src/share/vm/opto/compile.cpp

Tue, 24 Dec 2013 11:48:39 -0800

author
mikael
date
Tue, 24 Dec 2013 11:48:39 -0800
changeset 6198
55fb97c4c58d
parent 6071
613e6a6fc328
child 6217
849eb7bfceac
child 6485
da862781b584
permissions
-rw-r--r--

8029233: Update copyright year to match last edit in jdk8 hotspot repository for 2013
Summary: Copyright year updated for files modified during 2013
Reviewed-by: twisti, iveresov

duke@435 1 /*
sla@5237 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
stefank@2314 28 #include "classfile/systemDictionary.hpp"
stefank@2314 29 #include "code/exceptionHandlerTable.hpp"
stefank@2314 30 #include "code/nmethod.hpp"
stefank@2314 31 #include "compiler/compileLog.hpp"
twisti@4318 32 #include "compiler/disassembler.hpp"
stefank@2314 33 #include "compiler/oopMap.hpp"
stefank@2314 34 #include "opto/addnode.hpp"
stefank@2314 35 #include "opto/block.hpp"
stefank@2314 36 #include "opto/c2compiler.hpp"
stefank@2314 37 #include "opto/callGenerator.hpp"
stefank@2314 38 #include "opto/callnode.hpp"
stefank@2314 39 #include "opto/cfgnode.hpp"
stefank@2314 40 #include "opto/chaitin.hpp"
stefank@2314 41 #include "opto/compile.hpp"
stefank@2314 42 #include "opto/connode.hpp"
stefank@2314 43 #include "opto/divnode.hpp"
stefank@2314 44 #include "opto/escape.hpp"
stefank@2314 45 #include "opto/idealGraphPrinter.hpp"
stefank@2314 46 #include "opto/loopnode.hpp"
stefank@2314 47 #include "opto/machnode.hpp"
stefank@2314 48 #include "opto/macro.hpp"
stefank@2314 49 #include "opto/matcher.hpp"
rbackman@5927 50 #include "opto/mathexactnode.hpp"
stefank@2314 51 #include "opto/memnode.hpp"
stefank@2314 52 #include "opto/mulnode.hpp"
stefank@2314 53 #include "opto/node.hpp"
stefank@2314 54 #include "opto/opcodes.hpp"
stefank@2314 55 #include "opto/output.hpp"
stefank@2314 56 #include "opto/parse.hpp"
stefank@2314 57 #include "opto/phaseX.hpp"
stefank@2314 58 #include "opto/rootnode.hpp"
stefank@2314 59 #include "opto/runtime.hpp"
stefank@2314 60 #include "opto/stringopts.hpp"
stefank@2314 61 #include "opto/type.hpp"
stefank@2314 62 #include "opto/vectornode.hpp"
stefank@2314 63 #include "runtime/arguments.hpp"
stefank@2314 64 #include "runtime/signature.hpp"
stefank@2314 65 #include "runtime/stubRoutines.hpp"
stefank@2314 66 #include "runtime/timer.hpp"
sla@5237 67 #include "trace/tracing.hpp"
stefank@2314 68 #include "utilities/copy.hpp"
stefank@2314 69 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 70 # include "adfiles/ad_x86_32.hpp"
stefank@2314 71 #endif
stefank@2314 72 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 73 # include "adfiles/ad_x86_64.hpp"
stefank@2314 74 #endif
stefank@2314 75 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 76 # include "adfiles/ad_sparc.hpp"
stefank@2314 77 #endif
stefank@2314 78 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 79 # include "adfiles/ad_zero.hpp"
stefank@2314 80 #endif
bobv@2508 81 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 82 # include "adfiles/ad_arm.hpp"
bobv@2508 83 #endif
bobv@2508 84 #ifdef TARGET_ARCH_MODEL_ppc
bobv@2508 85 # include "adfiles/ad_ppc.hpp"
bobv@2508 86 #endif
duke@435 87
twisti@2350 88
twisti@2350 89 // -------------------- Compile::mach_constant_base_node -----------------------
twisti@2350 90 // Constant table base node singleton.
twisti@2350 91 MachConstantBaseNode* Compile::mach_constant_base_node() {
twisti@2350 92 if (_mach_constant_base_node == NULL) {
twisti@2350 93 _mach_constant_base_node = new (C) MachConstantBaseNode();
twisti@2350 94 _mach_constant_base_node->add_req(C->root());
twisti@2350 95 }
twisti@2350 96 return _mach_constant_base_node;
twisti@2350 97 }
twisti@2350 98
twisti@2350 99
duke@435 100 /// Support for intrinsics.
duke@435 101
duke@435 102 // Return the index at which m must be inserted (or already exists).
duke@435 103 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
duke@435 104 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
duke@435 105 #ifdef ASSERT
duke@435 106 for (int i = 1; i < _intrinsics->length(); i++) {
duke@435 107 CallGenerator* cg1 = _intrinsics->at(i-1);
duke@435 108 CallGenerator* cg2 = _intrinsics->at(i);
duke@435 109 assert(cg1->method() != cg2->method()
duke@435 110 ? cg1->method() < cg2->method()
duke@435 111 : cg1->is_virtual() < cg2->is_virtual(),
duke@435 112 "compiler intrinsics list must stay sorted");
duke@435 113 }
duke@435 114 #endif
duke@435 115 // Binary search sorted list, in decreasing intervals [lo, hi].
duke@435 116 int lo = 0, hi = _intrinsics->length()-1;
duke@435 117 while (lo <= hi) {
duke@435 118 int mid = (uint)(hi + lo) / 2;
duke@435 119 ciMethod* mid_m = _intrinsics->at(mid)->method();
duke@435 120 if (m < mid_m) {
duke@435 121 hi = mid-1;
duke@435 122 } else if (m > mid_m) {
duke@435 123 lo = mid+1;
duke@435 124 } else {
duke@435 125 // look at minor sort key
duke@435 126 bool mid_virt = _intrinsics->at(mid)->is_virtual();
duke@435 127 if (is_virtual < mid_virt) {
duke@435 128 hi = mid-1;
duke@435 129 } else if (is_virtual > mid_virt) {
duke@435 130 lo = mid+1;
duke@435 131 } else {
duke@435 132 return mid; // exact match
duke@435 133 }
duke@435 134 }
duke@435 135 }
duke@435 136 return lo; // inexact match
duke@435 137 }
duke@435 138
duke@435 139 void Compile::register_intrinsic(CallGenerator* cg) {
duke@435 140 if (_intrinsics == NULL) {
roland@4409 141 _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
duke@435 142 }
duke@435 143 // This code is stolen from ciObjectFactory::insert.
duke@435 144 // Really, GrowableArray should have methods for
duke@435 145 // insert_at, remove_at, and binary_search.
duke@435 146 int len = _intrinsics->length();
duke@435 147 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
duke@435 148 if (index == len) {
duke@435 149 _intrinsics->append(cg);
duke@435 150 } else {
duke@435 151 #ifdef ASSERT
duke@435 152 CallGenerator* oldcg = _intrinsics->at(index);
duke@435 153 assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
duke@435 154 #endif
duke@435 155 _intrinsics->append(_intrinsics->at(len-1));
duke@435 156 int pos;
duke@435 157 for (pos = len-2; pos >= index; pos--) {
duke@435 158 _intrinsics->at_put(pos+1,_intrinsics->at(pos));
duke@435 159 }
duke@435 160 _intrinsics->at_put(index, cg);
duke@435 161 }
duke@435 162 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
duke@435 163 }
duke@435 164
duke@435 165 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 166 assert(m->is_loaded(), "don't try this on unloaded methods");
duke@435 167 if (_intrinsics != NULL) {
duke@435 168 int index = intrinsic_insertion_index(m, is_virtual);
duke@435 169 if (index < _intrinsics->length()
duke@435 170 && _intrinsics->at(index)->method() == m
duke@435 171 && _intrinsics->at(index)->is_virtual() == is_virtual) {
duke@435 172 return _intrinsics->at(index);
duke@435 173 }
duke@435 174 }
duke@435 175 // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
jrose@1291 176 if (m->intrinsic_id() != vmIntrinsics::_none &&
jrose@1291 177 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
duke@435 178 CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
duke@435 179 if (cg != NULL) {
duke@435 180 // Save it for next time:
duke@435 181 register_intrinsic(cg);
duke@435 182 return cg;
duke@435 183 } else {
duke@435 184 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
duke@435 185 }
duke@435 186 }
duke@435 187 return NULL;
duke@435 188 }
duke@435 189
duke@435 190 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
duke@435 191 // in library_call.cpp.
duke@435 192
duke@435 193
duke@435 194 #ifndef PRODUCT
duke@435 195 // statistics gathering...
duke@435 196
duke@435 197 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
duke@435 198 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
duke@435 199
duke@435 200 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
duke@435 201 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
duke@435 202 int oflags = _intrinsic_hist_flags[id];
duke@435 203 assert(flags != 0, "what happened?");
duke@435 204 if (is_virtual) {
duke@435 205 flags |= _intrinsic_virtual;
duke@435 206 }
duke@435 207 bool changed = (flags != oflags);
duke@435 208 if ((flags & _intrinsic_worked) != 0) {
duke@435 209 juint count = (_intrinsic_hist_count[id] += 1);
duke@435 210 if (count == 1) {
duke@435 211 changed = true; // first time
duke@435 212 }
duke@435 213 // increment the overall count also:
duke@435 214 _intrinsic_hist_count[vmIntrinsics::_none] += 1;
duke@435 215 }
duke@435 216 if (changed) {
duke@435 217 if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
duke@435 218 // Something changed about the intrinsic's virtuality.
duke@435 219 if ((flags & _intrinsic_virtual) != 0) {
duke@435 220 // This is the first use of this intrinsic as a virtual call.
duke@435 221 if (oflags != 0) {
duke@435 222 // We already saw it as a non-virtual, so note both cases.
duke@435 223 flags |= _intrinsic_both;
duke@435 224 }
duke@435 225 } else if ((oflags & _intrinsic_both) == 0) {
duke@435 226 // This is the first use of this intrinsic as a non-virtual
duke@435 227 flags |= _intrinsic_both;
duke@435 228 }
duke@435 229 }
duke@435 230 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
duke@435 231 }
duke@435 232 // update the overall flags also:
duke@435 233 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
duke@435 234 return changed;
duke@435 235 }
duke@435 236
duke@435 237 static char* format_flags(int flags, char* buf) {
duke@435 238 buf[0] = 0;
duke@435 239 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
duke@435 240 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
duke@435 241 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
duke@435 242 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
duke@435 243 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
duke@435 244 if (buf[0] == 0) strcat(buf, ",");
duke@435 245 assert(buf[0] == ',', "must be");
duke@435 246 return &buf[1];
duke@435 247 }
duke@435 248
duke@435 249 void Compile::print_intrinsic_statistics() {
duke@435 250 char flagsbuf[100];
duke@435 251 ttyLocker ttyl;
duke@435 252 if (xtty != NULL) xtty->head("statistics type='intrinsic'");
duke@435 253 tty->print_cr("Compiler intrinsic usage:");
duke@435 254 juint total = _intrinsic_hist_count[vmIntrinsics::_none];
duke@435 255 if (total == 0) total = 1; // avoid div0 in case of no successes
duke@435 256 #define PRINT_STAT_LINE(name, c, f) \
duke@435 257 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
duke@435 258 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
duke@435 259 vmIntrinsics::ID id = (vmIntrinsics::ID) index;
duke@435 260 int flags = _intrinsic_hist_flags[id];
duke@435 261 juint count = _intrinsic_hist_count[id];
duke@435 262 if ((flags | count) != 0) {
duke@435 263 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
duke@435 264 }
duke@435 265 }
duke@435 266 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
duke@435 267 if (xtty != NULL) xtty->tail("statistics");
duke@435 268 }
duke@435 269
duke@435 270 void Compile::print_statistics() {
duke@435 271 { ttyLocker ttyl;
duke@435 272 if (xtty != NULL) xtty->head("statistics type='opto'");
duke@435 273 Parse::print_statistics();
duke@435 274 PhaseCCP::print_statistics();
duke@435 275 PhaseRegAlloc::print_statistics();
duke@435 276 Scheduling::print_statistics();
duke@435 277 PhasePeephole::print_statistics();
duke@435 278 PhaseIdealLoop::print_statistics();
duke@435 279 if (xtty != NULL) xtty->tail("statistics");
duke@435 280 }
duke@435 281 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
duke@435 282 // put this under its own <statistics> element.
duke@435 283 print_intrinsic_statistics();
duke@435 284 }
duke@435 285 }
duke@435 286 #endif //PRODUCT
duke@435 287
duke@435 288 // Support for bundling info
duke@435 289 Bundle* Compile::node_bundling(const Node *n) {
duke@435 290 assert(valid_bundle_info(n), "oob");
duke@435 291 return &_node_bundling_base[n->_idx];
duke@435 292 }
duke@435 293
duke@435 294 bool Compile::valid_bundle_info(const Node *n) {
duke@435 295 return (_node_bundling_limit > n->_idx);
duke@435 296 }
duke@435 297
duke@435 298
never@1515 299 void Compile::gvn_replace_by(Node* n, Node* nn) {
never@1515 300 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
never@1515 301 Node* use = n->last_out(i);
never@1515 302 bool is_in_table = initial_gvn()->hash_delete(use);
never@1515 303 uint uses_found = 0;
never@1515 304 for (uint j = 0; j < use->len(); j++) {
never@1515 305 if (use->in(j) == n) {
never@1515 306 if (j < use->req())
never@1515 307 use->set_req(j, nn);
never@1515 308 else
never@1515 309 use->set_prec(j, nn);
never@1515 310 uses_found++;
never@1515 311 }
never@1515 312 }
never@1515 313 if (is_in_table) {
never@1515 314 // reinsert into table
never@1515 315 initial_gvn()->hash_find_insert(use);
never@1515 316 }
never@1515 317 record_for_igvn(use);
never@1515 318 i -= uses_found; // we deleted 1 or more copies of this edge
never@1515 319 }
never@1515 320 }
never@1515 321
never@1515 322
bharadwaj@4315 323 static inline bool not_a_node(const Node* n) {
bharadwaj@4315 324 if (n == NULL) return true;
bharadwaj@4315 325 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
bharadwaj@4315 326 if (*(address*)n == badAddress) return true; // kill by Node::destruct
bharadwaj@4315 327 return false;
bharadwaj@4315 328 }
never@1515 329
duke@435 330 // Identify all nodes that are reachable from below, useful.
duke@435 331 // Use breadth-first pass that records state in a Unique_Node_List,
duke@435 332 // recursive traversal is slower.
duke@435 333 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
duke@435 334 int estimated_worklist_size = unique();
duke@435 335 useful.map( estimated_worklist_size, NULL ); // preallocate space
duke@435 336
duke@435 337 // Initialize worklist
duke@435 338 if (root() != NULL) { useful.push(root()); }
duke@435 339 // If 'top' is cached, declare it useful to preserve cached node
duke@435 340 if( cached_top_node() ) { useful.push(cached_top_node()); }
duke@435 341
duke@435 342 // Push all useful nodes onto the list, breadthfirst
duke@435 343 for( uint next = 0; next < useful.size(); ++next ) {
duke@435 344 assert( next < unique(), "Unique useful nodes < total nodes");
duke@435 345 Node *n = useful.at(next);
duke@435 346 uint max = n->len();
duke@435 347 for( uint i = 0; i < max; ++i ) {
duke@435 348 Node *m = n->in(i);
bharadwaj@4315 349 if (not_a_node(m)) continue;
duke@435 350 useful.push(m);
duke@435 351 }
duke@435 352 }
duke@435 353 }
duke@435 354
bharadwaj@4315 355 // Update dead_node_list with any missing dead nodes using useful
bharadwaj@4315 356 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
bharadwaj@4315 357 void Compile::update_dead_node_list(Unique_Node_List &useful) {
bharadwaj@4315 358 uint max_idx = unique();
bharadwaj@4315 359 VectorSet& useful_node_set = useful.member_set();
bharadwaj@4315 360
bharadwaj@4315 361 for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
bharadwaj@4315 362 // If node with index node_idx is not in useful set,
bharadwaj@4315 363 // mark it as dead in dead node list.
bharadwaj@4315 364 if (! useful_node_set.test(node_idx) ) {
bharadwaj@4315 365 record_dead_node(node_idx);
bharadwaj@4315 366 }
bharadwaj@4315 367 }
bharadwaj@4315 368 }
bharadwaj@4315 369
roland@4409 370 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
roland@4409 371 int shift = 0;
roland@4409 372 for (int i = 0; i < inlines->length(); i++) {
roland@4409 373 CallGenerator* cg = inlines->at(i);
roland@4409 374 CallNode* call = cg->call_node();
roland@4409 375 if (shift > 0) {
roland@4409 376 inlines->at_put(i-shift, cg);
roland@4409 377 }
roland@4409 378 if (!useful.member(call)) {
roland@4409 379 shift++;
roland@4409 380 }
roland@4409 381 }
roland@4409 382 inlines->trunc_to(inlines->length()-shift);
roland@4409 383 }
roland@4409 384
duke@435 385 // Disconnect all useless nodes by disconnecting those at the boundary.
duke@435 386 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
duke@435 387 uint next = 0;
kvn@3260 388 while (next < useful.size()) {
duke@435 389 Node *n = useful.at(next++);
duke@435 390 // Use raw traversal of out edges since this code removes out edges
duke@435 391 int max = n->outcnt();
kvn@3260 392 for (int j = 0; j < max; ++j) {
duke@435 393 Node* child = n->raw_out(j);
kvn@3260 394 if (! useful.member(child)) {
kvn@3260 395 assert(!child->is_top() || child != top(),
kvn@3260 396 "If top is cached in Compile object it is in useful list");
duke@435 397 // Only need to remove this out-edge to the useless node
duke@435 398 n->raw_del_out(j);
duke@435 399 --j;
duke@435 400 --max;
duke@435 401 }
duke@435 402 }
duke@435 403 if (n->outcnt() == 1 && n->has_special_unique_user()) {
kvn@3260 404 record_for_igvn(n->unique_out());
kvn@3260 405 }
kvn@3260 406 }
kvn@3260 407 // Remove useless macro and predicate opaq nodes
kvn@3260 408 for (int i = C->macro_count()-1; i >= 0; i--) {
kvn@3260 409 Node* n = C->macro_node(i);
kvn@3260 410 if (!useful.member(n)) {
kvn@3260 411 remove_macro_node(n);
duke@435 412 }
duke@435 413 }
roland@4589 414 // Remove useless expensive node
roland@4589 415 for (int i = C->expensive_count()-1; i >= 0; i--) {
roland@4589 416 Node* n = C->expensive_node(i);
roland@4589 417 if (!useful.member(n)) {
roland@4589 418 remove_expensive_node(n);
roland@4589 419 }
roland@4589 420 }
roland@4409 421 // clean up the late inline lists
roland@4409 422 remove_useless_late_inlines(&_string_late_inlines, useful);
kvn@5110 423 remove_useless_late_inlines(&_boxing_late_inlines, useful);
roland@4409 424 remove_useless_late_inlines(&_late_inlines, useful);
duke@435 425 debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
duke@435 426 }
duke@435 427
duke@435 428 //------------------------------frame_size_in_words-----------------------------
duke@435 429 // frame_slots in units of words
duke@435 430 int Compile::frame_size_in_words() const {
duke@435 431 // shift is 0 in LP32 and 1 in LP64
duke@435 432 const int shift = (LogBytesPerWord - LogBytesPerInt);
duke@435 433 int words = _frame_slots >> shift;
duke@435 434 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
duke@435 435 return words;
duke@435 436 }
duke@435 437
duke@435 438 // ============================================================================
duke@435 439 //------------------------------CompileWrapper---------------------------------
duke@435 440 class CompileWrapper : public StackObj {
duke@435 441 Compile *const _compile;
duke@435 442 public:
duke@435 443 CompileWrapper(Compile* compile);
duke@435 444
duke@435 445 ~CompileWrapper();
duke@435 446 };
duke@435 447
duke@435 448 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
duke@435 449 // the Compile* pointer is stored in the current ciEnv:
duke@435 450 ciEnv* env = compile->env();
duke@435 451 assert(env == ciEnv::current(), "must already be a ciEnv active");
duke@435 452 assert(env->compiler_data() == NULL, "compile already active?");
duke@435 453 env->set_compiler_data(compile);
duke@435 454 assert(compile == Compile::current(), "sanity");
duke@435 455
duke@435 456 compile->set_type_dict(NULL);
duke@435 457 compile->set_type_hwm(NULL);
duke@435 458 compile->set_type_last_size(0);
duke@435 459 compile->set_last_tf(NULL, NULL);
duke@435 460 compile->set_indexSet_arena(NULL);
duke@435 461 compile->set_indexSet_free_block_list(NULL);
duke@435 462 compile->init_type_arena();
duke@435 463 Type::Initialize(compile);
duke@435 464 _compile->set_scratch_buffer_blob(NULL);
duke@435 465 _compile->begin_method();
duke@435 466 }
duke@435 467 CompileWrapper::~CompileWrapper() {
duke@435 468 _compile->end_method();
duke@435 469 if (_compile->scratch_buffer_blob() != NULL)
duke@435 470 BufferBlob::free(_compile->scratch_buffer_blob());
duke@435 471 _compile->env()->set_compiler_data(NULL);
duke@435 472 }
duke@435 473
duke@435 474
duke@435 475 //----------------------------print_compile_messages---------------------------
duke@435 476 void Compile::print_compile_messages() {
duke@435 477 #ifndef PRODUCT
duke@435 478 // Check if recompiling
duke@435 479 if (_subsume_loads == false && PrintOpto) {
duke@435 480 // Recompiling without allowing machine instructions to subsume loads
duke@435 481 tty->print_cr("*********************************************************");
duke@435 482 tty->print_cr("** Bailout: Recompile without subsuming loads **");
duke@435 483 tty->print_cr("*********************************************************");
duke@435 484 }
kvn@473 485 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
kvn@473 486 // Recompiling without escape analysis
kvn@473 487 tty->print_cr("*********************************************************");
kvn@473 488 tty->print_cr("** Bailout: Recompile without escape analysis **");
kvn@473 489 tty->print_cr("*********************************************************");
kvn@473 490 }
kvn@5110 491 if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
kvn@5110 492 // Recompiling without boxing elimination
kvn@5110 493 tty->print_cr("*********************************************************");
kvn@5110 494 tty->print_cr("** Bailout: Recompile without boxing elimination **");
kvn@5110 495 tty->print_cr("*********************************************************");
kvn@5110 496 }
duke@435 497 if (env()->break_at_compile()) {
twisti@1040 498 // Open the debugger when compiling this method.
duke@435 499 tty->print("### Breaking when compiling: ");
duke@435 500 method()->print_short_name();
duke@435 501 tty->cr();
duke@435 502 BREAKPOINT;
duke@435 503 }
duke@435 504
duke@435 505 if( PrintOpto ) {
duke@435 506 if (is_osr_compilation()) {
duke@435 507 tty->print("[OSR]%3d", _compile_id);
duke@435 508 } else {
duke@435 509 tty->print("%3d", _compile_id);
duke@435 510 }
duke@435 511 }
duke@435 512 #endif
duke@435 513 }
duke@435 514
duke@435 515
kvn@2414 516 //-----------------------init_scratch_buffer_blob------------------------------
kvn@2414 517 // Construct a temporary BufferBlob and cache it for this compile.
