@435 1086 case '%':
duke@435 1087 strcpy(q, home);
duke@435 1088 q += home_len;
duke@435 1089 break;
duke@435 1090 case '/':
duke@435 1091 *q++ = fileSep;
duke@435 1092 break;
duke@435 1093 case ':':
duke@435 1094 *q++ = pathSep;
duke@435 1095 break;
duke@435 1096 default:
duke@435 1097 *q++ = *p;
duke@435 1098 }
duke@435 1099 }
duke@435 1100 *q = '\0';
duke@435 1101
duke@435 1102 assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
duke@435 1103 return formatted_path;
duke@435 1104 }
duke@435 1105
duke@435 1106
duke@435 1107 bool os::set_boot_path(char fileSep, char pathSep) {
duke@435 1108 const char* home = Arguments::get_java_home();
duke@435 1109 int home_len = (int)strlen(home);
duke@435 1110
duke@435 1111 static const char* meta_index_dir_format = "%/lib/";
duke@435 1112 static const char* meta_index_format = "%/lib/meta-index";
duke@435 1113 char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
duke@435 1114 if (meta_index == NULL) return false;
duke@435 1115 char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
duke@435 1116 if (meta_index_dir == NULL) return false;
duke@435 1117 Arguments::set_meta_index_path(meta_index, meta_index_dir);
duke@435 1118
duke@435 1119 // Any modification to the JAR-file list, for the boot classpath must be
duke@435 1120 // aligned with install/install/make/common/Pack.gmk. Note: boot class
duke@435 1121 // path class JARs, are stripped for StackMapTable to reduce download size.
duke@435 1122 static const char classpath_format[] =
duke@435 1123 "%/lib/resources.jar:"
duke@435 1124 "%/lib/rt.jar:"
duke@435 1125 "%/lib/sunrsasign.jar:"
duke@435 1126 "%/lib/jsse.jar:"
duke@435 1127 "%/lib/jce.jar:"
duke@435 1128 "%/lib/charsets.jar:"
phh@3427 1129 "%/lib/jfr.jar:"
dcubed@3202 1130 #ifdef __APPLE__
dcubed@3202 1131 "%/lib/JObjC.jar:"
dcubed@3202 1132 #endif
duke@435 1133 "%/classes";
duke@435 1134 char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
duke@435 1135 if (sysclasspath == NULL) return false;
duke@435 1136 Arguments::set_sysclasspath(sysclasspath);
duke@435 1137
duke@435 1138 return true;
duke@435 1139 }
duke@435 1140
phh@1126 1141 /*
phh@1126 1142 * Splits a path, based on its separator, the number of
phh@1126 1143 * elements is returned back in n.
phh@1126 1144 * It is the callers responsibility to:
phh@1126 1145 * a> check the value of n, and n may be 0.
phh@1126 1146 * b> ignore any empty path elements
phh@1126 1147 * c> free up the data.
