src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Tue, 20 Sep 2011 09:59:59 -0400

author
tonyp
date
Tue, 20 Sep 2011 09:59:59 -0400
changeset 3168
4f93f0d00802
parent 3086
eeae91c9baba
child 3169
663cb89032b1
permissions
-rw-r--r--

7059019: G1: add G1 support to the SA
Summary: Extend the SA to recognize the G1CollectedHeap and implement any code that's needed by our serviceability tools (jmap, jinfo, jstack, etc.) that depend on the SA.
Reviewed-by: never, poonam, johnc

ysr@777 1 /*
tonyp@2453 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/concurrentMark.hpp"
tonyp@2715 29 #include "gc_implementation/g1/g1AllocRegion.hpp"
tonyp@2975 30 #include "gc_implementation/g1/g1HRPrinter.hpp"
stefank@2314 31 #include "gc_implementation/g1/g1RemSet.hpp"
jmasa@2821 32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
tonyp@2963 33 #include "gc_implementation/g1/heapRegionSeq.hpp"
tonyp@2472 34 #include "gc_implementation/g1/heapRegionSets.hpp"
jmasa@2821 35 #include "gc_implementation/shared/hSpaceCounters.hpp"
stefank@2314 36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
stefank@2314 37 #include "memory/barrierSet.hpp"
stefank@2314 38 #include "memory/memRegion.hpp"
stefank@2314 39 #include "memory/sharedHeap.hpp"
stefank@2314 40
ysr@777 41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 42 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 43 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 44 // heap subsets that will yield large amounts of garbage.
ysr@777 45
ysr@777 46 class HeapRegion;
tonyp@2493 47 class HRRSCleanupTask;
ysr@777 48 class PermanentGenerationSpec;
ysr@777 49 class GenerationSpec;
ysr@777 50 class OopsInHeapRegionClosure;
ysr@777 51 class G1ScanHeapEvacClosure;
ysr@777 52 class ObjectClosure;
ysr@777 53 class SpaceClosure;
ysr@777 54 class CompactibleSpaceClosure;
ysr@777 55 class Space;
ysr@777 56 class G1CollectorPolicy;
ysr@777 57 class GenRemSet;
ysr@777 58 class G1RemSet;
ysr@777 59 class HeapRegionRemSetIterator;
ysr@777 60 class ConcurrentMark;
ysr@777 61 class ConcurrentMarkThread;
ysr@777 62 class ConcurrentG1Refine;
jmasa@2821 63 class GenerationCounters;
ysr@777 64
jcoomes@2064 65 typedef OverflowTaskQueue<StarTask> RefToScanQueue;
jcoomes@1746 66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
ysr@777 67
johnc@1242 68 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 69 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 70
ysr@777 71 enum GCAllocPurpose {
ysr@777 72 GCAllocForTenured,
ysr@777 73 GCAllocForSurvived,
ysr@777 74 GCAllocPurposeCount
ysr@777 75 };
ysr@777 76
ysr@777 77 class YoungList : public CHeapObj {
ysr@777 78 private:
ysr@777 79 G1CollectedHeap* _g1h;
ysr@777 80
ysr@777 81 HeapRegion* _head;
ysr@777 82
johnc@1829 83 HeapRegion* _survivor_head;
johnc@1829 84 HeapRegion* _survivor_tail;
johnc@1829 85
johnc@1829 86 HeapRegion* _curr;
johnc@1829 87
ysr@777 88 size_t _length;
johnc@1829 89 size_t _survivor_length;
ysr@777 90
ysr@777 91 size_t _last_sampled_rs_lengths;
ysr@777 92 size_t _sampled_rs_lengths;
ysr@777 93
johnc@1829 94 void empty_list(HeapRegion* list);
ysr@777 95
ysr@777 96 public:
ysr@777 97 YoungList(G1CollectedHeap* g1h);
ysr@777 98
johnc@1829 99 void push_region(HeapRegion* hr);
johnc@1829 100 void add_survivor_region(HeapRegion* hr);
johnc@1829 101
johnc@1829 102 void empty_list();
johnc@1829 103 bool is_empty() { return _length == 0; }
johnc@1829 104 size_t length() { return _length; }
johnc@1829 105 size_t survivor_length() { return _survivor_length; }
ysr@777 106
tonyp@2961 107 // Currently we do not keep track of the used byte sum for the
tonyp@2961 108 // young list and the survivors and it'd be quite a lot of work to
tonyp@2961 109 // do so. When we'll eventually replace the young list with
tonyp@2961 110 // instances of HeapRegionLinkedList we'll get that for free. So,
tonyp@2961 111 // we'll report the more accurate information then.
tonyp@2961 112 size_t eden_used_bytes() {
tonyp@2961 113 assert(length() >= survivor_length(), "invariant");
tonyp@2961 114 return (length() - survivor_length()) * HeapRegion::GrainBytes;
tonyp@2961 115 }
tonyp@2961 116 size_t survivor_used_bytes() {
tonyp@2961 117 return survivor_length() * HeapRegion::GrainBytes;
tonyp@2961 118 }
tonyp@2961 119
ysr@777 120 void rs_length_sampling_init();
ysr@777 121 bool rs_length_sampling_more();
ysr@777 122 void rs_length_sampling_next();
ysr@777 123
ysr@777 124 void reset_sampled_info() {
ysr@777 125 _last_sampled_rs_lengths = 0;
ysr@777 126 }
ysr@777 127 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 128
ysr@777 129 // for development purposes
ysr@777 130 void reset_auxilary_lists();
johnc@1829 131 void clear() { _head = NULL; _length = 0; }
johnc@1829 132
johnc@1829 133 void clear_survivors() {
johnc@1829 134 _survivor_head = NULL;
johnc@1829 135 _survivor_tail = NULL;
johnc@1829 136 _survivor_length = 0;
johnc@1829 137 }
johnc@1829 138
ysr@777 139 HeapRegion* first_region() { return _head; }
ysr@777 140 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 141 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 142
ysr@777 143 // debugging
ysr@777 144 bool check_list_well_formed();
johnc@1829 145 bool check_list_empty(bool check_sample = true);
ysr@777 146 void print();
ysr@777 147 };
ysr@777 148
tonyp@2715 149 class MutatorAllocRegion : public G1AllocRegion {
tonyp@2715 150 protected:
tonyp@2715 151 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@2715 152 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@2715 153 public:
tonyp@2715 154 MutatorAllocRegion()
tonyp@2715 155 : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
tonyp@2715 156 };
tonyp@2715 157
tonyp@3028 158 class SurvivorGCAllocRegion : public G1AllocRegion {
tonyp@3028 159 protected:
tonyp@3028 160 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 161 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 162 public:
tonyp@3028 163 SurvivorGCAllocRegion()
tonyp@3028 164 : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
tonyp@3028 165 };
tonyp@3028 166
tonyp@3028 167 class OldGCAllocRegion : public G1AllocRegion {
tonyp@3028 168 protected:
tonyp@3028 169 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 170 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 171 public:
tonyp@3028 172 OldGCAllocRegion()
tonyp@3028 173 : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
tonyp@3028 174 };
tonyp@3028 175
ysr@777 176 class RefineCardTableEntryClosure;
ysr@777 177 class G1CollectedHeap : public SharedHeap {
ysr@777 178 friend class VM_G1CollectForAllocation;
ysr@777 179 friend class VM_GenCollectForPermanentAllocation;
ysr@777 180 friend class VM_G1CollectFull;
ysr@777 181 friend class VM_G1IncCollectionPause;
ysr@777 182 friend class VMStructs;
tonyp@2715 183 friend class MutatorAllocRegion;
tonyp@3028 184 friend class SurvivorGCAllocRegion;
tonyp@3028 185 friend class OldGCAllocRegion;
ysr@777 186
ysr@777 187 // Closures used in implementation.
ysr@777 188 friend class G1ParCopyHelper;
ysr@777 189 friend class G1IsAliveClosure;
ysr@777 190 friend class G1EvacuateFollowersClosure;
ysr@777 191 friend class G1ParScanThreadState;
ysr@777 192 friend class G1ParScanClosureSuper;
ysr@777 193 friend class G1ParEvacuateFollowersClosure;
ysr@777 194 friend class G1ParTask;
ysr@777 195 friend class G1FreeGarbageRegionClosure;
ysr@777 196 friend class RefineCardTableEntryClosure;
ysr@777 197 friend class G1PrepareCompactClosure;
ysr@777 198 friend class RegionSorter;
tonyp@2472 199 friend class RegionResetter;
ysr@777 200 friend class CountRCClosure;
ysr@777 201 friend class EvacPopObjClosure;
apetrusenko@1231 202 friend class G1ParCleanupCTTask;
ysr@777 203
ysr@777 204 // Other related classes.
ysr@777 205 friend class G1MarkSweep;
ysr@777 206
ysr@777 207 private:
ysr@777 208 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 209 static G1CollectedHeap* _g1h;
ysr@777 210
tonyp@1377 211 static size_t _humongous_object_threshold_in_words;
tonyp@1377 212
ysr@777 213 // Storage for the G1 heap (excludes the permanent generation).
ysr@777 214 VirtualSpace _g1_storage;
ysr@777 215 MemRegion _g1_reserved;
ysr@777 216
ysr@777 217 // The part of _g1_storage that is currently committed.
ysr@777 218 MemRegion _g1_committed;
ysr@777 219
tonyp@2472 220 // The master free list. It will satisfy all new region allocations.
tonyp@2472 221 MasterFreeRegionList _free_list;
tonyp@2472 222
tonyp@2472 223 // The secondary free list which contains regions that have been
tonyp@2472 224 // freed up during the cleanup process. This will be appended to the
tonyp@2472 225 // master free list when appropriate.
tonyp@2472 226 SecondaryFreeRegionList _secondary_free_list;
tonyp@2472 227
tonyp@2472 228 // It keeps track of the humongous regions.
tonyp@2472 229 MasterHumongousRegionSet _humongous_set;
ysr@777 230
ysr@777 231 // The number of regions we could create by expansion.
ysr@777 232 size_t _expansion_regions;
ysr@777 233
ysr@777 234 // The block offset table for the G1 heap.
ysr@777 235 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 236
ysr@777 237 // Move all of the regions off the free lists, then rebuild those free
ysr@777 238 // lists, before and after full GC.
ysr@777 239 void tear_down_region_lists();
ysr@777 240 void rebuild_region_lists();
ysr@777 241
ysr@777 242 // The sequence of all heap regions in the heap.
tonyp@2963 243 HeapRegionSeq _hrs;
ysr@777 244
tonyp@2715 245 // Alloc region used to satisfy mutator allocation requests.
tonyp@2715 246 MutatorAllocRegion _mutator_alloc_region;
ysr@777 247
tonyp@3028 248 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 249 // survivor objects.
tonyp@3028 250 SurvivorGCAllocRegion _survivor_gc_alloc_region;
tonyp@3028 251
tonyp@3028 252 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 253 // old objects.
tonyp@3028 254 OldGCAllocRegion _old_gc_alloc_region;
tonyp@3028 255
tonyp@3028 256 // The last old region we allocated to during the last GC.
tonyp@3028 257 // Typically, it is not full so we should re-use it during the next GC.
tonyp@3028 258 HeapRegion* _retained_old_gc_alloc_region;
tonyp@3028 259
tonyp@2715 260 // It resets the mutator alloc region before new allocations can take place.
tonyp@2715 261 void init_mutator_alloc_region();
tonyp@2715 262
tonyp@2715 263 // It releases the mutator alloc region.
tonyp@2715 264 void release_mutator_alloc_region();
tonyp@2715 265
tonyp@3028 266 // It initializes the GC alloc regions at the start of a GC.
tonyp@3028 267 void init_gc_alloc_regions();
tonyp@3028 268
tonyp@3028 269 // It releases the GC alloc regions at the end of a GC.
tonyp@3028 270 void release_gc_alloc_regions();
tonyp@3028 271
tonyp@3028 272 // It does any cleanup that needs to be done on the GC alloc regions
tonyp@3028 273 // before a Full GC.
tonyp@1071 274 void abandon_gc_alloc_regions();
ysr@777 275
jmasa@2821 276 // Helper for monitoring and management support.