twisti@2350 518 void Compile::init_scratch_buffer_blob(int const_size) {
kvn@2414 519 // If there is already a scratch buffer blob allocated and the
kvn@2414 520 // constant section is big enough, use it. Otherwise free the
kvn@2414 521 // current and allocate a new one.
kvn@2414 522 BufferBlob* blob = scratch_buffer_blob();
kvn@2414 523 if ((blob != NULL) && (const_size <= _scratch_const_size)) {
kvn@2414 524 // Use the current blob.
kvn@2414 525 } else {
kvn@2414 526 if (blob != NULL) {
kvn@2414 527 BufferBlob::free(blob);
kvn@2414 528 }
duke@435 529
kvn@2414 530 ResourceMark rm;
kvn@2414 531 _scratch_const_size = const_size;
kvn@2414 532 int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
kvn@2414 533 blob = BufferBlob::create("Compile::scratch_buffer", size);
kvn@2414 534 // Record the buffer blob for next time.
kvn@2414 535 set_scratch_buffer_blob(blob);
kvn@2414 536 // Have we run out of code space?
kvn@2414 537 if (scratch_buffer_blob() == NULL) {
kvn@2414 538 // Let CompilerBroker disable further compilations.
kvn@2414 539 record_failure("Not enough space for scratch buffer in CodeCache");
kvn@2414 540 return;
kvn@2414 541 }
kvn@598 542 }
duke@435 543
duke@435 544 // Initialize the relocation buffers
twisti@2103 545 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
duke@435 546 set_scratch_locs_memory(locs_buf);
duke@435 547 }
duke@435 548
duke@435 549
duke@435 550 //-----------------------scratch_emit_size-------------------------------------
duke@435 551 // Helper function that computes size by emitting code
duke@435 552 uint Compile::scratch_emit_size(const Node* n) {
twisti@2350 553 // Start scratch_emit_size section.
twisti@2350 554 set_in_scratch_emit_size(true);
twisti@2350 555
duke@435 556 // Emit into a trash buffer and count bytes emitted.
duke@435 557 // This is a pretty expensive way to compute a size,
duke@435 558 // but it works well enough if seldom used.
duke@435 559 // All common fixed-size instructions are given a size
duke@435 560 // method by the AD file.
duke@435 561 // Note that the scratch buffer blob and locs memory are
duke@435 562 // allocated at the beginning of the compile task, and
duke@435 563 // may be shared by several calls to scratch_emit_size.
duke@435 564 // The allocation of the scratch buffer blob is particularly
duke@435 565 // expensive, since it has to grab the code cache lock.
duke@435 566 BufferBlob* blob = this->scratch_buffer_blob();
duke@435 567 assert(blob != NULL, "Initialize BufferBlob at start");
duke@435 568 assert(blob->size() > MAX_inst_size, "sanity");
duke@435 569 relocInfo* locs_buf = scratch_locs_memory();
twisti@2103 570 address blob_begin = blob->content_begin();
duke@435 571 address blob_end = (address)locs_buf;
twisti@2103 572 assert(blob->content_contains(blob_end), "sanity");
duke@435 573 CodeBuffer buf(blob_begin, blob_end - blob_begin);
twisti@2350 574 buf.initialize_consts_size(_scratch_const_size);
duke@435 575 buf.initialize_stubs_size(MAX_stubs_size);
duke@435 576 assert(locs_buf != NULL, "sanity");
twisti@2350 577 int lsize = MAX_locs_size / 3;
twisti@2350 578 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
twisti@2350 579 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
twisti@2350 580 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
twisti@2350 581
twisti@2350 582 // Do the emission.
kvn@3037 583
kvn@3037 584 Label fakeL; // Fake label for branch instructions.
kvn@3051 585 Label* saveL = NULL;
kvn@3051 586 uint save_bnum = 0;
kvn@3051 587 bool is_branch = n->is_MachBranch();
kvn@3037 588 if (is_branch) {
kvn@3037 589 MacroAssembler masm(&buf);
kvn@3037 590 masm.bind(fakeL);
kvn@3051 591 n->as_MachBranch()->save_label(&saveL, &save_bnum);
kvn@3051 592 n->as_MachBranch()->label_set(&fakeL, 0);
kvn@3037 593 }
duke@435 594 n->emit(buf, this->regalloc());
kvn@3051 595 if (is_branch) // Restore label.
kvn@3051 596 n->as_MachBranch()->label_set(saveL, save_bnum);
twisti@2350 597
twisti@2350 598 // End scratch_emit_size section.
twisti@2350 599 set_in_scratch_emit_size(false);
twisti@2350 600
twisti@2103 601 return buf.insts_size();
duke@435 602 }
duke@435 603
duke@435 604
duke@435 605 // ============================================================================
duke@435 606 //------------------------------Compile standard-------------------------------
duke@435 607 debug_only( int Compile::_debug_idx = 100000; )
duke@435 608
duke@435 609 // Compile a method. entry_bci is -1 for normal compilations and indicates
duke@435 610 // the continuation bci for on stack replacement.
duke@435 611
duke@435 612
kvn@5110 613 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
kvn@5110 614 bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
duke@435 615 : Phase(Compiler),
duke@435 616 _env(ci_env),
duke@435 617 _log(ci_env->log()),
duke@435 618 _compile_id(ci_env->compile_id()),
duke@435 619 _save_argument_registers(false),
duke@435 620 _stub_name(NULL),
duke@435 621 _stub_function(NULL),
duke@435 622 _stub_entry_point(NULL),
duke@435 623 _method(target),
duke@435 624 _entry_bci(osr_bci),
duke@435 625 _initial_gvn(NULL),
duke@435 626 _for_igvn(NULL),
duke@435 627 _warm_calls(NULL),
duke@435 628 _subsume_loads(subsume_loads),
kvn@473 629 _do_escape_analysis(do_escape_analysis),
kvn@5110 630 _eliminate_boxing(eliminate_boxing),
duke@435 631 _failure_reason(NULL),
duke@435 632 _code_buffer("Compile::Fill_buffer"),
duke@435 633 _orig_pc_slot(0),
duke@435 634 _orig_pc_slot_offset_in_bytes(0),
twisti@1700 635 _has_method_handle_invokes(false),
twisti@2350 636 _mach_constant_base_node(NULL),
duke@435 637 _node_bundling_limit(0),
duke@435 638 _node_bundling_base(NULL),
kvn@1294 639 _java_calls(0),
kvn@1294 640 _inner_loops(0),
twisti@2350 641 _scratch_const_size(-1),
twisti@2350 642 _in_scratch_emit_size(false),
bharadwaj@4315 643 _dead_node_list(comp_arena()),
bharadwaj@4315 644 _dead_node_count(0),
duke@435 645 #ifndef PRODUCT
duke@435 646 _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
duke@435 647 _printer(IdealGraphPrinter::printer()),
duke@435 648 #endif
roland@4357 649 _congraph(NULL),
roland@4409 650 _late_inlines(comp_arena(), 2, 0, NULL),
roland@4409 651 _string_late_inlines(comp_arena(), 2, 0, NULL),
kvn@5110 652 _boxing_late_inlines(comp_arena(), 2, 0, NULL),
roland@4409 653 _late_inlines_pos(0),
roland@4409 654 _number_of_mh_late_inlines(0),
roland@4409 655 _inlining_progress(false),
roland@4409 656 _inlining_incrementally(false),
roland@4357 657 _print_inlining_list(NULL),
roland@5981 658 _print_inlining_idx(0),
roland@5981 659 _preserve_jvm_state(0) {
duke@435 660 C = this;
duke@435 661
duke@435 662 CompileWrapper cw(this);
duke@435 663 #ifndef PRODUCT
duke@435 664 if (TimeCompiler2) {
duke@435 665 tty->print(" ");
duke@435 666 target->holder()->name()->print();
duke@435 667 tty->print(".");
duke@435 668 target->print_short_name();
duke@435 669 tty->print(" ");
duke@435 670 }
duke@435 671 TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
duke@435 672 TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
jrose@535 673 bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
jrose@535 674 if (!print_opto_assembly) {
jrose@535 675 bool print_assembly = (PrintAssembly || _method->should_print_assembly());
jrose@535 676 if (print_assembly && !Disassembler::can_decode()) {
jrose@535 677 tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
jrose@535 678 print_opto_assembly = true;
jrose@535 679 }
jrose@535 680 }
jrose@535 681 set_print_assembly(print_opto_assembly);
never@802 682 set_parsed_irreducible_loop(false);
duke@435 683 #endif
kvn@5763 684 set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
kvn@5763 685 set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
duke@435 686
duke@435 687 if (ProfileTraps) {
duke@435 688 // Make sure the method being compiled gets its own MDO,
duke@435 689 // so we can at least track the decompile_count().
iveresov@2349 690 method()->ensure_method_data();
duke@435 691 }
duke@435 692
duke@435 693 Init(::AliasLevel);
duke@435 694
duke@435 695
duke@435 696 print_compile_messages();
duke@435 697
duke@435 698 if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
duke@435 699 _ilt = InlineTree::build_inline_tree_root();
duke@435 700 else
duke@435 701 _ilt = NULL;
duke@435 702
duke@435 703 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
duke@435 704 assert(num_alias_types() >= AliasIdxRaw, "");
duke@435 705
duke@435 706 #define MINIMUM_NODE_HASH 1023
duke@435 707 // Node list that Iterative GVN will start with
duke@435 708 Unique_Node_List for_igvn(comp_arena());
duke@435 709 set_for_igvn(&for_igvn);
duke@435 710
duke@435 711 // GVN that will be run immediately on new nodes
duke@435 712 uint estimated_size = method()->code_size()*4+64;
duke@435 713 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
duke@435 714 PhaseGVN gvn(node_arena(), estimated_size);
duke@435 715 set_initial_gvn(&gvn);
duke@435 716
kvn@5763 717 if (print_inlining() || print_intrinsics()) {
roland@4357 718 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
roland@4357 719 }
duke@435 720 { // Scope for timing the parser
duke@435 721 TracePhase t3("parse", &_t_parser, true);
duke@435 722
duke@435 723 // Put top into the hash table ASAP.
duke@435 724 initial_gvn()->transform_no_reclaim(top());
duke@435 725
duke@435 726 // Set up tf(), start(), and find a CallGenerator.
johnc@2781 727 CallGenerator* cg = NULL;
duke@435 728 if (is_osr_compilation()) {
duke@435 729 const TypeTuple *domain = StartOSRNode::osr_domain();
duke@435 730 const TypeTuple *range = TypeTuple::make_range(method()->signature());
duke@435 731 init_tf(TypeFunc::make(domain, range));
kvn@4115 732 StartNode* s = new (this) StartOSRNode(root(), domain);
duke@435 733 initial_gvn()->set_type_bottom(s);
duke@435 734 init_start(s);
duke@435 735 cg = CallGenerator::for_osr(method(), entry_bci());
duke@435 736 } else {
duke@435 737 // Normal case.
duke@435 738 init_tf(TypeFunc::make(method()));
kvn@4115 739 StartNode* s = new (this) StartNode(root(), tf()->domain());
duke@435 740 initial_gvn()->set_type_bottom(s);
duke@435 741 init_start(s);
johnc@2781 742 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
johnc@2781 743 // With java.lang.ref.reference.get() we must go through the
johnc@2781 744 // intrinsic when G1 is enabled - even when get() is the root
johnc@2781 745 // method of the compile - so that, if necessary, the value in
johnc@2781 746 // the referent field of the reference object gets recorded by
johnc@2781 747 // the pre-barrier code.
johnc@2781 748 // Specifically, if G1 is enabled, the value in the referent
johnc@2781 749 // field is recorded by the G1 SATB pre barrier. This will
johnc@2781 750 // result in the referent being marked live and the reference
johnc@2781 751 // object removed from the list of discovered references during
johnc@2781 752 // reference processing.
johnc@2781 753 cg = find_intrinsic(method(), false);
johnc@2781 754 }
johnc@2781 755 if (cg == NULL) {
johnc@2781 756 float past_uses = method()->interpreter_invocation_count();
johnc@2781 757 float expected_uses = past_uses;
johnc@2781 758 cg = CallGenerator::for_inline(method(), expected_uses);
johnc@2781 759 }
duke@435 760 }
duke@435 761 if (failing()) return;
duke@435 762 if (cg == NULL) {
duke@435 763 record_method_not_compilable_all_tiers("cannot parse method");
duke@435 764 return;
duke@435 765 }
duke@435 766 JVMState* jvms = build_start_state(start(), tf());
roland@5981 767 if ((jvms = cg->generate(jvms, NULL)) == NULL) {
duke@435 768 record_method_not_compilable("method parse failed");
duke@435 769 return;
duke@435 770 }
duke@435 771 GraphKit kit(jvms);
duke@435 772
duke@435 773 if (!kit.stopped()) {
duke@435 774 // Accept return values, and transfer control we know not where.
duke@435 775 // This is done by a special, unique ReturnNode bound to root.
duke@435 776 return_values(kit.jvms());
duke@435 777 }
duke@435 778
duke@435 779 if (kit.has_exceptions()) {
duke@435 780 // Any exceptions that escape from this call must be rethrown
duke@435 781 // to whatever caller is dynamically above us on the stack.
duke@435 782 // This is done by a special, unique RethrowNode bound to root.
duke@435 783 rethrow_exceptions(kit.transfer_exceptions_into_jvms());
duke@435 784 }
duke@435 785
roland@4409 786 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
roland@4409 787
roland@4409 788 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
roland@4409 789 inline_string_calls(true);
never@1515 790 }
roland@4409 791
roland@4409 792 if (failing()) return;
never@1515 793
sla@5237 794 print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
never@802 795
duke@435 796 // Remove clutter produced by parsing.
duke@435 797 if (!failing()) {
duke@435 798 ResourceMark rm;
duke@435 799 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
duke@435 800 }
duke@435 801 }
duke@435 802
duke@435 803 // Note: Large methods are capped off in do_one_bytecode().
duke@435 804 if (failing()) return;
duke@435 805
duke@435 806 // After parsing, node notes are no longer automagic.
duke@435 807 // They must be propagated by register_new_node_with_optimizer(),
duke@435 808 // clone(), or the like.
duke@435 809 set_default_node_notes(NULL);
duke@435 810
duke@435 811 for (;;) {
duke@435 812 int successes = Inline_Warm();
duke@435 813 if (failing()) return;
duke@435 814 if (successes == 0) break;
duke@435 815 }
duke@435 816
duke@435 817 // Drain the list.
duke@435 818 Finish_Warm();
duke@435 819 #ifndef PRODUCT
duke@435 820 if (_printer) {
duke@435 821 _printer->print_inlining(this);
duke@435 822 }
duke@435 823 #endif
duke@435 824
duke@435 825 if (failing()) return;
duke@435 826 NOT_PRODUCT( verify_graph_edges(); )
duke@435 827
duke@435 828 // Now optimize
duke@435 829 Optimize();
duke@435 830 if (failing()) return;
duke@435 831 NOT_PRODUCT( verify_graph_edges(); )
duke@435 832
duke@435 833 #ifndef PRODUCT
duke@435 834 if (PrintIdeal) {
duke@435 835 ttyLocker ttyl; // keep the following output all in one block
duke@435 836 // This output goes directly to the tty, not the compiler log.
duke@435 837 // To enable tools to match it up with the compilation activity,
duke@435 838 // be sure to tag this tty output with the compile ID.
duke@435 839 if (xtty != NULL) {
duke@435 840 xtty->head("ideal compile_id='%d'%s", compile_id(),
duke@435 841 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 842 "");
duke@435 843 }
duke@435 844 root()->dump(9999);
duke@435 845 if (xtty != NULL) {
duke@435 846 xtty->tail("ideal");
duke@435 847 }
duke@435 848 }
duke@435 849 #endif
duke@435 850
iveresov@6070 851 NOT_PRODUCT( verify_barriers(); )
duke@435 852 // Now that we know the size of all the monitors we can add a fixed slot
duke@435 853 // for the original deopt pc.
duke@435 854
duke@435 855 _orig_pc_slot = fixed_slots();
duke@435 856 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
duke@435 857 set_fixed_slots(next_slot);
duke@435 858
duke@435 859 // Now generate code
duke@435 860 Code_Gen();
duke@435 861 if (failing()) return;
duke@435 862
duke@435 863 // Check if we want to skip execution of all compiled code.
duke@435 864 {
duke@435 865 #ifndef PRODUCT
duke@435 866 if (OptoNoExecute) {
duke@435 867 record_method_not_compilable("+OptoNoExecute"); // Flag as failed
duke@435 868 return;
duke@435 869 }
duke@435 870 TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
duke@435 871 #endif
duke@435 872
duke@435 873 if (is_osr_compilation()) {
duke@435 874 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
duke@435 875 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
duke@435 876 } else {
duke@435 877 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
duke@435 878 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
duke@435 879 }
duke@435 880
duke@435 881 env()->register_method(_method, _entry_bci,
duke@435 882 &_code_offsets,
duke@435 883 _orig_pc_slot_offset_in_bytes,
duke@435 884 code_buffer(),
duke@435 885 frame_size_in_words(), _oop_map_set,
duke@435 886 &_handler_table, &_inc_table,
duke@435 887 compiler,
duke@435 888 env()->comp_level(),
kvn@4103 889 has_unsafe_access(),
kvn@4103 890 SharedRuntime::is_wide_vector(max_vector_size())
duke@435 891 );
vlivanov@4154 892
vlivanov@4154 893 if (log() != NULL) // Print code cache state into compiler log
vlivanov@4154 894 log()->code_cache_state();
duke@435 895 }
duke@435 896 }
duke@435 897
duke@435 898 //------------------------------Compile----------------------------------------
duke@435 899 // Compile a runtime stub
duke@435 900 Compile::Compile( ciEnv* ci_env,
duke@435 901 TypeFunc_generator generator,
duke@435 902 address stub_function,
duke@435 903 const char *stub_name,
duke@435 904 int is_fancy_jump,
duke@435 905 bool pass_tls,
duke@435 906 bool save_arg_registers,
duke@435 907 bool return_pc )
duke@435 908 : Phase(Compiler),
duke@435 909 _env(ci_env),
duke@435 910 _log(ci_env->log()),
neliasso@4730 911 _compile_id(0),
duke@435 912 _save_argument_registers(save_arg_registers),
duke@435 913 _method(NULL),
duke@435 914 _stub_name(stub_name),
duke@435 915 _stub_function(stub_function),
duke@435 916 _stub_entry_point(NULL),
duke@435 917 _entry_bci(InvocationEntryBci),
duke@435 918 _initial_gvn(NULL),
duke@435 919 _for_igvn(NULL),
duke@435 920 _warm_calls(NULL),
duke@435 921 _orig_pc_slot(0),
duke@435 922 _orig_pc_slot_offset_in_bytes(0),
duke@435 923 _subsume_loads(true),
kvn@473 924 _do_escape_analysis(false),
kvn@5110 925 _eliminate_boxing(false),
duke@435 926 _failure_reason(NULL),
duke@435 927 _code_buffer("Compile::Fill_buffer"),
twisti@1700 928 _has_method_handle_invokes(false),
twisti@2350 929 _mach_constant_base_node(NULL),
duke@435 930 _node_bundling_limit(0),
duke@435 931 _node_bundling_base(NULL),
kvn@1294 932 _java_calls(0),
kvn@1294 933 _inner_loops(0),
duke@435 934 #ifndef PRODUCT
duke@435 935 _trace_opto_output(TraceOptoOutput),
duke@435 936 _printer(NULL),
duke@435 937 #endif
bharadwaj@4315 938 _dead_node_list(comp_arena()),
bharadwaj@4315 939 _dead_node_count(0),
roland@4357 940 _congraph(NULL),
roland@4409 941 _number_of_mh_late_inlines(0),
roland@4409 942 _inlining_progress(false),
roland@4409 943 _inlining_incrementally(false),
roland@4357 944 _print_inlining_list(NULL),
roland@5981 945 _print_inlining_idx(0),
roland@5981 946 _preserve_jvm_state(0) {
duke@435 947 C = this;
duke@435 948
duke@435 949 #ifndef PRODUCT
duke@435 950 TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
duke@435 951 TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
duke@435 952 set_print_assembly(PrintFrameConverterAssembly);
never@802 953 set_parsed_irreducible_loop(false);
duke@435 954 #endif
duke@435 955 CompileWrapper cw(this);
duke@435 956 Init(/*AliasLevel=*/ 0);
duke@435 957 init_tf((*generator)());
duke@435 958
duke@435 959 {
duke@435 960 // The following is a dummy for the sake of GraphKit::gen_stub
duke@435 961 Unique_Node_List for_igvn(comp_arena());
duke@435 962 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
duke@435 963 PhaseGVN gvn(Thread::current()->resource_area(),255);
duke@435 964 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
duke@435 965 gvn.transform_no_reclaim(top());
duke@435 966
duke@435 967 GraphKit kit;
duke@435 968 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
duke@435 969 }
duke@435 970
duke@435 971 NOT_PRODUCT( verify_graph_edges(); )
duke@435 972 Code_Gen();
duke@435 973 if (failing()) return;
duke@435 974
duke@435 975
duke@435 976 // Entry point will be accessed using compile->stub_entry_point();
duke@435 977 if (code_buffer() == NULL) {
duke@435 978 Matcher::soft_match_failure();
duke@435 979 } else {
duke@435 980 if (PrintAssembly && (WizardMode || Verbose))
duke@435 981 tty->print_cr("### Stub::%s", stub_name);
duke@435 982
duke@435 983 if (!failing()) {
duke@435 984 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
duke@435 985
duke@435 986 // Make the NMethod
duke@435 987 // For now we mark the frame as never safe for profile stackwalking
duke@435 988 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
duke@435 989 code_buffer(),
duke@435 990 CodeOffsets::frame_never_safe,
duke@435 991 // _code_offsets.value(CodeOffsets::Frame_Complete),
duke@435 992 frame_size_in_words(),
duke@435 993 _oop_map_set,
duke@435 994 save_arg_registers);
duke@435 995 assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
duke@435 996
duke@435 997 _stub_entry_point = rs->entry_point();
duke@435 998 }
duke@435 999 }
duke@435 1000 }
duke@435 1001
duke@435 1002 //------------------------------Init-------------------------------------------
duke@435 1003 // Prepare for a single compilation
duke@435 1004 void Compile::Init(int aliaslevel) {
duke@435 1005 _unique = 0;
duke@435 1006 _regalloc = NULL;
duke@435 1007
duke@435 1008 _tf = NULL; // filled in later
duke@435 1009 _top = NULL; // cached later
duke@435 1010 _matcher = NULL; // filled in later
duke@435 1011 _cfg = NULL; // filled in later
duke@435 1012
duke@435 1013 set_24_bit_selection_and_mode(Use24BitFP, false);
duke@435 1014
duke@435 1015 _node_note_array = NULL;
duke@435 1016 _default_node_notes = NULL;
duke@435 1017
duke@435 1018 _immutable_memory = NULL; // filled in at first inquiry
duke@435 1019
duke@435 1020 // Globally visible Nodes
duke@435 1021 // First set TOP to NULL to give safe behavior during creation of RootNode
duke@435 1022 set_cached_top_node(NULL);
kvn@4115 1023 set_root(new (this) RootNode());
duke@435 1024 // Now that you have a Root to point to, create the real TOP
kvn@4115 1025 set_cached_top_node( new (this) ConNode(Type::TOP) );
duke@435 1026 set_recent_alloc(NULL, NULL);
duke@435 1027
duke@435 1028 // Create Debug Information Recorder to record scopes, oopmaps, etc.