phh@1126 1148 */
phh@1126 1149 char** os::split_path(const char* path, int* n) {
phh@1126 1150 *n = 0;
phh@1126 1151 if (path == NULL || strlen(path) == 0) {
phh@1126 1152 return NULL;
phh@1126 1153 }
phh@1126 1154 const char psepchar = *os::path_separator();
zgu@3900 1155 char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
phh@1126 1156 if (inpath == NULL) {
phh@1126 1157 return NULL;
phh@1126 1158 }
phh@1126 1159 strncpy(inpath, path, strlen(path));
phh@1126 1160 int count = 1;
phh@1126 1161 char* p = strchr(inpath, psepchar);
phh@1126 1162 // Get a count of elements to allocate memory
phh@1126 1163 while (p != NULL) {
phh@1126 1164 count++;
phh@1126 1165 p++;
phh@1126 1166 p = strchr(p, psepchar);
phh@1126 1167 }
zgu@3900 1168 char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
phh@1126 1169 if (opath == NULL) {
phh@1126 1170 return NULL;
phh@1126 1171 }
phh@1126 1172
phh@1126 1173 // do the actual splitting
phh@1126 1174 p = inpath;
phh@1126 1175 for (int i = 0 ; i < count ; i++) {
phh@1126 1176 size_t len = strcspn(p, os::path_separator());
phh@1126 1177 if (len > JVM_MAXPATHLEN) {
phh@1126 1178 return NULL;
phh@1126 1179 }
phh@1126 1180 // allocate the string and add terminator storage
zgu@3900 1181 char* s = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
phh@1126 1182 if (s == NULL) {
phh@1126 1183 return NULL;
phh@1126 1184 }
phh@1126 1185 strncpy(s, p, len);
phh@1126 1186 s[len] = '\0';
phh@1126 1187 opath[i] = s;
phh@1126 1188 p += len + 1;
phh@1126 1189 }
zgu@3900 1190 FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
phh@1126 1191 *n = count;
phh@1126 1192 return opath;
phh@1126 1193 }
phh@1126 1194
duke@435 1195 void os::set_memory_serialize_page(address page) {
duke@435 1196 int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@435 1197 _mem_serialize_page = (volatile int32_t *)page;
duke@435 1198 // We initialize the serialization page shift count here
duke@435 1199 // We assume a cache line size of 64 bytes
duke@435 1200 assert(SerializePageShiftCount == count,
duke@435 1201 "thread size changed, fix SerializePageShiftCount constant");
duke@435 1202 set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
duke@435 1203 }
duke@435 1204
xlu@490 1205 static volatile intptr_t SerializePageLock = 0;
xlu@490 1206
duke@435 1207 // This method is called from signal handler when SIGSEGV occurs while the current
duke@435 1208 // thread tries to store to the "read-only" memory serialize page during state
duke@435 1209 // transition.
duke@435 1210 void os::block_on_serialize_page_trap() {
duke@435 1211 if (TraceSafepoint) {
duke@435 1212 tty->print_cr("Block until the serialize page permission restored");
duke@435 1213 }
xlu@490 1214 // When VMThread is holding the SerializePageLock during modifying the
duke@435 1215 // access permission of the memory serialize page, the following call
duke@435 1216 // will block until the permission of that page is restored to rw.
duke@435 1217 // Generally, it is unsafe to manipulate locks in signal handlers, but in
duke@435 1218 // this case, it's OK as the signal is synchronous and we know precisely when
xlu@490 1219 // it can occur.
xlu@490 1220 Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
xlu@490 1221 Thread::muxRelease(&SerializePageLock);
duke@435 1222 }
duke@435 1223
duke@435 1224 // Serialize all thread state variables
duke@435 1225 void os::serialize_thread_states() {
duke@435 1226 // On some platforms such as Solaris & Linux, the time duration of the page
duke@435 1227 // permission restoration is observed to be much longer than expected due to
duke@435 1228 // scheduler starvation problem etc. To avoid the long synchronization
xlu@490 1229 // time and expensive page trap spinning, 'SerializePageLock' is used to block
xlu@490 1230 // the mutator thread if such case is encountered. See bug 6546278 for details.
xlu@490 1231 Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
coleenp@672 1232 os::protect_memory((char *)os::get_memory_serialize_page(),
coleenp@912 1233 os::vm_page_size(), MEM_PROT_READ);
coleenp@912 1234 os::protect_memory((char *)os::get_memory_serialize_page(),
coleenp@912 1235 os::vm_page_size(), MEM_PROT_RW);
xlu@490 1236 Thread::muxRelease(&SerializePageLock);
duke@435 1237 }
duke@435 1238
duke@435 1239 // Returns true if the current stack pointer is above the stack shadow
duke@435 1240 // pages, false otherwise.
duke@435 1241
duke@435 1242 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
duke@435 1243 assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
duke@435 1244 address sp = current_stack_pointer();
duke@435 1245 // Check if we have StackShadowPages above the yellow zone. This parameter
twisti@1040 1246 // is dependent on the depth of the maximum VM call stack possible from
duke@435 1247 // the handler for stack overflow. 'instanceof' in the stack overflow
duke@435 1248 // handler or a println uses at least 8k stack of VM and native code
duke@435 1249 // respectively.