jmasa@2821 277 G1MonitoringSupport* _g1mm;
jmasa@2821 278
apetrusenko@1826 279 // Determines PLAB size for a particular allocation purpose.
apetrusenko@1826 280 static size_t desired_plab_sz(GCAllocPurpose purpose);
apetrusenko@1826 281
ysr@777 282 // Outside of GC pauses, the number of bytes used in all regions other
ysr@777 283 // than the current allocation region.
ysr@777 284 size_t _summary_bytes_used;
ysr@777 285
tonyp@961 286 // This is used for a quick test on whether a reference points into
tonyp@961 287 // the collection set or not. Basically, we have an array, with one
tonyp@961 288 // byte per region, and that byte denotes whether the corresponding
tonyp@961 289 // region is in the collection set or not. The entry corresponding
tonyp@961 290 // the bottom of the heap, i.e., region 0, is pointed to by
tonyp@961 291 // _in_cset_fast_test_base. The _in_cset_fast_test field has been
tonyp@961 292 // biased so that it actually points to address 0 of the address
tonyp@961 293 // space, to make the test as fast as possible (we can simply shift
tonyp@961 294 // the address to address into it, instead of having to subtract the
tonyp@961 295 // bottom of the heap from the address before shifting it; basically
tonyp@961 296 // it works in the same way the card table works).
tonyp@961 297 bool* _in_cset_fast_test;
tonyp@961 298
tonyp@961 299 // The allocated array used for the fast test on whether a reference
tonyp@961 300 // points into the collection set or not. This field is also used to
tonyp@961 301 // free the array.
tonyp@961 302 bool* _in_cset_fast_test_base;
tonyp@961 303
tonyp@961 304 // The length of the _in_cset_fast_test_base array.
tonyp@961 305 size_t _in_cset_fast_test_length;
tonyp@961 306
iveresov@788 307 volatile unsigned _gc_time_stamp;
ysr@777 308
ysr@777 309 size_t* _surviving_young_words;
ysr@777 310
tonyp@2975 311 G1HRPrinter _hr_printer;
tonyp@2975 312
ysr@777 313 void setup_surviving_young_words();
ysr@777 314 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 315 void cleanup_surviving_young_words();
ysr@777 316
tonyp@2011 317 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 318 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 319 // explicitly started if:
tonyp@2011 320 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 321 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
tonyp@2011 322 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 323
tonyp@2011 324 // Keeps track of how many "full collections" (i.e., Full GCs or
tonyp@2011 325 // concurrent cycles) we have completed. The number of them we have
tonyp@2011 326 // started is maintained in _total_full_collections in CollectedHeap.
tonyp@2011 327 volatile unsigned int _full_collections_completed;
tonyp@2011 328
tonyp@2817 329 // This is a non-product method that is helpful for testing. It is
tonyp@2817 330 // called at the end of a GC and artificially expands the heap by
tonyp@2817 331 // allocating a number of dead regions. This way we can induce very
tonyp@2817 332 // frequent marking cycles and stress the cleanup / concurrent
tonyp@2817 333 // cleanup code more (as all the regions that will be allocated by
tonyp@2817 334 // this method will be found dead by the marking cycle).
tonyp@2817 335 void allocate_dummy_regions() PRODUCT_RETURN;
tonyp@2817 336
tonyp@2315 337 // These are macros so that, if the assert fires, we get the correct
tonyp@2315 338 // line number, file, etc.
tonyp@2315 339
tonyp@2643 340 #define heap_locking_asserts_err_msg(_extra_message_) \
tonyp@2472 341 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
tonyp@2643 342 (_extra_message_), \
tonyp@2472 343 BOOL_TO_STR(Heap_lock->owned_by_self()), \
tonyp@2472 344 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
tonyp@2472 345 BOOL_TO_STR(Thread::current()->is_VM_thread()))
tonyp@2315 346
tonyp@2315 347 #define assert_heap_locked() \
tonyp@2315 348 do { \
tonyp@2315 349 assert(Heap_lock->owned_by_self(), \
tonyp@2315 350 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
tonyp@2315 351 } while (0)
tonyp@2315 352
tonyp@2643 353 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 354 do { \
tonyp@2315 355 assert(Heap_lock->owned_by_self() || \
tonyp@2472 356 (SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 357 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
tonyp@2315 358 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
tonyp@2315 359 "should be at a safepoint")); \
tonyp@2315 360 } while (0)
tonyp@2315 361
tonyp@2315 362 #define assert_heap_locked_and_not_at_safepoint() \
tonyp@2315 363 do { \
tonyp@2315 364 assert(Heap_lock->owned_by_self() && \
tonyp@2315 365 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 366 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
tonyp@2315 367 "should not be at a safepoint")); \
tonyp@2315 368 } while (0)
tonyp@2315 369
tonyp@2315 370 #define assert_heap_not_locked() \
tonyp@2315 371 do { \
tonyp@2315 372 assert(!Heap_lock->owned_by_self(), \
tonyp@2315 373 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
tonyp@2315 374 } while (0)
tonyp@2315 375
tonyp@2315 376 #define assert_heap_not_locked_and_not_at_safepoint() \
tonyp@2315 377 do { \
tonyp@2315 378 assert(!Heap_lock->owned_by_self() && \
tonyp@2315 379 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 380 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
tonyp@2315 381 "should not be at a safepoint")); \
tonyp@2315 382 } while (0)
tonyp@2315 383
tonyp@2643 384 #define assert_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 385 do { \
tonyp@2472 386 assert(SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 387 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
tonyp@2315 388 heap_locking_asserts_err_msg("should be at a safepoint")); \
tonyp@2315 389 } while (0)
tonyp@2315 390
tonyp@2315 391 #define assert_not_at_safepoint() \
tonyp@2315 392 do { \
tonyp@2315 393 assert(!SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 394 heap_locking_asserts_err_msg("should not be at a safepoint")); \
tonyp@2315 395 } while (0)
tonyp@2315 396
ysr@777 397 protected:
ysr@777 398
johnc@3021 399 // The young region list.
ysr@777 400 YoungList* _young_list;
ysr@777 401
ysr@777 402 // The current policy object for the collector.
ysr@777 403 G1CollectorPolicy* _g1_policy;
ysr@777 404
tonyp@2472 405 // This is the second level of trying to allocate a new region. If
tonyp@2715 406 // new_region() didn't find a region on the free_list, this call will
tonyp@2715 407 // check whether there's anything available on the
tonyp@2715 408 // secondary_free_list and/or wait for more regions to appear on
tonyp@2715 409 // that list, if _free_regions_coming is set.
tonyp@2643 410 HeapRegion* new_region_try_secondary_free_list();
ysr@777 411
tonyp@2643 412 // Try to allocate a single non-humongous HeapRegion sufficient for
tonyp@2643 413 // an allocation of the given word_size. If do_expand is true,
tonyp@2643 414 // attempt to expand the heap if necessary to satisfy the allocation
tonyp@2643 415 // request.
tonyp@2715 416 HeapRegion* new_region(size_t word_size, bool do_expand);
ysr@777 417
tonyp@2643 418 // Attempt to satisfy a humongous allocation request of the given
tonyp@2643 419 // size by finding a contiguous set of free regions of num_regions
tonyp@2643 420 // length and remove them from the master free list. Return the
tonyp@2963 421 // index of the first region or G1_NULL_HRS_INDEX if the search
tonyp@2963 422 // was unsuccessful.
tonyp@2963 423 size_t humongous_obj_allocate_find_first(size_t num_regions,
tonyp@2963 424 size_t word_size);
ysr@777 425
tonyp@2643 426 // Initialize a contiguous set of free regions of length num_regions
tonyp@2643 427 // and starting at index first so that they appear as a single
tonyp@2643 428 // humongous region.
tonyp@2963 429 HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
tonyp@2643 430 size_t num_regions,
tonyp@2643 431 size_t word_size);
tonyp@2643 432
tonyp@2643 433 // Attempt to allocate a humongous object of the given size. Return
tonyp@2643 434 // NULL if unsuccessful.
tonyp@2472 435 HeapWord* humongous_obj_allocate(size_t word_size);
ysr@777 436
tonyp@2315 437 // The following two methods, allocate_new_tlab() and
tonyp@2315 438 // mem_allocate(), are the two main entry points from the runtime
tonyp@2315 439 // into the G1's allocation routines. They have the following
tonyp@2315 440 // assumptions:
tonyp@2315 441 //
tonyp@2315 442 // * They should both be called outside safepoints.
tonyp@2315 443 //
tonyp@2315 444 // * They should both be called without holding the Heap_lock.
tonyp@2315 445 //
tonyp@2315 446 // * All allocation requests for new TLABs should go to
tonyp@2315 447 // allocate_new_tlab().
tonyp@2315 448 //
tonyp@2971 449 // * All non-TLAB allocation requests should go to mem_allocate().
tonyp@2315 450 //
tonyp@2315 451 // * If either call cannot satisfy the allocation request using the
tonyp@2315 452 // current allocating region, they will try to get a new one. If
tonyp@2315 453 // this fails, they will attempt to do an evacuation pause and
tonyp@2315 454 // retry the allocation.
tonyp@2315 455 //
tonyp@2315 456 // * If all allocation attempts fail, even after trying to schedule
tonyp@2315 457 // an evacuation pause, allocate_new_tlab() will return NULL,
tonyp@2315 458 // whereas mem_allocate() will attempt a heap expansion and/or
tonyp@2315 459 // schedule a Full GC.
tonyp@2315 460 //
tonyp@2315 461 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
tonyp@2315 462 // should never be called with word_size being humongous. All
tonyp@2315 463 // humongous allocation requests should go to mem_allocate() which
tonyp@2315 464 // will satisfy them with a special path.
ysr@777 465
tonyp@2315 466 virtual HeapWord* allocate_new_tlab(size_t word_size);
tonyp@2315 467
tonyp@2315 468 virtual HeapWord* mem_allocate(size_t word_size,
tonyp@2315 469 bool* gc_overhead_limit_was_exceeded);
tonyp@2315 470
tonyp@2715 471 // The following three methods take a gc_count_before_ret
tonyp@2715 472 // parameter which is used to return the GC count if the method
tonyp@2715 473 // returns NULL. Given that we are required to read the GC count
tonyp@2715 474 // while holding the Heap_lock, and these paths will take the
tonyp@2715 475 // Heap_lock at some point, it's easier to get them to read the GC
tonyp@2715 476 // count while holding the Heap_lock before they return NULL instead
tonyp@2715 477 // of the caller (namely: mem_allocate()) having to also take the
tonyp@2715 478 // Heap_lock just to read the GC count.
tonyp@2315 479
tonyp@2715 480 // First-level mutator allocation attempt: try to allocate out of
tonyp@2715 481 // the mutator alloc region without taking the Heap_lock. This
tonyp@2715 482 // should only be used for non-humongous allocations.
tonyp@2715 483 inline HeapWord* attempt_allocation(size_t word_size,
tonyp@2715 484 unsigned int* gc_count_before_ret);
tonyp@2315 485
tonyp@2715 486 // Second-level mutator allocation attempt: take the Heap_lock and
tonyp@2715 487 // retry the allocation attempt, potentially scheduling a GC
tonyp@2715 488 // pause. This should only be used for non-humongous allocations.
tonyp@2715 489 HeapWord* attempt_allocation_slow(size_t word_size,
tonyp@2715 490 unsigned int* gc_count_before_ret);
tonyp@2315 491
tonyp@2715 492 // Takes the Heap_lock and attempts a humongous allocation. It can
tonyp@2715 493 // potentially schedule a GC pause.
tonyp@2715 494 HeapWord* attempt_allocation_humongous(size_t word_size,
tonyp@2715 495 unsigned int* gc_count_before_ret);
tonyp@2454 496
tonyp@2715 497 // Allocation attempt that should be called during safepoints (e.g.,
tonyp@2715 498 // at the end of a successful GC). expect_null_mutator_alloc_region
tonyp@2715 499 // specifies whether the mutator alloc region is expected to be NULL
tonyp@2715 500 // or not.