coleenp@4037 1029 env()->set_oop_recorder(new OopRecorder(env()->arena()));
duke@435 1030 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
duke@435 1031 env()->set_dependencies(new Dependencies(env()));
duke@435 1032
duke@435 1033 _fixed_slots = 0;
duke@435 1034 set_has_split_ifs(false);
duke@435 1035 set_has_loops(has_method() && method()->has_loops()); // first approximation
never@1515 1036 set_has_stringbuilder(false);
kvn@5110 1037 set_has_boxed_value(false);
duke@435 1038 _trap_can_recompile = false; // no traps emitted yet
duke@435 1039 _major_progress = true; // start out assuming good things will happen
duke@435 1040 set_has_unsafe_access(false);
kvn@4103 1041 set_max_vector_size(0);
duke@435 1042 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
duke@435 1043 set_decompile_count(0);
duke@435 1044
rasbold@853 1045 set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
iveresov@2138 1046 set_num_loop_opts(LoopOptsCount);
iveresov@2138 1047 set_do_inlining(Inline);
iveresov@2138 1048 set_max_inline_size(MaxInlineSize);
iveresov@2138 1049 set_freq_inline_size(FreqInlineSize);
iveresov@2138 1050 set_do_scheduling(OptoScheduling);
iveresov@2138 1051 set_do_count_invocations(false);
iveresov@2138 1052 set_do_method_data_update(false);
duke@435 1053
duke@435 1054 if (debug_info()->recording_non_safepoints()) {
duke@435 1055 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
duke@435 1056 (comp_arena(), 8, 0, NULL));
duke@435 1057 set_default_node_notes(Node_Notes::make(this));
duke@435 1058 }
duke@435 1059
duke@435 1060 // // -- Initialize types before each compile --
duke@435 1061 // // Update cached type information
duke@435 1062 // if( _method && _method->constants() )
duke@435 1063 // Type::update_loaded_types(_method, _method->constants());
duke@435 1064
duke@435 1065 // Init alias_type map.
kvn@473 1066 if (!_do_escape_analysis && aliaslevel == 3)
duke@435 1067 aliaslevel = 2; // No unique types without escape analysis
duke@435 1068 _AliasLevel = aliaslevel;
duke@435 1069 const int grow_ats = 16;
duke@435 1070 _max_alias_types = grow_ats;
duke@435 1071 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
duke@435 1072 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
duke@435 1073 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
duke@435 1074 {
duke@435 1075 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
duke@435 1076 }
duke@435 1077 // Initialize the first few types.
duke@435 1078 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
duke@435 1079 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
duke@435 1080 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
duke@435 1081 _num_alias_types = AliasIdxRaw+1;
duke@435 1082 // Zero out the alias type cache.
duke@435 1083 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
duke@435 1084 // A NULL adr_type hits in the cache right away. Preload the right answer.
duke@435 1085 probe_alias_cache(NULL)->_index = AliasIdxTop;
duke@435 1086
duke@435 1087 _intrinsics = NULL;
kvn@2040 1088 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
kvn@2040 1089 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
roland@4589 1090 _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
duke@435 1091 register_library_intrinsics();
duke@435 1092 }
duke@435 1093
duke@435 1094 //---------------------------init_start----------------------------------------
duke@435 1095 // Install the StartNode on this compile object.
duke@435 1096 void Compile::init_start(StartNode* s) {
duke@435 1097 if (failing())
duke@435 1098 return; // already failing
duke@435 1099 assert(s == start(), "");
duke@435 1100 }
duke@435 1101
duke@435 1102 StartNode* Compile::start() const {
duke@435 1103 assert(!failing(), "");
duke@435 1104 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
duke@435 1105 Node* start = root()->fast_out(i);
duke@435 1106 if( start->is_Start() )
duke@435 1107 return start->as_Start();
duke@435 1108 }
duke@435 1109 ShouldNotReachHere();
duke@435 1110 return NULL;
duke@435 1111 }
duke@435 1112
duke@435 1113 //-------------------------------immutable_memory-------------------------------------
duke@435 1114 // Access immutable memory
duke@435 1115 Node* Compile::immutable_memory() {
duke@435 1116 if (_immutable_memory != NULL) {
duke@435 1117 return _immutable_memory;
duke@435 1118 }
duke@435 1119 StartNode* s = start();
duke@435 1120 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
duke@435 1121 Node *p = s->fast_out(i);
duke@435 1122 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
duke@435 1123 _immutable_memory = p;
duke@435 1124 return _immutable_memory;
duke@435 1125 }
duke@435 1126 }
duke@435 1127 ShouldNotReachHere();
duke@435 1128 return NULL;
duke@435 1129 }
duke@435 1130
duke@435 1131 //----------------------set_cached_top_node------------------------------------
duke@435 1132 // Install the cached top node, and make sure Node::is_top works correctly.
duke@435 1133 void Compile::set_cached_top_node(Node* tn) {
duke@435 1134 if (tn != NULL) verify_top(tn);
duke@435 1135 Node* old_top = _top;
duke@435 1136 _top = tn;
duke@435 1137 // Calling Node::setup_is_top allows the nodes the chance to adjust
duke@435 1138 // their _out arrays.
duke@435 1139 if (_top != NULL) _top->setup_is_top();
duke@435 1140 if (old_top != NULL) old_top->setup_is_top();
duke@435 1141 assert(_top == NULL || top()->is_top(), "");
duke@435 1142 }
duke@435 1143
bharadwaj@4315 1144 #ifdef ASSERT
bharadwaj@4315 1145 uint Compile::count_live_nodes_by_graph_walk() {
bharadwaj@4315 1146 Unique_Node_List useful(comp_arena());
bharadwaj@4315 1147 // Get useful node list by walking the graph.
bharadwaj@4315 1148 identify_useful_nodes(useful);
bharadwaj@4315 1149 return useful.size();
bharadwaj@4315 1150 }
bharadwaj@4315 1151
bharadwaj@4315 1152 void Compile::print_missing_nodes() {
bharadwaj@4315 1153
bharadwaj@4315 1154 // Return if CompileLog is NULL and PrintIdealNodeCount is false.
bharadwaj@4315 1155 if ((_log == NULL) && (! PrintIdealNodeCount)) {
bharadwaj@4315 1156 return;
bharadwaj@4315 1157 }
bharadwaj@4315 1158
bharadwaj@4315 1159 // This is an expensive function. It is executed only when the user
bharadwaj@4315 1160 // specifies VerifyIdealNodeCount option or otherwise knows the
bharadwaj@4315 1161 // additional work that needs to be done to identify reachable nodes
bharadwaj@4315 1162 // by walking the flow graph and find the missing ones using
bharadwaj@4315 1163 // _dead_node_list.
bharadwaj@4315 1164
bharadwaj@4315 1165 Unique_Node_List useful(comp_arena());
bharadwaj@4315 1166 // Get useful node list by walking the graph.
bharadwaj@4315 1167 identify_useful_nodes(useful);
bharadwaj@4315 1168
bharadwaj@4315 1169 uint l_nodes = C->live_nodes();
bharadwaj@4315 1170 uint l_nodes_by_walk = useful.size();
bharadwaj@4315 1171
bharadwaj@4315 1172 if (l_nodes != l_nodes_by_walk) {
bharadwaj@4315 1173 if (_log != NULL) {
bharadwaj@4315 1174 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
bharadwaj@4315 1175 _log->stamp();
bharadwaj@4315 1176 _log->end_head();
bharadwaj@4315 1177 }
bharadwaj@4315 1178 VectorSet& useful_member_set = useful.member_set();
bharadwaj@4315 1179 int last_idx = l_nodes_by_walk;
bharadwaj@4315 1180 for (int i = 0; i < last_idx; i++) {
bharadwaj@4315 1181 if (useful_member_set.test(i)) {
bharadwaj@4315 1182 if (_dead_node_list.test(i)) {
bharadwaj@4315 1183 if (_log != NULL) {
bharadwaj@4315 1184 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
bharadwaj@4315 1185 }
bharadwaj@4315 1186 if (PrintIdealNodeCount) {
bharadwaj@4315 1187 // Print the log message to tty
bharadwaj@4315 1188 tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
bharadwaj@4315 1189 useful.at(i)->dump();
bharadwaj@4315 1190 }
bharadwaj@4315 1191 }
bharadwaj@4315 1192 }
bharadwaj@4315 1193 else if (! _dead_node_list.test(i)) {
bharadwaj@4315 1194 if (_log != NULL) {
bharadwaj@4315 1195 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
bharadwaj@4315 1196 }
bharadwaj@4315 1197 if (PrintIdealNodeCount) {
bharadwaj@4315 1198 // Print the log message to tty
bharadwaj@4315 1199 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
bharadwaj@4315 1200 }
bharadwaj@4315 1201 }
bharadwaj@4315 1202 }
bharadwaj@4315 1203 if (_log != NULL) {
bharadwaj@4315 1204 _log->tail("mismatched_nodes");
bharadwaj@4315 1205 }
bharadwaj@4315 1206 }
bharadwaj@4315 1207 }
bharadwaj@4315 1208 #endif
bharadwaj@4315 1209
duke@435 1210 #ifndef PRODUCT
duke@435 1211 void Compile::verify_top(Node* tn) const {
duke@435 1212 if (tn != NULL) {
duke@435 1213 assert(tn->is_Con(), "top node must be a constant");
duke@435 1214 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
duke@435 1215 assert(tn->in(0) != NULL, "must have live top node");
duke@435 1216 }
duke@435 1217 }
duke@435 1218 #endif
duke@435 1219
duke@435 1220
duke@435 1221 ///-------------------Managing Per-Node Debug & Profile Info-------------------
duke@435 1222
duke@435 1223 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
duke@435 1224 guarantee(arr != NULL, "");
duke@435 1225 int num_blocks = arr->length();
duke@435 1226 if (grow_by < num_blocks) grow_by = num_blocks;
duke@435 1227 int num_notes = grow_by * _node_notes_block_size;
duke@435 1228 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
duke@435 1229 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
duke@435 1230 while (num_notes > 0) {
duke@435 1231 arr->append(notes);
duke@435 1232 notes += _node_notes_block_size;
duke@435 1233 num_notes -= _node_notes_block_size;
duke@435 1234 }
duke@435 1235 assert(num_notes == 0, "exact multiple, please");
duke@435 1236 }
duke@435 1237
duke@435 1238 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
duke@435 1239 if (source == NULL || dest == NULL) return false;
duke@435 1240
duke@435 1241 if (dest->is_Con())
duke@435 1242 return false; // Do not push debug info onto constants.
duke@435 1243
duke@435 1244 #ifdef ASSERT
duke@435 1245 // Leave a bread crumb trail pointing to the original node:
duke@435 1246 if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
duke@435 1247 dest->set_debug_orig(source);
duke@435 1248 }
duke@435 1249 #endif
duke@435 1250
duke@435 1251 if (node_note_array() == NULL)
duke@435 1252 return false; // Not collecting any notes now.
duke@435 1253
duke@435 1254 // This is a copy onto a pre-existing node, which may already have notes.
duke@435 1255 // If both nodes have notes, do not overwrite any pre-existing notes.
duke@435 1256 Node_Notes* source_notes = node_notes_at(source->_idx);
duke@435 1257 if (source_notes == NULL || source_notes->is_clear()) return false;
duke@435 1258 Node_Notes* dest_notes = node_notes_at(dest->_idx);
duke@435 1259 if (dest_notes == NULL || dest_notes->is_clear()) {
duke@435 1260 return set_node_notes_at(dest->_idx, source_notes);
duke@435 1261 }
duke@435 1262
duke@435 1263 Node_Notes merged_notes = (*source_notes);
duke@435 1264 // The order of operations here ensures that dest notes will win...
duke@435 1265 merged_notes.update_from(dest_notes);
duke@435 1266 return set_node_notes_at(dest->_idx, &merged_notes);
duke@435 1267 }
duke@435 1268
duke@435 1269
duke@435 1270 //--------------------------allow_range_check_smearing-------------------------
duke@435 1271 // Gating condition for coalescing similar range checks.
duke@435 1272 // Sometimes we try 'speculatively' replacing a series of a range checks by a
duke@435 1273 // single covering check that is at least as strong as any of them.
duke@435 1274 // If the optimization succeeds, the simplified (strengthened) range check
duke@435 1275 // will always succeed. If it fails, we will deopt, and then give up
duke@435 1276 // on the optimization.
duke@435 1277 bool Compile::allow_range_check_smearing() const {
duke@435 1278 // If this method has already thrown a range-check,
duke@435 1279 // assume it was because we already tried range smearing
duke@435 1280 // and it failed.
duke@435 1281 uint already_trapped = trap_count(Deoptimization::Reason_range_check);
duke@435 1282 return !already_trapped;
duke@435 1283 }
duke@435 1284
duke@435 1285
duke@435 1286 //------------------------------flatten_alias_type-----------------------------
duke@435 1287 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
duke@435 1288 int offset = tj->offset();
duke@435 1289 TypePtr::PTR ptr = tj->ptr();
duke@435 1290
kvn@682 1291 // Known instance (scalarizable allocation) alias only with itself.
kvn@682 1292 bool is_known_inst = tj->isa_oopptr() != NULL &&
kvn@682 1293 tj->is_oopptr()->is_known_instance();
kvn@682 1294
duke@435 1295 // Process weird unsafe references.
duke@435 1296 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
duke@435 1297 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
kvn@682 1298 assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
duke@435 1299 tj = TypeOopPtr::BOTTOM;
duke@435 1300 ptr = tj->ptr();
duke@435 1301 offset = tj->offset();
duke@435 1302 }
duke@435 1303
duke@435 1304 // Array pointers need some flattening
duke@435 1305 const TypeAryPtr *ta = tj->isa_aryptr();
vlivanov@5658 1306 if (ta && ta->is_stable()) {
vlivanov@5658 1307 // Erase stability property for alias analysis.
vlivanov@5658 1308 tj = ta = ta->cast_to_stable(false);
vlivanov@5658 1309 }
kvn@682 1310 if( ta && is_known_inst ) {
kvn@682 1311 if ( offset != Type::OffsetBot &&
kvn@682 1312 offset > arrayOopDesc::length_offset_in_bytes() ) {
kvn@682 1313 offset = Type::OffsetBot; // Flatten constant access into array body only
kvn@682 1314 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
kvn@682 1315 }
kvn@682 1316 } else if( ta && _AliasLevel >= 2 ) {
duke@435 1317 // For arrays indexed by constant indices, we flatten the alias
duke@435 1318 // space to include all of the array body. Only the header, klass
duke@435 1319 // and array length can be accessed un-aliased.
duke@435 1320 if( offset != Type::OffsetBot ) {
coleenp@4037 1321 if( ta->const_oop() ) { // MethodData* or Method*
duke@435 1322 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1323 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
duke@435 1324 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
duke@435 1325 // range is OK as-is.
duke@435 1326 tj = ta = TypeAryPtr::RANGE;
duke@435 1327 } else if( offset == oopDesc::klass_offset_in_bytes() ) {
duke@435 1328 tj = TypeInstPtr::KLASS; // all klass loads look alike
duke@435 1329 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1330 ptr = TypePtr::BotPTR;
duke@435 1331 } else if( offset == oopDesc::mark_offset_in_bytes() ) {
duke@435 1332 tj = TypeInstPtr::MARK;
duke@435 1333 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1334 ptr = TypePtr::BotPTR;
duke@435 1335 } else { // Random constant offset into array body
duke@435 1336 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1337 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
duke@435 1338 }
duke@435 1339 }
duke@435 1340 // Arrays of fixed size alias with arrays of unknown size.
duke@435 1341 if (ta->size() != TypeInt::POS) {
duke@435 1342 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
kvn@682 1343 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
duke@435 1344 }
duke@435 1345 // Arrays of known objects become arrays of unknown objects.
coleenp@548 1346 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
coleenp@548 1347 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
kvn@682 1348 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
coleenp@548 1349 }
duke@435 1350 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
duke@435 1351 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
kvn@682 1352 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
duke@435 1353 }
duke@435 1354 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
duke@435 1355 // cannot be distinguished by bytecode alone.
duke@435 1356 if (ta->elem() == TypeInt::BOOL) {
duke@435 1357 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
duke@435 1358 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
kvn@682 1359 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
duke@435 1360 }
duke@435 1361 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1362 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1363 // Also, make sure exact and non-exact variants alias the same.
roland@5991 1364 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
kvn@2986 1365 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
duke@435 1366 }
duke@435 1367 }
duke@435 1368
duke@435 1369 // Oop pointers need some flattening
duke@435 1370 const TypeInstPtr *to = tj->isa_instptr();
duke@435 1371 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
never@2658 1372 ciInstanceKlass *k = to->klass()->as_instance_klass();
duke@435 1373 if( ptr == TypePtr::Constant ) {
never@2658 1374 if (to->klass() != ciEnv::current()->Class_klass() ||
never@2658 1375 offset < k->size_helper() * wordSize) {
never@2658 1376 // No constant oop pointers (such as Strings); they alias with
never@2658 1377 // unknown strings.
never@2658 1378 assert(!is_known_inst, "not scalarizable allocation");
never@2658 1379 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
never@2658 1380 }
kvn@682 1381 } else if( is_known_inst ) {
kvn@598 1382 tj = to; // Keep NotNull and klass_is_exact for instance type
duke@435 1383 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
duke@435 1384 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1385 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1386 // Also, make sure exact and non-exact variants alias the same.
kvn@682 1387 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
duke@435 1388 }
roland@5991 1389 if (to->speculative() != NULL) {
roland@5991 1390 tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
roland@5991 1391 }
duke@435 1392 // Canonicalize the holder of this field
coleenp@548 1393 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
duke@435 1394 // First handle header references such as a LoadKlassNode, even if the
duke@435 1395 // object's klass is unloaded at compile time (4965979).
kvn@682 1396 if (!is_known_inst) { // Do it only for non-instance types
kvn@682 1397 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
kvn@682 1398 }
duke@435 1399 } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
never@2658 1400 // Static fields are in the space above the normal instance
never@2658 1401 // fields in the java.lang.Class instance.
never@2658 1402 if (to->klass() != ciEnv::current()->Class_klass()) {
never@2658 1403 to = NULL;
never@2658 1404 tj = TypeOopPtr::BOTTOM;
never@2658 1405 offset = tj->offset();
never@2658 1406 }
duke@435 1407 } else {
duke@435 1408 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
duke@435 1409 if (!k->equals(canonical_holder) || tj->offset() != offset) {
kvn@682 1410 if( is_known_inst ) {
kvn@682 1411 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
kvn@682 1412 } else {
kvn@682 1413 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
kvn@682 1414 }
duke@435 1415 }
duke@435 1416 }
duke@435 1417 }
duke@435 1418
duke@435 1419 // Klass pointers to object array klasses need some flattening
duke@435 1420 const TypeKlassPtr *tk = tj->isa_klassptr();
duke@435 1421 if( tk ) {
duke@435 1422 // If we are referencing a field within a Klass, we need
duke@435 1423 // to assume the worst case of an Object. Both exact and
never@3389 1424 // inexact types must flatten to the same alias class so
never@3389 1425 // use NotNull as the PTR.
duke@435 1426 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
duke@435 1427
never@3389 1428 tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
duke@435 1429 TypeKlassPtr::OBJECT->klass(),
duke@435 1430 offset);
duke@435 1431 }
duke@435 1432
duke@435 1433 ciKlass* klass = tk->klass();
duke@435 1434 if( klass->is_obj_array_klass() ) {
duke@435 1435 ciKlass* k = TypeAryPtr::OOPS->klass();
duke@435 1436 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
duke@435 1437 k = TypeInstPtr::BOTTOM->klass();
duke@435 1438 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
duke@435 1439 }
duke@435 1440
duke@435 1441 // Check for precise loads from the primary supertype array and force them
duke@435 1442 // to the supertype cache alias index. Check for generic array loads from
duke@435 1443 // the primary supertype array and also force them to the supertype cache
duke@435 1444 // alias index. Since the same load can reach both, we need to merge
duke@435 1445 // these 2 disparate memories into the same alias class. Since the
duke@435 1446 // primary supertype array is read-only, there's no chance of confusion
duke@435 1447 // where we bypass an array load and an array store.
stefank@3391 1448 int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
never@3389 1449 if (offset == Type::OffsetBot ||
never@3389 1450 (offset >= primary_supers_offset &&
never@3389 1451 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
stefank@3391 1452 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
stefank@3391 1453 offset = in_bytes(Klass::secondary_super_cache_offset());
duke@435 1454 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
duke@435 1455 }
duke@435 1456 }
duke@435 1457
duke@435 1458 // Flatten all Raw pointers together.
duke@435 1459 if (tj->base() == Type::RawPtr)
duke@435 1460 tj = TypeRawPtr::BOTTOM;
duke@435 1461
duke@435 1462 if (tj->base() == Type::AnyPtr)
duke@435 1463 tj = TypePtr::BOTTOM; // An error, which the caller must check for.
duke@435 1464
duke@435 1465 // Flatten all to bottom for now
duke@435 1466 switch( _AliasLevel ) {
duke@435 1467 case 0:
duke@435 1468 tj = TypePtr::BOTTOM;
duke@435 1469 break;
duke@435 1470 case 1: // Flatten to: oop, static, field or array
duke@435 1471 switch (tj->base()) {
duke@435 1472 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
duke@435 1473 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
duke@435 1474 case Type::AryPtr: // do not distinguish arrays at all
duke@435 1475 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
duke@435 1476 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
duke@435 1477 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
duke@435 1478 default: ShouldNotReachHere();
duke@435 1479 }
duke@435 1480 break;
twisti@1040 1481 case 2: // No collapsing at level 2; keep all splits
twisti@1040 1482 case 3: // No collapsing at level 3; keep all splits
duke@435 1483 break;
duke@435 1484 default:
duke@435 1485 Unimplemented();
duke@435 1486 }
duke@435 1487
duke@435 1488 offset = tj->offset();
duke@435 1489 assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
duke@435 1490
duke@435 1491 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
duke@435 1492 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
duke@435 1493 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
duke@435 1494 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
duke@435 1495 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1496 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1497 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ,
duke@435 1498 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
duke@435 1499 assert( tj->ptr() != TypePtr::TopPTR &&
duke@435 1500 tj->ptr() != TypePtr::AnyNull &&
duke@435 1501 tj->ptr() != TypePtr::Null, "No imprecise addresses" );
duke@435 1502 // assert( tj->ptr() != TypePtr::Constant ||
duke@435 1503 // tj->base() == Type::RawPtr ||
duke@435 1504 // tj->base() == Type::KlassPtr, "No constant oop addresses" );
duke@435 1505
duke@435 1506 return tj;
duke@435 1507 }
duke@435 1508
duke@435 1509 void Compile::AliasType::Init(int i, const TypePtr* at) {
duke@435 1510 _index = i;
duke@435 1511 _adr_type = at;
duke@435 1512 _field = NULL;
vlivanov@5658 1513 _element = NULL;
duke@435 1514 _is_rewritable = true; // default
duke@435 1515 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
kvn@658 1516 if (atoop != NULL && atoop->is_known_instance()) {
kvn@658 1517 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
duke@435 1518 _general_index = Compile::current()->get_alias_index(gt);
duke@435 1519 } else {
duke@435 1520 _general_index = 0;
duke@435 1521 }
duke@435 1522 }
duke@435 1523
duke@435 1524 //---------------------------------print_on------------------------------------
duke@435 1525 #ifndef PRODUCT
duke@435 1526 void Compile::AliasType::print_on(outputStream* st) {
duke@435 1527 if (index() < 10)
duke@435 1528 st->print("@ <%d> ", index());
duke@435 1529 else st->print("@ <%d>", index());
duke@435 1530 st->print(is_rewritable() ? " " : " RO");
duke@435 1531 int offset = adr_type()->offset();
duke@435 1532 if (offset == Type::OffsetBot)
duke@435 1533 st->print(" +any");
duke@435 1534 else st->print(" +%-3d", offset);
duke@435 1535 st->print(" in ");
duke@435 1536 adr_type()->dump_on(st);
duke@435 1537 const TypeOopPtr* tjp = adr_type()->isa_oopptr();
duke@435 1538 if (field() != NULL && tjp) {
duke@435 1539 if (tjp->klass() != field()->holder() ||
duke@435 1540 tjp->offset() != field()->offset_in_bytes()) {
duke@435 1541 st->print(" != ");
duke@435 1542 field()->print();
duke@435 1543 st->print(" ***");
duke@435 1544 }
duke@435 1545 }
duke@435 1546 }
duke@435 1547
duke@435 1548 void print_alias_types() {
duke@435 1549 Compile* C = Compile::current();
duke@435 1550 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
duke@435 1551 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
duke@435 1552 C->alias_type(idx)->print_on(tty);
duke@435 1553 tty->cr();
duke@435 1554 }
duke@435 1555 }
duke@435 1556 #endif
duke@435 1557
duke@435 1558
duke@435 1559 //----------------------------probe_alias_cache--------------------------------
duke@435 1560 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
duke@435 1561 intptr_t key = (intptr_t) adr_type;
duke@435 1562 key ^= key >> logAliasCacheSize;
duke@435 1563 return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
duke@435 1564 }
duke@435 1565
duke@435 1566
duke@435 1567 //-----------------------------grow_alias_types--------------------------------
duke@435 1568 void Compile::grow_alias_types() {
duke@435 1569 const int old_ats = _max_alias_types; // how many before?