duke@435 1250 const int framesize_in_bytes =
duke@435 1251 Interpreter::size_top_interpreter_activation(method()) * wordSize;
duke@435 1252 int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
duke@435 1253 * vm_page_size()) + framesize_in_bytes;
duke@435 1254 // The very lower end of the stack
duke@435 1255 address stack_limit = thread->stack_base() - thread->stack_size();
duke@435 1256 return (sp > (stack_limit + reserved_area));
duke@435 1257 }
duke@435 1258
duke@435 1259 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
duke@435 1260 uint min_pages)
duke@435 1261 {
duke@435 1262 assert(min_pages > 0, "sanity");
duke@435 1263 if (UseLargePages) {
duke@435 1264 const size_t max_page_size = region_max_size / min_pages;
duke@435 1265
duke@435 1266 for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
duke@435 1267 const size_t sz = _page_sizes[i];
duke@435 1268 const size_t mask = sz - 1;
duke@435 1269 if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
duke@435 1270 // The largest page size with no fragmentation.
duke@435 1271 return sz;
duke@435 1272 }
duke@435 1273
duke@435 1274 if (sz <= max_page_size) {
duke@435 1275 // The largest page size that satisfies the min_pages requirement.
duke@435 1276 return sz;
duke@435 1277 }
duke@435 1278 }
duke@435 1279 }
duke@435 1280
duke@435 1281 return vm_page_size();
duke@435 1282 }
duke@435 1283
duke@435 1284 #ifndef PRODUCT
jcoomes@3057 1285 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
jcoomes@3057 1286 {
jcoomes@3057 1287 if (TracePageSizes) {
jcoomes@3057 1288 tty->print("%s: ", str);
jcoomes@3057 1289 for (int i = 0; i < count; ++i) {
jcoomes@3057 1290 tty->print(" " SIZE_FORMAT, page_sizes[i]);
jcoomes@3057 1291 }
jcoomes@3057 1292 tty->cr();
jcoomes@3057 1293 }
jcoomes@3057 1294 }
jcoomes@3057 1295
duke@435 1296 void os::trace_page_sizes(const char* str, const size_t region_min_size,
duke@435 1297 const size_t region_max_size, const size_t page_size,
duke@435 1298 const char* base, const size_t size)
duke@435 1299 {
duke@435 1300 if (TracePageSizes) {
duke@435 1301 tty->print_cr("%s: min=" SIZE_FORMAT " max=" SIZE_FORMAT
duke@435 1302 " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
duke@435 1303 " size=" SIZE_FORMAT,
duke@435 1304 str, region_min_size, region_max_size,
duke@435 1305 page_size, base, size);
duke@435 1306 }
duke@435 1307 }
duke@435 1308 #endif // #ifndef PRODUCT
duke@435 1309
duke@435 1310 // This is the working definition of a server class machine:
duke@435 1311 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
duke@435 1312 // because the graphics memory (?) sometimes masks physical memory.
duke@435 1313 // If you want to change the definition of a server class machine
duke@435 1314 // on some OS or platform, e.g., >=4GB on Windohs platforms,
duke@435 1315 // then you'll have to parameterize this method based on that state,
duke@435 1316 // as was done for logical processors here, or replicate and
duke@435 1317 // specialize this method for each platform. (Or fix os to have
duke@435 1318 // some inheritance structure and use subclassing. Sigh.)
duke@435 1319 // If you want some platform to always or never behave as a server
duke@435 1320 // class machine, change the setting of AlwaysActAsServerClassMachine
duke@435 1321 // and NeverActAsServerClassMachine in globals*.hpp.