tonyp@2315 501 HeapWord* attempt_allocation_at_safepoint(size_t word_size,
tonyp@2715 502 bool expect_null_mutator_alloc_region);
tonyp@2315 503
tonyp@2315 504 // It dirties the cards that cover the block so that so that the post
tonyp@2315 505 // write barrier never queues anything when updating objects on this
tonyp@2315 506 // block. It is assumed (and in fact we assert) that the block
tonyp@2315 507 // belongs to a young region.
tonyp@2315 508 inline void dirty_young_block(HeapWord* start, size_t word_size);
ysr@777 509
ysr@777 510 // Allocate blocks during garbage collection. Will ensure an
ysr@777 511 // allocation region, either by picking one or expanding the
ysr@777 512 // heap, and then allocate a block of the given size. The block
ysr@777 513 // may not be a humongous - it must fit into a single heap region.
ysr@777 514 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
ysr@777 515
ysr@777 516 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
ysr@777 517 HeapRegion* alloc_region,
ysr@777 518 bool par,
ysr@777 519 size_t word_size);
ysr@777 520
ysr@777 521 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 522 // that parallel threads might be attempting allocations.
ysr@777 523 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 524
tonyp@3028 525 // Allocation attempt during GC for a survivor object / PLAB.
tonyp@3028 526 inline HeapWord* survivor_attempt_allocation(size_t word_size);
apetrusenko@980 527
tonyp@3028 528 // Allocation attempt during GC for an old object / PLAB.
tonyp@3028 529 inline HeapWord* old_attempt_allocation(size_t word_size);
tonyp@2715 530
tonyp@3028 531 // These methods are the "callbacks" from the G1AllocRegion class.
tonyp@3028 532
tonyp@3028 533 // For mutator alloc regions.
tonyp@2715 534 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
tonyp@2715 535 void retire_mutator_alloc_region(HeapRegion* alloc_region,
tonyp@2715 536 size_t allocated_bytes);
tonyp@2715 537
tonyp@3028 538 // For GC alloc regions.
tonyp@3028 539 HeapRegion* new_gc_alloc_region(size_t word_size, size_t count,
tonyp@3028 540 GCAllocPurpose ap);
tonyp@3028 541 void retire_gc_alloc_region(HeapRegion* alloc_region,
tonyp@3028 542 size_t allocated_bytes, GCAllocPurpose ap);
tonyp@3028 543
tonyp@2011 544 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2315 545 // inspection request and should collect the entire heap
tonyp@2315 546 // - if clear_all_soft_refs is true, all soft references should be
tonyp@2315 547 // cleared during the GC
tonyp@2011 548 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2315 549 // the GC should attempt (at least) to satisfy
tonyp@2315 550 // - it returns false if it is unable to do the collection due to the
tonyp@2315 551 // GC locker being active, true otherwise
tonyp@2315 552 bool do_collection(bool explicit_gc,
tonyp@2011 553 bool clear_all_soft_refs,
ysr@777 554 size_t word_size);
ysr@777 555
ysr@777 556 // Callback from VM_G1CollectFull operation.
ysr@777 557 // Perform a full collection.
ysr@777 558 void do_full_collection(bool clear_all_soft_refs);
ysr@777 559
ysr@777 560 // Resize the heap if necessary after a full collection. If this is
ysr@777 561 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 562 // and will be considered part of the used portion of the heap.
ysr@777 563 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 564
ysr@777 565 // Callback from VM_G1CollectForAllocation operation.
ysr@777 566 // This function does everything necessary/possible to satisfy a
ysr@777 567 // failed allocation request (including collection, expansion, etc.)
tonyp@2315 568 HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
ysr@777 569
ysr@777 570 // Attempting to expand the heap sufficiently
ysr@777 571 // to support an allocation of the given "word_size". If
ysr@777 572 // successful, perform the allocation and return the address of the
ysr@777 573 // allocated block, or else "NULL".
tonyp@2315 574 HeapWord* expand_and_allocate(size_t word_size);
ysr@777 575
ysr@777 576 public:
jmasa@2821 577
jmasa@2821 578 G1MonitoringSupport* g1mm() { return _g1mm; }
jmasa@2821 579
ysr@777 580 // Expand the garbage-first heap by at least the given size (in bytes!).
johnc@2504 581 // Returns true if the heap was expanded by the requested amount;
johnc@2504 582 // false otherwise.
ysr@777 583 // (Rounds up to a HeapRegion boundary.)
johnc@2504 584 bool expand(size_t expand_bytes);
ysr@777 585
ysr@777 586 // Do anything common to GC's.
ysr@777 587 virtual void gc_prologue(bool full);
ysr@777 588 virtual void gc_epilogue(bool full);
ysr@777 589
tonyp@961 590 // We register a region with the fast "in collection set" test. We
tonyp@961 591 // simply set to true the array slot corresponding to this region.
tonyp@961 592 void register_region_with_in_cset_fast_test(HeapRegion* r) {
tonyp@961 593 assert(_in_cset_fast_test_base != NULL, "sanity");
tonyp@961 594 assert(r->in_collection_set(), "invariant");
tonyp@2963 595 size_t index = r->hrs_index();
tonyp@2963 596 assert(index < _in_cset_fast_test_length, "invariant");
tonyp@961 597 assert(!_in_cset_fast_test_base[index], "invariant");
tonyp@961 598 _in_cset_fast_test_base[index] = true;
tonyp@961 599 }
tonyp@961 600
tonyp@961 601 // This is a fast test on whether a reference points into the
tonyp@961 602 // collection set or not. It does not assume that the reference
tonyp@961 603 // points into the heap; if it doesn't, it will return false.
tonyp@961 604 bool in_cset_fast_test(oop obj) {
tonyp@961 605 assert(_in_cset_fast_test != NULL, "sanity");
tonyp@961 606 if (_g1_committed.contains((HeapWord*) obj)) {
tonyp@961 607 // no need to subtract the bottom of the heap from obj,
tonyp@961 608 // _in_cset_fast_test is biased
tonyp@961 609 size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
tonyp@961 610 bool ret = _in_cset_fast_test[index];
tonyp@961 611 // let's make sure the result is consistent with what the slower
tonyp@961 612 // test returns
tonyp@961 613 assert( ret || !obj_in_cs(obj), "sanity");
tonyp@961 614 assert(!ret || obj_in_cs(obj), "sanity");
tonyp@961 615 return ret;
tonyp@961 616 } else {
tonyp@961 617 return false;
tonyp@961 618 }
tonyp@961 619 }
tonyp@961 620
johnc@1829 621 void clear_cset_fast_test() {
johnc@1829 622 assert(_in_cset_fast_test_base != NULL, "sanity");
johnc@1829 623 memset(_in_cset_fast_test_base, false,
johnc@1829 624 _in_cset_fast_test_length * sizeof(bool));
johnc@1829 625 }
johnc@1829 626
tonyp@2011 627 // This is called at the end of either a concurrent cycle or a Full
tonyp@2011 628 // GC to update the number of full collections completed. Those two
tonyp@2011 629 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 630 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 631 // and then the cycle notices that a Full GC happened and ends
tonyp@2372 632 // too. The concurrent parameter is a boolean to help us do a bit
tonyp@2372 633 // tighter consistency checking in the method. If concurrent is
tonyp@2372 634 // false, the caller is the inner caller in the nesting (i.e., the
tonyp@2372 635 // Full GC). If concurrent is true, the caller is the outer caller
tonyp@2372 636 // in this nesting (i.e., the concurrent cycle). Further nesting is
tonyp@2372 637 // not currently supported. The end of the this call also notifies
tonyp@2372 638 // the FullGCCount_lock in case a Java thread is waiting for a full
tonyp@2372 639 // GC to happen (e.g., it called System.gc() with
tonyp@2011 640 // +ExplicitGCInvokesConcurrent).
tonyp@2372 641 void increment_full_collections_completed(bool concurrent);
tonyp@2011 642
tonyp@2011 643 unsigned int full_collections_completed() {
tonyp@2011 644 return _full_collections_completed;
tonyp@2011 645 }
tonyp@2011 646
tonyp@2975 647 G1HRPrinter* hr_printer() { return &_hr_printer; }
tonyp@2975 648
ysr@777 649 protected:
ysr@777 650
ysr@777 651 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 652 // (Rounds down to a HeapRegion boundary.)
ysr@777 653 virtual void shrink(size_t expand_bytes);
ysr@777 654 void shrink_helper(size_t expand_bytes);
ysr@777 655
jcoomes@2064 656 #if TASKQUEUE_STATS
jcoomes@2064 657 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 658 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 659 void reset_taskqueue_stats();
jcoomes@2064 660 #endif // TASKQUEUE_STATS
jcoomes@2064 661
tonyp@2315 662 // Schedule the VM operation that will do an evacuation pause to
tonyp@2315 663 // satisfy an allocation request of word_size. *succeeded will
tonyp@2315 664 // return whether the VM operation was successful (it did do an
tonyp@2315 665 // evacuation pause) or not (another thread beat us to it or the GC
tonyp@2315 666 // locker was active). Given that we should not be holding the
tonyp@2315 667 // Heap_lock when we enter this method, we will pass the
tonyp@2315 668 // gc_count_before (i.e., total_collections()) as a parameter since
tonyp@2315 669 // it has to be read while holding the Heap_lock. Currently, both
tonyp@2315 670 // methods that call do_collection_pause() release the Heap_lock
tonyp@2315 671 // before the call, so it's easy to read gc_count_before just before.
tonyp@2315 672 HeapWord* do_collection_pause(size_t word_size,
tonyp@2315 673 unsigned int gc_count_before,
tonyp@2315 674 bool* succeeded);
ysr@777 675
ysr@777 676 // The guts of the incremental collection pause, executed by the vm
tonyp@2315 677 // thread. It returns false if it is unable to do the collection due
tonyp@2315 678 // to the GC locker being active, true otherwise
tonyp@2315 679 bool do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 680
ysr@777 681 // Actually do the work of evacuating the collection set.
tonyp@2315 682 void evacuate_collection_set();
ysr@777 683
ysr@777 684 // The g1 remembered set of the heap.
ysr@777 685 G1RemSet* _g1_rem_set;
ysr@777 686 // And it's mod ref barrier set, used to track updates for the above.
ysr@777 687 ModRefBarrierSet* _mr_bs;
ysr@777 688
iveresov@1051 689 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 690 // concurrently after the collection.
iveresov@1051 691 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 692
ysr@777 693 // The Heap Region Rem Set Iterator.
ysr@777 694 HeapRegionRemSetIterator** _rem_set_iterator;
ysr@777 695
ysr@777 696 // The closure used to refine a single card.
ysr@777 697 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 698
ysr@777 699 // A function to check the consistency of dirty card logs.
ysr@777 700 void check_ct_logs_at_safepoint();
ysr@777 701
johnc@2060 702 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 703 // references into the current collection set. This is used to
johnc@2060 704 // update the remembered sets of the regions in the collection
johnc@2060 705 // set in the event of an evacuation failure.
johnc@2060 706 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 707
ysr@777 708 // After a collection pause, make the regions in the CS into free
ysr@777 709 // regions.
ysr@777 710 void free_collection_set(HeapRegion* cs_head);
ysr@777 711
johnc@1829 712 // Abandon the current collection set without recording policy
johnc@1829 713 // statistics or updating free lists.
johnc@1829 714 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 715
ysr@777 716 // Applies "scan_non_heap_roots" to roots outside the heap,
ysr@777 717 // "scan_rs" to roots inside the heap (having done "set_region" to
ysr@777 718 // indicate the region in which the root resides), and does "scan_perm"
ysr@777 719 // (setting the generation to the perm generation.) If "scan_rs" is
ysr@777 720 // NULL, then this step is skipped. The "worker_i"
ysr@777 721 // param is for use with parallel roots processing, and should be
ysr@777 722 // the "i" of the calling parallel worker thread's work(i) function.
ysr@777 723 // In the sequential case this param will be ignored.
ysr@777 724 void g1_process_strong_roots(bool collecting_perm_gen,
ysr@777 725 SharedHeap::ScanningOption so,
ysr@777 726 OopClosure* scan_non_heap_roots,
ysr@777 727 OopsInHeapRegionClosure* scan_rs,
ysr@777 728 OopsInGenClosure* scan_perm,
ysr@777 729 int worker_i);
ysr@777 730
ysr@777 731 // Apply "blk" to all the weak roots of the system. These include
ysr@777 732 // JNI weak roots, the code cache, system dictionary, symbol table,
ysr@777 733 // string table, and referents of reachable weak refs.