duke@435 1570 const int new_ats = old_ats; // how many more?
duke@435 1571 const int grow_ats = old_ats+new_ats; // how many now?
duke@435 1572 _max_alias_types = grow_ats;
duke@435 1573 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
duke@435 1574 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
duke@435 1575 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
duke@435 1576 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
duke@435 1577 }
duke@435 1578
duke@435 1579
duke@435 1580 //--------------------------------find_alias_type------------------------------
never@2658 1581 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
duke@435 1582 if (_AliasLevel == 0)
duke@435 1583 return alias_type(AliasIdxBot);
duke@435 1584
duke@435 1585 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1586 if (ace->_adr_type == adr_type) {
duke@435 1587 return alias_type(ace->_index);
duke@435 1588 }
duke@435 1589
duke@435 1590 // Handle special cases.
duke@435 1591 if (adr_type == NULL) return alias_type(AliasIdxTop);
duke@435 1592 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
duke@435 1593
duke@435 1594 // Do it the slow way.
duke@435 1595 const TypePtr* flat = flatten_alias_type(adr_type);
duke@435 1596
duke@435 1597 #ifdef ASSERT
duke@435 1598 assert(flat == flatten_alias_type(flat), "idempotent");
duke@435 1599 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr");
duke@435 1600 if (flat->isa_oopptr() && !flat->isa_klassptr()) {
duke@435 1601 const TypeOopPtr* foop = flat->is_oopptr();
kvn@682 1602 // Scalarizable allocations have exact klass always.
kvn@682 1603 bool exact = !foop->klass_is_exact() || foop->is_known_instance();
kvn@682 1604 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
duke@435 1605 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
duke@435 1606 }
duke@435 1607 assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
duke@435 1608 #endif
duke@435 1609
duke@435 1610 int idx = AliasIdxTop;
duke@435 1611 for (int i = 0; i < num_alias_types(); i++) {
duke@435 1612 if (alias_type(i)->adr_type() == flat) {
duke@435 1613 idx = i;
duke@435 1614 break;
duke@435 1615 }
duke@435 1616 }
duke@435 1617
duke@435 1618 if (idx == AliasIdxTop) {
duke@435 1619 if (no_create) return NULL;
duke@435 1620 // Grow the array if necessary.
duke@435 1621 if (_num_alias_types == _max_alias_types) grow_alias_types();
duke@435 1622 // Add a new alias type.
duke@435 1623 idx = _num_alias_types++;
duke@435 1624 _alias_types[idx]->Init(idx, flat);
duke@435 1625 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
duke@435 1626 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
duke@435 1627 if (flat->isa_instptr()) {
duke@435 1628 if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
duke@435 1629 && flat->is_instptr()->klass() == env()->Class_klass())
duke@435 1630 alias_type(idx)->set_rewritable(false);
duke@435 1631 }
vlivanov@5658 1632 if (flat->isa_aryptr()) {
vlivanov@5658 1633 #ifdef ASSERT
vlivanov@5658 1634 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
vlivanov@5658 1635 // (T_BYTE has the weakest alignment and size restrictions...)
vlivanov@5658 1636 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
vlivanov@5658 1637 #endif
vlivanov@5658 1638 if (flat->offset() == TypePtr::OffsetBot) {
vlivanov@5658 1639 alias_type(idx)->set_element(flat->is_aryptr()->elem());
vlivanov@5658 1640 }
vlivanov@5658 1641 }
duke@435 1642 if (flat->isa_klassptr()) {
stefank@3391 1643 if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
duke@435 1644 alias_type(idx)->set_rewritable(false);
stefank@3391 1645 if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
duke@435 1646 alias_type(idx)->set_rewritable(false);
stefank@3391 1647 if (flat->offset() == in_bytes(Klass::access_flags_offset()))
duke@435 1648 alias_type(idx)->set_rewritable(false);
stefank@3391 1649 if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
duke@435 1650 alias_type(idx)->set_rewritable(false);
duke@435 1651 }
duke@435 1652 // %%% (We would like to finalize JavaThread::threadObj_offset(),
duke@435 1653 // but the base pointer type is not distinctive enough to identify
duke@435 1654 // references into JavaThread.)
duke@435 1655
never@2658 1656 // Check for final fields.
duke@435 1657 const TypeInstPtr* tinst = flat->isa_instptr();
coleenp@548 1658 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
never@2658 1659 ciField* field;
never@2658 1660 if (tinst->const_oop() != NULL &&
never@2658 1661 tinst->klass() == ciEnv::current()->Class_klass() &&
never@2658 1662 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
never@2658 1663 // static field
never@2658 1664 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 1665 field = k->get_field_by_offset(tinst->offset(), true);
never@2658 1666 } else {
never@2658 1667 ciInstanceKlass *k = tinst->klass()->as_instance_klass();
never@2658 1668 field = k->get_field_by_offset(tinst->offset(), false);
never@2658 1669 }
never@2658 1670 assert(field == NULL ||
never@2658 1671 original_field == NULL ||
never@2658 1672 (field->holder() == original_field->holder() &&
never@2658 1673 field->offset() == original_field->offset() &&
never@2658 1674 field->is_static() == original_field->is_static()), "wrong field?");
duke@435 1675 // Set field() and is_rewritable() attributes.
duke@435 1676 if (field != NULL) alias_type(idx)->set_field(field);
duke@435 1677 }
duke@435 1678 }
duke@435 1679
duke@435 1680 // Fill the cache for next time.
duke@435 1681 ace->_adr_type = adr_type;
duke@435 1682 ace->_index = idx;
duke@435 1683 assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
duke@435 1684
duke@435 1685 // Might as well try to fill the cache for the flattened version, too.
duke@435 1686 AliasCacheEntry* face = probe_alias_cache(flat);
duke@435 1687 if (face->_adr_type == NULL) {
duke@435 1688 face->_adr_type = flat;
duke@435 1689 face->_index = idx;
duke@435 1690 assert(alias_type(flat) == alias_type(idx), "flat type must work too");
duke@435 1691 }
duke@435 1692
duke@435 1693 return alias_type(idx);
duke@435 1694 }
duke@435 1695
duke@435 1696
duke@435 1697 Compile::AliasType* Compile::alias_type(ciField* field) {
duke@435 1698 const TypeOopPtr* t;
duke@435 1699 if (field->is_static())
never@2658 1700 t = TypeInstPtr::make(field->holder()->java_mirror());
duke@435 1701 else
duke@435 1702 t = TypeOopPtr::make_from_klass_raw(field->holder());
never@2658 1703 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
vlivanov@5658 1704 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
duke@435 1705 return atp;
duke@435 1706 }
duke@435 1707
duke@435 1708
duke@435 1709 //------------------------------have_alias_type--------------------------------
duke@435 1710 bool Compile::have_alias_type(const TypePtr* adr_type) {
duke@435 1711 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1712 if (ace->_adr_type == adr_type) {
duke@435 1713 return true;
duke@435 1714 }
duke@435 1715
duke@435 1716 // Handle special cases.
duke@435 1717 if (adr_type == NULL) return true;
duke@435 1718 if (adr_type == TypePtr::BOTTOM) return true;
duke@435 1719
never@2658 1720 return find_alias_type(adr_type, true, NULL) != NULL;
duke@435 1721 }
duke@435 1722
duke@435 1723 //-----------------------------must_alias--------------------------------------
duke@435 1724 // True if all values of the given address type are in the given alias category.
duke@435 1725 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1726 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1727 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
duke@435 1728 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1729 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
duke@435 1730
duke@435 1731 // the only remaining possible overlap is identity
duke@435 1732 int adr_idx = get_alias_index(adr_type);
duke@435 1733 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1734 assert(adr_idx == alias_idx ||
duke@435 1735 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
duke@435 1736 && adr_type != TypeOopPtr::BOTTOM),
duke@435 1737 "should not be testing for overlap with an unsafe pointer");
duke@435 1738 return adr_idx == alias_idx;
duke@435 1739 }
duke@435 1740
duke@435 1741 //------------------------------can_alias--------------------------------------
duke@435 1742 // True if any values of the given address type are in the given alias category.
duke@435 1743 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1744 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1745 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
duke@435 1746 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1747 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
duke@435 1748
duke@435 1749 // the only remaining possible overlap is identity
duke@435 1750 int adr_idx = get_alias_index(adr_type);
duke@435 1751 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1752 return adr_idx == alias_idx;
duke@435 1753 }
duke@435 1754
duke@435 1755
duke@435 1756
duke@435 1757 //---------------------------pop_warm_call-------------------------------------
duke@435 1758 WarmCallInfo* Compile::pop_warm_call() {
duke@435 1759 WarmCallInfo* wci = _warm_calls;
duke@435 1760 if (wci != NULL) _warm_calls = wci->remove_from(wci);
duke@435 1761 return wci;
duke@435 1762 }
duke@435 1763
duke@435 1764 //----------------------------Inline_Warm--------------------------------------
duke@435 1765 int Compile::Inline_Warm() {
duke@435 1766 // If there is room, try to inline some more warm call sites.
duke@435 1767 // %%% Do a graph index compaction pass when we think we're out of space?
duke@435 1768 if (!InlineWarmCalls) return 0;
duke@435 1769
duke@435 1770 int calls_made_hot = 0;
duke@435 1771 int room_to_grow = NodeCountInliningCutoff - unique();
duke@435 1772 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
duke@435 1773 int amount_grown = 0;
duke@435 1774 WarmCallInfo* call;
duke@435 1775 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
duke@435 1776 int est_size = (int)call->size();
duke@435 1777 if (est_size > (room_to_grow - amount_grown)) {
duke@435 1778 // This one won't fit anyway. Get rid of it.
duke@435 1779 call->make_cold();
duke@435 1780 continue;
duke@435 1781 }
duke@435 1782 call->make_hot();
duke@435 1783 calls_made_hot++;
duke@435 1784 amount_grown += est_size;
duke@435 1785 amount_to_grow -= est_size;
duke@435 1786 }
duke@435 1787
duke@435 1788 if (calls_made_hot > 0) set_major_progress();
duke@435 1789 return calls_made_hot;
duke@435 1790 }
duke@435 1791
duke@435 1792
duke@435 1793 //----------------------------Finish_Warm--------------------------------------
duke@435 1794 void Compile::Finish_Warm() {
duke@435 1795 if (!InlineWarmCalls) return;
duke@435 1796 if (failing()) return;
duke@435 1797 if (warm_calls() == NULL) return;
duke@435 1798
duke@435 1799 // Clean up loose ends, if we are out of space for inlining.
duke@435 1800 WarmCallInfo* call;
duke@435 1801 while ((call = pop_warm_call()) != NULL) {
duke@435 1802 call->make_cold();
duke@435 1803 }
duke@435 1804 }
duke@435 1805
cfang@1607 1806 //---------------------cleanup_loop_predicates-----------------------
cfang@1607 1807 // Remove the opaque nodes that protect the predicates so that all unused
cfang@1607 1808 // checks and uncommon_traps will be eliminated from the ideal graph
cfang@1607 1809 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
cfang@1607 1810 if (predicate_count()==0) return;
cfang@1607 1811 for (int i = predicate_count(); i > 0; i--) {
cfang@1607 1812 Node * n = predicate_opaque1_node(i-1);
cfang@1607 1813 assert(n->Opcode() == Op_Opaque1, "must be");
cfang@1607 1814 igvn.replace_node(n, n->in(1));
cfang@1607 1815 }
cfang@1607 1816 assert(predicate_count()==0, "should be clean!");
cfang@1607 1817 }
duke@435 1818
roland@4409 1819 // StringOpts and late inlining of string methods
roland@4409 1820 void Compile::inline_string_calls(bool parse_time) {
roland@4409 1821 {
roland@4409 1822 // remove useless nodes to make the usage analysis simpler
roland@4409 1823 ResourceMark rm;
roland@4409 1824 PhaseRemoveUseless pru(initial_gvn(), for_igvn());
roland@4409 1825 }
roland@4409 1826
roland@4409 1827 {
roland@4409 1828 ResourceMark rm;
sla@5237 1829 print_method(PHASE_BEFORE_STRINGOPTS, 3);
roland@4409 1830 PhaseStringOpts pso(initial_gvn(), for_igvn());
sla@5237 1831 print_method(PHASE_AFTER_STRINGOPTS, 3);
roland@4409 1832 }
roland@4409 1833
roland@4409 1834 // now inline anything that we skipped the first time around
roland@4409 1835 if (!parse_time) {
roland@4409 1836 _late_inlines_pos = _late_inlines.length();
roland@4409 1837 }
roland@4409 1838
roland@4409 1839 while (_string_late_inlines.length() > 0) {
roland@4409 1840 CallGenerator* cg = _string_late_inlines.pop();
roland@4409 1841 cg->do_late_inline();
roland@4409 1842 if (failing()) return;
roland@4409 1843 }
roland@4409 1844 _string_late_inlines.trunc_to(0);
roland@4409 1845 }
roland@4409 1846
kvn@5110 1847 // Late inlining of boxing methods
kvn@5110 1848 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
kvn@5110 1849 if (_boxing_late_inlines.length() > 0) {
kvn@5110 1850 assert(has_boxed_value(), "inconsistent");
kvn@5110 1851
kvn@5110 1852 PhaseGVN* gvn = initial_gvn();
kvn@5110 1853 set_inlining_incrementally(true);
kvn@5110 1854
kvn@5110 1855 assert( igvn._worklist.size() == 0, "should be done with igvn" );
kvn@5110 1856 for_igvn()->clear();
kvn@5110 1857 gvn->replace_with(&igvn);
kvn@5110 1858
kvn@5110 1859 while (_boxing_late_inlines.length() > 0) {
kvn@5110 1860 CallGenerator* cg = _boxing_late_inlines.pop();
kvn@5110 1861 cg->do_late_inline();
kvn@5110 1862 if (failing()) return;
kvn@5110 1863 }
kvn@5110 1864 _boxing_late_inlines.trunc_to(0);
kvn@5110 1865
kvn@5110 1866 {
kvn@5110 1867 ResourceMark rm;
kvn@5110 1868 PhaseRemoveUseless pru(gvn, for_igvn());
kvn@5110 1869 }
kvn@5110 1870
kvn@5110 1871 igvn = PhaseIterGVN(gvn);
kvn@5110 1872 igvn.optimize();
kvn@5110 1873
kvn@5110 1874 set_inlining_progress(false);
kvn@5110 1875 set_inlining_incrementally(false);
kvn@5110 1876 }
kvn@5110 1877 }
kvn@5110 1878
roland@4409 1879 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
roland@4409 1880 assert(IncrementalInline, "incremental inlining should be on");
roland@4409 1881 PhaseGVN* gvn = initial_gvn();
roland@4409 1882
roland@4409 1883 set_inlining_progress(false);
roland@4409 1884 for_igvn()->clear();
roland@4409 1885 gvn->replace_with(&igvn);
roland@4409 1886
roland@4409 1887 int i = 0;
roland@4409 1888
roland@4409 1889 for (; i <_late_inlines.length() && !inlining_progress(); i++) {
roland@4409 1890 CallGenerator* cg = _late_inlines.at(i);
roland@4409 1891 _late_inlines_pos = i+1;
roland@4409 1892 cg->do_late_inline();
roland@4409 1893 if (failing()) return;
roland@4409 1894 }
roland@4409 1895 int j = 0;
roland@4409 1896 for (; i < _late_inlines.length(); i++, j++) {
roland@4409 1897 _late_inlines.at_put(j, _late_inlines.at(i));
roland@4409 1898 }
roland@4409 1899 _late_inlines.trunc_to(j);
roland@4409 1900
roland@4409 1901 {
roland@4409 1902 ResourceMark rm;
kvn@5110 1903 PhaseRemoveUseless pru(gvn, for_igvn());
roland@4409 1904 }
roland@4409 1905
roland@4409 1906 igvn = PhaseIterGVN(gvn);
roland@4409 1907 }
roland@4409 1908
roland@4409 1909 // Perform incremental inlining until bound on number of live nodes is reached
roland@4409 1910 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
roland@4409 1911 PhaseGVN* gvn = initial_gvn();
roland@4409 1912
roland@4409 1913 set_inlining_incrementally(true);
roland@4409 1914 set_inlining_progress(true);
roland@4409 1915 uint low_live_nodes = 0;
roland@4409 1916
roland@4409 1917 while(inlining_progress() && _late_inlines.length() > 0) {
roland@4409 1918
roland@4409 1919 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
roland@4409 1920 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
roland@4409 1921 // PhaseIdealLoop is expensive so we only try it once we are
roland@4409 1922 // out of loop and we only try it again if the previous helped
roland@4409 1923 // got the number of nodes down significantly
roland@4409 1924 PhaseIdealLoop ideal_loop( igvn, false, true );
roland@4409 1925 if (failing()) return;
roland@4409 1926 low_live_nodes = live_nodes();
roland@4409 1927 _major_progress = true;
roland@4409 1928 }
roland@4409 1929
roland@4409 1930 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
roland@4409 1931 break;
roland@4409 1932 }
roland@4409 1933 }
roland@4409 1934
roland@4409 1935 inline_incrementally_one(igvn);
roland@4409 1936
roland@4409 1937 if (failing()) return;
roland@4409 1938
roland@4409 1939 igvn.optimize();
roland@4409 1940
roland@4409 1941 if (failing()) return;
roland@4409 1942 }
roland@4409 1943
roland@4409 1944 assert( igvn._worklist.size() == 0, "should be done with igvn" );
roland@4409 1945
roland@4409 1946 if (_string_late_inlines.length() > 0) {
roland@4409 1947 assert(has_stringbuilder(), "inconsistent");
roland@4409 1948 for_igvn()->clear();
roland@4409 1949 initial_gvn()->replace_with(&igvn);
roland@4409 1950
roland@4409 1951 inline_string_calls(false);
roland@4409 1952
roland@4409 1953 if (failing()) return;
roland@4409 1954
roland@4409 1955 {
roland@4409 1956 ResourceMark rm;
roland@4409 1957 PhaseRemoveUseless pru(initial_gvn(), for_igvn());
roland@4409 1958 }
roland@4409 1959
roland@4409 1960 igvn = PhaseIterGVN(gvn);
roland@4409 1961
roland@4409 1962 igvn.optimize();
roland@4409 1963 }
roland@4409 1964
roland@4409 1965 set_inlining_incrementally(false);
roland@4409 1966 }
roland@4409 1967
roland@4409 1968
duke@435 1969 //------------------------------Optimize---------------------------------------
duke@435 1970 // Given a graph, optimize it.
duke@435 1971 void Compile::Optimize() {
duke@435 1972 TracePhase t1("optimizer", &_t_optimizer, true);
duke@435 1973
duke@435 1974 #ifndef PRODUCT
duke@435 1975 if (env()->break_at_compile()) {
duke@435 1976 BREAKPOINT;
duke@435 1977 }
duke@435 1978
duke@435 1979 #endif
duke@435 1980
duke@435 1981 ResourceMark rm;
duke@435 1982 int loop_opts_cnt;
duke@435 1983
duke@435 1984 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1985
sla@5237 1986 print_method(PHASE_AFTER_PARSING);
duke@435 1987
duke@435 1988 {
duke@435 1989 // Iterative Global Value Numbering, including ideal transforms
duke@435 1990 // Initialize IterGVN with types and values from parse-time GVN
duke@435 1991 PhaseIterGVN igvn(initial_gvn());
duke@435 1992 {
duke@435 1993 NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
duke@435 1994 igvn.optimize();
duke@435 1995 }
duke@435 1996
sla@5237 1997 print_method(PHASE_ITER_GVN1, 2);
duke@435 1998
duke@435 1999 if (failing()) return;
duke@435 2000
kvn@5110 2001 {
kvn@5110 2002 NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
kvn@5110 2003 inline_incrementally(igvn);
kvn@5110 2004 }
roland@4409 2005
sla@5237 2006 print_method(PHASE_INCREMENTAL_INLINE, 2);
roland@4409 2007
roland@4409 2008 if (failing()) return;
roland@4409 2009
kvn@5110 2010 if (eliminate_boxing()) {
kvn@5110 2011 NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
kvn@5110 2012 // Inline valueOf() methods now.
kvn@5110 2013 inline_boxing_calls(igvn);
kvn@5110 2014
sla@5237 2015 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
kvn@5110 2016
kvn@5110 2017 if (failing()) return;
kvn@5110 2018 }
kvn@5110 2019
roland@5991 2020 // Remove the speculative part of types and clean up the graph from
roland@5991 2021 // the extra CastPP nodes whose only purpose is to carry them. Do
roland@5991 2022 // that early so that optimizations are not disrupted by the extra
roland@5991 2023 // CastPP nodes.
roland@5991 2024 remove_speculative_types(igvn);
roland@5991 2025
roland@4589 2026 // No more new expensive nodes will be added to the list from here
roland@4589 2027 // so keep only the actual candidates for optimizations.
roland@4589 2028 cleanup_expensive_nodes(igvn);
roland@4589 2029
kvn@1989 2030 // Perform escape analysis
kvn@1989 2031 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
kvn@3260 2032 if (has_loops()) {
kvn@3260 2033 // Cleanup graph (remove dead nodes).
kvn@3260 2034 TracePhase t2("idealLoop", &_t_idealLoop, true);
kvn@3260 2035 PhaseIdealLoop ideal_loop( igvn, false, true );
sla@5237 2036 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
kvn@3260 2037 if (failing()) return;
kvn@3260 2038 }
kvn@1989 2039 ConnectionGraph::do_analysis(this, &igvn);
kvn@1989 2040
kvn@1989 2041 if (failing()) return;
kvn@1989 2042
kvn@3311 2043 // Optimize out fields loads from scalar replaceable allocations.