duke@435 1322 bool os::is_server_class_machine() {
duke@435 1323 // First check for the early returns
duke@435 1324 if (NeverActAsServerClassMachine) {
duke@435 1325 return false;
duke@435 1326 }
duke@435 1327 if (AlwaysActAsServerClassMachine) {
duke@435 1328 return true;
duke@435 1329 }
duke@435 1330 // Then actually look at the machine
duke@435 1331 bool result = false;
duke@435 1332 const unsigned int server_processors = 2;
duke@435 1333 const julong server_memory = 2UL * G;
duke@435 1334 // We seem not to get our full complement of memory.
duke@435 1335 // We allow some part (1/8?) of the memory to be "missing",
duke@435 1336 // based on the sizes of DIMMs, and maybe graphics cards.
duke@435 1337 const julong missing_memory = 256UL * M;
duke@435 1338
duke@435 1339 /* Is this a server class machine? */
duke@435 1340 if ((os::active_processor_count() >= (int)server_processors) &&
duke@435 1341 (os::physical_memory() >= (server_memory - missing_memory))) {
duke@435 1342 const unsigned int logical_processors =
duke@435 1343 VM_Version::logical_processors_per_package();
duke@435 1344 if (logical_processors > 1) {
duke@435 1345 const unsigned int physical_packages =
duke@435 1346 os::active_processor_count() / logical_processors;
duke@435 1347 if (physical_packages > server_processors) {
duke@435 1348 result = true;
duke@435 1349 }
duke@435 1350 } else {
duke@435 1351 result = true;
duke@435 1352 }
duke@435 1353 }
duke@435 1354 return result;
duke@435 1355 }
dsamersoff@2751 1356
dsamersoff@2751 1357 // Read file line by line, if line is longer than bsize,
dsamersoff@2751 1358 // skip rest of line.
dsamersoff@2751 1359 int os::get_line_chars(int fd, char* buf, const size_t bsize){
dsamersoff@2751 1360 size_t sz, i = 0;
dsamersoff@2751 1361
dsamersoff@2751 1362 // read until EOF, EOL or buf is full
dsamersoff@3030 1363 while ((sz = (int) read(fd, &buf[i], 1)) == 1 && i < (bsize-2) && buf[i] != '\n') {
dsamersoff@2751 1364 ++i;
dsamersoff@2751 1365 }
dsamersoff@2751 1366
dsamersoff@2751 1367 if (buf[i] == '\n') {
dsamersoff@2751 1368 // EOL reached so ignore EOL character and return
dsamersoff@2751 1369
dsamersoff@2751 1370 buf[i] = 0;
dsamersoff@2751 1371 return (int) i;
dsamersoff@2751 1372 }
dsamersoff@2751 1373
dsamersoff@2751 1374 buf[i+1] = 0;
dsamersoff@2751 1375
dsamersoff@2751 1376 if (sz != 1) {
dsamersoff@2751 1377 // EOF reached. if we read chars before EOF return them and
dsamersoff@2751 1378 // return EOF on next call otherwise return EOF
dsamersoff@2751 1379
dsamersoff@2751 1380 return (i == 0) ? -1 : (int) i;
dsamersoff@2751 1381 }
dsamersoff@2751 1382
dsamersoff@2751 1383 // line is longer than size of buf, skip to EOL
dsamersoff@3030 1384 char ch;
dsamersoff@2751 1385 while (read(fd, &ch, 1) == 1 && ch != '\n') {
dsamersoff@2751 1386 // Do nothing
dsamersoff@2751 1387 }
dsamersoff@2751 1388
dsamersoff@2751 1389 // return initial part of line that fits in buf.
dsamersoff@2751 1390 // If we reached EOF, it will be returned on next call.