ysr@777 734 void g1_process_weak_roots(OopClosure* root_closure,
ysr@777 735 OopClosure* non_root_closure);
ysr@777 736
tonyp@2643 737 // Frees a non-humongous region by initializing its contents and
tonyp@2472 738 // adding it to the free list that's passed as a parameter (this is
tonyp@2472 739 // usually a local list which will be appended to the master free
tonyp@2472 740 // list later). The used bytes of freed regions are accumulated in
tonyp@2472 741 // pre_used. If par is true, the region's RSet will not be freed
tonyp@2472 742 // up. The assumption is that this will be done later.
tonyp@2472 743 void free_region(HeapRegion* hr,
tonyp@2472 744 size_t* pre_used,
tonyp@2472 745 FreeRegionList* free_list,
tonyp@2472 746 bool par);
ysr@777 747
tonyp@2643 748 // Frees a humongous region by collapsing it into individual regions
tonyp@2643 749 // and calling free_region() for each of them. The freed regions
tonyp@2643 750 // will be added to the free list that's passed as a parameter (this
tonyp@2643 751 // is usually a local list which will be appended to the master free
tonyp@2643 752 // list later). The used bytes of freed regions are accumulated in
tonyp@2643 753 // pre_used. If par is true, the region's RSet will not be freed
tonyp@2643 754 // up. The assumption is that this will be done later.
tonyp@2472 755 void free_humongous_region(HeapRegion* hr,
tonyp@2472 756 size_t* pre_used,
tonyp@2472 757 FreeRegionList* free_list,
tonyp@2472 758 HumongousRegionSet* humongous_proxy_set,
tonyp@2472 759 bool par);
ysr@777 760
tonyp@2963 761 // Notifies all the necessary spaces that the committed space has
tonyp@2963 762 // been updated (either expanded or shrunk). It should be called
tonyp@2963 763 // after _g1_storage is updated.
tonyp@2963 764 void update_committed_space(HeapWord* old_end, HeapWord* new_end);
tonyp@2963 765
ysr@777 766 // The concurrent marker (and the thread it runs in.)
ysr@777 767 ConcurrentMark* _cm;
ysr@777 768 ConcurrentMarkThread* _cmThread;
ysr@777 769 bool _mark_in_progress;
ysr@777 770
ysr@777 771 // The concurrent refiner.
ysr@777 772 ConcurrentG1Refine* _cg1r;
ysr@777 773
ysr@777 774 // The parallel task queues
ysr@777 775 RefToScanQueueSet *_task_queues;
ysr@777 776
ysr@777 777 // True iff a evacuation has failed in the current collection.
ysr@777 778 bool _evacuation_failed;
ysr@777 779
ysr@777 780 // Set the attribute indicating whether evacuation has failed in the
ysr@777 781 // current collection.
ysr@777 782 void set_evacuation_failed(bool b) { _evacuation_failed = b; }
ysr@777 783
ysr@777 784 // Failed evacuations cause some logical from-space objects to have
ysr@777 785 // forwarding pointers to themselves. Reset them.
ysr@777 786 void remove_self_forwarding_pointers();
ysr@777 787
ysr@777 788 // When one is non-null, so is the other. Together, they each pair is
ysr@777 789 // an object with a preserved mark, and its mark value.
ysr@777 790 GrowableArray<oop>* _objs_with_preserved_marks;
ysr@777 791 GrowableArray<markOop>* _preserved_marks_of_objs;
ysr@777 792
ysr@777 793 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 794 // word being overwritten with a self-forwarding-pointer.
ysr@777 795 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 796
ysr@777 797 // The stack of evac-failure objects left to be scanned.
ysr@777 798 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 799 // The closure to apply to evac-failure objects.
ysr@777 800
ysr@777 801 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 802 // Set the field above.
ysr@777 803 void
ysr@777 804 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 805 _evac_failure_closure = evac_failure_closure;
ysr@777 806 }
ysr@777 807
ysr@777 808 // Push "obj" on the scan stack.
ysr@777 809 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 810 // Process scan stack entries until the stack is empty.
ysr@777 811 void drain_evac_failure_scan_stack();
ysr@777 812 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 813 // prevent unnecessary recursion.
ysr@777 814 bool _drain_in_progress;
ysr@777 815
ysr@777 816 // Do any necessary initialization for evacuation-failure handling.
ysr@777 817 // "cl" is the closure that will be used to process evac-failure
ysr@777 818 // objects.
ysr@777 819 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 820 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 821 // structures.
ysr@777 822 void finalize_for_evac_failure();
ysr@777 823
ysr@777 824 // An attempt to evacuate "obj" has failed; take necessary steps.
ysr@777 825 oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
ysr@777 826 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 827
johnc@2379 828 // Instance of the concurrent mark is_alive closure for embedding
johnc@2379 829 // into the reference processor as the is_alive_non_header. This
johnc@2379 830 // prevents unnecessary additions to the discovered lists during
johnc@2379 831 // concurrent discovery.
johnc@2379 832 G1CMIsAliveClosure _is_alive_closure;
johnc@2379 833
ysr@777 834 // ("Weak") Reference processing support
ysr@777 835 ReferenceProcessor* _ref_processor;
ysr@777 836
ysr@777 837 enum G1H_process_strong_roots_tasks {
ysr@777 838 G1H_PS_mark_stack_oops_do,
ysr@777 839 G1H_PS_refProcessor_oops_do,
ysr@777 840 // Leave this one last.
ysr@777 841 G1H_PS_NumElements
ysr@777 842 };
ysr@777 843
ysr@777 844 SubTasksDone* _process_strong_tasks;
ysr@777 845
tonyp@2472 846 volatile bool _free_regions_coming;
ysr@777 847
ysr@777 848 public:
jmasa@2188 849
jmasa@2188 850 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
jmasa@2188 851
ysr@777 852 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 853
jcoomes@2064 854 RefToScanQueue *task_queue(int i) const;
ysr@777 855
iveresov@1051 856 // A set of cards where updates happened during the GC
iveresov@1051 857 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 858
johnc@2060 859 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 860 // references into the current collection set. This is used to
johnc@2060 861 // update the remembered sets of the regions in the collection
johnc@2060 862 // set in the event of an evacuation failure.
johnc@2060 863 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 864 { return _into_cset_dirty_card_queue_set; }
johnc@2060 865
ysr@777 866 // Create a G1CollectedHeap with the specified policy.
ysr@777 867 // Must call the initialize method afterwards.
ysr@777 868 // May not return if something goes wrong.
ysr@777 869 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 870
ysr@777 871 // Initialize the G1CollectedHeap to have the initial and
ysr@777 872 // maximum sizes, permanent generation, and remembered and barrier sets
ysr@777 873 // specified by the policy object.
ysr@777 874 jint initialize();
ysr@777 875
johnc@2379 876 virtual void ref_processing_init();
ysr@777 877
ysr@777 878 void set_par_threads(int t) {
ysr@777 879 SharedHeap::set_par_threads(t);
jmasa@2188 880 _process_strong_tasks->set_n_threads(t);
ysr@777 881 }
ysr@777 882
ysr@777 883 virtual CollectedHeap::Name kind() const {
ysr@777 884 return CollectedHeap::G1CollectedHeap;
ysr@777 885 }
ysr@777 886
ysr@777 887 // The current policy object for the collector.
ysr@777 888 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 889
ysr@777 890 // Adaptive size policy. No such thing for g1.
ysr@777 891 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 892
ysr@777 893 // The rem set and barrier set.
ysr@777 894 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 895 ModRefBarrierSet* mr_bs() const { return _mr_bs; }
ysr@777 896
ysr@777 897 // The rem set iterator.
ysr@777 898 HeapRegionRemSetIterator* rem_set_iterator(int i) {
ysr@777 899 return _rem_set_iterator[i];
ysr@777 900 }
ysr@777 901
ysr@777 902 HeapRegionRemSetIterator* rem_set_iterator() {
ysr@777 903 return _rem_set_iterator[0];
ysr@777 904 }
ysr@777 905
ysr@777 906 unsigned get_gc_time_stamp() {
ysr@777 907 return _gc_time_stamp;
ysr@777 908 }
ysr@777 909
ysr@777 910 void reset_gc_time_stamp() {
ysr@777 911 _gc_time_stamp = 0;
iveresov@788 912 OrderAccess::fence();
iveresov@788 913 }
iveresov@788 914
iveresov@788 915 void increment_gc_time_stamp() {
iveresov@788 916 ++_gc_time_stamp;
iveresov@788 917 OrderAccess::fence();
ysr@777 918 }
ysr@777 919
johnc@2060 920 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 921 DirtyCardQueue* into_cset_dcq,
johnc@2060 922 bool concurrent, int worker_i);
ysr@777 923
ysr@777 924 // The shared block offset table array.
ysr@777 925 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 926
ysr@777 927 // Reference Processing accessor
ysr@777 928 ReferenceProcessor* ref_processor() { return _ref_processor; }
ysr@777 929
ysr@777 930 virtual size_t capacity() const;
ysr@777 931 virtual size_t used() const;
tonyp@1281 932 // This should be called when we're not holding the heap lock. The
tonyp@1281 933 // result might be a bit inaccurate.
tonyp@1281 934 size_t used_unlocked() const;
ysr@777 935 size_t recalculate_used() const;
ysr@777 936
ysr@777 937 // These virtual functions do the actual allocation.
ysr@777 938 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 939 // allocation, via inlined code (by exporting the address of the top and
ysr@777 940 // end fields defining the extent of the contiguous allocation region.)
ysr@777 941 // But G1CollectedHeap doesn't yet support this.
ysr@777 942
ysr@777 943 // Return an estimate of the maximum allocation that could be performed
ysr@777 944 // without triggering any collection or expansion activity. In a
ysr@777 945 // generational collector, for example, this is probably the largest
ysr@777 946 // allocation that could be supported (without expansion) in the youngest
ysr@777 947 // generation. It is "unsafe" because no locks are taken; the result
ysr@777 948 // should be treated as an approximation, not a guarantee, for use in
ysr@777 949 // heuristic resizing decisions.
ysr@777 950 virtual size_t unsafe_max_alloc();
ysr@777 951
ysr@777 952 virtual bool is_maximal_no_gc() const {
ysr@777 953 return _g1_storage.uncommitted_size() == 0;
ysr@777 954 }
ysr@777 955
ysr@777 956 // The total number of regions in the heap.
tonyp@2963 957 size_t n_regions() { return _hrs.length(); }
tonyp@2963 958
tonyp@2963 959 // The max number of regions in the heap.
tonyp@2963 960 size_t max_regions() { return _hrs.max_length(); }
ysr@777 961
ysr@777 962 // The number of regions that are completely free.
tonyp@2963 963 size_t free_regions() { return _free_list.length(); }
ysr@777 964
ysr@777 965 // The number of regions that are not completely free.
ysr@777 966 size_t used_regions() { return n_regions() - free_regions(); }
ysr@777 967
ysr@777 968 // The number of regions available for "regular" expansion.
ysr@777 969 size_t expansion_regions() { return _expansion_regions; }
ysr@777 970
tonyp@2963 971 // Factory method for HeapRegion instances. It will return NULL if
tonyp@2963 972 // the allocation fails.
tonyp@2963 973 HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
tonyp@2963 974
tonyp@2849 975 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2849 976 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2715 977 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
tonyp@2715 978 void verify_dirty_young_regions() PRODUCT_RETURN;
tonyp@2715 979
tonyp@2472 980 // verify_region_sets() performs verification over the region
tonyp@2472 981 // lists. It will be compiled in the product code to be used when
tonyp@2472 982 // necessary (i.e., during heap verification).