kvn@1989 2044 igvn.optimize();
sla@5237 2045 print_method(PHASE_ITER_GVN_AFTER_EA, 2);
kvn@1989 2046
kvn@1989 2047 if (failing()) return;
kvn@1989 2048
kvn@3311 2049 if (congraph() != NULL && macro_count() > 0) {
kvn@3651 2050 NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
kvn@3311 2051 PhaseMacroExpand mexp(igvn);
kvn@3311 2052 mexp.eliminate_macro_nodes();
kvn@3311 2053 igvn.set_delay_transform(false);
kvn@3311 2054
kvn@3311 2055 igvn.optimize();
sla@5237 2056 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
kvn@3311 2057
kvn@3311 2058 if (failing()) return;
kvn@3311 2059 }
kvn@1989 2060 }
kvn@1989 2061
duke@435 2062 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 2063 // peeling, unrolling, etc.
duke@435 2064
duke@435 2065 // Set loop opts counter
duke@435 2066 loop_opts_cnt = num_loop_opts();
duke@435 2067 if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
duke@435 2068 {
duke@435 2069 TracePhase t2("idealLoop", &_t_idealLoop, true);
kvn@2727 2070 PhaseIdealLoop ideal_loop( igvn, true );
duke@435 2071 loop_opts_cnt--;
sla@5237 2072 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
duke@435 2073 if (failing()) return;
duke@435 2074 }
duke@435 2075 // Loop opts pass if partial peeling occurred in previous pass
duke@435 2076 if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
duke@435 2077 TracePhase t3("idealLoop", &_t_idealLoop, true);
kvn@2727 2078 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 2079 loop_opts_cnt--;
sla@5237 2080 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
duke@435 2081 if (failing()) return;
duke@435 2082 }
duke@435 2083 // Loop opts pass for loop-unrolling before CCP
duke@435 2084 if(major_progress() && (loop_opts_cnt > 0)) {
duke@435 2085 TracePhase t4("idealLoop", &_t_idealLoop, true);
kvn@2727 2086 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 2087 loop_opts_cnt--;
sla@5237 2088 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
duke@435 2089 }
never@1356 2090 if (!failing()) {
never@1356 2091 // Verify that last round of loop opts produced a valid graph
never@1356 2092 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 2093 PhaseIdealLoop::verify(igvn);
never@1356 2094 }
duke@435 2095 }
duke@435 2096 if (failing()) return;
duke@435 2097
duke@435 2098 // Conditional Constant Propagation;
duke@435 2099 PhaseCCP ccp( &igvn );
duke@435 2100 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
duke@435 2101 {
duke@435 2102 TracePhase t2("ccp", &_t_ccp, true);
duke@435 2103 ccp.do_transform();
duke@435 2104 }
sla@5237 2105 print_method(PHASE_CPP1, 2);
duke@435 2106
duke@435 2107 assert( true, "Break here to ccp.dump_old2new_map()");
duke@435 2108
duke@435 2109 // Iterative Global Value Numbering, including ideal transforms
duke@435 2110 {
duke@435 2111 NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
duke@435 2112 igvn = ccp;
duke@435 2113 igvn.optimize();
duke@435 2114 }
duke@435 2115
sla@5237 2116 print_method(PHASE_ITER_GVN2, 2);
duke@435 2117
duke@435 2118 if (failing()) return;
duke@435 2119
duke@435 2120 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 2121 // peeling, unrolling, etc.
duke@435 2122 if(loop_opts_cnt > 0) {
duke@435 2123 debug_only( int cnt = 0; );
duke@435 2124 while(major_progress() && (loop_opts_cnt > 0)) {
duke@435 2125 TracePhase t2("idealLoop", &_t_idealLoop, true);
duke@435 2126 assert( cnt++ < 40, "infinite cycle in loop optimization" );
kvn@2727 2127 PhaseIdealLoop ideal_loop( igvn, true);
duke@435 2128 loop_opts_cnt--;
sla@5237 2129 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
duke@435 2130 if (failing()) return;
duke@435 2131 }
duke@435 2132 }
never@1356 2133
never@1356 2134 {
never@1356 2135 // Verify that all previous optimizations produced a valid graph
never@1356 2136 // at least to this point, even if no loop optimizations were done.
never@1356 2137 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 2138 PhaseIdealLoop::verify(igvn);
never@1356 2139 }
never@1356 2140
duke@435 2141 {
duke@435 2142 NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
duke@435 2143 PhaseMacroExpand mex(igvn);
duke@435 2144 if (mex.expand_macro_nodes()) {
duke@435 2145 assert(failing(), "must bail out w/ explicit message");
duke@435 2146 return;
duke@435 2147 }
duke@435 2148 }
duke@435 2149
duke@435 2150 } // (End scope of igvn; run destructor if necessary for asserts.)
duke@435 2151
kvn@4448 2152 dump_inlining();
duke@435 2153 // A method with only infinite loops has no edges entering loops from root
duke@435 2154 {
duke@435 2155 NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
duke@435 2156 if (final_graph_reshaping()) {
duke@435 2157 assert(failing(), "must bail out w/ explicit message");
duke@435 2158 return;
duke@435 2159 }
duke@435 2160 }
duke@435 2161
sla@5237 2162 print_method(PHASE_OPTIMIZE_FINISHED, 2);
duke@435 2163 }
duke@435 2164
duke@435 2165
duke@435 2166 //------------------------------Code_Gen---------------------------------------
duke@435 2167 // Given a graph, generate code for it
duke@435 2168 void Compile::Code_Gen() {
adlertz@5539 2169 if (failing()) {
adlertz@5539 2170 return;
adlertz@5539 2171 }
duke@435 2172
duke@435 2173 // Perform instruction selection. You might think we could reclaim Matcher
duke@435 2174 // memory PDQ, but actually the Matcher is used in generating spill code.
duke@435 2175 // Internals of the Matcher (including some VectorSets) must remain live
duke@435 2176 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
duke@435 2177 // set a bit in reclaimed memory.
duke@435 2178
duke@435 2179 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 2180 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 2181 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2182
adlertz@5539 2183 Matcher matcher;
adlertz@5539 2184 _matcher = &matcher;
duke@435 2185 {
duke@435 2186 TracePhase t2("matcher", &_t_matcher, true);
adlertz@5539 2187 matcher.match();
duke@435 2188 }
duke@435 2189 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 2190 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 2191 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2192
duke@435 2193 // If you have too many nodes, or if matching has failed, bail out
duke@435 2194 check_node_count(0, "out of nodes matching instructions");
adlertz@5539 2195 if (failing()) {
adlertz@5539 2196 return;
adlertz@5539 2197 }
duke@435 2198
duke@435 2199 // Build a proper-looking CFG
adlertz@5539 2200 PhaseCFG cfg(node_arena(), root(), matcher);
duke@435 2201 _cfg = &cfg;
duke@435 2202 {
duke@435 2203 NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
adlertz@5539 2204 bool success = cfg.do_global_code_motion();
adlertz@5539 2205 if (!success) {
adlertz@5539 2206 return;
adlertz@5539 2207 }
adlertz@5539 2208
adlertz@5539 2209 print_method(PHASE_GLOBAL_CODE_MOTION, 2);
duke@435 2210 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2211 debug_only( cfg.verify(); )
duke@435 2212 }
adlertz@5539 2213
adlertz@5539 2214 PhaseChaitin regalloc(unique(), cfg, matcher);
duke@435 2215 _regalloc = &regalloc;
duke@435 2216 {
duke@435 2217 TracePhase t2("regalloc", &_t_registerAllocation, true);
duke@435 2218 // Perform register allocation. After Chaitin, use-def chains are
duke@435 2219 // no longer accurate (at spill code) and so must be ignored.
duke@435 2220 // Node->LRG->reg mappings are still accurate.
duke@435 2221 _regalloc->Register_Allocate();
duke@435 2222
duke@435 2223 // Bail out if the allocator builds too many nodes
neliasso@4949 2224 if (failing()) {
neliasso@4949 2225 return;
neliasso@4949 2226 }
duke@435 2227 }
duke@435 2228
duke@435 2229 // Prior to register allocation we kept empty basic blocks in case the
duke@435 2230 // the allocator needed a place to spill. After register allocation we
duke@435 2231 // are not adding any new instructions. If any basic block is empty, we
duke@435 2232 // can now safely remove it.
duke@435 2233 {
rasbold@853 2234 NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
adlertz@5539 2235 cfg.remove_empty_blocks();
rasbold@853 2236 if (do_freq_based_layout()) {
rasbold@853 2237 PhaseBlockLayout layout(cfg);
rasbold@853 2238 } else {
rasbold@853 2239 cfg.set_loop_alignment();
rasbold@853 2240 }
rasbold@853 2241 cfg.fixup_flow();
duke@435 2242 }
duke@435 2243
duke@435 2244 // Apply peephole optimizations
duke@435 2245 if( OptoPeephole ) {
duke@435 2246 NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
duke@435 2247 PhasePeephole peep( _regalloc, cfg);
duke@435 2248 peep.do_transform();
duke@435 2249 }
duke@435 2250
duke@435 2251 // Convert Nodes to instruction bits in a buffer
duke@435 2252 {
duke@435 2253 // %%%% workspace merge brought two timers together for one job
duke@435 2254 TracePhase t2a("output", &_t_output, true);
duke@435 2255 NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
duke@435 2256 Output();
duke@435 2257 }
duke@435 2258
sla@5237 2259 print_method(PHASE_FINAL_CODE);
duke@435 2260
duke@435 2261 // He's dead, Jim.
duke@435 2262 _cfg = (PhaseCFG*)0xdeadbeef;
duke@435 2263 _regalloc = (PhaseChaitin*)0xdeadbeef;
duke@435 2264 }
duke@435 2265
duke@435 2266
duke@435 2267 //------------------------------dump_asm---------------------------------------
duke@435 2268 // Dump formatted assembly
duke@435 2269 #ifndef PRODUCT
duke@435 2270 void Compile::dump_asm(int *pcs, uint pc_limit) {
duke@435 2271 bool cut_short = false;
duke@435 2272 tty->print_cr("#");
duke@435 2273 tty->print("# "); _tf->dump(); tty->cr();
duke@435 2274 tty->print_cr("#");
duke@435 2275
duke@435 2276 // For all blocks
duke@435 2277 int pc = 0x0; // Program counter
duke@435 2278 char starts_bundle = ' ';
duke@435 2279 _regalloc->dump_frame();
duke@435 2280
duke@435 2281 Node *n = NULL;
adlertz@5539 2282 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
adlertz@5539 2283 if (VMThread::should_terminate()) {
adlertz@5539 2284 cut_short = true;
adlertz@5539 2285 break;
adlertz@5539 2286 }
adlertz@5539 2287 Block* block = _cfg->get_block(i);
adlertz@5539 2288 if (block->is_connector() && !Verbose) {
adlertz@5539 2289 continue;
adlertz@5539 2290 }
adlertz@5635 2291 n = block->head();
adlertz@5539 2292 if (pcs && n->_idx < pc_limit) {
duke@435 2293 tty->print("%3.3x ", pcs[n->_idx]);
adlertz@5539 2294 } else {
duke@435 2295 tty->print(" ");
adlertz@5539 2296 }
adlertz@5539 2297 block->dump_head(_cfg);
adlertz@5539 2298 if (block->is_connector()) {
duke@435 2299 tty->print_cr(" # Empty connector block");
adlertz@5539 2300 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
duke@435 2301 tty->print_cr(" # Block is sole successor of call");
duke@435 2302 }
duke@435 2303
duke@435 2304 // For all instructions
duke@435 2305 Node *delay = NULL;
adlertz@5635 2306 for (uint j = 0; j < block->number_of_nodes(); j++) {
adlertz@5539 2307 if (VMThread::should_terminate()) {
adlertz@5539 2308 cut_short = true;
adlertz@5539 2309 break;
adlertz@5539 2310 }
adlertz@5635 2311 n = block->get_node(j);
duke@435 2312 if (valid_bundle_info(n)) {
adlertz@5539 2313 Bundle* bundle = node_bundling(n);
duke@435 2314 if (bundle->used_in_unconditional_delay()) {
duke@435 2315 delay = n;
duke@435 2316 continue;
duke@435 2317 }
adlertz@5539 2318 if (bundle->starts_bundle()) {
duke@435 2319 starts_bundle = '+';
adlertz@5539 2320 }
duke@435 2321 }
duke@435 2322
adlertz@5539 2323 if (WizardMode) {
adlertz@5539 2324 n->dump();
adlertz@5539 2325 }
coleenp@548 2326
duke@435 2327 if( !n->is_Region() && // Dont print in the Assembly
duke@435 2328 !n->is_Phi() && // a few noisely useless nodes
duke@435 2329 !n->is_Proj() &&
duke@435 2330 !n->is_MachTemp() &&
kvn@1535 2331 !n->is_SafePointScalarObject() &&
duke@435 2332 !n->is_Catch() && // Would be nice to print exception table targets
duke@435 2333 !n->is_MergeMem() && // Not very interesting
duke@435 2334 !n->is_top() && // Debug info table constants
duke@435 2335 !(n->is_Con() && !n->is_Mach())// Debug info table constants
duke@435 2336 ) {
duke@435 2337 if (pcs && n->_idx < pc_limit)
duke@435 2338 tty->print("%3.3x", pcs[n->_idx]);
duke@435 2339 else
duke@435 2340 tty->print(" ");
duke@435 2341 tty->print(" %c ", starts_bundle);
duke@435 2342 starts_bundle = ' ';
duke@435 2343 tty->print("\t");
duke@435 2344 n->format(_regalloc, tty);
duke@435 2345 tty->cr();
duke@435 2346 }
duke@435 2347
duke@435 2348 // If we have an instruction with a delay slot, and have seen a delay,
duke@435 2349 // then back up and print it
duke@435 2350 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 2351 assert(delay != NULL, "no unconditional delay instruction");
coleenp@548 2352 if (WizardMode) delay->dump();
coleenp@548 2353
duke@435 2354 if (node_bundling(delay)->starts_bundle())
duke@435 2355 starts_bundle = '+';
duke@435 2356 if (pcs && n->_idx < pc_limit)
duke@435 2357 tty->print("%3.3x", pcs[n->_idx]);
duke@435 2358 else
duke@435 2359 tty->print(" ");
duke@435 2360 tty->print(" %c ", starts_bundle);
duke@435 2361 starts_bundle = ' ';
duke@435 2362 tty->print("\t");
duke@435 2363 delay->format(_regalloc, tty);
duke@435 2364 tty->print_cr("");
duke@435 2365 delay = NULL;
duke@435 2366 }
duke@435 2367
duke@435 2368 // Dump the exception table as well
duke@435 2369 if( n->is_Catch() && (Verbose || WizardMode) ) {
duke@435 2370 // Print the exception table for this offset
duke@435 2371 _handler_table.print_subtable_for(pc);
duke@435 2372 }
duke@435 2373 }
duke@435 2374
duke@435 2375 if (pcs && n->_idx < pc_limit)
duke@435 2376 tty->print_cr("%3.3x", pcs[n->_idx]);
duke@435 2377 else
duke@435 2378 tty->print_cr("");
duke@435 2379
duke@435 2380 assert(cut_short || delay == NULL, "no unconditional delay branch");
duke@435 2381
duke@435 2382 } // End of per-block dump
duke@435 2383 tty->print_cr("");
duke@435 2384
duke@435 2385 if (cut_short) tty->print_cr("*** disassembly is cut short ***");
duke@435 2386 }
duke@435 2387 #endif
duke@435 2388
duke@435 2389 //------------------------------Final_Reshape_Counts---------------------------
duke@435 2390 // This class defines counters to help identify when a method
duke@435 2391 // may/must be executed using hardware with only 24-bit precision.
duke@435 2392 struct Final_Reshape_Counts : public StackObj {
duke@435 2393 int _call_count; // count non-inlined 'common' calls
duke@435 2394 int _float_count; // count float ops requiring 24-bit precision
duke@435 2395 int _double_count; // count double ops requiring more precision
duke@435 2396 int _java_call_count; // count non-inlined 'java' calls
kvn@1294 2397 int _inner_loop_count; // count loops which need alignment
duke@435 2398 VectorSet _visited; // Visitation flags
duke@435 2399 Node_List _tests; // Set of IfNodes & PCTableNodes
duke@435 2400
duke@435 2401 Final_Reshape_Counts() :
kvn@1294 2402 _call_count(0), _float_count(0), _double_count(0),
kvn@1294 2403 _java_call_count(0), _inner_loop_count(0),
duke@435 2404 _visited( Thread::current()->resource_area() ) { }
duke@435 2405
duke@435 2406 void inc_call_count () { _call_count ++; }
duke@435 2407 void inc_float_count () { _float_count ++; }
duke@435 2408 void inc_double_count() { _double_count++; }
duke@435 2409 void inc_java_call_count() { _java_call_count++; }
kvn@1294 2410 void inc_inner_loop_count() { _inner_loop_count++; }
duke@435 2411
duke@435 2412 int get_call_count () const { return _call_count ; }
duke@435 2413 int get_float_count () const { return _float_count ; }
duke@435 2414 int get_double_count() const { return _double_count; }
duke@435 2415 int get_java_call_count() const { return _java_call_count; }
kvn@1294 2416 int get_inner_loop_count() const { return _inner_loop_count; }
duke@435 2417 };
duke@435 2418
mikael@4889 2419 #ifdef ASSERT
duke@435 2420 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
duke@435 2421 ciInstanceKlass *k = tp->klass()->as_instance_klass();
duke@435 2422 // Make sure the offset goes inside the instance layout.
coleenp@548 2423 return k->contains_field_offset(tp->offset());
duke@435 2424 // Note that OffsetBot and OffsetTop are very negative.
duke@435 2425 }
mikael@4889 2426 #endif
duke@435 2427
never@2780 2428 // Eliminate trivially redundant StoreCMs and accumulate their
never@2780 2429 // precedence edges.
bharadwaj@4315 2430 void Compile::eliminate_redundant_card_marks(Node* n) {
never@2780 2431 assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
never@2780 2432 if (n->in(MemNode::Address)->outcnt() > 1) {
never@2780 2433 // There are multiple users of the same address so it might be
never@2780 2434 // possible to eliminate some of the StoreCMs
never@2780 2435 Node* mem = n->in(MemNode::Memory);
never@2780 2436 Node* adr = n->in(MemNode::Address);
never@2780 2437 Node* val = n->in(MemNode::ValueIn);
never@2780 2438 Node* prev = n;
never@2780 2439 bool done = false;
never@2780 2440 // Walk the chain of StoreCMs eliminating ones that match. As
never@2780 2441 // long as it's a chain of single users then the optimization is
never@2780 2442 // safe. Eliminating partially redundant StoreCMs would require
never@2780 2443 // cloning copies down the other paths.
never@2780 2444 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
never@2780 2445 if (adr == mem->in(MemNode::Address) &&
never@2780 2446 val == mem->in(MemNode::ValueIn)) {
never@2780 2447 // redundant StoreCM
never@2780 2448 if (mem->req() > MemNode::OopStore) {
never@2780 2449 // Hasn't been processed by this code yet.
never@2780 2450 n->add_prec(mem->in(MemNode::OopStore));
never@2780 2451 } else {
never@2780 2452 // Already converted to precedence edge
never@2780 2453 for (uint i = mem->req(); i < mem->len(); i++) {
never@2780 2454 // Accumulate any precedence edges
never@2780 2455 if (mem->in(i) != NULL) {
never@2780 2456 n->add_prec(mem->in(i));
never@2780 2457 }
never@2780 2458 }
never@2780 2459 // Everything above this point has been processed.
never@2780 2460 done = true;
never@2780 2461 }
never@2780 2462 // Eliminate the previous StoreCM
never@2780 2463 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
never@2780 2464 assert(mem->outcnt() == 0, "should be dead");
bharadwaj@4315 2465 mem->disconnect_inputs(NULL, this);
never@2780 2466 } else {
never@2780 2467 prev = mem;
never@2780 2468 }
never@2780 2469 mem = prev->in(MemNode::Memory);
never@2780 2470 }
never@2780 2471 }
never@2780 2472 }
never@2780 2473
duke@435 2474 //------------------------------final_graph_reshaping_impl----------------------
duke@435 2475 // Implement items 1-5 from final_graph_reshaping below.
bharadwaj@4315 2476 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
duke@435 2477
kvn@603 2478 if ( n->outcnt() == 0 ) return; // dead node
duke@435 2479 uint nop = n->Opcode();
duke@435 2480
duke@435 2481 // Check for 2-input instruction with "last use" on right input.
duke@435 2482 // Swap to left input. Implements item (2).
duke@435 2483 if( n->req() == 3 && // two-input instruction
duke@435 2484 n->in(1)->outcnt() > 1 && // left use is NOT a last use
duke@435 2485 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
duke@435 2486 n->in(2)->outcnt() == 1 &&// right use IS a last use
duke@435 2487 !n->in(2)->is_Con() ) { // right use is not a constant
duke@435 2488 // Check for commutative opcode
duke@435 2489 switch( nop ) {
duke@435 2490 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
duke@435 2491 case Op_MaxI: case Op_MinI:
duke@435 2492 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
duke@435 2493 case Op_AndL: case Op_XorL: case Op_OrL:
duke@435 2494 case Op_AndI: case Op_XorI: case Op_OrI: {
duke@435 2495 // Move "last use" input to left by swapping inputs
duke@435 2496 n->swap_edges(1, 2);
duke@435 2497 break;
duke@435 2498 }
duke@435 2499 default:
duke@435 2500 break;
duke@435 2501 }
duke@435 2502 }
duke@435 2503
kvn@1964 2504 #ifdef ASSERT
kvn@1964 2505 if( n->is_Mem() ) {
bharadwaj@4315 2506 int alias_idx = get_alias_index(n->as_Mem()->adr_type());
kvn@1964 2507 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
kvn@1964 2508 // oop will be recorded in oop map if load crosses safepoint
kvn@1964 2509 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
kvn@1964 2510 LoadNode::is_immutable_value(n->in(MemNode::Address))),
kvn@1964 2511 "raw memory operations should have control edge");
kvn@1964 2512 }
kvn@1964 2513 #endif
duke@435 2514 // Count FPU ops and common calls, implements item (3)
duke@435 2515 switch( nop ) {
duke@435 2516 // Count all float operations that may use FPU
duke@435 2517 case Op_AddF:
duke@435 2518 case Op_SubF:
duke@435 2519 case Op_MulF:
duke@435 2520 case Op_DivF:
duke@435 2521 case Op_NegF:
duke@435 2522 case Op_ModF:
duke@435 2523 case Op_ConvI2F:
duke@435 2524 case Op_ConF:
duke@435 2525 case Op_CmpF:
duke@435 2526 case Op_CmpF3:
duke@435 2527 // case Op_ConvL2F: // longs are split into 32-bit halves
kvn@1294 2528 frc.inc_float_count();
duke@435 2529 break;
duke@435 2530
duke@435 2531 case Op_ConvF2D:
duke@435 2532 case Op_ConvD2F:
kvn@1294 2533 frc.inc_float_count();
kvn@1294 2534 frc.inc_double_count();
duke@435 2535 break;
duke@435 2536
duke@435 2537 // Count all double operations that may use FPU
duke@435 2538 case Op_AddD:
duke@435 2539 case Op_SubD:
duke@435 2540 case Op_MulD:
duke@435 2541 case Op_DivD:
duke@435 2542 case Op_NegD:
duke@435 2543 case Op_ModD:
duke@435 2544 case Op_ConvI2D:
duke@435 2545 case Op_ConvD2I:
duke@435 2546 // case Op_ConvL2D: // handled by leaf call
duke@435 2547 // case Op_ConvD2L: // handled by leaf call
duke@435 2548 case Op_ConD:
duke@435 2549 case Op_CmpD:
duke@435 2550 case Op_CmpD3:
kvn@1294 2551 frc.inc_double_count();
duke@435 2552 break;
duke@435 2553 case Op_Opaque1: // Remove Opaque Nodes before matching
duke@435 2554 case Op_Opaque2: // Remove Opaque Nodes before matching
bharadwaj@4315 2555 n->subsume_by(n->in(1), this);
duke@435 2556 break;
duke@435 2557 case Op_CallStaticJava:
duke@435 2558 case Op_CallJava:
duke@435 2559 case Op_CallDynamicJava:
kvn@1294 2560 frc.inc_java_call_count(); // Count java call site;
duke@435 2561 case Op_CallRuntime:
duke@435 2562 case Op_CallLeaf:
duke@435 2563 case Op_CallLeafNoFP: {
duke@435 2564 assert( n->is_Call(), "" );
duke@435 2565 CallNode *call = n->as_Call();
duke@435 2566 // Count call sites where the FP mode bit would have to be flipped.