dsamersoff@2751 1391
dsamersoff@2751 1392 return (int) i;
dsamersoff@2751 1393 }
zgu@3900 1394
zgu@3900 1395 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
zgu@3900 1396 return os::pd_create_stack_guard_pages(addr, bytes);
zgu@3900 1397 }
zgu@3900 1398
zgu@3900 1399
zgu@3900 1400 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
zgu@3900 1401 char* result = pd_reserve_memory(bytes, addr, alignment_hint);
zgu@4193 1402 if (result != NULL) {
zgu@3900 1403 MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
zgu@3900 1404 }
zgu@3900 1405
zgu@3900 1406 return result;
zgu@3900 1407 }
zgu@3900 1408 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
zgu@3900 1409 char* result = pd_attempt_reserve_memory_at(bytes, addr);
zgu@4193 1410 if (result != NULL) {
zgu@3900 1411 MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
zgu@3900 1412 }
zgu@3900 1413 return result;
zgu@3900 1414 }
zgu@3900 1415
zgu@3900 1416 void os::split_reserved_memory(char *base, size_t size,
zgu@3900 1417 size_t split, bool realloc) {
zgu@3900 1418 pd_split_reserved_memory(base, size, split, realloc);
zgu@3900 1419 }
zgu@3900 1420
zgu@3900 1421 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
zgu@3900 1422 bool res = pd_commit_memory(addr, bytes, executable);
zgu@4193 1423 if (res) {
zgu@3900 1424 MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
zgu@3900 1425 }
zgu@3900 1426 return res;
zgu@3900 1427 }
zgu@3900 1428
zgu@3900 1429 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
zgu@3900 1430 bool executable) {
zgu@3900 1431 bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
zgu@4193 1432 if (res) {
zgu@3900 1433 MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
zgu@3900 1434 }
zgu@3900 1435 return res;
zgu@3900 1436 }
zgu@3900 1437
zgu@3900 1438 bool os::uncommit_memory(char* addr, size_t bytes) {
zgu@3900 1439 bool res = pd_uncommit_memory(addr, bytes);
zgu@3900 1440 if (res) {
zgu@3900 1441 MemTracker::record_virtual_memory_uncommit((address)addr, bytes);
zgu@3900 1442 }
zgu@3900 1443 return res;
zgu@3900 1444 }
zgu@3900 1445
zgu@3900 1446 bool os::release_memory(char* addr, size_t bytes) {
zgu@3900 1447 bool res = pd_release_memory(addr, bytes);
zgu@3900 1448 if (res) {
zgu@3900 1449 MemTracker::record_virtual_memory_release((address)addr, bytes);
zgu@3900 1450 }
zgu@3900 1451 return res;
zgu@3900 1452 }
zgu@3900 1453
zgu@3900 1454
zgu@3900 1455 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
zgu@3900 1456 char *addr, size_t bytes, bool read_only,
zgu@3900 1457 bool allow_exec) {
zgu@3900 1458 char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
zgu@4193 1459 if (result != NULL) {
zgu@3900 1460 MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
zgu@4193 1461 MemTracker::record_virtual_memory_commit((address)result, bytes, CALLER_PC);
zgu@3900 1462 }
zgu@3900 1463 return result;
zgu@3900 1464 }
zgu@3900 1465
zgu@3900 1466 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
zgu@3900 1467 char *addr, size_t bytes, bool read_only,
zgu@3900 1468 bool allow_exec) {
zgu@3900 1469 return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
zgu@3900 1470 read_only, allow_exec);
zgu@3900 1471 }
zgu@3900 1472
zgu@3900 1473 bool os::unmap_memory(char *addr, size_t bytes) {
zgu@3900 1474 bool result = pd_unmap_memory(addr, bytes);
zgu@3900 1475 if (result) {
zgu@4193 1476 MemTracker::record_virtual_memory_uncommit((address)addr, bytes);
zgu@3900 1477 MemTracker::record_virtual_memory_release((address)addr, bytes);
zgu@3900 1478 }
zgu@3900 1479 return result;
zgu@3900 1480 }
zgu@3900 1481
zgu@3900 1482 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
zgu@3900 1483 pd_free_memory(addr, bytes, alignment_hint);
zgu@3900 1484 }
zgu@3900 1485
zgu@3900 1486 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
zgu@3900 1487 pd_realign_memory(addr, bytes, alignment_hint);
zgu@3900 1488 }
zgu@3900 1489

mercurial