tonyp@2472 983 void verify_region_sets();
ysr@777 984
tonyp@2472 985 // verify_region_sets_optional() is planted in the code for
tonyp@2472 986 // list verification in non-product builds (and it can be enabled in
tonyp@2472 987 // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
tonyp@2472 988 #if HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 989 void verify_region_sets_optional() {
tonyp@2472 990 verify_region_sets();
tonyp@2472 991 }
tonyp@2472 992 #else // HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 993 void verify_region_sets_optional() { }
tonyp@2472 994 #endif // HEAP_REGION_SET_FORCE_VERIFY
ysr@777 995
tonyp@2472 996 #ifdef ASSERT
tonyp@2643 997 bool is_on_master_free_list(HeapRegion* hr) {
tonyp@2472 998 return hr->containing_set() == &_free_list;
tonyp@2472 999 }
ysr@777 1000
tonyp@2643 1001 bool is_in_humongous_set(HeapRegion* hr) {
tonyp@2472 1002 return hr->containing_set() == &_humongous_set;
tonyp@2643 1003 }
tonyp@2472 1004 #endif // ASSERT
ysr@777 1005
tonyp@2472 1006 // Wrapper for the region list operations that can be called from
tonyp@2472 1007 // methods outside this class.
ysr@777 1008
tonyp@2472 1009 void secondary_free_list_add_as_tail(FreeRegionList* list) {
tonyp@2472 1010 _secondary_free_list.add_as_tail(list);
tonyp@2472 1011 }
ysr@777 1012
tonyp@2472 1013 void append_secondary_free_list() {
tonyp@2714 1014 _free_list.add_as_head(&_secondary_free_list);
tonyp@2472 1015 }
ysr@777 1016
tonyp@2643 1017 void append_secondary_free_list_if_not_empty_with_lock() {
tonyp@2643 1018 // If the secondary free list looks empty there's no reason to
tonyp@2643 1019 // take the lock and then try to append it.
tonyp@2472 1020 if (!_secondary_free_list.is_empty()) {
tonyp@2472 1021 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2472 1022 append_secondary_free_list();
tonyp@2472 1023 }
tonyp@2472 1024 }
ysr@777 1025
tonyp@2472 1026 void set_free_regions_coming();
tonyp@2472 1027 void reset_free_regions_coming();
tonyp@2472 1028 bool free_regions_coming() { return _free_regions_coming; }
tonyp@2472 1029 void wait_while_free_regions_coming();
ysr@777 1030
ysr@777 1031 // Perform a collection of the heap; intended for use in implementing
ysr@777 1032 // "System.gc". This probably implies as full a collection as the
ysr@777 1033 // "CollectedHeap" supports.
ysr@777 1034 virtual void collect(GCCause::Cause cause);
ysr@777 1035
ysr@777 1036 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 1037 void collect_locked(GCCause::Cause cause);
ysr@777 1038
ysr@777 1039 // This interface assumes that it's being called by the
ysr@777 1040 // vm thread. It collects the heap assuming that the
ysr@777 1041 // heap lock is already held and that we are executing in
ysr@777 1042 // the context of the vm thread.
ysr@777 1043 virtual void collect_as_vm_thread(GCCause::Cause cause);
ysr@777 1044
ysr@777 1045 // True iff a evacuation has failed in the most-recent collection.
ysr@777 1046 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 1047
tonyp@2472 1048 // It will free a region if it has allocated objects in it that are
tonyp@2472 1049 // all dead. It calls either free_region() or
tonyp@2472 1050 // free_humongous_region() depending on the type of the region that
tonyp@2472 1051 // is passed to it.
tonyp@2493 1052 void free_region_if_empty(HeapRegion* hr,
tonyp@2493 1053 size_t* pre_used,
tonyp@2493 1054 FreeRegionList* free_list,
tonyp@2493 1055 HumongousRegionSet* humongous_proxy_set,
tonyp@2493 1056 HRRSCleanupTask* hrrs_cleanup_task,
tonyp@2493 1057 bool par);
ysr@777 1058
tonyp@2472 1059 // It appends the free list to the master free list and updates the
tonyp@2472 1060 // master humongous list according to the contents of the proxy
tonyp@2472 1061 // list. It also adjusts the total used bytes according to pre_used
tonyp@2472 1062 // (if par is true, it will do so by taking the ParGCRareEvent_lock).
tonyp@2472 1063 void update_sets_after_freeing_regions(size_t pre_used,
tonyp@2472 1064 FreeRegionList* free_list,
tonyp@2472 1065 HumongousRegionSet* humongous_proxy_set,
tonyp@2472 1066 bool par);
ysr@777 1067
ysr@777 1068 // Returns "TRUE" iff "p" points into the allocated area of the heap.
ysr@777 1069 virtual bool is_in(const void* p) const;
ysr@777 1070
ysr@777 1071 // Return "TRUE" iff the given object address is within the collection
ysr@777 1072 // set.
ysr@777 1073 inline bool obj_in_cs(oop obj);
ysr@777 1074
ysr@777 1075 // Return "TRUE" iff the given object address is in the reserved
ysr@777 1076 // region of g1 (excluding the permanent generation).
ysr@777 1077 bool is_in_g1_reserved(const void* p) const {
ysr@777 1078 return _g1_reserved.contains(p);
ysr@777 1079 }
ysr@777 1080
tonyp@2717 1081 // Returns a MemRegion that corresponds to the space that has been
tonyp@2717 1082 // reserved for the heap
tonyp@2717 1083 MemRegion g1_reserved() {
tonyp@2717 1084 return _g1_reserved;
tonyp@2717 1085 }
tonyp@2717 1086
tonyp@2717 1087 // Returns a MemRegion that corresponds to the space that has been
ysr@777 1088 // committed in the heap
ysr@777 1089 MemRegion g1_committed() {
ysr@777 1090 return _g1_committed;
ysr@777 1091 }
ysr@777 1092
johnc@2593 1093 virtual bool is_in_closed_subset(const void* p) const;
ysr@777 1094
ysr@777 1095 // This resets the card table to all zeros. It is used after
ysr@777 1096 // a collection pause which used the card table to claim cards.
ysr@777 1097 void cleanUpCardTable();
ysr@777 1098
ysr@777 1099 // Iteration functions.
ysr@777 1100
ysr@777 1101 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 1102 // "cl.do_oop" on each.
iveresov@1113 1103 virtual void oop_iterate(OopClosure* cl) {
iveresov@1113 1104 oop_iterate(cl, true);
iveresov@1113 1105 }
iveresov@1113 1106 void oop_iterate(OopClosure* cl, bool do_perm);
ysr@777 1107
ysr@777 1108 // Same as above, restricted to a memory region.
iveresov@1113 1109 virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
iveresov@1113 1110 oop_iterate(mr, cl, true);
iveresov@1113 1111 }
iveresov@1113 1112 void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
ysr@777 1113
ysr@777 1114 // Iterate over all objects, calling "cl.do_object" on each.
iveresov@1113 1115 virtual void object_iterate(ObjectClosure* cl) {
iveresov@1113 1116 object_iterate(cl, true);
iveresov@1113 1117 }
iveresov@1113 1118 virtual void safe_object_iterate(ObjectClosure* cl) {
iveresov@1113 1119 object_iterate(cl, true);
iveresov@1113 1120 }
iveresov@1113 1121 void object_iterate(ObjectClosure* cl, bool do_perm);
ysr@777 1122
ysr@777 1123 // Iterate over all objects allocated since the last collection, calling
ysr@777 1124 // "cl.do_object" on each. The heap must have been initialized properly
ysr@777 1125 // to support this function, or else this call will fail.
ysr@777 1126 virtual void object_iterate_since_last_GC(ObjectClosure* cl);
ysr@777 1127
ysr@777 1128 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 1129 virtual void space_iterate(SpaceClosure* cl);
ysr@777 1130
ysr@777 1131 // Iterate over heap regions, in address order, terminating the
ysr@777 1132 // iteration early if the "doHeapRegion" method returns "true".
tonyp@2963 1133 void heap_region_iterate(HeapRegionClosure* blk) const;
ysr@777 1134
ysr@777 1135 // Iterate over heap regions starting with r (or the first region if "r"
ysr@777 1136 // is NULL), in address order, terminating early if the "doHeapRegion"
ysr@777 1137 // method returns "true".
tonyp@2963 1138 void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
ysr@777 1139
tonyp@2963 1140 // Return the region with the given index. It assumes the index is valid.
tonyp@2963 1141 HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
ysr@777 1142
ysr@777 1143 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 1144 // of regions divided by the number of parallel threads times some
ysr@777 1145 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 1146 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 1147 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 1148 // calls will use the same "claim_value", and that that claim value is
ysr@777 1149 // different from the claim_value of any heap region before the start of
ysr@777 1150 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 1151 // attempting to claim the first region in each chunk, and, if
ysr@777 1152 // successful, applying the closure to each region in the chunk (and
ysr@777 1153 // setting the claim value of the second and subsequent regions of the
ysr@777 1154 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 1155 // i.e., that a closure never attempt to abort a traversal.
ysr@777 1156 void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
ysr@777 1157 int worker,
ysr@777 1158 jint claim_value);
ysr@777 1159
tonyp@825 1160 // It resets all the region claim values to the default.
tonyp@825 1161 void reset_heap_region_claim_values();
tonyp@825 1162
tonyp@790 1163 #ifdef ASSERT
tonyp@790 1164 bool check_heap_region_claim_values(jint claim_value);
tonyp@790 1165 #endif // ASSERT
tonyp@790 1166
ysr@777 1167 // Iterate over the regions (if any) in the current collection set.
ysr@777 1168 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 1169
ysr@777 1170 // As above but starting from region r
ysr@777 1171 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 1172
ysr@777 1173 // Returns the first (lowest address) compactible space in the heap.
ysr@777 1174 virtual CompactibleSpace* first_compactible_space();
ysr@777 1175
ysr@777 1176 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 1177 // space containing a given address, or else returns NULL.
ysr@777 1178 virtual Space* space_containing(const void* addr) const;
ysr@777 1179
ysr@777 1180 // A G1CollectedHeap will contain some number of heap regions. This
ysr@777 1181 // finds the region containing a given address, or else returns NULL.
tonyp@2963 1182 template <class T>
tonyp@2963 1183 inline HeapRegion* heap_region_containing(const T addr) const;
ysr@777 1184
ysr@777 1185 // Like the above, but requires "addr" to be in the heap (to avoid a
ysr@777 1186 // null-check), and unlike the above, may return an continuing humongous
ysr@777 1187 // region.
tonyp@2963 1188 template <class T>
tonyp@2963 1189 inline HeapRegion* heap_region_containing_raw(const T addr) const;
ysr@777 1190
ysr@777 1191 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1192 // each address in the (reserved) heap is a member of exactly
ysr@777 1193 // one block. The defining characteristic of a block is that it is
ysr@777 1194 // possible to find its size, and thus to progress forward to the next
ysr@777 1195 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1196 // represent Java objects, or they might be free blocks in a
ysr@777 1197 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1198 // distinguishable and the size of each is determinable.
ysr@777 1199
ysr@777 1200 // Returns the address of the start of the "block" that contains the
ysr@777 1201 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1202 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1203 // non-object.
ysr@777 1204 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1205
ysr@777 1206 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1207 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1208 // of the active area of the heap.
ysr@777 1209 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1210
ysr@777 1211 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1212 // the block is an object.
ysr@777 1213 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1214
ysr@777 1215 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1216 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1217
ysr@777 1218 // Section on thread-local allocation buffers (TLABs)
ysr@777 1219 // See CollectedHeap for semantics.
ysr@777 1220
ysr@777 1221 virtual bool supports_tlab_allocation() const;
ysr@777 1222 virtual size_t tlab_capacity(Thread* thr) const;
ysr@777 1223 virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
ysr@777 1224
ysr@777 1225 // Can a compiler initialize a new object without store barriers?
ysr@777 1226 // This permission only extends from the creation of a new object
ysr@1462 1227 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1228 // is granted for this heap type, the compiler promises to call
ysr@1462 1229 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1230 // a new object for which such initializing store barriers will
ysr@1462 1231 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1232 // ready to provide a compensating write barrier as necessary
ysr@1462 1233 // if that storage came out of a non-young region. The efficiency
ysr@1462 1234 // of this implementation depends crucially on being able to
ysr@1462 1235 // answer very efficiently in constant time whether a piece of
ysr@1462 1236 // storage in the heap comes from a young region or not.