duke@435 2567 // Do not count uncommon runtime calls:
duke@435 2568 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
duke@435 2569 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
duke@435 2570 if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
kvn@1294 2571 frc.inc_call_count(); // Count the call site
duke@435 2572 } else { // See if uncommon argument is shared
duke@435 2573 Node *n = call->in(TypeFunc::Parms);
duke@435 2574 int nop = n->Opcode();
duke@435 2575 // Clone shared simple arguments to uncommon calls, item (1).
duke@435 2576 if( n->outcnt() > 1 &&
duke@435 2577 !n->is_Proj() &&
duke@435 2578 nop != Op_CreateEx &&
duke@435 2579 nop != Op_CheckCastPP &&
kvn@766 2580 nop != Op_DecodeN &&
roland@4159 2581 nop != Op_DecodeNKlass &&
duke@435 2582 !n->is_Mem() ) {
duke@435 2583 Node *x = n->clone();
duke@435 2584 call->set_req( TypeFunc::Parms, x );
duke@435 2585 }
duke@435 2586 }
duke@435 2587 break;
duke@435 2588 }
duke@435 2589
duke@435 2590 case Op_StoreD:
duke@435 2591 case Op_LoadD:
duke@435 2592 case Op_LoadD_unaligned:
kvn@1294 2593 frc.inc_double_count();
duke@435 2594 goto handle_mem;
duke@435 2595 case Op_StoreF:
duke@435 2596 case Op_LoadF:
kvn@1294 2597 frc.inc_float_count();
duke@435 2598 goto handle_mem;
duke@435 2599
never@2780 2600 case Op_StoreCM:
never@2780 2601 {
never@2780 2602 // Convert OopStore dependence into precedence edge
never@2780 2603 Node* prec = n->in(MemNode::OopStore);
never@2780 2604 n->del_req(MemNode::OopStore);
never@2780 2605 n->add_prec(prec);
never@2780 2606 eliminate_redundant_card_marks(n);
never@2780 2607 }
never@2780 2608
never@2780 2609 // fall through
never@2780 2610
duke@435 2611 case Op_StoreB:
duke@435 2612 case Op_StoreC:
duke@435 2613 case Op_StorePConditional:
duke@435 2614 case Op_StoreI:
duke@435 2615 case Op_StoreL:
kvn@855 2616 case Op_StoreIConditional:
duke@435 2617 case Op_StoreLConditional:
duke@435 2618 case Op_CompareAndSwapI:
duke@435 2619 case Op_CompareAndSwapL:
duke@435 2620 case Op_CompareAndSwapP:
coleenp@548 2621 case Op_CompareAndSwapN:
roland@4106 2622 case Op_GetAndAddI:
roland@4106 2623 case Op_GetAndAddL:
roland@4106 2624 case Op_GetAndSetI:
roland@4106 2625 case Op_GetAndSetL:
roland@4106 2626 case Op_GetAndSetP:
roland@4106 2627 case Op_GetAndSetN:
duke@435 2628 case Op_StoreP:
coleenp@548 2629 case Op_StoreN:
roland@4159 2630 case Op_StoreNKlass:
duke@435 2631 case Op_LoadB:
twisti@1059 2632 case Op_LoadUB:
twisti@993 2633 case Op_LoadUS:
duke@435 2634 case Op_LoadI:
duke@435 2635 case Op_LoadKlass:
kvn@599 2636 case Op_LoadNKlass:
duke@435 2637 case Op_LoadL:
duke@435 2638 case Op_LoadL_unaligned:
duke@435 2639 case Op_LoadPLocked:
duke@435 2640 case Op_LoadP:
coleenp@548 2641 case Op_LoadN:
duke@435 2642 case Op_LoadRange:
duke@435 2643 case Op_LoadS: {
duke@435 2644 handle_mem:
duke@435 2645 #ifdef ASSERT
duke@435 2646 if( VerifyOptoOopOffsets ) {
duke@435 2647 assert( n->is_Mem(), "" );
duke@435 2648 MemNode *mem = (MemNode*)n;
duke@435 2649 // Check to see if address types have grounded out somehow.
duke@435 2650 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
duke@435 2651 assert( !tp || oop_offset_is_sane(tp), "" );
duke@435 2652 }
duke@435 2653 #endif
duke@435 2654 break;
duke@435 2655 }
duke@435 2656
duke@435 2657 case Op_AddP: { // Assert sane base pointers
kvn@617 2658 Node *addp = n->in(AddPNode::Address);
duke@435 2659 assert( !addp->is_AddP() ||
duke@435 2660 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
duke@435 2661 addp->in(AddPNode::Base) == n->in(AddPNode::Base),
duke@435 2662 "Base pointers must match" );
kvn@617 2663 #ifdef _LP64
ehelin@5694 2664 if ((UseCompressedOops || UseCompressedClassPointers) &&
kvn@617 2665 addp->Opcode() == Op_ConP &&
kvn@617 2666 addp == n->in(AddPNode::Base) &&
kvn@617 2667 n->in(AddPNode::Offset)->is_Con()) {
kvn@617 2668 // Use addressing with narrow klass to load with offset on x86.
kvn@617 2669 // On sparc loading 32-bits constant and decoding it have less
kvn@617 2670 // instructions (4) then load 64-bits constant (7).
kvn@617 2671 // Do this transformation here since IGVN will convert ConN back to ConP.
kvn@617 2672 const Type* t = addp->bottom_type();
roland@4159 2673 if (t->isa_oopptr() || t->isa_klassptr()) {
kvn@617 2674 Node* nn = NULL;
kvn@617 2675
roland@4159 2676 int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
roland@4159 2677
kvn@617 2678 // Look for existing ConN node of the same exact type.
bharadwaj@4315 2679 Node* r = root();
kvn@617 2680 uint cnt = r->outcnt();
kvn@617 2681 for (uint i = 0; i < cnt; i++) {
kvn@617 2682 Node* m = r->raw_out(i);
roland@4159 2683 if (m!= NULL && m->Opcode() == op &&
kvn@656 2684 m->bottom_type()->make_ptr() == t) {
kvn@617 2685 nn = m;
kvn@617 2686 break;
kvn@617 2687 }
kvn@617 2688 }
kvn@617 2689 if (nn != NULL) {
kvn@617 2690 // Decode a narrow oop to match address
kvn@617 2691 // [R12 + narrow_oop_reg<<3 + offset]
roland@4159 2692 if (t->isa_oopptr()) {
bharadwaj@4315 2693 nn = new (this) DecodeNNode(nn, t);
roland@4159 2694 } else {
bharadwaj@4315 2695 nn = new (this) DecodeNKlassNode(nn, t);
roland@4159 2696 }
kvn@617 2697 n->set_req(AddPNode::Base, nn);
kvn@617 2698 n->set_req(AddPNode::Address, nn);
kvn@617 2699 if (addp->outcnt() == 0) {
bharadwaj@4315 2700 addp->disconnect_inputs(NULL, this);
kvn@617 2701 }
kvn@617 2702 }
kvn@617 2703 }
kvn@617 2704 }
kvn@617 2705 #endif
duke@435 2706 break;
duke@435 2707 }
duke@435 2708
kvn@599 2709 #ifdef _LP64
kvn@803 2710 case Op_CastPP:
kvn@1930 2711 if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
kvn@803 2712 Node* in1 = n->in(1);
kvn@803 2713 const Type* t = n->bottom_type();
kvn@803 2714 Node* new_in1 = in1->clone();
kvn@803 2715 new_in1->as_DecodeN()->set_type(t);
kvn@803 2716
kvn@1930 2717 if (!Matcher::narrow_oop_use_complex_address()) {
kvn@803 2718 //
kvn@803 2719 // x86, ARM and friends can handle 2 adds in addressing mode
kvn@803 2720 // and Matcher can fold a DecodeN node into address by using
kvn@803 2721 // a narrow oop directly and do implicit NULL check in address:
kvn@803 2722 //
kvn@803 2723 // [R12 + narrow_oop_reg<<3 + offset]
kvn@803 2724 // NullCheck narrow_oop_reg
kvn@803 2725 //
kvn@803 2726 // On other platforms (Sparc) we have to keep new DecodeN node and
kvn@803 2727 // use it to do implicit NULL check in address:
kvn@803 2728 //
kvn@803 2729 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2730 // [base_reg + offset]
kvn@803 2731 // NullCheck base_reg
kvn@803 2732 //
twisti@1040 2733 // Pin the new DecodeN node to non-null path on these platform (Sparc)
kvn@803 2734 // to keep the information to which NULL check the new DecodeN node
kvn@803 2735 // corresponds to use it as value in implicit_null_check().
kvn@803 2736 //
kvn@803 2737 new_in1->set_req(0, n->in(0));
kvn@803 2738 }
kvn@803 2739
bharadwaj@4315 2740 n->subsume_by(new_in1, this);
kvn@803 2741 if (in1->outcnt() == 0) {
bharadwaj@4315 2742 in1->disconnect_inputs(NULL, this);
kvn@803 2743 }
kvn@803 2744 }
kvn@803 2745 break;
kvn@803 2746
kvn@599 2747 case Op_CmpP:
kvn@603 2748 // Do this transformation here to preserve CmpPNode::sub() and
kvn@603 2749 // other TypePtr related Ideal optimizations (for example, ptr nullness).
roland@4159 2750 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
kvn@766 2751 Node* in1 = n->in(1);
kvn@766 2752 Node* in2 = n->in(2);
roland@4159 2753 if (!in1->is_DecodeNarrowPtr()) {
kvn@766 2754 in2 = in1;
kvn@766 2755 in1 = n->in(2);
kvn@766 2756 }
roland@4159 2757 assert(in1->is_DecodeNarrowPtr(), "sanity");
kvn@766 2758
kvn@766 2759 Node* new_in2 = NULL;
roland@4159 2760 if (in2->is_DecodeNarrowPtr()) {
roland@4159 2761 assert(in2->Opcode() == in1->Opcode(), "must be same node type");
kvn@766 2762 new_in2 = in2->in(1);
kvn@766 2763 } else if (in2->Opcode() == Op_ConP) {
kvn@766 2764 const Type* t = in2->bottom_type();
kvn@1930 2765 if (t == TypePtr::NULL_PTR) {
roland@4159 2766 assert(in1->is_DecodeN(), "compare klass to null?");
kvn@1930 2767 // Don't convert CmpP null check into CmpN if compressed
kvn@1930 2768 // oops implicit null check is not generated.
kvn@1930 2769 // This will allow to generate normal oop implicit null check.
kvn@1930 2770 if (Matcher::gen_narrow_oop_implicit_null_checks())
bharadwaj@4315 2771 new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
kvn@803 2772 //
kvn@803 2773 // This transformation together with CastPP transformation above
kvn@803 2774 // will generated code for implicit NULL checks for compressed oops.
kvn@803 2775 //
kvn@803 2776 // The original code after Optimize()
kvn@803 2777 //
kvn@803 2778 // LoadN memory, narrow_oop_reg
kvn@803 2779 // decode narrow_oop_reg, base_reg
kvn@803 2780 // CmpP base_reg, NULL
kvn@803 2781 // CastPP base_reg // NotNull
kvn@803 2782 // Load [base_reg + offset], val_reg
kvn@803 2783 //
kvn@803 2784 // after these transformations will be
kvn@803 2785 //
kvn@803 2786 // LoadN memory, narrow_oop_reg
kvn@803 2787 // CmpN narrow_oop_reg, NULL
kvn@803 2788 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2789 // Load [base_reg + offset], val_reg
kvn@803 2790 //
kvn@803 2791 // and the uncommon path (== NULL) will use narrow_oop_reg directly
kvn@803 2792 // since narrow oops can be used in debug info now (see the code in
kvn@803 2793 // final_graph_reshaping_walk()).
kvn@803 2794 //
kvn@803 2795 // At the end the code will be matched to
kvn@803 2796 // on x86:
kvn@803 2797 //
kvn@803 2798 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2799 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg
kvn@803 2800 // NullCheck narrow_oop_reg
kvn@803 2801 //
kvn@803 2802 // and on sparc:
kvn@803 2803 //
kvn@803 2804 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2805 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2806 // Load [base_reg + offset], val_reg
kvn@803 2807 // NullCheck base_reg
kvn@803 2808 //
kvn@599 2809 } else if (t->isa_oopptr()) {
bharadwaj@4315 2810 new_in2 = ConNode::make(this, t->make_narrowoop());
roland@4159 2811 } else if (t->isa_klassptr()) {
bharadwaj@4315 2812 new_in2 = ConNode::make(this, t->make_narrowklass());
kvn@599 2813 }
kvn@599 2814 }
kvn@766 2815 if (new_in2 != NULL) {
bharadwaj@4315 2816 Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
bharadwaj@4315 2817 n->subsume_by(cmpN, this);
kvn@766 2818 if (in1->outcnt() == 0) {
bharadwaj@4315 2819 in1->disconnect_inputs(NULL, this);
kvn@766 2820 }
kvn@766 2821 if (in2->outcnt() == 0) {
bharadwaj@4315 2822 in2->disconnect_inputs(NULL, this);
kvn@766 2823 }
kvn@599 2824 }
kvn@599 2825 }
kvn@728 2826 break;
kvn@803 2827
kvn@803 2828 case Op_DecodeN:
roland@4159 2829 case Op_DecodeNKlass:
roland@4159 2830 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
kvn@1930 2831 // DecodeN could be pinned when it can't be fold into
kvn@927 2832 // an address expression, see the code for Op_CastPP above.
roland@4159 2833 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
kvn@803 2834 break;
kvn@803 2835
roland@4159 2836 case Op_EncodeP:
roland@4159 2837 case Op_EncodePKlass: {
kvn@803 2838 Node* in1 = n->in(1);
roland@4159 2839 if (in1->is_DecodeNarrowPtr()) {
bharadwaj@4315 2840 n->subsume_by(in1->in(1), this);
kvn@803 2841 } else if (in1->Opcode() == Op_ConP) {
kvn@803 2842 const Type* t = in1->bottom_type();
kvn@803 2843 if (t == TypePtr::NULL_PTR) {
roland@4159 2844 assert(t->isa_oopptr(), "null klass?");
bharadwaj@4315 2845 n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
kvn@803 2846 } else if (t->isa_oopptr()) {
bharadwaj@4315 2847 n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
roland@4159 2848 } else if (t->isa_klassptr()) {
bharadwaj@4315 2849 n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
kvn@803 2850 }
kvn@803 2851 }
kvn@803 2852 if (in1->outcnt() == 0) {
bharadwaj@4315 2853 in1->disconnect_inputs(NULL, this);
kvn@803 2854 }
kvn@803 2855 break;
kvn@803 2856 }
kvn@803 2857
never@1515 2858 case Op_Proj: {
never@1515 2859 if (OptimizeStringConcat) {
never@1515 2860 ProjNode* p = n->as_Proj();
never@1515 2861 if (p->_is_io_use) {
never@1515 2862 // Separate projections were used for the exception path which
never@1515 2863 // are normally removed by a late inline. If it wasn't inlined
never@1515 2864 // then they will hang around and should just be replaced with
never@1515 2865 // the original one.
never@1515 2866 Node* proj = NULL;
never@1515 2867 // Replace with just one
never@1515 2868 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
never@1515 2869 Node *use = i.get();
never@1515 2870 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
never@1515 2871 proj = use;
never@1515 2872 break;
never@1515 2873 }
never@1515 2874 }
kvn@3396 2875 assert(proj != NULL, "must be found");
bharadwaj@4315 2876 p->subsume_by(proj, this);
never@1515 2877 }
never@1515 2878 }
never@1515 2879 break;
never@1515 2880 }
never@1515 2881
kvn@803 2882 case Op_Phi:
roland@4159 2883 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
kvn@803 2884 // The EncodeP optimization may create Phi with the same edges
kvn@803 2885 // for all paths. It is not handled well by Register Allocator.
kvn@803 2886 Node* unique_in = n->in(1);
kvn@803 2887 assert(unique_in != NULL, "");
kvn@803 2888 uint cnt = n->req();
kvn@803 2889 for (uint i = 2; i < cnt; i++) {
kvn@803 2890 Node* m = n->in(i);
kvn@803 2891 assert(m != NULL, "");
kvn@803 2892 if (unique_in != m)
kvn@803 2893 unique_in = NULL;
kvn@803 2894 }
kvn@803 2895 if (unique_in != NULL) {
bharadwaj@4315 2896 n->subsume_by(unique_in, this);
kvn@803 2897 }
kvn@803 2898 }
kvn@803 2899 break;
kvn@803 2900
kvn@599 2901 #endif
kvn@599 2902
duke@435 2903 case Op_ModI:
duke@435 2904 if (UseDivMod) {
duke@435 2905 // Check if a%b and a/b both exist
duke@435 2906 Node* d = n->find_similar(Op_DivI);
duke@435 2907 if (d) {
duke@435 2908 // Replace them with a fused divmod if supported
duke@435 2909 if (Matcher::has_match_rule(Op_DivModI)) {
bharadwaj@4315 2910 DivModINode* divmod = DivModINode::make(this, n);
bharadwaj@4315 2911 d->subsume_by(divmod->div_proj(), this);
bharadwaj@4315 2912 n->subsume_by(divmod->mod_proj(), this);
duke@435 2913 } else {
duke@435 2914 // replace a%b with a-((a/b)*b)
bharadwaj@4315 2915 Node* mult = new (this) MulINode(d, d->in(2));
bharadwaj@4315 2916 Node* sub = new (this) SubINode(d->in(1), mult);
bharadwaj@4315 2917 n->subsume_by(sub, this);
duke@435 2918 }
duke@435 2919 }
duke@435 2920 }
duke@435 2921 break;
duke@435 2922
duke@435 2923 case Op_ModL:
duke@435 2924 if (UseDivMod) {
duke@435 2925 // Check if a%b and a/b both exist
duke@435 2926 Node* d = n->find_similar(Op_DivL);
duke@435 2927 if (d) {
duke@435 2928 // Replace them with a fused divmod if supported
duke@435 2929 if (Matcher::has_match_rule(Op_DivModL)) {
bharadwaj@4315 2930 DivModLNode* divmod = DivModLNode::make(this, n);
bharadwaj@4315 2931 d->subsume_by(divmod->div_proj(), this);
bharadwaj@4315 2932 n->subsume_by(divmod->mod_proj(), this);
duke@435 2933 } else {
duke@435 2934 // replace a%b with a-((a/b)*b)
bharadwaj@4315 2935 Node* mult = new (this) MulLNode(d, d->in(2));
bharadwaj@4315 2936 Node* sub = new (this) SubLNode(d->in(1), mult);
bharadwaj@4315 2937 n->subsume_by(sub, this);
duke@435 2938 }
duke@435 2939 }
duke@435 2940 }
duke@435 2941 break;
duke@435 2942
kvn@3882 2943 case Op_LoadVector:
kvn@3882 2944 case Op_StoreVector:
duke@435 2945 break;
duke@435 2946
duke@435 2947 case Op_PackB:
duke@435 2948 case Op_PackS:
duke@435 2949 case Op_PackI:
duke@435 2950 case Op_PackF:
duke@435 2951 case Op_PackL:
duke@435 2952 case Op_PackD:
duke@435 2953 if (n->req()-1 > 2) {
duke@435 2954 // Replace many operand PackNodes with a binary tree for matching
duke@435 2955 PackNode* p = (PackNode*) n;
bharadwaj@4315 2956 Node* btp = p->binary_tree_pack(this, 1, n->req());
bharadwaj@4315 2957 n->subsume_by(btp, this);
duke@435 2958 }
duke@435 2959 break;
kvn@1294 2960 case Op_Loop:
kvn@1294 2961 case Op_CountedLoop:
kvn@1294 2962 if (n->as_Loop()->is_inner_loop()) {
kvn@1294 2963 frc.inc_inner_loop_count();
kvn@1294 2964 }
kvn@1294 2965 break;
roland@2683 2966 case Op_LShiftI:
roland@2683 2967 case Op_RShiftI:
roland@2683 2968 case Op_URShiftI:
roland@2683 2969 case Op_LShiftL:
roland@2683 2970 case Op_RShiftL:
roland@2683 2971 case Op_URShiftL:
roland@2683 2972 if (Matcher::need_masked_shift_count) {
roland@2683 2973 // The cpu's shift instructions don't restrict the count to the
roland@2683 2974 // lower 5/6 bits. We need to do the masking ourselves.
roland@2683 2975 Node* in2 = n->in(2);
roland@2683 2976 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
roland@2683 2977 const TypeInt* t = in2->find_int_type();
roland@2683 2978 if (t != NULL && t->is_con()) {
roland@2683 2979 juint shift = t->get_con();
roland@2683 2980 if (shift > mask) { // Unsigned cmp
bharadwaj@4315 2981 n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
roland@2683 2982 }
roland@2683 2983 } else {
roland@2683 2984 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
bharadwaj@4315 2985 Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
roland@2683 2986 n->set_req(2, shift);
roland@2683 2987 }
roland@2683 2988 }
roland@2683 2989 if (in2->outcnt() == 0) { // Remove dead node
bharadwaj@4315 2990 in2->disconnect_inputs(NULL, this);
roland@2683 2991 }
roland@2683 2992 }
roland@2683 2993 break;
roland@4694 2994 case Op_MemBarStoreStore:
kvn@5110 2995 case Op_MemBarRelease:
roland@4694 2996 // Break the link with AllocateNode: it is no longer useful and
roland@4694 2997 // confuses register allocation.
roland@4694 2998 if (n->req() > MemBarNode::Precedent) {
roland@4694 2999 n->set_req(MemBarNode::Precedent, top());
roland@4694 3000 }
roland@4694 3001 break;
rbackman@5927 3002 // Must set a control edge on all nodes that produce a FlagsProj
rbackman@5927 3003 // so they can't escape the block that consumes the flags.
rbackman@5927 3004 // Must also set the non throwing branch as the control
rbackman@5927 3005 // for all nodes that depends on the result. Unless the node
rbackman@5927 3006 // already have a control that isn't the control of the
rbackman@5927 3007 // flag producer
rbackman@5927 3008 case Op_FlagsProj:
rbackman@5927 3009 {
rbackman@5927 3010 MathExactNode* math = (MathExactNode*) n->in(0);
rbackman@5927 3011 Node* ctrl = math->control_node();
rbackman@5927 3012 Node* non_throwing = math->non_throwing_branch();
rbackman@5927 3013 math->set_req(0, ctrl);
rbackman@5927 3014
rbackman@5927 3015 Node* result = math->result_node();
rbackman@5927 3016 if (result != NULL) {
rbackman@5927 3017 for (DUIterator_Fast jmax, j = result->fast_outs(jmax); j < jmax; j++) {
rbackman@5927 3018 Node* out = result->fast_out(j);
rbackman@5988 3019 // Phi nodes shouldn't be moved. They would only match below if they
rbackman@5988 3020 // had the same control as the MathExactNode. The only time that
rbackman@5988 3021 // would happen is if the Phi is also an input to the MathExact
rbackman@6068 3022 //
rbackman@6068 3023 // Cmp nodes shouldn't have control set at all.
rbackman@6068 3024 if (out->is_Phi() ||
rbackman@6068 3025 out->is_Cmp()) {
rbackman@6068 3026 continue;
rbackman@6068 3027 }
rbackman@6068 3028
rbackman@6068 3029 if (out->in(0) == NULL) {
rbackman@6068 3030 out->set_req(0, non_throwing);
rbackman@6068 3031 } else if (out->in(0) == ctrl) {
rbackman@6068 3032 out->set_req(0, non_throwing);
rbackman@5927 3033 }
rbackman@5927 3034 }
rbackman@5927 3035 }
rbackman@5927 3036 }
rbackman@5927 3037 break;
duke@435 3038 default:
duke@435 3039 assert( !n->is_Call(), "" );
duke@435 3040 assert( !n->is_Mem(), "" );
duke@435 3041 break;
duke@435 3042 }
never@562 3043
never@562 3044 // Collect CFG split points
never@562 3045 if (n->is_MultiBranch())
kvn@1294 3046 frc._tests.push(n);
duke@435 3047 }
duke@435 3048
duke@435 3049 //------------------------------final_graph_reshaping_walk---------------------
duke@435 3050 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
duke@435 3051 // requires that the walk visits a node's inputs before visiting the node.
bharadwaj@4315 3052 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
kvn@766 3053 ResourceArea *area = Thread::current()->resource_area();
kvn@766 3054 Unique_Node_List sfpt(area);
kvn@766 3055
kvn@1294 3056 frc._visited.set(root->_idx); // first, mark node as visited
duke@435 3057 uint cnt = root->req();
duke@435 3058 Node *n = root;
duke@435 3059 uint i = 0;
duke@435 3060 while (true) {
duke@435 3061 if (i < cnt) {
duke@435 3062 // Place all non-visited non-null inputs onto stack
duke@435 3063 Node* m = n->in(i);
duke@435 3064 ++i;
kvn@1294 3065 if (m != NULL && !frc._visited.test_set(m->_idx)) {
kvn@766 3066 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
kvn@766 3067 sfpt.push(m);
duke@435 3068 cnt = m->req();
duke@435 3069 nstack.push(n, i); // put on stack parent and next input's index
duke@435 3070 n = m;
duke@435 3071 i = 0;
duke@435 3072 }
duke@435 3073 } else {
duke@435 3074 // Now do post-visit work
kvn@1294 3075 final_graph_reshaping_impl( n, frc );
duke@435 3076 if (nstack.is_empty())
duke@435 3077 break; // finished
duke@435 3078 n = nstack.node(); // Get node from stack
duke@435 3079 cnt = n->req();
duke@435 3080 i = nstack.index();
duke@435 3081 nstack.pop(); // Shift to the next node on stack
duke@435 3082 }
duke@435 3083 }
kvn@766 3084
kvn@1930 3085 // Skip next transformation if compressed oops are not used.
roland@4159 3086 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
ehelin@5694 3087 (!UseCompressedOops && !UseCompressedClassPointers))
kvn@1930 3088 return;
kvn@1930 3089
roland@4159 3090 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
kvn@766 3091 // It could be done for an uncommon traps or any safepoints/calls
roland@4159 3092 // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
kvn@766 3093 while (sfpt.size() > 0) {
kvn@766 3094 n = sfpt.pop();
kvn@766 3095 JVMState *jvms = n->as_SafePoint()->jvms();
kvn@766 3096 assert(jvms != NULL, "sanity");
kvn@766 3097 int start = jvms->debug_start();
kvn@766 3098 int end = n->req();
kvn@766 3099 bool is_uncommon = (n->is_CallStaticJava() &&
kvn@766 3100 n->as_CallStaticJava()->uncommon_trap_request() != 0);
kvn@766 3101 for (int j = start; j < end; j++) {
kvn@766 3102 Node* in = n->in(j);
roland@4159 3103 if (in->is_DecodeNarrowPtr()) {
kvn@766 3104 bool safe_to_skip = true;
kvn@766 3105 if (!is_uncommon ) {
kvn@766 3106 // Is it safe to skip?
kvn@766 3107 for (uint i = 0; i < in->outcnt(); i++) {
kvn@766 3108 Node* u = in->raw_out(i);
kvn@766 3109 if (!u->is_SafePoint() ||
kvn@766 3110 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
kvn@766 3111 safe_to_skip = false;
kvn@766 3112 }
kvn@766 3113 }
kvn@766 3114 }
kvn@766 3115 if (safe_to_skip) {
kvn@766 3116 n->set_req(j, in->in(1));
kvn@766 3117 }
kvn@766 3118 if (in->outcnt() == 0) {
bharadwaj@4315 3119 in->disconnect_inputs(NULL, this);
kvn@766 3120 }
kvn@766 3121 }
kvn@766 3122 }
kvn@766 3123 }
duke@435 3124 }
duke@435 3125
duke@435 3126 //------------------------------final_graph_reshaping--------------------------
duke@435 3127 // Final Graph Reshaping.
duke@435 3128 //
duke@435 3129 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
duke@435 3130 // and not commoned up and forced early. Must come after regular
duke@435 3131 // optimizations to avoid GVN undoing the cloning. Clone constant
duke@435 3132 // inputs to Loop Phis; these will be split by the allocator anyways.
duke@435 3133 // Remove Opaque nodes.
duke@435 3134 // (2) Move last-uses by commutative operations to the left input to encourage
duke@435 3135 // Intel update-in-place two-address operations and better register usage
duke@435 3136 // on RISCs. Must come after regular optimizations to avoid GVN Ideal
duke@435 3137 // calls canonicalizing them back.
duke@435 3138 // (3) Count the number of double-precision FP ops, single-precision FP ops
duke@435 3139 // and call sites. On Intel, we can get correct rounding either by
duke@435 3140 // forcing singles to memory (requires extra stores and loads after each
duke@435 3141 // FP bytecode) or we can set a rounding mode bit (requires setting and
duke@435 3142 // clearing the mode bit around call sites). The mode bit is only used
duke@435 3143 // if the relative frequency of single FP ops to calls is low enough.
duke@435 3144 // This is a key transform for SPEC mpeg_audio.
duke@435 3145 // (4) Detect infinite loops; blobs of code reachable from above but not
duke@435 3146 // below. Several of the Code_Gen algorithms fail on such code shapes,
duke@435 3147 // so we simply bail out. Happens a lot in ZKM.jar, but also happens
duke@435 3148 // from time to time in other codes (such as -Xcomp finalizer loops, etc).
duke@435 3149 // Detection is by looking for IfNodes where only 1 projection is
duke@435 3150 // reachable from below or CatchNodes missing some targets.
duke@435 3151 // (5) Assert for insane oop offsets in debug mode.
duke@435 3152
duke@435 3153 bool Compile::final_graph_reshaping() {
duke@435 3154 // an infinite loop may have been eliminated by the optimizer,
duke@435 3155 // in which case the graph will be empty.
duke@435 3156 if (root()->req() == 1) {
duke@435 3157 record_method_not_compilable("trivial infinite loop");
duke@435 3158 return true;
duke@435 3159 }
duke@435 3160
roland@4589 3161 // Expensive nodes have their control input set to prevent the GVN
roland@4589 3162 // from freely commoning them. There's no GVN beyond this point so
roland@4589 3163 // no need to keep the control input. We want the expensive nodes to
roland@4589 3164 // be freely moved to the least frequent code path by gcm.
roland@4589 3165 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
roland@4589 3166 for (int i = 0; i < expensive_count(); i++) {
roland@4589 3167 _expensive_nodes->at(i)->set_req(0, NULL);
roland@4589 3168 }
roland@4589 3169
kvn@1294 3170 Final_Reshape_Counts frc;
duke@435 3171
duke@435 3172 // Visit everybody reachable!
duke@435 3173 // Allocate stack of size C->unique()/2 to avoid frequent realloc
duke@435 3174 Node_Stack nstack(unique() >> 1);
kvn@1294 3175 final_graph_reshaping_walk(nstack, root(), frc);
duke@435 3176
duke@435 3177 // Check for unreachable (from below) code (i.e., infinite loops).
kvn@1294 3178 for( uint i = 0; i < frc._tests.size(); i++ ) {
kvn@1294 3179 MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
never@562 3180 // Get number of CFG targets.
duke@435 3181 // Note that PCTables include exception targets after calls.
never@562 3182 uint required_outcnt = n->required_outcnt();
never@562 3183 if (n->outcnt() != required_outcnt) {
duke@435 3184 // Check for a few special cases. Rethrow Nodes never take the
duke@435 3185 // 'fall-thru' path, so expected kids is 1 less.
duke@435 3186 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
duke@435 3187 if (n->in(0)->in(0)->is_Call()) {
duke@435 3188 CallNode *call = n->in(0)->in(0)->as_Call();
duke@435 3189 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
never@562 3190 required_outcnt--; // Rethrow always has 1 less kid
duke@435 3191 } else if (call->req() > TypeFunc::Parms &&
duke@435 3192 call->is_CallDynamicJava()) {
duke@435 3193 // Check for null receiver. In such case, the optimizer has
duke@435 3194 // detected that the virtual call will always result in a null
duke@435 3195 // pointer exception. The fall-through projection of this CatchNode
duke@435 3196 // will not be populated.
duke@435 3197 Node *arg0 = call->in(TypeFunc::Parms);
duke@435 3198 if (arg0->is_Type() &&
duke@435 3199 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
never@562 3200 required_outcnt--;
duke@435 3201 }
duke@435 3202 } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
duke@435 3203 call->req() > TypeFunc::Parms+1 &&
duke@435 3204 call->is_CallStaticJava()) {
duke@435 3205 // Check for negative array length. In such case, the optimizer has
duke@435 3206 // detected that the allocation attempt will always result in an
duke@435 3207 // exception. There is no fall-through projection of this CatchNode .
duke@435 3208 Node *arg1 = call->in(TypeFunc::Parms+1);
duke@435 3209 if (arg1->is_Type() &&
duke@435 3210 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
never@562 3211 required_outcnt--;
duke@435 3212 }
duke@435 3213 }
duke@435 3214 }
duke@435 3215 }
never@562 3216 // Recheck with a better notion of 'required_outcnt'
never@562 3217 if (n->outcnt() != required_outcnt) {
duke@435 3218 record_method_not_compilable("malformed control flow");
duke@435 3219 return true; // Not all targets reachable!
duke@435 3220 }
duke@435 3221 }
duke@435 3222 // Check that I actually visited all kids. Unreached kids
duke@435 3223 // must be infinite loops.
duke@435 3224 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
kvn@1294 3225 if (!frc._visited.test(n->fast_out(j)->_idx)) {
duke@435 3226 record_method_not_compilable("infinite loop");
duke@435 3227 return true; // Found unvisited kid; must be unreach
duke@435 3228 }
duke@435 3229 }
duke@435 3230
duke@435 3231 // If original bytecodes contained a mixture of floats and doubles
duke@435 3232 // check if the optimizer has made it homogenous, item (3).
never@1364 3233 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
kvn@1294 3234 frc.get_float_count() > 32 &&
kvn@1294 3235 frc.get_double_count() == 0 &&
kvn@1294 3236 (10 * frc.get_call_count() < frc.get_float_count()) ) {
duke@435 3237 set_24_bit_selection_and_mode( false, true );
duke@435 3238 }
duke@435 3239
kvn@1294 3240 set_java_calls(frc.get_java_call_count());
kvn@1294 3241 set_inner_loops(frc.get_inner_loop_count());
duke@435 3242
duke@435 3243 // No infinite loops, no reason to bail out.
duke@435 3244 return false;
duke@435 3245 }
duke@435 3246
duke@435 3247 //-----------------------------too_many_traps----------------------------------
duke@435 3248 // Report if there are too many traps at the current method and bci.
duke@435 3249 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
duke@435 3250 bool Compile::too_many_traps(ciMethod* method,
duke@435 3251 int bci,
duke@435 3252 Deoptimization::DeoptReason reason) {
duke@435 3253 ciMethodData* md = method->method_data();
duke@435 3254 if (md->is_empty()) {
duke@435 3255 // Assume the trap has not occurred, or that it occurred only
duke@435 3256 // because of a transient condition during start-up in the interpreter.
duke@435 3257 return false;
duke@435 3258 }
duke@435 3259 if (md->has_trap_at(bci, reason) != 0) {
duke@435 3260 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
duke@435 3261 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 3262 // assume the worst.
duke@435 3263 if (log())
duke@435 3264 log()->elem("observe trap='%s' count='%d'",
duke@435 3265 Deoptimization::trap_reason_name(reason),
duke@435 3266 md->trap_count(reason));
duke@435 3267 return true;
duke@435 3268 } else {
duke@435 3269 // Ignore method/bci and see if there have been too many globally.
duke@435 3270 return too_many_traps(reason, md);
duke@435 3271 }
duke@435 3272 }
duke@435 3273
duke@435 3274 // Less-accurate variant which does not require a method and bci.
duke@435 3275 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
duke@435 3276 ciMethodData* logmd) {
duke@435 3277 if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
duke@435 3278 // Too many traps globally.
duke@435 3279 // Note that we use cumulative trap_count, not just md->trap_count.
duke@435 3280 if (log()) {
duke@435 3281 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
duke@435 3282 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
duke@435 3283 Deoptimization::trap_reason_name(reason),
duke@435 3284 mcount, trap_count(reason));
duke@435 3285 }
duke@435 3286 return true;
duke@435 3287 } else {
duke@435 3288 // The coast is clear.
duke@435 3289 return false;
duke@435 3290 }
duke@435 3291 }
duke@435 3292
duke@435 3293 //--------------------------too_many_recompiles--------------------------------
duke@435 3294 // Report if there are too many recompiles at the current method and bci.
duke@435 3295 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
duke@435 3296 // Is not eager to return true, since this will cause the compiler to use
duke@435 3297 // Action_none for a trap point, to avoid too many recompilations.
duke@435 3298 bool Compile::too_many_recompiles(ciMethod* method,
duke@435 3299 int bci,
duke@435 3300 Deoptimization::DeoptReason reason) {
duke@435 3301 ciMethodData* md = method->method_data();
duke@435 3302 if (md->is_empty()) {
duke@435 3303 // Assume the trap has not occurred, or that it occurred only
duke@435 3304 // because of a transient condition during start-up in the interpreter.
duke@435 3305 return false;
duke@435 3306 }
duke@435 3307 // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
duke@435 3308 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
duke@435 3309 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
duke@435 3310 Deoptimization::DeoptReason per_bc_reason
duke@435 3311 = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
duke@435 3312 if ((per_bc_reason == Deoptimization::Reason_none
duke@435 3313 || md->has_trap_at(bci, reason) != 0)
duke@435 3314 // The trap frequency measure we care about is the recompile count:
duke@435 3315 && md->trap_recompiled_at(bci)
duke@435 3316 && md->overflow_recompile_count() >= bc_cutoff) {
duke@435 3317 // Do not emit a trap here if it has already caused recompilations.
duke@435 3318 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 3319 // assume the worst.
duke@435 3320 if (log())
duke@435 3321 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
duke@435 3322 Deoptimization::trap_reason_name(reason),
duke@435 3323 md->trap_count(reason),
duke@435 3324 md->overflow_recompile_count());
duke@435 3325 return true;
duke@435 3326 } else if (trap_count(reason) != 0
duke@435 3327 && decompile_count() >= m_cutoff) {
duke@435 3328 // Too many recompiles globally, and we have seen this sort of trap.
duke@435 3329 // Use cumulative decompile_count, not just md->decompile_count.
duke@435 3330 if (log())
duke@435 3331 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
duke@435 3332 Deoptimization::trap_reason_name(reason),
duke@435 3333 md->trap_count(reason), trap_count(reason),
duke@435 3334 md->decompile_count(), decompile_count());
duke@435 3335 return true;
duke@435 3336 } else {
duke@435 3337 // The coast is clear.
duke@435 3338 return false;
duke@435 3339 }
duke@435 3340 }
duke@435 3341
duke@435 3342
duke@435 3343 #ifndef PRODUCT
duke@435 3344 //------------------------------verify_graph_edges---------------------------
duke@435 3345 // Walk the Graph and verify that there is a one-to-one correspondence
duke@435 3346 // between Use-Def edges and Def-Use edges in the graph.
duke@435 3347 void Compile::verify_graph_edges(bool no_dead_code) {
duke@435 3348 if (VerifyGraphEdges) {
duke@435 3349 ResourceArea *area = Thread::current()->resource_area();
duke@435 3350 Unique_Node_List visited(area);
duke@435 3351 // Call recursive graph walk to check edges
duke@435 3352 _root->verify_edges(visited);
duke@435 3353 if (no_dead_code) {
duke@435 3354 // Now make sure that no visited node is used by an unvisited node.
duke@435 3355 bool dead_nodes = 0;
duke@435 3356 Unique_Node_List checked(area);
duke@435 3357 while (visited.size() > 0) {
duke@435 3358 Node* n = visited.pop();
duke@435 3359 checked.push(n);
duke@435 3360 for (uint i = 0; i < n->outcnt(); i++) {
duke@435 3361 Node* use = n->raw_out(i);
duke@435 3362 if (checked.member(use)) continue; // already checked
duke@435 3363 if (visited.member(use)) continue; // already in the graph
duke@435 3364 if (use->is_Con()) continue; // a dead ConNode is OK
duke@435 3365 // At this point, we have found a dead node which is DU-reachable.
duke@435 3366 if (dead_nodes++ == 0)
duke@435 3367 tty->print_cr("*** Dead nodes reachable via DU edges:");
duke@435 3368 use->dump(2);
duke@435 3369 tty->print_cr("---");
duke@435 3370 checked.push(use); // No repeats; pretend it is now checked.
duke@435 3371 }
duke@435 3372 }
duke@435 3373 assert(dead_nodes == 0, "using nodes must be reachable from root");
duke@435 3374 }
duke@435 3375 }
duke@435 3376 }
iveresov@6070 3377
iveresov@6070 3378 // Verify GC barriers consistency
iveresov@6070 3379 // Currently supported:
iveresov@6070 3380 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
iveresov@6070 3381 void Compile::verify_barriers() {
iveresov@6070 3382 if (UseG1GC) {
iveresov@6070 3383 // Verify G1 pre-barriers
iveresov@6070 3384 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
iveresov@6070 3385
iveresov@6070 3386 ResourceArea *area = Thread::current()->resource_area();
iveresov@6070 3387 Unique_Node_List visited(area);
iveresov@6070 3388 Node_List worklist(area);
iveresov@6070 3389 // We're going to walk control flow backwards starting from the Root
iveresov@6070 3390 worklist.push(_root);
iveresov@6070 3391 while (worklist.size() > 0) {
iveresov@6070 3392 Node* x = worklist.pop();
iveresov@6070 3393 if (x == NULL || x == top()) continue;
iveresov@6070 3394 if (visited.member(x)) {
iveresov@6070 3395 continue;
iveresov@6070 3396 } else {
iveresov@6070 3397 visited.push(x);
iveresov@6070 3398 }
iveresov@6070 3399
iveresov@6070 3400 if (x->is_Region()) {
iveresov@6070 3401 for (uint i = 1; i < x->req(); i++) {
iveresov@6070 3402 worklist.push(x->in(i));
iveresov@6070 3403 }
iveresov@6070 3404 } else {
iveresov@6070 3405 worklist.push(x->in(0));
iveresov@6070 3406 // We are looking for the pattern:
iveresov@6070 3407 // /->ThreadLocal
iveresov@6070 3408 // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
iveresov@6070 3409 // \->ConI(0)
iveresov@6070 3410 // We want to verify that the If and the LoadB have the same control
iveresov@6070 3411 // See GraphKit::g1_write_barrier_pre()
iveresov@6070 3412 if (x->is_If()) {
iveresov@6070 3413 IfNode *iff = x->as_If();
iveresov@6070 3414 if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
iveresov@6070 3415 CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
iveresov@6070 3416 if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
iveresov@6070 3417 && cmp->in(1)->is_Load()) {
iveresov@6070 3418 LoadNode* load = cmp->in(1)->as_Load();
iveresov@6070 3419 if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
iveresov@6070 3420 && load->in(2)->in(3)->is_Con()
iveresov@6070 3421 && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
iveresov@6070 3422
iveresov@6070 3423 Node* if_ctrl = iff->in(0);
iveresov@6070 3424 Node* load_ctrl = load->in(0);
iveresov@6070 3425
iveresov@6070 3426 if (if_ctrl != load_ctrl) {
iveresov@6070 3427 // Skip possible CProj->NeverBranch in infinite loops
iveresov@6070 3428 if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
iveresov@6070 3429 && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
iveresov@6070 3430 if_ctrl = if_ctrl->in(0)->in(0);
iveresov@6070 3431 }
iveresov@6070 3432 }
iveresov@6070 3433 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
iveresov@6070 3434 }
iveresov@6070 3435 }
iveresov@6070 3436 }
iveresov@6070 3437 }
iveresov@6070 3438 }
iveresov@6070 3439 }
iveresov@6070 3440 }
iveresov@6070 3441 }
iveresov@6070 3442
duke@435 3443 #endif
duke@435 3444
duke@435 3445 // The Compile object keeps track of failure reasons separately from the ciEnv.
duke@435 3446 // This is required because there is not quite a 1-1 relation between the
duke@435 3447 // ciEnv and its compilation task and the Compile object. Note that one
duke@435 3448 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
duke@435 3449 // to backtrack and retry without subsuming loads. Other than this backtracking
duke@435 3450 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
duke@435 3451 // by the logic in C2Compiler.
duke@435 3452 void Compile::record_failure(const char* reason) {
duke@435 3453 if (log() != NULL) {
duke@435 3454 log()->elem("failure reason='%s' phase='compile'", reason);
duke@435 3455 }
duke@435 3456 if (_failure_reason == NULL) {
duke@435 3457 // Record the first failure reason.
duke@435 3458 _failure_reason = reason;
duke@435 3459 }
sla@5237 3460
sla@5237 3461 EventCompilerFailure event;
sla@5237 3462 if (event.should_commit()) {
sla@5237 3463 event.set_compileID(Compile::compile_id());
sla@5237 3464 event.set_failure(reason);
sla@5237 3465 event.commit();
sla@5237 3466 }
sla@5237 3467
never@657 3468 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
sla@5237 3469 C->print_method(PHASE_FAILURE);
never@657 3470 }
duke@435 3471 _root = NULL; // flush the graph, too
duke@435 3472 }
duke@435 3473
duke@435 3474 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
bharadwaj@4315 3475 : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
bharadwaj@4315 3476 _phase_name(name), _dolog(dolog)
duke@435 3477 {
duke@435 3478 if (dolog) {
duke@435 3479 C = Compile::current();
duke@435 3480 _log = C->log();
duke@435 3481 } else {
duke@435 3482 C = NULL;
duke@435 3483 _log = NULL;
duke@435 3484 }
duke@435 3485 if (_log != NULL) {
bharadwaj@4315 3486 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
duke@435 3487 _log->stamp();
duke@435 3488 _log->end_head();
duke@435 3489 }
duke@435 3490 }
duke@435 3491
duke@435 3492 Compile::TracePhase::~TracePhase() {
bharadwaj@4315 3493
bharadwaj@4315 3494 C = Compile::current();
bharadwaj@4315 3495 if (_dolog) {
bharadwaj@4315 3496 _log = C->log();
bharadwaj@4315 3497 } else {
bharadwaj@4315 3498 _log = NULL;
bharadwaj@4315 3499 }
bharadwaj@4315 3500
bharadwaj@4315 3501 #ifdef ASSERT
bharadwaj@4315 3502 if (PrintIdealNodeCount) {
bharadwaj@4315 3503 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
bharadwaj@4315 3504 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
bharadwaj@4315 3505 }
bharadwaj@4315 3506
bharadwaj@4315 3507 if (VerifyIdealNodeCount) {
bharadwaj@4315 3508 Compile::current()->print_missing_nodes();
bharadwaj@4315 3509 }
bharadwaj@4315 3510 #endif
bharadwaj@4315 3511
duke@435 3512 if (_log != NULL) {
bharadwaj@4315 3513 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
duke@435 3514 }
duke@435 3515 }
twisti@2350 3516
twisti@2350 3517 //=============================================================================
twisti@2350 3518 // Two Constant's are equal when the type and the value are equal.
twisti@2350 3519 bool Compile::Constant::operator==(const Constant& other) {
twisti@2350 3520 if (type() != other.type() ) return false;
twisti@2350 3521 if (can_be_reused() != other.can_be_reused()) return false;
twisti@2350 3522 // For floating point values we compare the bit pattern.
twisti@2350 3523 switch (type()) {
coleenp@4037 3524 case T_FLOAT: return (_v._value.i == other._v._value.i);
twisti@2350 3525 case T_LONG:
coleenp@4037 3526 case T_DOUBLE: return (_v._value.j == other._v._value.j);
twisti@2350 3527 case T_OBJECT:
coleenp@4037 3528 case T_ADDRESS: return (_v._value.l == other._v._value.l);
coleenp@4037 3529 case T_VOID: return (_v._value.l == other._v._value.l); // jump-table entries
kvn@4199 3530 case T_METADATA: return (_v._metadata == other._v._metadata);
twisti@2350 3531 default: ShouldNotReachHere();
twisti@2350 3532 }
twisti@2350 3533 return false;
twisti@2350 3534 }
twisti@2350 3535
twisti@2350 3536 static int type_to_size_in_bytes(BasicType t) {
twisti@2350 3537 switch (t) {
twisti@2350 3538 case T_LONG: return sizeof(jlong );
twisti@2350 3539 case T_FLOAT: return sizeof(jfloat );
twisti@2350 3540 case T_DOUBLE: return sizeof(jdouble);
coleenp@4037 3541 case T_METADATA: return sizeof(Metadata*);
twisti@2350 3542 // We use T_VOID as marker for jump-table entries (labels) which
twisti@3310 3543 // need an internal word relocation.
twisti@2350 3544 case T_VOID:
twisti@2350 3545 case T_ADDRESS:
twisti@2350 3546 case T_OBJECT: return sizeof(jobject);
twisti@2350 3547 }
twisti@2350 3548
twisti@2350 3549 ShouldNotReachHere();
twisti@2350 3550 return -1;
twisti@2350 3551 }
twisti@2350 3552
twisti@3310 3553 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
twisti@3310 3554 // sort descending
twisti@3310 3555 if (a->freq() > b->freq()) return -1;
twisti@3310 3556 if (a->freq() < b->freq()) return 1;
twisti@3310 3557 return 0;
twisti@3310 3558 }
twisti@3310 3559
twisti@2350 3560 void Compile::ConstantTable::calculate_offsets_and_size() {
twisti@3310 3561 // First, sort the array by frequencies.
twisti@3310 3562 _constants.sort(qsort_comparator);
twisti@3310 3563
twisti@3310 3564 #ifdef ASSERT
twisti@3310 3565 // Make sure all jump-table entries were sorted to the end of the
twisti@3310 3566 // array (they have a negative frequency).
twisti@3310 3567 bool found_void = false;
twisti@3310 3568 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3569 Constant con = _constants.at(i);
twisti@3310 3570 if (con.type() == T_VOID)
twisti@3310 3571 found_void = true; // jump-tables
twisti@3310 3572 else
twisti@3310 3573 assert(!found_void, "wrong sorting");
twisti@3310 3574 }
twisti@3310 3575 #endif
twisti@3310 3576
twisti@3310 3577 int offset = 0;
twisti@3310 3578 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3579 Constant* con = _constants.adr_at(i);
twisti@3310 3580
twisti@3310 3581 // Align offset for type.
twisti@3310 3582 int typesize = type_to_size_in_bytes(con->type());
twisti@3310 3583 offset = align_size_up(offset, typesize);
twisti@3310 3584 con->set_offset(offset); // set constant's offset
twisti@3310 3585
twisti@3310 3586 if (con->type() == T_VOID) {
twisti@3310 3587 MachConstantNode* n = (MachConstantNode*) con->get_jobject();
twisti@3310 3588 offset = offset + typesize * n->outcnt(); // expand jump-table
twisti@3310 3589 } else {
twisti@3310 3590 offset = offset + typesize;
twisti@2350 3591 }
twisti@2350 3592 }
twisti@2350 3593
twisti@2350 3594 // Align size up to the next section start (which is insts; see
twisti@2350 3595 // CodeBuffer::align_at_start).
twisti@2350 3596 assert(_size == -1, "already set?");
twisti@3310 3597 _size = align_size_up(offset, CodeEntryAlignment);
twisti@2350 3598 }
twisti@2350 3599
twisti@2350 3600 void Compile::ConstantTable::emit(CodeBuffer& cb) {
twisti@2350 3601 MacroAssembler _masm(&cb);
twisti@3310 3602 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3603 Constant con = _constants.at(i);
twisti@3310 3604 address constant_addr;
twisti@3310 3605 switch (con.type()) {
twisti@3310 3606 case T_LONG: constant_addr = _masm.long_constant( con.get_jlong() ); break;
twisti@3310 3607 case T_FLOAT: constant_addr = _masm.float_constant( con.get_jfloat() ); break;
twisti@3310 3608 case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
twisti@3310 3609 case T_OBJECT: {
twisti@3310 3610 jobject obj = con.get_jobject();
twisti@3310 3611 int oop_index = _masm.oop_recorder()->find_index(obj);
twisti@3310 3612 constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
twisti@3310 3613 break;
twisti@3310 3614 }
twisti@3310 3615 case T_ADDRESS: {
twisti@3310 3616 address addr = (address) con.get_jobject();
twisti@3310 3617 constant_addr = _masm.address_constant(addr);
twisti@3310 3618 break;
twisti@3310 3619 }
twisti@3310 3620 // We use T_VOID as marker for jump-table entries (labels) which
twisti@3310 3621 // need an internal word relocation.
twisti@3310 3622 case T_VOID: {
twisti@3310 3623 MachConstantNode* n = (MachConstantNode*) con.get_jobject();
twisti@3310 3624 // Fill the jump-table with a dummy word. The real value is
twisti@3310 3625 // filled in later in fill_jump_table.
twisti@3310 3626 address dummy = (address) n;
twisti@3310 3627 constant_addr = _masm.address_constant(dummy);
twisti@3310 3628 // Expand jump-table
twisti@3310 3629 for (uint i = 1; i < n->outcnt(); i++) {
twisti@3310 3630 address temp_addr = _masm.address_constant(dummy + i);
twisti@3310 3631 assert(temp_addr, "consts section too small");
twisti@2350 3632 }
twisti@3310 3633 break;
twisti@2350 3634 }
coleenp@4037 3635 case T_METADATA: {
coleenp@4037 3636 Metadata* obj = con.get_metadata();
coleenp@4037 3637 int metadata_index = _masm.oop_recorder()->find_index(obj);
coleenp@4037 3638 constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
coleenp@4037 3639 break;
coleenp@4037 3640 }
twisti@3310 3641 default: ShouldNotReachHere();
twisti@3310 3642 }
twisti@3310 3643 assert(constant_addr, "consts section too small");
kvn@3971 3644 assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
twisti@2350 3645 }
twisti@2350 3646 }
twisti@2350 3647
twisti@2350 3648 int Compile::ConstantTable::find_offset(Constant& con) const {
twisti@2350 3649 int idx = _constants.find(con);
twisti@2350 3650 assert(idx != -1, "constant must be in constant table");
twisti@2350 3651 int offset = _constants.at(idx).offset();
twisti@2350 3652 assert(offset != -1, "constant table not emitted yet?");
twisti@2350 3653 return offset;
twisti@2350 3654 }
twisti@2350 3655
twisti@2350 3656 void Compile::ConstantTable::add(Constant& con) {
twisti@2350 3657 if (con.can_be_reused()) {
twisti@2350 3658 int idx = _constants.find(con);
twisti@2350 3659 if (idx != -1 && _constants.at(idx).can_be_reused()) {
twisti@3310 3660 _constants.adr_at(idx)->inc_freq(con.freq()); // increase the frequency by the current value
twisti@2350 3661 return;
twisti@2350 3662 }
twisti@2350 3663 }
twisti@2350 3664 (void) _constants.append(con);
twisti@2350 3665 }
twisti@2350 3666
twisti@3310 3667 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
adlertz@5509 3668 Block* b = Compile::current()->cfg()->get_block_for_node(n);
twisti@3310 3669 Constant con(type, value, b->_freq);
twisti@2350 3670 add(con);
twisti@2350 3671 return con;
twisti@2350 3672 }
twisti@2350 3673
coleenp@4037 3674 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
coleenp@4037 3675 Constant con(metadata);
coleenp@4037 3676 add(con);
coleenp@4037 3677 return con;
coleenp@4037 3678 }
coleenp@4037 3679
twisti@3310 3680 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
twisti@2350 3681 jvalue value;
twisti@2350 3682 BasicType type = oper->type()->basic_type();
twisti@2350 3683 switch (type) {
twisti@2350 3684 case T_LONG: value.j = oper->constantL(); break;
twisti@2350 3685 case T_FLOAT: value.f = oper->constantF(); break;
twisti@2350 3686 case T_DOUBLE: value.d = oper->constantD(); break;
twisti@2350 3687 case T_OBJECT:
twisti@2350 3688 case T_ADDRESS: value.l = (jobject) oper->constant(); break;
coleenp@4037 3689 case T_METADATA: return add((Metadata*)oper->constant()); break;
coleenp@4037 3690 default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
twisti@2350 3691 }
twisti@3310 3692 return add(n, type, value);
twisti@2350 3693 }
twisti@2350 3694
twisti@3310 3695 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
twisti@2350 3696 jvalue value;
twisti@2350 3697 // We can use the node pointer here to identify the right jump-table
twisti@2350 3698 // as this method is called from Compile::Fill_buffer right before
twisti@2350 3699 // the MachNodes are emitted and the jump-table is filled (means the
twisti@2350 3700 // MachNode pointers do not change anymore).
twisti@2350 3701 value.l = (jobject) n;
twisti@3310 3702 Constant con(T_VOID, value, next_jump_table_freq(), false); // Labels of a jump-table cannot be reused.
twisti@3310 3703 add(con);
twisti@2350 3704 return con;
twisti@2350 3705 }
twisti@2350 3706
twisti@2350 3707 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
twisti@2350 3708 // If called from Compile::scratch_emit_size do nothing.
twisti@2350 3709 if (Compile::current()->in_scratch_emit_size()) return;
twisti@2350 3710
twisti@2350 3711 assert(labels.is_nonempty(), "must be");
kvn@3971 3712 assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
twisti@2350 3713
twisti@2350 3714 // Since MachConstantNode::constant_offset() also contains
twisti@2350 3715 // table_base_offset() we need to subtract the table_base_offset()
twisti@2350 3716 // to get the plain offset into the constant table.
twisti@2350 3717 int offset = n->constant_offset() - table_base_offset();
twisti@2350 3718
twisti@2350 3719 MacroAssembler _masm(&cb);
twisti@2350 3720 address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
twisti@2350 3721
twisti@3310 3722 for (uint i = 0; i < n->outcnt(); i++) {
twisti@2350 3723 address* constant_addr = &jump_table_base[i];
kvn@3971 3724 assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
twisti@2350 3725 *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
twisti@2350 3726 cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
twisti@2350 3727 }
twisti@2350 3728 }
roland@4357 3729
roland@4357 3730 void Compile::dump_inlining() {
kvn@5763 3731 if (print_inlining() || print_intrinsics()) {
roland@4409 3732 // Print inlining message for candidates that we couldn't inline
roland@4409 3733 // for lack of space or non constant receiver
roland@4409 3734 for (int i = 0; i < _late_inlines.length(); i++) {
roland@4409 3735 CallGenerator* cg = _late_inlines.at(i);
roland@4409 3736 cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
roland@4409 3737 }
roland@4409 3738 Unique_Node_List useful;
roland@4409 3739 useful.push(root());
roland@4409 3740 for (uint next = 0; next < useful.size(); ++next) {
roland@4409 3741 Node* n = useful.at(next);
roland@4409 3742 if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
roland@4409 3743 CallNode* call = n->as_Call();
roland@4409 3744 CallGenerator* cg = call->generator();
roland@4409 3745 cg->print_inlining_late("receiver not constant");
roland@4409 3746 }
roland@4409 3747 uint max = n->len();
roland@4409 3748 for ( uint i = 0; i < max; ++i ) {
roland@4409 3749 Node *m = n->in(i);
roland@4409 3750 if ( m == NULL ) continue;
roland@4409 3751 useful.push(m);
roland@4409 3752 }
roland@4409 3753 }
roland@4357 3754 for (int i = 0; i < _print_inlining_list->length(); i++) {
kvn@5763 3755 tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
roland@4357 3756 }
roland@4357 3757 }
roland@4357 3758 }
roland@4589 3759
roland@4589 3760 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
roland@4589 3761 if (n1->Opcode() < n2->Opcode()) return -1;
roland@4589 3762 else if (n1->Opcode() > n2->Opcode()) return 1;
roland@4589 3763
roland@4589 3764 assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
roland@4589 3765 for (uint i = 1; i < n1->req(); i++) {
roland@4589 3766 if (n1->in(i) < n2->in(i)) return -1;
roland@4589 3767 else if (n1->in(i) > n2->in(i)) return 1;
roland@4589 3768 }
roland@4589 3769
roland@4589 3770 return 0;
roland@4589 3771 }
roland@4589 3772
roland@4589 3773 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
roland@4589 3774 Node* n1 = *n1p;
roland@4589 3775 Node* n2 = *n2p;
roland@4589 3776
roland@4589 3777 return cmp_expensive_nodes(n1, n2);
roland@4589 3778 }
roland@4589 3779
roland@4589 3780 void Compile::sort_expensive_nodes() {
roland@4589 3781 if (!expensive_nodes_sorted()) {
roland@4589 3782 _expensive_nodes->sort(cmp_expensive_nodes);
roland@4589 3783 }
roland@4589 3784 }
roland@4589 3785
roland@4589 3786 bool Compile::expensive_nodes_sorted() const {
roland@4589 3787 for (int i = 1; i < _expensive_nodes->length(); i++) {
roland@4589 3788 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
roland@4589 3789 return false;
roland@4589 3790 }
roland@4589 3791 }
roland@4589 3792 return true;
roland@4589 3793 }
roland@4589 3794
roland@4589 3795 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
roland@4589 3796 if (_expensive_nodes->length() == 0) {
roland@4589 3797 return false;
roland@4589 3798 }
roland@4589 3799
roland@4589 3800 assert(OptimizeExpensiveOps, "optimization off?");
roland@4589 3801
roland@4589 3802 // Take this opportunity to remove dead nodes from the list
roland@4589 3803 int j = 0;
roland@4589 3804 for (int i = 0; i < _expensive_nodes->length(); i++) {
roland@4589 3805 Node* n = _expensive_nodes->at(i);
roland@4589 3806 if (!n->is_unreachable(igvn)) {
roland@4589 3807 assert(n->is_expensive(), "should be expensive");
roland@4589 3808 _expensive_nodes->at_put(j, n);
roland@4589 3809 j++;
roland@4589 3810 }
roland@4589 3811 }
roland@4589 3812 _expensive_nodes->trunc_to(j);
roland@4589 3813
roland@4589 3814 // Then sort the list so that similar nodes are next to each other
roland@4589 3815 // and check for at least two nodes of identical kind with same data
roland@4589 3816 // inputs.
roland@4589 3817 sort_expensive_nodes();
roland@4589 3818
roland@4589 3819 for (int i = 0; i < _expensive_nodes->length()-1; i++) {
roland@4589 3820 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
roland@4589 3821 return true;
roland@4589 3822 }
roland@4589 3823 }
roland@4589 3824
roland@4589 3825 return false;
roland@4589 3826 }
roland@4589 3827
roland@4589 3828 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
roland@4589 3829 if (_expensive_nodes->length() == 0) {
roland@4589 3830 return;
roland@4589 3831 }
roland@4589 3832
roland@4589 3833 assert(OptimizeExpensiveOps, "optimization off?");
roland@4589 3834
roland@4589 3835 // Sort to bring similar nodes next to each other and clear the
roland@4589 3836 // control input of nodes for which there's only a single copy.
roland@4589 3837 sort_expensive_nodes();
roland@4589 3838
roland@4589 3839 int j = 0;
roland@4589 3840 int identical = 0;
roland@4589 3841 int i = 0;
roland@4589 3842 for (; i < _expensive_nodes->length()-1; i++) {
roland@4589 3843 assert(j <= i, "can't write beyond current index");
roland@4589 3844 if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
roland@4589 3845 identical++;
roland@4589 3846 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
roland@4589 3847 continue;
roland@4589 3848 }
roland@4589 3849 if (identical > 0) {
roland@4589 3850 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
roland@4589 3851 identical = 0;
roland@4589 3852 } else {
roland@4589 3853 Node* n = _expensive_nodes->at(i);
roland@4589 3854 igvn.hash_delete(n);
roland@4589 3855 n->set_req(0, NULL);
roland@4589 3856 igvn.hash_insert(n);
roland@4589 3857 }
roland@4589 3858 }
roland@4589 3859 if (identical > 0) {
roland@4589 3860 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
roland@4589 3861 } else if (_expensive_nodes->length() >= 1) {
roland@4589 3862 Node* n = _expensive_nodes->at(i);
roland@4589 3863 igvn.hash_delete(n);
roland@4589 3864 n->set_req(0, NULL);
roland@4589 3865 igvn.hash_insert(n);
roland@4589 3866 }
roland@4589 3867 _expensive_nodes->trunc_to(j);
roland@4589 3868 }
roland@4589 3869
roland@4589 3870 void Compile::add_expensive_node(Node * n) {
roland@4589 3871 assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
roland@4589 3872 assert(n->is_expensive(), "expensive nodes with non-null control here only");
roland@4589 3873 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
roland@4589 3874 if (OptimizeExpensiveOps) {
roland@4589 3875 _expensive_nodes->append(n);
roland@4589 3876 } else {
roland@4589 3877 // Clear control input and let IGVN optimize expensive nodes if
roland@4589 3878 // OptimizeExpensiveOps is off.
roland@4589 3879 n->set_req(0, NULL);
roland@4589 3880 }
roland@4589 3881 }
shade@4691 3882
roland@5991 3883 /**
roland@5991 3884 * Remove the speculative part of types and clean up the graph
roland@5991 3885 */
roland@5991 3886 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
roland@5991 3887 if (UseTypeSpeculation) {
roland@5991 3888 Unique_Node_List worklist;
roland@5991 3889 worklist.push(root());
roland@5991 3890 int modified = 0;
roland@5991 3891 // Go over all type nodes that carry a speculative type, drop the
roland@5991 3892 // speculative part of the type and enqueue the node for an igvn
roland@5991 3893 // which may optimize it out.
roland@5991 3894 for (uint next = 0; next < worklist.size(); ++next) {
roland@5991 3895 Node *n = worklist.at(next);
roland@5991 3896 if (n->is_Type() && n->as_Type()->type()->isa_oopptr() != NULL &&
roland@5991 3897 n->as_Type()->type()->is_oopptr()->speculative() != NULL) {
roland@5991 3898 TypeNode* tn = n->as_Type();
roland@5991 3899 const TypeOopPtr* t = tn->type()->is_oopptr();
roland@5991 3900 bool in_hash = igvn.hash_delete(n);
roland@5991 3901 assert(in_hash, "node should be in igvn hash table");
roland@5991 3902 tn->set_type(t->remove_speculative());
roland@5991 3903 igvn.hash_insert(n);
roland@5991 3904 igvn._worklist.push(n); // give it a chance to go away
roland@5991 3905 modified++;
roland@5991 3906 }
roland@5991 3907 uint max = n->len();
roland@5991 3908 for( uint i = 0; i < max; ++i ) {
roland@5991 3909 Node *m = n->in(i);
roland@5991 3910 if (not_a_node(m)) continue;
roland@5991 3911 worklist.push(m);
roland@5991 3912 }
roland@5991 3913 }
roland@5991 3914 // Drop the speculative part of all types in the igvn's type table
roland@5991 3915 igvn.remove_speculative_types();
roland@5991 3916 if (modified > 0) {
roland@5991 3917 igvn.optimize();
roland@5991 3918 }
roland@5991 3919 }
roland@5991 3920 }
roland@5991 3921
shade@4691 3922 // Auxiliary method to support randomized stressing/fuzzing.
shade@4691 3923 //
shade@4691 3924 // This method can be called the arbitrary number of times, with current count
shade@4691 3925 // as the argument. The logic allows selecting a single candidate from the
shade@4691 3926 // running list of candidates as follows:
shade@4691 3927 // int count = 0;
shade@4691 3928 // Cand* selected = null;
shade@4691 3929 // while(cand = cand->next()) {
shade@4691 3930 // if (randomized_select(++count)) {
shade@4691 3931 // selected = cand;
shade@4691 3932 // }
shade@4691 3933 // }
shade@4691 3934 //
shade@4691 3935 // Including count equalizes the chances any candidate is "selected".
shade@4691 3936 // This is useful when we don't have the complete list of candidates to choose
shade@4691 3937 // from uniformly. In this case, we need to adjust the randomicity of the
shade@4691 3938 // selection, or else we will end up biasing the selection towards the latter
shade@4691 3939 // candidates.
shade@4691 3940 //
shade@4691 3941 // Quick back-envelope calculation shows that for the list of n candidates
shade@4691 3942 // the equal probability for the candidate to persist as "best" can be
shade@4691 3943 // achieved by replacing it with "next" k-th candidate with the probability
shade@4691 3944 // of 1/k. It can be easily shown that by the end of the run, the
shade@4691 3945 // probability for any candidate is converged to 1/n, thus giving the
shade@4691 3946 // uniform distribution among all the candidates.
shade@4691 3947 //
shade@4691 3948 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
shade@4691 3949 #define RANDOMIZED_DOMAIN_POW 29
shade@4691 3950 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
shade@4691 3951 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
shade@4691 3952 bool Compile::randomized_select(int count) {
shade@4691 3953 assert(count > 0, "only positive");
shade@4691 3954 return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
shade@4691 3955 }

mercurial