ysr@1462 1237 // See ReduceInitialCardMarks.
ysr@777 1238 virtual bool can_elide_tlab_store_barriers() const {
ysr@1629 1239 // 6920090: Temporarily disabled, because of lingering
ysr@1629 1240 // instabilities related to RICM with G1. In the
ysr@1629 1241 // interim, the option ReduceInitialCardMarksForG1
ysr@1629 1242 // below is left solely as a debugging device at least
ysr@1629 1243 // until 6920109 fixes the instabilities.
ysr@1629 1244 return ReduceInitialCardMarksForG1;
ysr@1462 1245 }
ysr@1462 1246
ysr@1601 1247 virtual bool card_mark_must_follow_store() const {
ysr@1601 1248 return true;
ysr@1601 1249 }
ysr@1601 1250
tonyp@2963 1251 bool is_in_young(const oop obj) {
ysr@1462 1252 HeapRegion* hr = heap_region_containing(obj);
ysr@1462 1253 return hr != NULL && hr->is_young();
ysr@1462 1254 }
ysr@1462 1255
jmasa@2909 1256 #ifdef ASSERT
jmasa@2909 1257 virtual bool is_in_partial_collection(const void* p);
jmasa@2909 1258 #endif
jmasa@2909 1259
jmasa@2909 1260 virtual bool is_scavengable(const void* addr);
jmasa@2909 1261
ysr@1462 1262 // We don't need barriers for initializing stores to objects
ysr@1462 1263 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1264 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1265 // update logging post-barrier, we don't maintain remembered set
brutisso@3065 1266 // information for young gen objects.
ysr@1462 1267 virtual bool can_elide_initializing_store_barrier(oop new_obj) {
ysr@1629 1268 // Re 6920090, 6920109 above.
ysr@1629 1269 assert(ReduceInitialCardMarksForG1, "Else cannot be here");
ysr@1462 1270 return is_in_young(new_obj);
ysr@777 1271 }
ysr@777 1272
ysr@777 1273 // Can a compiler elide a store barrier when it writes
ysr@777 1274 // a permanent oop into the heap? Applies when the compiler
ysr@777 1275 // is storing x to the heap, where x->is_perm() is true.
ysr@777 1276 virtual bool can_elide_permanent_oop_store_barriers() const {
ysr@777 1277 // At least until perm gen collection is also G1-ified, at
ysr@777 1278 // which point this should return false.
ysr@777 1279 return true;
ysr@777 1280 }
ysr@777 1281
ysr@777 1282 // Returns "true" iff the given word_size is "very large".
ysr@777 1283 static bool isHumongous(size_t word_size) {
johnc@1748 1284 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1285 // are capped at the humongous thresold and we want to
johnc@1748 1286 // ensure that we don't try to allocate a TLAB as
johnc@1748 1287 // humongous and that we don't allocate a humongous
johnc@1748 1288 // object in a TLAB.
johnc@1748 1289 return word_size > _humongous_object_threshold_in_words;
ysr@777 1290 }
ysr@777 1291
ysr@777 1292 // Update mod union table with the set of dirty cards.
ysr@777 1293 void updateModUnion();
ysr@777 1294
ysr@777 1295 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1296 // that this is always a safe operation, since it doesn't clear any
ysr@777 1297 // bits.
ysr@777 1298 void markModUnionRange(MemRegion mr);
ysr@777 1299
ysr@777 1300 // Records the fact that a marking phase is no longer in progress.
ysr@777 1301 void set_marking_complete() {
ysr@777 1302 _mark_in_progress = false;
ysr@777 1303 }
ysr@777 1304 void set_marking_started() {
ysr@777 1305 _mark_in_progress = true;
ysr@777 1306 }
ysr@777 1307 bool mark_in_progress() {
ysr@777 1308 return _mark_in_progress;
ysr@777 1309 }
ysr@777 1310
ysr@777 1311 // Print the maximum heap capacity.
ysr@777 1312 virtual size_t max_capacity() const;
ysr@777 1313
ysr@777 1314 virtual jlong millis_since_last_gc();
ysr@777 1315
ysr@777 1316 // Perform any cleanup actions necessary before allowing a verification.
ysr@777 1317 virtual void prepare_for_verify();
ysr@777 1318
ysr@777 1319 // Perform verification.
tonyp@1246 1320
johnc@2969 1321 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 1322 // vo == UseNextMarking -> use "next" marking information
johnc@2969 1323 // vo == UseMarkWord -> use the mark word in the object header
johnc@2969 1324 //
tonyp@1246 1325 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 1326 // consistent most of the time, so most calls to this should use
johnc@2969 1327 // vo == UsePrevMarking.
johnc@2969 1328 // Currently, there is only one case where this is called with
johnc@2969 1329 // vo == UseNextMarking, which is to verify the "next" marking
johnc@2969 1330 // information at the end of remark.
johnc@2969 1331 // Currently there is only one place where this is called with
johnc@2969 1332 // vo == UseMarkWord, which is to verify the marking during a
johnc@2969 1333 // full GC.
johnc@2969 1334 void verify(bool allow_dirty, bool silent, VerifyOption vo);
tonyp@1246 1335
tonyp@1246 1336 // Override; it uses the "prev" marking information
ysr@777 1337 virtual void verify(bool allow_dirty, bool silent);
tonyp@1273 1338 // Default behavior by calling print(tty);
ysr@777 1339 virtual void print() const;
tonyp@1273 1340 // This calls print_on(st, PrintHeapAtGCExtended).
ysr@777 1341 virtual void print_on(outputStream* st) const;
tonyp@1273 1342 // If extended is true, it will print out information for all
tonyp@1273 1343 // regions in the heap by calling print_on_extended(st).
tonyp@1273 1344 virtual void print_on(outputStream* st, bool extended) const;
tonyp@1273 1345 virtual void print_on_extended(outputStream* st) const;
ysr@777 1346
ysr@777 1347 virtual void print_gc_threads_on(outputStream* st) const;
ysr@777 1348 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1349
ysr@777 1350 // Override
ysr@777 1351 void print_tracing_info() const;
ysr@777 1352
tonyp@2974 1353 // The following two methods are helpful for debugging RSet issues.
tonyp@2974 1354 void print_cset_rsets() PRODUCT_RETURN;
tonyp@2974 1355 void print_all_rsets() PRODUCT_RETURN;
tonyp@2974 1356
ysr@777 1357 // Convenience function to be used in situations where the heap type can be
ysr@777 1358 // asserted to be this type.
ysr@777 1359 static G1CollectedHeap* heap();
ysr@777 1360
ysr@777 1361 void empty_young_list();
ysr@777 1362
ysr@777 1363 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1364 // add appropriate methods for any other surv rate groups
ysr@777 1365
johnc@1829 1366 YoungList* young_list() { return _young_list; }
ysr@777 1367
ysr@777 1368 // debugging
ysr@777 1369 bool check_young_list_well_formed() {
ysr@777 1370 return _young_list->check_list_well_formed();
ysr@777 1371 }
johnc@1829 1372
johnc@1829 1373 bool check_young_list_empty(bool check_heap,
ysr@777 1374 bool check_sample = true);
ysr@777 1375
ysr@777 1376 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1377 // many of these need to be public.
ysr@777 1378
ysr@777 1379 // The functions below are helper functions that a subclass of
ysr@777 1380 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1381 // functions.
ysr@777 1382 // This performs a concurrent marking of the live objects in a
ysr@777 1383 // bitmap off to the side.
ysr@777 1384 void doConcurrentMark();
ysr@777 1385
ysr@777 1386 bool isMarkedPrev(oop obj) const;
ysr@777 1387 bool isMarkedNext(oop obj) const;
ysr@777 1388
johnc@2969 1389 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 1390 // vo == UseNextMarking -> use "next" marking information,
johnc@2969 1391 // vo == UseMarkWord -> use mark word from object header
tonyp@1246 1392 bool is_obj_dead_cond(const oop obj,
tonyp@1246 1393 const HeapRegion* hr,
johnc@2969 1394 const VerifyOption vo) const {
johnc@2969 1395
johnc@2969 1396 switch (vo) {
johnc@2969 1397 case VerifyOption_G1UsePrevMarking:
johnc@2969 1398 return is_obj_dead(obj, hr);
johnc@2969 1399 case VerifyOption_G1UseNextMarking:
johnc@2969 1400 return is_obj_ill(obj, hr);
johnc@2969 1401 default:
johnc@2969 1402 assert(vo == VerifyOption_G1UseMarkWord, "must be");
johnc@2969 1403 return !obj->is_gc_marked();
tonyp@1246 1404 }
tonyp@1246 1405 }
tonyp@1246 1406
ysr@777 1407 // Determine if an object is dead, given the object and also
ysr@777 1408 // the region to which the object belongs. An object is dead
ysr@777 1409 // iff a) it was not allocated since the last mark and b) it
ysr@777 1410 // is not marked.
ysr@777 1411
ysr@777 1412 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1413 return
ysr@777 1414 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1415 !isMarkedPrev(obj);
ysr@777 1416 }
ysr@777 1417
ysr@777 1418 // This is used when copying an object to survivor space.
ysr@777 1419 // If the object is marked live, then we mark the copy live.
ysr@777 1420 // If the object is allocated since the start of this mark
ysr@777 1421 // cycle, then we mark the copy live.
ysr@777 1422 // If the object has been around since the previous mark
ysr@777 1423 // phase, and hasn't been marked yet during this phase,
ysr@777 1424 // then we don't mark it, we just wait for the
ysr@777 1425 // current marking cycle to get to it.
ysr@777 1426
ysr@777 1427 // This function returns true when an object has been
ysr@777 1428 // around since the previous marking and hasn't yet
ysr@777 1429 // been marked during this marking.
ysr@777 1430
ysr@777 1431 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1432 return
ysr@777 1433 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1434 !isMarkedNext(obj);
ysr@777 1435 }
ysr@777 1436
ysr@777 1437 // Determine if an object is dead, given only the object itself.
ysr@777 1438 // This will find the region to which the object belongs and
ysr@777 1439 // then call the region version of the same function.
ysr@777 1440
ysr@777 1441 // Added if it is in permanent gen it isn't dead.
ysr@777 1442 // Added if it is NULL it isn't dead.
ysr@777 1443
johnc@2969 1444 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 1445 // vo == UseNextMarking -> use "next" marking information,
johnc@2969 1446 // vo == UseMarkWord -> use mark word from object header
tonyp@1246 1447 bool is_obj_dead_cond(const oop obj,
johnc@2969 1448 const VerifyOption vo) const {
johnc@2969 1449
johnc@2969 1450 switch (vo) {
johnc@2969 1451 case VerifyOption_G1UsePrevMarking:
johnc@2969 1452 return is_obj_dead(obj);
johnc@2969 1453 case VerifyOption_G1UseNextMarking:
johnc@2969 1454 return is_obj_ill(obj);
johnc@2969 1455 default:
johnc@2969 1456 assert(vo == VerifyOption_G1UseMarkWord, "must be");
johnc@2969 1457 return !obj->is_gc_marked();
tonyp@1246 1458 }
tonyp@1246 1459 }
tonyp@1246 1460
johnc@2969 1461 bool is_obj_dead(const oop obj) const {
tonyp@1246 1462 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1463 if (hr == NULL) {
ysr@777 1464 if (Universe::heap()->is_in_permanent(obj))
ysr@777 1465 return false;
ysr@777 1466 else if (obj == NULL) return false;
ysr@777 1467 else return true;
ysr@777 1468 }
ysr@777 1469 else return is_obj_dead(obj, hr);
ysr@777 1470 }
ysr@777 1471
johnc@2969 1472 bool is_obj_ill(const oop obj) const {
tonyp@1246 1473 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1474 if (hr == NULL) {
ysr@777 1475 if (Universe::heap()->is_in_permanent(obj))
ysr@777 1476 return false;
ysr@777 1477 else if (obj == NULL) return false;
ysr@777 1478 else return true;
ysr@777 1479 }
ysr@777 1480 else return is_obj_ill(obj, hr);
ysr@777 1481 }
ysr@777 1482
ysr@777 1483 // The following is just to alert the verification code
ysr@777 1484 // that a full collection has occurred and that the
ysr@777 1485 // remembered sets are no longer up to date.
ysr@777 1486 bool _full_collection;
ysr@777 1487 void set_full_collection() { _full_collection = true;}
ysr@777 1488 void clear_full_collection() {_full_collection = false;}
ysr@777 1489 bool full_collection() {return _full_collection;}
ysr@777 1490
ysr@777 1491 ConcurrentMark* concurrent_mark() const { return _cm; }
ysr@777 1492 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
ysr@777 1493
apetrusenko@1231 1494 // The dirty cards region list is used to record a subset of regions
apetrusenko@1231 1495 // whose cards need clearing. The list if populated during the
apetrusenko@1231 1496 // remembered set scanning and drained during the card table
apetrusenko@1231 1497 // cleanup. Although the methods are reentrant, population/draining
apetrusenko@1231 1498 // phases must not overlap. For synchronization purposes the last
apetrusenko@1231 1499 // element on the list points to itself.
apetrusenko@1231 1500 HeapRegion* _dirty_cards_region_list;
apetrusenko@1231 1501 void push_dirty_cards_region(HeapRegion* hr);
apetrusenko@1231 1502 HeapRegion* pop_dirty_cards_region();
apetrusenko@1231 1503
ysr@777 1504 public:
ysr@777 1505 void stop_conc_gc_threads();
ysr@777 1506
ysr@777 1507 // <NEW PREDICTION>
ysr@777 1508
ysr@777 1509 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
ysr@777 1510 void check_if_region_is_too_expensive(double predicted_time_ms);
ysr@777 1511 size_t pending_card_num();
ysr@777 1512 size_t max_pending_card_num();
ysr@777 1513 size_t cards_scanned();
ysr@777 1514
ysr@777 1515 // </NEW PREDICTION>
ysr@777 1516
ysr@777 1517 protected:
ysr@777 1518 size_t _max_heap_capacity;
ysr@777 1519 };
ysr@777 1520
ysr@1280 1521 #define use_local_bitmaps 1
ysr@1280 1522 #define verify_local_bitmaps 0
ysr@1280 1523 #define oop_buffer_length 256
ysr@1280 1524
ysr@1280 1525 #ifndef PRODUCT
ysr@1280 1526 class GCLabBitMap;
ysr@1280 1527 class GCLabBitMapClosure: public BitMapClosure {
ysr@1280 1528 private:
ysr@1280 1529 ConcurrentMark* _cm;
ysr@1280 1530 GCLabBitMap* _bitmap;
ysr@1280 1531
ysr@1280 1532 public:
ysr@1280 1533 GCLabBitMapClosure(ConcurrentMark* cm,
ysr@1280 1534 GCLabBitMap* bitmap) {
ysr@1280 1535 _cm = cm;
ysr@1280 1536 _bitmap = bitmap;
ysr@1280 1537 }
ysr@1280 1538
ysr@1280 1539 virtual bool do_bit(size_t offset);
ysr@1280 1540 };
ysr@1280 1541 #endif // !PRODUCT
ysr@1280 1542
ysr@1280 1543 class GCLabBitMap: public BitMap {
ysr@1280 1544 private:
ysr@1280 1545 ConcurrentMark* _cm;
ysr@1280 1546
ysr@1280 1547 int _shifter;
ysr@1280 1548 size_t _bitmap_word_covers_words;
ysr@1280 1549
ysr@1280 1550 // beginning of the heap
ysr@1280 1551 HeapWord* _heap_start;
ysr@1280 1552
ysr@1280 1553 // this is the actual start of the GCLab
ysr@1280 1554 HeapWord* _real_start_word;
ysr@1280 1555
ysr@1280 1556 // this is the actual end of the GCLab
ysr@1280 1557 HeapWord* _real_end_word;
ysr@1280 1558
ysr@1280 1559 // this is the first word, possibly located before the actual start
ysr@1280 1560 // of the GCLab, that corresponds to the first bit of the bitmap
ysr@1280 1561 HeapWord* _start_word;
ysr@1280 1562
ysr@1280 1563 // size of a GCLab in words
ysr@1280 1564 size_t _gclab_word_size;
ysr@1280 1565
ysr@1280 1566 static int shifter() {
ysr@1280 1567 return MinObjAlignment - 1;
ysr@1280 1568 }
ysr@1280 1569
ysr@1280 1570 // how many heap words does a single bitmap word corresponds to?
ysr@1280 1571 static size_t bitmap_word_covers_words() {
ysr@1280 1572 return BitsPerWord << shifter();
ysr@1280 1573 }
ysr@1280 1574
apetrusenko@1826 1575 size_t gclab_word_size() const {
apetrusenko@1826 1576 return _gclab_word_size;
ysr@1280 1577 }
ysr@1280 1578
apetrusenko@1826 1579 // Calculates actual GCLab size in words
apetrusenko@1826 1580 size_t gclab_real_word_size() const {
apetrusenko@1826 1581 return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
apetrusenko@1826 1582 / BitsPerWord;
apetrusenko@1826 1583 }
apetrusenko@1826 1584
apetrusenko@1826 1585 static size_t bitmap_size_in_bits(size_t gclab_word_size) {
apetrusenko@1826 1586 size_t bits_in_bitmap = gclab_word_size >> shifter();
ysr@1280 1587 // We are going to ensure that the beginning of a word in this
ysr@1280 1588 // bitmap also corresponds to the beginning of a word in the
ysr@1280 1589 // global marking bitmap. To handle the case where a GCLab
ysr@1280 1590 // starts from the middle of the bitmap, we need to add enough
ysr@1280 1591 // space (i.e. up to a bitmap word) to ensure that we have
ysr@1280 1592 // enough bits in the bitmap.
ysr@1280 1593 return bits_in_bitmap + BitsPerWord - 1;
ysr@1280 1594 }
ysr@1280 1595 public:
apetrusenko@1826 1596 GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
apetrusenko@1826 1597 : BitMap(bitmap_size_in_bits(gclab_word_size)),
ysr@1280 1598 _cm(G1CollectedHeap::heap()->concurrent_mark()),
ysr@1280 1599 _shifter(shifter()),
ysr@1280 1600 _bitmap_word_covers_words(bitmap_word_covers_words()),
ysr@1280 1601 _heap_start(heap_start),
apetrusenko@1826 1602 _gclab_word_size(gclab_word_size),
ysr@1280 1603 _real_start_word(NULL),
ysr@1280 1604 _real_end_word(NULL),
ysr@1280 1605 _start_word(NULL)
ysr@1280 1606 {
ysr@1280 1607 guarantee( size_in_words() >= bitmap_size_in_words(),
ysr@1280 1608 "just making sure");
ysr@1280 1609 }
ysr@1280 1610
ysr@1280 1611 inline unsigned heapWordToOffset(HeapWord* addr) {
ysr@1280 1612 unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
ysr@1280 1613 assert(offset < size(), "offset should be within bounds");
ysr@1280 1614 return offset;
ysr@1280 1615 }
ysr@1280 1616
ysr@1280 1617 inline HeapWord* offsetToHeapWord(size_t offset) {
ysr@1280 1618 HeapWord* addr = _start_word + (offset << _shifter);
ysr@1280 1619 assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
ysr@1280 1620 return addr;
ysr@1280 1621 }
ysr@1280 1622
ysr@1280 1623 bool fields_well_formed() {
ysr@1280 1624 bool ret1 = (_real_start_word == NULL) &&
ysr@1280 1625 (_real_end_word == NULL) &&
ysr@1280 1626 (_start_word == NULL);
ysr@1280 1627 if (ret1)
ysr@1280 1628 return true;
ysr@1280 1629
ysr@1280 1630 bool ret2 = _real_start_word >= _start_word &&
ysr@1280 1631 _start_word < _real_end_word &&
ysr@1280 1632 (_real_start_word + _gclab_word_size) == _real_end_word &&
ysr@1280 1633 (_start_word + _gclab_word_size + _bitmap_word_covers_words)
ysr@1280 1634 > _real_end_word;
ysr@1280 1635 return ret2;
ysr@1280 1636 }
ysr@1280 1637
ysr@1280 1638 inline bool mark(HeapWord* addr) {
ysr@1280 1639 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1640 assert(fields_well_formed(), "invariant");
ysr@1280 1641
ysr@1280 1642 if (addr >= _real_start_word && addr < _real_end_word) {
ysr@1280 1643 assert(!isMarked(addr), "should not have already been marked");
ysr@1280 1644
ysr@1280 1645 // first mark it on the bitmap
ysr@1280 1646 at_put(heapWordToOffset(addr), true);
ysr@1280 1647
ysr@1280 1648 return true;
ysr@1280 1649 } else {
ysr@1280 1650 return false;
ysr@1280 1651 }
ysr@1280 1652 }
ysr@1280 1653
ysr@1280 1654 inline bool isMarked(HeapWord* addr) {
ysr@1280 1655 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1656 assert(fields_well_formed(), "invariant");
ysr@1280 1657
ysr@1280 1658 return at(heapWordToOffset(addr));
ysr@1280 1659 }
ysr@1280 1660
ysr@1280 1661 void set_buffer(HeapWord* start) {
ysr@1280 1662 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1663 clear();
ysr@1280 1664
ysr@1280 1665 assert(start != NULL, "invariant");
ysr@1280 1666 _real_start_word = start;
ysr@1280 1667 _real_end_word = start + _gclab_word_size;
ysr@1280 1668
ysr@1280 1669 size_t diff =
ysr@1280 1670 pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
ysr@1280 1671 _start_word = start - diff;
ysr@1280 1672
ysr@1280 1673 assert(fields_well_formed(), "invariant");
ysr@1280 1674 }
ysr@1280 1675
ysr@1280 1676 #ifndef PRODUCT
ysr@1280 1677 void verify() {
ysr@1280 1678 // verify that the marks have been propagated
ysr@1280 1679 GCLabBitMapClosure cl(_cm, this);
ysr@1280 1680 iterate(&cl);
ysr@1280 1681 }
ysr@1280 1682 #endif // PRODUCT
ysr@1280 1683
ysr@1280 1684 void retire() {
ysr@1280 1685 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1686 assert(fields_well_formed(), "invariant");
ysr@1280 1687
ysr@1280 1688 if (_start_word != NULL) {
ysr@1280 1689 CMBitMap* mark_bitmap = _cm->nextMarkBitMap();
ysr@1280 1690
ysr@1280 1691 // this means that the bitmap was set up for the GCLab
ysr@1280 1692 assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
ysr@1280 1693
ysr@1280 1694 mark_bitmap->mostly_disjoint_range_union(this,
ysr@1280 1695 0, // always start from the start of the bitmap
ysr@1280 1696 _start_word,
apetrusenko@1826 1697 gclab_real_word_size());
ysr@1280 1698 _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
ysr@1280 1699
ysr@1280 1700 #ifndef PRODUCT
ysr@1280 1701 if (use_local_bitmaps && verify_local_bitmaps)
ysr@1280 1702 verify();
ysr@1280 1703 #endif // PRODUCT
ysr@1280 1704 } else {
ysr@1280 1705 assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
ysr@1280 1706 }
ysr@1280 1707 }
ysr@1280 1708
apetrusenko@1826 1709 size_t bitmap_size_in_words() const {
apetrusenko@1826 1710 return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
ysr@1280 1711 }
apetrusenko@1826 1712
ysr@1280 1713 };
ysr@1280 1714
ysr@1280 1715 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
ysr@1280 1716 private:
ysr@1280 1717 bool _retired;
johnc@3086 1718 bool _should_mark_objects;
ysr@1280 1719 GCLabBitMap _bitmap;
ysr@1280 1720
ysr@1280 1721 public:
johnc@3086 1722 G1ParGCAllocBuffer(size_t gclab_word_size);
ysr@1280 1723
ysr@1280 1724 inline bool mark(HeapWord* addr) {
ysr@1280 1725 guarantee(use_local_bitmaps, "invariant");
johnc@3086 1726 assert(_should_mark_objects, "invariant");
ysr@1280 1727 return _bitmap.mark(addr);
ysr@1280 1728 }
ysr@1280 1729
ysr@1280 1730 inline void set_buf(HeapWord* buf) {
johnc@3086 1731 if (use_local_bitmaps && _should_mark_objects) {
ysr@1280 1732 _bitmap.set_buffer(buf);
johnc@3086 1733 }
ysr@1280 1734 ParGCAllocBuffer::set_buf(buf);
ysr@1280 1735 _retired = false;
ysr@1280 1736 }
ysr@1280 1737
ysr@1280 1738 inline void retire(bool end_of_gc, bool retain) {
ysr@1280 1739 if (_retired)
ysr@1280 1740 return;
johnc@3086 1741 if (use_local_bitmaps && _should_mark_objects) {
ysr@1280 1742 _bitmap.retire();
ysr@1280 1743 }
ysr@1280 1744 ParGCAllocBuffer::retire(end_of_gc, retain);
ysr@1280 1745 _retired = true;
ysr@1280 1746 }
ysr@1280 1747 };
ysr@1280 1748
ysr@1280 1749 class G1ParScanThreadState : public StackObj {
ysr@1280 1750 protected:
ysr@1280 1751 G1CollectedHeap* _g1h;
ysr@1280 1752 RefToScanQueue* _refs;
ysr@1280 1753 DirtyCardQueue _dcq;
ysr@1280 1754 CardTableModRefBS* _ct_bs;
ysr@1280 1755 G1RemSet* _g1_rem;
ysr@1280 1756
apetrusenko@1826 1757 G1ParGCAllocBuffer _surviving_alloc_buffer;
apetrusenko@1826 1758 G1ParGCAllocBuffer _tenured_alloc_buffer;
apetrusenko@1826 1759 G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
apetrusenko@1826 1760 ageTable _age_table;
ysr@1280 1761
ysr@1280 1762 size_t _alloc_buffer_waste;
ysr@1280 1763 size_t _undo_waste;
ysr@1280 1764
ysr@1280 1765 OopsInHeapRegionClosure* _evac_failure_cl;
ysr@1280 1766 G1ParScanHeapEvacClosure* _evac_cl;
ysr@1280 1767 G1ParScanPartialArrayClosure* _partial_scan_cl;
ysr@1280 1768
ysr@1280 1769 int _hash_seed;
ysr@1280 1770 int _queue_num;
ysr@1280 1771
tonyp@1966 1772 size_t _term_attempts;
ysr@1280 1773
ysr@1280 1774 double _start;
ysr@1280 1775 double _start_strong_roots;
ysr@1280 1776 double _strong_roots_time;
ysr@1280 1777 double _start_term;
ysr@1280 1778 double _term_time;
ysr@1280 1779
ysr@1280 1780 // Map from young-age-index (0 == not young, 1 is youngest) to
ysr@1280 1781 // surviving words. base is what we get back from the malloc call
ysr@1280 1782 size_t* _surviving_young_words_base;
ysr@1280 1783 // this points into the array, as we use the first few entries for padding
ysr@1280 1784 size_t* _surviving_young_words;
ysr@1280 1785
jcoomes@2064 1786 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
ysr@1280 1787
ysr@1280 1788 void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
ysr@1280 1789
ysr@1280 1790 void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
ysr@1280 1791
ysr@1280 1792 DirtyCardQueue& dirty_card_queue() { return _dcq; }
ysr@1280 1793 CardTableModRefBS* ctbs() { return _ct_bs; }
ysr@1280 1794
ysr@1280 1795 template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1796 if (!from->is_survivor()) {
ysr@1280 1797 _g1_rem->par_write_ref(from, p, tid);
ysr@1280 1798 }
ysr@1280 1799 }
ysr@1280 1800
ysr@1280 1801 template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1802 // If the new value of the field points to the same region or
ysr@1280 1803 // is the to-space, we don't need to include it in the Rset updates.
ysr@1280 1804 if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
ysr@1280 1805 size_t card_index = ctbs()->index_for(p);
ysr@1280 1806 // If the card hasn't been added to the buffer, do it.
ysr@1280 1807 if (ctbs()->mark_card_deferred(card_index)) {
ysr@1280 1808 dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
ysr@1280 1809 }
ysr@1280 1810 }
ysr@1280 1811 }
ysr@1280 1812
ysr@1280 1813 public:
ysr@1280 1814 G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
ysr@1280 1815
ysr@1280 1816 ~G1ParScanThreadState() {
ysr@1280 1817 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
ysr@1280 1818 }
ysr@1280 1819
ysr@1280 1820 RefToScanQueue* refs() { return _refs; }
ysr@1280 1821 ageTable* age_table() { return &_age_table; }
ysr@1280 1822
ysr@1280 1823 G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
apetrusenko@1826 1824 return _alloc_buffers[purpose];
ysr@1280 1825 }
ysr@1280 1826
jcoomes@2064 1827 size_t alloc_buffer_waste() const { return _alloc_buffer_waste; }
jcoomes@2064 1828 size_t undo_waste() const { return _undo_waste; }
ysr@1280 1829
jcoomes@2217 1830 #ifdef ASSERT
jcoomes@2217 1831 bool verify_ref(narrowOop* ref) const;
jcoomes@2217 1832 bool verify_ref(oop* ref) const;
jcoomes@2217 1833 bool verify_task(StarTask ref) const;
jcoomes@2217 1834 #endif // ASSERT
jcoomes@2217 1835
ysr@1280 1836 template <class T> void push_on_queue(T* ref) {
jcoomes@2217 1837 assert(verify_ref(ref), "sanity");
jcoomes@2064 1838 refs()->push(ref);
ysr@1280 1839 }
ysr@1280 1840
ysr@1280 1841 template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
ysr@1280 1842 if (G1DeferredRSUpdate) {
ysr@1280 1843 deferred_rs_update(from, p, tid);
ysr@1280 1844 } else {
ysr@1280 1845 immediate_rs_update(from, p, tid);
ysr@1280 1846 }
ysr@1280 1847 }
ysr@1280 1848
ysr@1280 1849 HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1850
ysr@1280 1851 HeapWord* obj = NULL;
apetrusenko@1826 1852 size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
apetrusenko@1826 1853 if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
ysr@1280 1854 G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
apetrusenko@1826 1855 assert(gclab_word_size == alloc_buf->word_sz(),
apetrusenko@1826 1856 "dynamic resizing is not supported");
ysr@1280 1857 add_to_alloc_buffer_waste(alloc_buf->words_remaining());
ysr@1280 1858 alloc_buf->retire(false, false);
ysr@1280 1859
apetrusenko@1826 1860 HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
ysr@1280 1861 if (buf == NULL) return NULL; // Let caller handle allocation failure.
ysr@1280 1862 // Otherwise.
ysr@1280 1863 alloc_buf->set_buf(buf);
ysr@1280 1864
ysr@1280 1865 obj = alloc_buf->allocate(word_sz);
ysr@1280 1866 assert(obj != NULL, "buffer was definitely big enough...");
ysr@1280 1867 } else {
ysr@1280 1868 obj = _g1h->par_allocate_during_gc(purpose, word_sz);
ysr@1280 1869 }
ysr@1280 1870 return obj;
ysr@1280 1871 }
ysr@1280 1872
ysr@1280 1873 HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1874 HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
ysr@1280 1875 if (obj != NULL) return obj;
ysr@1280 1876 return allocate_slow(purpose, word_sz);
ysr@1280 1877 }
ysr@1280 1878
ysr@1280 1879 void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
ysr@1280 1880 if (alloc_buffer(purpose)->contains(obj)) {
ysr@1280 1881 assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
ysr@1280 1882 "should contain whole object");
ysr@1280 1883 alloc_buffer(purpose)->undo_allocation(obj, word_sz);
ysr@1280 1884 } else {
ysr@1280 1885 CollectedHeap::fill_with_object(obj, word_sz);
ysr@1280 1886 add_to_undo_waste(word_sz);
ysr@1280 1887 }
ysr@1280 1888 }
ysr@1280 1889
ysr@1280 1890 void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
ysr@1280 1891 _evac_failure_cl = evac_failure_cl;
ysr@1280 1892 }
ysr@1280 1893 OopsInHeapRegionClosure* evac_failure_closure() {
ysr@1280 1894 return _evac_failure_cl;
ysr@1280 1895 }
ysr@1280 1896
ysr@1280 1897 void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
ysr@1280 1898 _evac_cl = evac_cl;
ysr@1280 1899 }
ysr@1280 1900
ysr@1280 1901 void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
ysr@1280 1902 _partial_scan_cl = partial_scan_cl;
ysr@1280 1903 }
ysr@1280 1904
ysr@1280 1905 int* hash_seed() { return &_hash_seed; }
ysr@1280 1906 int queue_num() { return _queue_num; }
ysr@1280 1907
jcoomes@2064 1908 size_t term_attempts() const { return _term_attempts; }
tonyp@1966 1909 void note_term_attempt() { _term_attempts++; }
ysr@1280 1910
ysr@1280 1911 void start_strong_roots() {
ysr@1280 1912 _start_strong_roots = os::elapsedTime();
ysr@1280 1913 }
ysr@1280 1914 void end_strong_roots() {
ysr@1280 1915 _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
ysr@1280 1916 }
jcoomes@2064 1917 double strong_roots_time() const { return _strong_roots_time; }
ysr@1280 1918
ysr@1280 1919 void start_term_time() {
ysr@1280 1920 note_term_attempt();
ysr@1280 1921 _start_term = os::elapsedTime();
ysr@1280 1922 }
ysr@1280 1923 void end_term_time() {
ysr@1280 1924 _term_time += (os::elapsedTime() - _start_term);
ysr@1280 1925 }
jcoomes@2064 1926 double term_time() const { return _term_time; }
ysr@1280 1927
jcoomes@2064 1928 double elapsed_time() const {
ysr@1280 1929 return os::elapsedTime() - _start;
ysr@1280 1930 }
ysr@1280 1931
jcoomes@2064 1932 static void
jcoomes@2064 1933 print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 1934 void
jcoomes@2064 1935 print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
jcoomes@2064 1936
ysr@1280 1937 size_t* surviving_young_words() {
ysr@1280 1938 // We add on to hide entry 0 which accumulates surviving words for
ysr@1280 1939 // age -1 regions (i.e. non-young ones)
ysr@1280 1940 return _surviving_young_words;
ysr@1280 1941 }
ysr@1280 1942
ysr@1280 1943 void retire_alloc_buffers() {
ysr@1280 1944 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
apetrusenko@1826 1945 size_t waste = _alloc_buffers[ap]->words_remaining();
ysr@1280 1946 add_to_alloc_buffer_waste(waste);
apetrusenko@1826 1947 _alloc_buffers[ap]->retire(true, false);
ysr@1280 1948 }
ysr@1280 1949 }
ysr@1280 1950
ysr@1280 1951 template <class T> void deal_with_reference(T* ref_to_scan) {
ysr@1280 1952 if (has_partial_array_mask(ref_to_scan)) {
ysr@1280 1953 _partial_scan_cl->do_oop_nv(ref_to_scan);
ysr@1280 1954 } else {
ysr@1280 1955 // Note: we can use "raw" versions of "region_containing" because
ysr@1280 1956 // "obj_to_scan" is definitely in the heap, and is not in a
ysr@1280 1957 // humongous region.
ysr@1280 1958 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
ysr@1280 1959 _evac_cl->set_region(r);
ysr@1280 1960 _evac_cl->do_oop_nv(ref_to_scan);
ysr@1280 1961 }
ysr@1280 1962 }
ysr@1280 1963
jcoomes@2217 1964 void deal_with_reference(StarTask ref) {
jcoomes@2217 1965 assert(verify_task(ref), "sanity");
jcoomes@2217 1966 if (ref.is_narrow()) {
jcoomes@2217 1967 deal_with_reference((narrowOop*)ref);
jcoomes@2217 1968 } else {
jcoomes@2217 1969 deal_with_reference((oop*)ref);
ysr@1280 1970 }
ysr@1280 1971 }
jcoomes@2217 1972
jcoomes@2217 1973 public:
jcoomes@2217 1974 void trim_queue();
ysr@1280 1975 };
stefank@2314 1976
stefank@2314 1977 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial